
1

On the Spectre and Meltdown Processor Security Vulnerabilities

Mark D. Hill1, Jon Masters2, Parthasarathy Ranganathan3, Paul Turner3, and John Hennessy3,4

1 University of Wisconsin-Madison, 2 Red Hat, 3 Alphabet/Google, 4 Stanford University

For IEEE Micro Special Issue on Hot Chips 2018

January 30, 2019

Abstract

This paper first reviews the Spectre and Meltdown processor security vulnerabilities that were

revealed during January-October 2018 and that allow the extraction of protected information

from billions of processors in systems large and small. It then discusses short-term mitigation

actions and speculates on the longer-term implications to computer software and hardware. The

paper expands from a keynote/panel by the authors at IEEE Hot Chips 2018.

Introduction

Security and privacy are more important than ever. Substantial personal, business, and

governmental information is stored online. Systems are interconnected across the world. State

actors and cybercriminals are using increasingly sophisticated methods. The attack surface is

constantly growing due to ever more complex software, complex hardware, executing untrusted

downloaded code, and cloud cotenancy.

While many attacks continue to focus on software vulnerabilities, the increased targeting of

hardware vulnerabilities--such as Spectre variants [G0, Spec] (including Meltdown [Melt])

described herein--are of great concern because they can be widely available (e.g., across

operating systems) and because hardware may take months, or even years, to replace or patch,

even after a fix is found. Moreover, Spectre variants cast concern regarding the half-century-old

industry definition of computer hardware correctness. Further, strategic industry goals,

including accelerators and vector instructions, necessary for scaling performance, are likely to

provide new exploitable scope.

As early as IBM System/360 in 1964, computer systems have defined hardware correctness in

terms of timing-independent functional behavior complying with a particular Instruction Set

Architecture specification, ISA or architecture for short [H+P]. Software is written or compiled to

the architecture specification, enabling it to run correctly on many different implementations of

the architecture. While implementations may differ significantly, they are all capable of executing

software written to the ISA specification.

Implementers of an architecture use techniques--called microarchitecture--to create optimized

processors for the market, allowing for many trade-offs appropriate to the intended uses. Design

2

teams may target speed, low cost, low power, silicon area, or some combination thereof [H&P].

Important performance techniques include instruction (or micro-op) level parallelism (ILP) with

speculation and substantial use of caches.

To maximize ILP, modern out-of-order processor cores commonly allow for many instructions to

be scheduled onto the hardware in parallel; e.g. Intel’s Skylake CPUs can issue four instructions

every clock and have up to 224 instructions in overlapped execution. However, to satisfy this the

CPU is required to predict the outcome of branches so that it can choose a path to speculate

against. Correct speculation is made architecturally visible (“retired”), while incorrect speculation

is discarded (“aborted”). Spectre variants exploit such speculation, but we conjecture that fixing

Spectre by naively eliminating such speculation would make it hard to deliver viable, high-

performance products.

Spectre variants are a form of “side-channel” attack [SaSh] in which microarchitectural state,

formerly intended to be isolated from retired execution, becomes observable at an architectural

level by an attacker program sharing resources with the victim. This state can include secrets

loaded into shared architectural state including data referenced via speculation prior to

completing access, validity, or bounds checks. The resources through which such secrets are

extracted may take the form of a shared cache hierarchy, but also include other shared

structures, such as Translation Lookaside Buffers (TLBs). Known microprocessor side

channels are at least a dozen years old [WL06].

Side-channels are not a new concept. An early example occurred in a 1970s password cracking

attack against TENEX OS software. The OS would perform password validation by comparing a

user-supplied string against a stored password. A vulnerability existed because the OS would

return a failure as soon as there was a mismatch between the current user supplied character

and the stored password. Exploitation relied upon cleverly placing the user-supplied string on a

page boundary, and setting an architectural “trap to user” bit on the next page. This allowed the

attacker to effectively guess a password, one letter at a time, by measuring page faults.

The US Department of Defense was specifically concerned about side channels in its 1983-85

“Orange Book.” [Orange]. Until Spectre variants, many--especially computer architects outside

of the computer security and cryptography communities--considered side channels at most a

modest concern for the private sector. There are also forms of side-channel attacks, such as

TLBleed and BranchScope, that rely on microarchitectural leakage, but are different from

Spectre attacks, and usually expose information at significantly lower rates or in a more

restricted manner.

