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Causal Markov Elman Network for Load
Forecasting in Multinetwork Systems
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and Reza Arghandeh , Senior Member, IEEE

Abstract—This paper proposes a novel causality anal-
ysis approach called the causal Markov Elman network
(CMEN) to characterize the interdependence among hetero-
geneous time series in multinetwork systems. The CMEN
performance, which comprises inputs filtered by Markov
property, successfully characterizes various multivariate
dependencies in an urban environment. This paper also
proposes a novel hypothesis of characterizing joint infor-
mation between interconnected systems such as electricity
and transportation networks. The proposed methodology
and the hypotheses are then validated by information
theory distance-based metrics. For cross validation, the
CMEN is applied to the electricity load forecasting problem
using actual data from Tallahassee, Florida.

Index Terms—Causality, Elman network, electricity net-
work, load forecasting, neural network, transportation
network.

I. INTRODUCTION

UNDERSTANDING the cause–effect relationships among
different variables or objects has been an important step

in most of the natural and social sciences over the history
of human knowledge. Causality is utilized to understand the
flow of information between different systems, and there
have been several studies to understand the causality and its
underlying factors. Lately, causality methods such as structural
equation models (SEMs) have gained increased attention in the
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machine learning community [1], [2]. There has also been an
increase in the use of deep learning algorithms in the predictive
modeling area [3]. However, neural networks and deep learning
algorithms have not been embraced much in the causal
relationship methodologies. This paper takes a step toward
developing a causation tool with recurrent neural networks
(RNNs) for a better understanding of causal relationships in
multiple heterogeneous time-series applications.
RNNs constitute a standard architecture designed for dealing
with time-series data streams and has been applied in various
disciplines such as clinical trial, predicting DNA structures [4],
and machine translation [5]. To the knowledge of authors, there
are very few applications of neural network structure for causal-
ity analysis. The study [6] develops a form of neural network
for causal prediction known as the entangled recurrent neural
network (ERNN). The ERNN approach for causal prediction
propagates the backward hidden states of a bidirectional Re-
current Neural Network through an additional forward hidden
layer. A simpler network structure is thus being proposed in this
paper for the prediction of causal relationships, with a single
direction propagation that consists of one hidden layer and one
feedback layer. The simpler structure of the proposed causal
Markov Elman network (CMEN) method reduces its complex-
ity in addition to the ease of implementation on large-scale
datasets. The proposed CMEN method is primarily validated
comparing the outcomes with the state-of-the-art causality tech-
niques. This comparison is evaluated based on information the-
ory metrics called the maximum-mean discrepancy (MMD) [7]
and Kullback–Leibler divergence (KLD). The achieved causal
relationships are then used as a preprocessing step before load
forecasting. The results of load forecasting thus serves as a cross
validation of causality by utilizing the joint information between
predictors that are down selected with causality.
Electricity load forecasting is an integral part of power trans-

mission and distribution networks operation and planning. It is
further categorized as short-term forecasting for 1 h to 1 week
and long-term forecasting where the forecast is made over a pe-
riod greater than 1 week. There have been many load forecasting
studies conducted in the past, which mainly use the historical
electricity consumption data as the only source for time-series
forecasting [8]. There have also been some literature character-
izing the dependence of electricity consumption on external fac-
tors such as weather and environment [9], [10]. However, other
than external factors such as weather and environment, human
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mobility is also an important factor that influences the electricity
consumption at different locations and times in an urban area.
Human mobility is represented by location of citizens at any
given point of time. Generally, when inhabitants of a city move
from one location to another, the electricity consumption at the
former location decreases, and consequently, the consumption
at the latter increases when that person reaches the final des-
tination. This critical link between the electricity and mobility
patterns helps us in hypothesizing the characteristic dependence
between electricity consumption and transportation.
The contributions and novelties in this paper are listed as

follows:
1) Proposing a new causality analysis method using Elman
network with global Markov property-based filtering.
This proposed methodology is named as CMEN.

2) Using CMEN to propose a novel hypothesis of character-
izing joint information between interconnected systems
such as electricity and transportation networks in a city.

3) Adding the proposed CMEN method as a preprocess-
ing block to the time-series forecasting algorithms and
utilizing the proposed mobility hypothesis to improve
electricity forecasting accuracy.

This paper is organized as follows. Section II provides de-
tails about CMEN causality and compares it with other estab-
lished causality methods. This is followed by the description in
Section III. Section IV presents the overall analysis, compari-
son, and validation of CMEN causality model with the electricity
load forecasting application. Two different information theory-
based indexes have been used to validate causal relationships.
In addition, five different time-series forecasting methods have
been used and compared to illustrate the impact of including
causal relationships into the load forecasting problem. Finally,
Section V presents the summary, advantages, and limitations of
the study, further mapping the future directions.

II. METHODOLOGY

In this paper, we propose the CMEN methodology for causal
relationship characterization. CMEN helps us to characterize
the interdependencies between urban infrastructure networks
such as electricity and transportation due the interdependent na-
ture of city’s infrastructure and citizens in the context of urban
mobility. The proposed electricity load forecasting framework
includes the casual engine for selecting the most informative
time series among the electricity, transportation, and weather
datasets. By doing a causal analysis, we can select the most
informative predictor for electricity load forecasting. This, in
return, increases the information richness and reduces the un-
certainty thereby increasing the accuracy of load forecasting.
Input variables to the CMEN causal model are historical

data of the electricity consumption, weather, and traffic counts
(number of vehicles on roadways). Electricity consumption of
a neighborhood consisting of 222 houses has been archived and
analyzed for a sample size of 1 year, which includes the elec-
tricity consumption data are collected every 30 min. Similarly,
traffic count along the neighboring highway is monitored for a
period of 1 year, where the data are collected every hour.

Fig. 1. Overview of the proposed CMEN structure.

A. CMEN Method

The Elman