Spectre variants rely upon abusing the speculative nature of modern microprocessors. When

speculating, a processor dispatches instructions prior to resolving control flow dependencies,

such as branches. Exceptions occurring during speculation cannot be handled until we know the

instruction is not speculative; this happens at instruction retirement. Some processors may also

speculate beyond an exception-causing instruction, such as an access violation, and the

Meltdown variants result from this deferred handling of potential exceptions as well as the

3

associated permission check itself. All widely-used processors implement speculation on top of

Out-of-Order execution, which allows a processor to dynamically schedule instructions based

upon data dependencies, rather than literal program order. Instructions are allocated into an

internal processor structure known as a ReOrder Buffer (ROB) and tracked while in-flight, only

“retiring” and becoming architecturally visible in program order. When misspeculation occurs,

the ROB is cleared, and the processor restarts on the correct path.

To exploit Spectre, a malicious attacker causes intentional misspeculation of instructions. These

instructions, which have been called “transient” [SysTrans], will be aborted prior to retirement

and thus do not have an architectural impact. However, they will cause a change to internal

processor microarchitectural state that can be observed using a side-channel, such as a shared

cache. Cache access times depend upon whether data is present in a particular location, and

this can be used to determine data that might have been brought into the cache as a result of

speculative execution of instructions.

The typical structure of an attack has three steps:

1. Train some microarchitectural state, e.g.:

a. Clear 256 blocks from the cache at address X, so that we can sense which block

has been moved into the cache.

b. Prime the branch predictor to predict a given branch “not taken,” so that we can

coax the processor to execute code that will eventually misspeculate.

2. Save secret in the microarchitecture, e.g., cache state:

a. Branch-equal r0, r1, elsewhere ; predicted “not taken”

 ; but will actually branch to “elsewhere” this time

b. Load-byte r2, (r1) ; load secret at “protected address” r1, load will abort

 ; when instruction aborts, protection exception ignored

c. Load-word r3, (X + r2) ; this instruction also aborts, but it causes a cache fill

 ; the block loaded in cache depends on value of r2

 ; r2 contains the secret from protected address r1!

 ; The value loaded into r3 is never used.

3. Extract secret from the microarchitecture, e.g., cache state:

a. Time accesses to 256 cache blocks at X; the block that hits (and is faster)

corresponds to the value of Memory at address r1!

This basic format is followed by the Spectre variants, and most other microarchitectural attacks

described here as well. Each targets a different underlying hardware vulnerability, and the

impact varies significantly. Some vulnerabilities can be exploited by interpreted code running

within a normally secure “sandbox”, some can be exploited across virtual machine boundaries,

and some allow attacks from applications on the OS kernel, or against other applications. In

some cases, even new extensions with encrypted memory (e.g., within an SGX enclave) may

be vulnerable, as these attacks allow the extraction of state from microarchitectural structures

4

previously believed to be sufficiently isolated to contain plain-text values. Practical application of

these attacks often use results from the composition of one or more “gadgets.” Gadgets, a term

from return-oriented programming, are code snippets within an existing program that are useful

to the attack being performed.

The next sections present the initial Spectre variants v1-v3 announced in January 2018,

examples of vulnerable gadgets, and initial mitigation strategies. We then provide a table of

variants publically known as of October 2018 and opine on longer-term implications.

Unfortunately, no simple, single hardware or software change solves all issues without a

significant performance impact.

Spectre Variant 1: Bounds Check Bypass

Spectre-v1 follows the template above to enable user code (e.g., downloaded Javascript) to use

speculation and extract protected information elsewhere in the user’s address space (e.g.,

Chrome browser state) at an incredible rate (e.g., 500 Kbytes/second). Here is simplified C

code:

if (untrusted_offset < array_length) {

 val = private_memory[untrusted_offset]

 x = accessible_memory[(val & 1)*cache_line_size]

}

A conditional expression (untrusted_offset < array_length) is the subject of possible

speculative execution in which the hardware will speculate that the untrusted_offset lies

within the array bounds prior to determining (resolving) whether this is indeed the case. Within

the speculatively executed block, the offset is used to index into a private_memory region

which may cause a speculative read beyond the bounds of that memory. A subsequent

secondary access touches a predictable memory location having a dependency upon the value

of the private_memory. An attacker uses cache side-channel analysis to determine the cache

line affected by the dependent load and is able to reconstruct the value of a data item in

private_memory.

The example demonstrates a gadget code that may execute speculatively following a predicted

conditional expression. While the example has all attack code in one place, in practice there

could be significant code distance between the component parts, making it difficult to find

Spectre-v1 gadgets through simple code inspection. Various tooling has been created to aid in

automating this process such as “smatch”, used by some Linux kernel developers to scan for

gadgets in order to aid manual mitigation, while others rely upon automated compiler solutions.

Notable is LLVM’s Speculative Load Hardening, which introduces data-dependencies against

the control-flow itself; restricting the potential divergence and exploitability of speculative

execution.

5

Spectre-v1 is of great concern because many modern high-performance microprocessors are

susceptible to it. These include processors made by Intel, AMD, IBM, Arm (and their licensees),

and others. A particular challenge for Spectre-v1--and for many Spectre variants--is that

hardware mitigation is difficult because managed languages and browsers have software

protection boundaries (e.g., sandboxes for Javascript) that are not revealed to hardware, much

less manifest as hardware boundaries. Moreover, Spectre variants currently invalidate the

assumption that the language and runtime can protect secrets in the same address space.

While it may be possible to add contextual information into future ISAs and extensions to

existing architectures, implementing such mitigations in hardware will take some time and

perhaps add inherent performance penalties. A number of different approaches have been

proposed and are under debate.

Mitigating Spectre-v1 in software requires that we either prevent speculation beyond the bounds

check operation, or that we ensure any subsequent array index operation is “clamped” such that

under speculation it always falls within the bounds of the array. The process of determining

which way the bounds check branch will go is known as “resolving” the branch, and the time

taken for this to occur is a function of the time taken to load the desired offset and array limit.

Initial mitigations on some architectures focused on forcing the processor to wait until it had

resolved the branch by inserting an architecture-specific context serializing instruction following

the bounds check. In the case of Intel and AMD x86 architectures, the “lfence” instruction was

used for this purpose, while IBM POWER added a new millicoded instruction from their nop

encoding space having a similar effect. Other architectures began with the clamping approach.

For example, Arm exploited the fact that existing designs do not speculate through a conditional

select (CSEL) to form a data dependency. This necessitated a new barrier (CSDB) to future

revisions of the architecture in order to avoid future speculation through the CSEL.

While the initial serializing load mitigations were effective, they had a significant performance

impact in some workloads. As a result, the software community is generally transitioning to a

speculative index clamping solution in which the processor is allowed to speculate beyond a

bounds check, but any array access is performed through a macro that will cause the index to

be clamped between 0 and the size of the array (e.g., with logical AND). Contemporary

processors generally do not yet contain sophisticated enough value predictors to attempt to

speculate upon the logical operation.

Spectre Variant 3: Rogue Load from Kernel Space (a.k.a., Meltdown)

We next discuss Spectre-v3 (a.k.a., Meltdown), despite the enumeration, as it closely resembles

Spectre-v1. Example V3 C code:

if (mispredicted_branch) { // We’d fault if we actually retired below.

 val = kernel_memory[untrusted_offset]

 x = user_memory[(val & 1)*64]

}

6

In the quest for more performance, speculation may occur even past potential exceptions in

transient instructions. Spectre-v3 (Meltdown) is an example of this, using the same basic attack

structure as Spectre-v1, with the conditional being a user/kernel permission check that may or

may not trap. Vulnerable processor designs will identify an exception generating instruction

during speculation, tagging its entry in the ReOrder Buffer (ROB). They will then continue to

speculate, only handling the potential exception if the instructions actually retire and become the

architecturally visible state. Implicit in this design is the incorrect assumption that speculation is

a “black box” that cannot be observed by attacker code.

In the above example, an untrusted_offset in kernel_memory is supplied by the attacker

and speculatively loaded into the variable val. The processor tags the ROB entry for this load

instruction with an exception bit and continues speculation (since the exception is not yet known

to be as a result of any retired instruction). It then performs a second load from user_memory

that depends upon the value of the secret data val from kernel_memory. This second load

has a measurable impact upon the state of the shared cache that can be exploited later by an

attacker to determine the value of the secret data. This is where the boundary between

microarchitectural and architectural state is broken and exfiltration can occur.

A number of processor designs are vulnerable to one of several Meltdown attacks [SysTrans],

including most recent x86-64 implementations from Intel, some aggressive implementations

from Apple, Arm (and their licensees), and IBM as well. Meltdown can be avoided if all

subsequent dependent loads are always serialized against the permission checks they depend

on.

Exploitation in practice on vulnerable designs is typically tied to the L1 cache. Its latency (and

access accelerating features such as additional data tagging) is sufficiently low that there is an

opportunity for further OOO parallelism when evaluating the permission check above

asynchronously. As a consequence, Meltdown can also be avoided in some cases by keeping

secrets out of the L1 data cache. This has created a broader interest in secret “scrubbing” in

software.

Software mitigation of Meltdown involves one of two possible paths:

1. Preventing vulnerable processors from having valid address translations for privileged

(kernel) memory when running in an unprivileged (user) state. This is known as “Page

Table Isolation” (PTI). It is the approach used on Intel x86-64 and Arm processors.

2. Preventing the Level 1 data cache from containing secret data that could be loaded by

malicious user code. This is achieved through flushing the L1 data cache on return from

the OS or Hypervisor into application code. It is the approach used on IBM POWER

processors.

Hardware fixes will address the root cause of Meltdown by reworking the handling of permission

checks. As an example, Intel announced at Hot Chips 2018 that their upcoming Cascade Lake

7

[CLX] product would advertise an “RDCL_NO” (Rogue Data Cache Load NO) feature indicating

the part is not vulnerable to Meltdown and does not require software to apply mitigations.

Spectre Variant 2: Branch Target Injection

Unfortunately, other Spectre variants exploit microarchitecture features beyond branch and trap

prediction used above for Spectre-v1 and Meltdown. Instructions--such as returns and indirect

jumps--transfer control flow (“jump”) to one of many different locations with the expected next

instruction location predicted with a Branch Target Buffer (BTB). Here is C-like code for Spectre-

v2 that exploits branch target (address) (mis-)prediction:

4148c0: object->Foo();

…

9812ab: val = private_memory[untrusted_large_offset]

x = accessible_memory[(val & 1)*64]

The attacker trains the BTB for the jump at 4148c0 to predict next instruction address to be

9812ab where the attacker has identified existing code that can serve as a malicious gadget

that then speculatively executes the pattern from the introduction: load a secret, use bit(s) from

the secret in an address to a second load that perturbs the cache, and end speculation. Due to

sharing of functional units, it may even be possible to mistrain or influence the BTB state from a

different SMT thread on the same core, or even across host/guest boundaries. This exploitation

occurs, in part, because BTB entries are shared instead of isolated via address space and

virtual machine identifiers. In many contemporary processors, only a limited number of virtual

address bits are used to disambiguate between two different branch addresses, increasing

conflict likelihood.

The mitigation of Spectre-v2 involves either limiting the amount of speculation performed using

the indirect branch predictor or replacing indirect branches with a safe alternative. The short

deadline prior to public disclosure resulted in many initial software updates leveraging newly

defined hardware control interfaces added through firmware, microcode, or millicode intended to

limit speculation. We examine these hardware approaches first and then explore the software

approach, called a “return trampoline” or “retpoline.”

Modern microprocessors are built with some (limited) ability for in-field update, referred to as

patching. The precise mechanisms differ from one architecture (and microarchitecture) to the

next, but typically involve a combination of “chicken bits” (previously undisclosed configuration

knobs used to restrict various capabilities within the processor post-release), microcode

extensions (additions that allow certain operations to trigger a “microcode assist” that can

modify behavior), and firmware that provides certain platform control interfaces or pre-OS

configuration. There can be a significant performance impact for some applications from using

microcode or firmware interfaces.

8

Intel and AMD x86 microarchitectures initially added a new microcoded processor speculation

control interface (SPEC_CTRL) through which the Operating System can limit indirect branch

speculation (IBRS - Indirect Branch Restrict Speculation), or flush the predictor state (IBPB -

Indirect Branch Predictor Barrier). IBRS is typically used across privilege boundaries to prevent

indirect branch speculation during system calls into the Operating System, while IBPB is used to

invalidate the predictor state when switching from one process into another (with an optimization

limiting this to those switches where the target is not already dumpable/debuggable by the first).

The SPEC_CTRL interface is implemented as an MSR (Model Specific Register) in microcode,

which introduces a performance impact for some applications due to the serializing nature of

using MSRs on x86.

Other architectures implement similar interfaces. For example, Arm extends ATF (Arm Trusted

Firmware) to perform indirect predictor invalidation (or other appropriate platform-specific

mitigation) on kernel entry or process context switch. IBM implement millicode assists for their

processors that extend existing nop instructions to achieve similar results. Across all

architectures, the presence of Simultaneous Multithreading (SMT) may necessitate additional

controls due to the tight coupling of thread resources within a single physical core. Intel x86

processors add STIBP (Single Threaded Indirect Branch Predictors) that can be used by an

Operating System to inhibit indirect branch speculation within one thread while another is active

on a core.

An alternative approach to mitigating Spectre-v2 in pure software comes from the realization

that function returns are merely special case variants of branches. In the case of a return,

however, the processor does not (normally) use the indirect branch prediction hardware. In fact,

since they are strongly predictable, a return specific predictor such as a Return Stack Buffer

(RSB) is often implemented. Thus, it is possible to convert indirect function calls into

manufactured returns through careful and deliberate manipulation of the local stack. A

traditional x86 indirect branch may look like:

jmp *%r11

The target of this branch is placed into the processor General Purpose Register r11, and then

the jmp instruction is used to cause a jump to this location. The indirect branch can be

converted into an x86 implementation of a retpoline such as this:

 call set_up_target;

capture_spec: // next two instrs never execute, except speculatively

 pause;

 jmp capture_spec;

set_up_target:

 mov %r11, (%rsp);

 ret;

9

In the above code, set_up_target overwrites its own return address with the desired

location of the indirect branch and then performs a return which causes the function to be

executed but does not use the indirect predictor. Immediately following the actual call to

set_up_target is a harmless code sequence intended to capture any speculated execution

into an infinite loop. When present, structures such as the RSB will guarantee speculation is

captured by the originally recorded return target (capture_spec).

A special exception exists on Intel Skylake and later processors (known as Skylake+). Like

many other contemporary processors, these include an RSB (Return Stack Buffer) that attempts

to keep track of function calls and returns, predicting the location of a matching call for a return.

The RSB shadows the actual function call stack, and it is of a small, finite size. There are many

cases in which it can underflow, especially with deep call stacks. Skylake+ processors will begin

to speculate from the indirect predictor BTB in the case of an RSB underflow. To prevent this

occurrence, it is necessary to also add a benign RSB “stuffing” code sequence to certain code

paths within Operating System kernels, such as those transitioning from one privilege level to

another. This ensures that the RSB never effectively empties. As a side effect of this, the

processor is also mitigated against various attacks that target the RSB, such as SpectreRSB.

Hardware mitigations for Spectre-v2 are expected as well, including in the Intel Cascade Lake

release [CLX]. One step forward is for hardware implementers to isolate predictors from

different SMT hyperthreads and host/guest via identifiers (such as address space and virtual

machine IDs), partitioning, or flushing at a performance cost to be determined.

Spectre Reference Table

Below is a reference table of Spectre variants publically known as of October 2018 with text that

is necessarily denser than the rest of this paper. To dig deeper, we also recommend a recently-

developed promising taxonomy [SysTrans]. We also call out vulnerable isolation boundaries

beyond the local control flow which may be violated by each variant under "scope".

Variant Name and Gist The gist of Mitigation Strategies

V1 (Bounds Check Bypass). Mistrained conditional

branch predictor used to violate program semantics by

speculatively accessing data beyond an array limit.
Scope: user-to-kernel, process-to-process, sandboxes

Either enforce instruction stream serialization with respect to later

loads (e.g. through a “lfence” on x86) or introduce dependencies on

the retired control flow (LLVM calls this “speculative load
hardening”). Implementation: software

V1.1 (Bounds Check Bypass Store). Similar to variant
1 but applies to stores, allowing e.g. speculative buffer

overflow/stack overflow with re-steering of returns.

Scope: sandboxes

Careful auditing for potentially risky stores, aided by automated tools
(smatch, etc.) or compiler lift (e.g. LLVM speculative load hardening,

MSVC). Enforce instruction stream serialization or use clamping.

Implementation: software

V1.2 (Read-only Protection Bypass). Hardware may

implement lazy enforcement of page table protections
allowing speculative writes to read-only data. Scope:

sandboxes

Extension of Bounds Check Bypass Store. Relying on read-only

memory protections against e.g function pointer overwrite is not
sufficient. It is necessary to protect against potential overwrites into

RO memory. Implementation: software

V2 (Branch Target Injection). Mistrained indirect branch
predictor Branch Target Buffer (BTB) to speculatively

execute attacker-controlled “gadgets”. Scope: user-to-

Limit ability to train the branch predictor and/or to use branch
predictor information based on data from different security domains

(kernel vs. user, guest vs. host, different tasks) Implementation:

10

kernel, user-to-user, virtual machines, sandboxes software with perf cost, future hardware

V3 (Rogue Data Cache Load, aka “Meltdown”). User

load that speculatively accesses kernel space. See
[Melt]. Scope: user-to-kernel

Exploitation requires both a valid address translation as well as

(typically) data present in the L1 data cache. Either separate address
space between privileged and unprivileged execution states, and/or

ensure data is not present in the cache and cannot be loaded by an

attacker. On some architectures, implement Page Table Isolation
(PTI) between user/kernel, on others use an L1D flush.

Implementation: software with perf cost, future hardware

V3a (Rogue System Register Read). Speculative reads

to normally inaccessible system registers may be used to

infer information, such as page table base address used
to point to all active page tables Scope: user-to-kernel,

virtual machines

In some cases, updated microcode (etc.) can be used to make such

reads serializing and not execute speculatively. In other cases, it

may not be possible to prevent certain information leakage - such as
the location in memory of page table base address.

Implementation: hardware change

V4 (Speculative Store Bypass). Speculative reads may

proceed prior to determining whether a conflicting store

exists in the store buffer (memory disambiguation),
Scope: sandboxes

Disabling speculative store buffer bypassing (aka “memory

disambiguation”) either globally, or on a per-application basis, is one

mitigation path. Another is aggressive use of process-level isolation
(separating contexts of execution), but this is difficult for some cases.

Linux eBPF and Java runtimes are examples where a per-process
control to disable speculative bypassing of the store buffer is typically

employed. Implementation: software with perf cost, future hardware

LazyFPU save/restore. Processor implementation may

be optimized to avoid saving Floating Point Unit (and

vector) context when switching tasks until the new task
performs an FPU operation. Vulnerable hardware still

allows speculative reads of the disabled FPU state.
Scope: user-to-user, guest-to-host-process

Disabling lazy save/restore of Floating Point Unit state. In many

cases, this actually improves performance on contemporary

processors, particularly those which have hardware assisted
save/restore FPU instructions. Implementation: software now, future

hardware

SpectreRSB/ret2spec. Return Stack Buffer manipulated

in order to divert the speculative execution of a function
return into an attacker-determine leak gadget

[arXiv:1807.07940]. Scope: sandboxes

RSB “stuffing” is employed to ensure the RSB is filled with a benign

delay gadget. This RSB stuffing approach is also used as part of the
mitigation for Spectre-v2 on some processors (e.g. Intel Skylake+)

wherein an underfill in the RSB causes speculation from the BTB.
Thus, it is preferable to reuse the existing mitigation.

Implementation: software now, future hardware

NetSpectre. Similar to Spectre but performed over a
network using a combination of a leak gadget (used to

alter microarchitectural state) and transmission gadget
(used to transmit this altered state across a network).

Scope: sandboxes (without explicitly running code!),
kernel, remotely exploitable

Mitigation is similar to Spectre-v1, however, the impacted code is
potentially very significant. As a result, other solutions at the network

layer may be employed, or the impact of leakage may be reduced
through careful application of rekeying during transactions. Very

sensitive deployments may choose to recompile significant portions
of applications using speculative load hardening techniques e.g. as

found in LLVM. Implementation: software

L1TF (L1 Terminal Fault, “Foreshadow” - SGX).
Speculative loads to virtual addresses translated by

Page Table Entries (PTEs) with “present” bit not set may
result in the processor forwarding the incorrect physical

address to the L1 data cache (L1D), allowing reads of
attacker-controlled addresses if in the cache. Scope:

virtual machines

L1TF requires that data be present in the L1 Data cache of impacted
Intel processors and that it is possible to construct a vulnerable page

table entry. For the “bare metal” use case of an OS on hardware, it is
possible to protect against malicious applications by ensuring that all

“not present” OS PTEs are masked such that the address is outside
of populated physical memory. For virtual machines, it is necessary

to employ an L1D cache flush via microcode assist on VM entry.
Implementation: software now, future hardware

PortSmash

Precisely crafted instruction sequences based upon
known latencies and contention at the port interfaces to

processor execution units can be leveraged to infer the
behavior of a sibling SMT thread sharing resources

within a core. Scope: inference about execution on
sibling SMT thread(s)

Currently proposed mitigations involve careful scheduling of

application and virtual machine code such that they are not
coresident on the same core as potentially malicious code. In some

cases, it may be necessary to disable SMT (known as
“Hyperthreading” in Intel’s implementation) through OS or firmware

interfaces provided by a given platform. Implementation: software

The Spectre of Spectre

11

As the table above shows, many Spectre variants have been announced after the original three,

including store buffer bypassing and virtual machine address translation. There have also been

ongoing discussions of exploiting cache coherence, memory bank conflicts, functional unit

timing, and even GPU execution.

A troubling example is NetSpectre [NetS], which can force a victim machine to inadvertently

leak information using packets crafted to trigger Spectre-v1 attack(s), despite not directly

executing any code on the victim machine. NetSpectre currently achieves a very low bandwidth

(< 1 bit/minute), but it is a recent existence proof with the significant implication that local user

access is not fundamental for enabling microarchitectural attacks.

The real “spectre” of Spectre is that we don’t currently know Spectre limits. It is hard to mitigate

known Spectre variants and harder to deal with the unknown variants. Moreover, there is a real

danger of “Spectre fatigue” where it will be hard to enthusiastically mobilize for the nth variant.

Where do we go from here?

Of course, security is an end-to-end property with the weakest link determining the overall

vulnerability. With Spectre, the hardware becomes a weak link, one that undermines the

security of all software. These vulnerabilities will not be solved by hardware and software

engineers working in isolation. Software engineers will need to have some notion of how

processors behave, an understanding of caches, memory management, speculation, and out-

of-order execution. Of course, we cannot expect that software programmers will have deep

expertise in these areas, but we must communicate more as we define the contract between

software and hardware. No more “us” and “them,” as has sometimes been prevalent in the

space of hardware and software engineering; we are in the same boat!

Second, Open Source specifications (ISA) and implementations can help. Security benefits from

“many eyeballs,” cleaner design with smaller attack surfaces, and from designs that the security

researchers can use to collaborate on solutions that are not specific to one commercial

processor vendor. Many security researchers are using RISC-V (https://riscv.org/) already, and

it is likely to become the de facto reference used in many future developments. Unfortunately,

open architectures and implementations won’t magically solve our security problems as they too

can contain unintentional or intentional flaws. Opening up commercial microprocessor

microcode/designs--at least to a core of trusted security experts--is extremely difficult but

arguably necessary.

Third, our concept of hardware must change. Addressing Meltdown and Spectre-v2 in future

hardware is relatively straightforward. Addressing Spectre-v1 and v4 (SSB) may be possible

through novel approaches (such as register tagging/tainting).

More generally, Spectre variants have shown the need to move beyond just delivering

performance--as markets and program committees have often valued--to more deeply consider

security. Of course, a fundamental adjustment in the focus on security AND performance will

https://riscv.org/

12

require work how to quantify tradeoffs: What percentage of performance overhead is

acceptable to eliminate Spectre, and when? When is security just paramount?

In the short and medium term, hardware implementers should seek microarchitectural remedies.

Companies must focus first on quickly-implementable fixes/mitigations to known variants. They

may wish to consider more “chicken bits” to turn on/off various structures to respond rapidly

against currently unknown Spectre variants as they are revealed.

Academics should seek broader solutions in what we expect will be a groundswell of future

papers. Ruby Lee in her MICRO 2018 keynote advocated: (a) no (even speculative) access

without authorization, (b) no observable micro-architecture effects, and (c) no interference

through shared resources unless made indistinguishable through randomization.

Other ideas for moving forward include:

● Better specification of security expectation, e.g., among VMs and with cloud co-tenency.

● Informing hardware of all software boundaries,

● Logically or physically isolating speculative state to make some “poisoning” infeasible,

● Further gating, or even undoing, microarchitectural changes after mis-speculation,

● Interfaces for flushing hardware state to increase the scope of software mitigation,

● Randomizing timing or indexing to reduce side-channel bandwidth, and

● Bifurcating in time (mode) and space (different cores) to support speed and safety.

Moreover, security research benefits from the robust interplay of “attack” and “defend” papers

(with coordinated disclosure) whereas, in the past, architecture venues have had too few attack

papers and security venues perhaps too many.

Greater use of formal methods will also be required as simulation and testing alone don’t usually

withstand a determined adversary against a large, complex attack surface. At best, these

methods--e.g., from information flow theory--can safeguard all processors; at a minimum, they

may be able to provide a template for slower, “safe”, processors or modes used in the support

of aggressive OOO parallelism.

In a larger sense, Spectre variants have exposed a flaw in how we have defined hardware

correctness since 1964. The timing-independent functional behavior of a computer--let’s call it

Architecture 1.0--is not sufficient to stop information extraction via Spectre-like timing channels,

both known and unknown. We have discussed ways to improve microarchitectures vis-a-vis

Spectre, but can or will this ever end? Must we manage it like crime, which is essentially how

software security flaws are handled?

We challenge the computer science community to develop Architecture 2.0 wherein all correct-

by-Architecture-2.0 implementations must provide both software compatibility (like Architecture

1.0) and prevent Spectre-like timing channel information exfiltration (unlike Architecture 1.0).

13

While this may be hard--and should begin with a better understanding of threat models and

timing channels--it is important for the next decades of our cyber world.

Beyond Spectre attacks

The Spectre and Meltdown attacks just point to one instance of the need to consider security as

a first-class design constraint at a system level across hardware and software boundaries. For

example, another security vulnerability recently in the news is around managing the root of trust

[Titan, Azure] opens many questions: How do we know our computing equipment is not being

spoofed? How can we trust the boot chain on our devices? How should we pre-emptively design

to protect against not-yet-known vulnerabilities? Another opportunity is around building secure,

performant enclaves. More generally, as evidenced by the DARPA SSITH program

(www.darpa.mil/program/system-security-integration-through-hardware-and-firmware), our relatively

young field needs to develop frameworks and abstractions to categorize vulnerabilities and

systematically develop hardware security architectures and associated design tools to protect

our future computing systems. Perhaps this can be done by developing/using formalisms that

anchor other fields successfully.

Acknowledgements

We thank the numerous professionals who commented on this paper. We regret that the short

paper format precluded more elaborate discussion on some of the nuances. Hill was supported

by Google during his sabbatical and at Wisconsin by NSF CCF-1617824, NSF CNS-1815656,

and John P. Morgridge Endowed Chair.

References

[G0] J. Horn, “Reading privileged memory with a side-channel,” Project Zero, vol. 3, 2018. URL:

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

[Spec] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M.

Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” arXiv preprint

arXiv:1801.01203, 2018.

[Melt] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D.

Genkin, et al., “Meltdown: Reading kernel memory from user space,” in 27th USENIX Security

Symposium (USENIX Security 18), USENIX Association, 2018.

[H+P] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. Elsevier,

2019.

[SaSh] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”

Proceedings of the IEEE, vol. 63, no. 9, pp. 1278– 1308, 1975.

[WL06] Z. Wang and R. B. Lee, “Covert and Side Channels due to Processor Architecture,” Annual

Computer Security Applications Conference (ACSAC), 2006.

https://www.darpa.mil/program/system-security-integration-through-hardware-and-firmware

14

[Orange] U.S. Department of Defense, “Trusted Computer System Evaluation Criteria,” tech. rep., U.S.

Department of Defense publication 5200.28- STD, 1985. A.k.a, “Orange Book.”

[SysTrans] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D.

Evtyushkin, and D. Gruss, “A systematic evaluation of transient execution attacks and defenses,” arXiv

preprint arXiv:1811.05441v1, 2018.

[CLX] S. Kottapalli and A. Kumar, “Next generation intel xeon(r) scalable processor: Cascade lake,”

HotChips, 2018.

[NetS] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read arbitrary memory over

network,” arXiv preprint arXiv:1807.10535, 2018.

[Titan] D. Rizzo, S. Johnson, J. McCune, R. Ho, and P. Ranganathan, “Titan: Google’s root-of-trust

security,” IEEE Hot Chips, 2018.

[Azure] D. Stiles, “The hardware security platform behind azure sphere,” IEEE Hot Chips, 2018.

Mark D. Hill is John P. Morgridge Professor and Gene M. Amdahl Professor of Computer Sciences at the

University of Wisconsin-Madison. His research interests include parallel-computer system design,

memory system design, and computer simulation. Hill has a PhD in computer science from the University

of California, Berkeley. He is a fellow of IEEE and the ACM, as well as Chair of the Computer Community

Consortium. Email: markhill@cs.wisc.edu

Jon Masters is a Computer Architect at Red Hat, where he was tech lead for mitigation efforts against

Meltdown and Spectre. Jon has worked closely with high performance microprocessor design teams for

years on emerging alternative server platforms, and also currently leads the CCIX software working group

helping to define high performance cache coherent interconnects for workload acceleration. Jon has been

a Linux developer for 22 years, since beginning college at the age of 13, and has authored a number of

books on Linux technology. He lives in Cambridge, MA, and enjoys running marathons and hiking in his

spare time.

Parthasarathy Ranganathan is a distinguished engineer at Google where he is the area tech lead for

platforms hardware and datacenters. Prior to this, he was a HP Fellow and Chief Technologist at Hewlett

Packard Labs. Partha's research interests include systems, architecture, and energy efficiency. He has a

PhD in computer engineering from Rice University. He is a fellow of IEEE and the ACM. Email:

partha.ranganathan@google.com

Paul Turner is a principal engineer at Google where he is the technical lead for CPU scheduling and

security. Paul's research interests include systems, concurrency, architecture, virtual machines, and

security. He has a Bachelors in Pure Mathematics and Computer Science from the University of

Waterloo. Email: pjt@google.com

John L. Hennessy is a Professor of Electrical Engineering and Computer Science at Stanford University

and the Director of Knight-Hennessy Scholars, a graduate level scholarship program for future world

leaders. He also is Chairman of the Board of Alphabet (the parent of Google). Formerly the tenth

President of Stanford University, he also co-founded MIPS Computer Systems and Atheros

mailto:markhill@cs.wisc.edu
mailto:partha.ranganathan@google.com
mailto:pjt@google.com

15

Communications. He was awarded the 2012 IEEE Medal of Honor and the 2017 ACM A.M. Turing Prize

(jointly with David Patterson).

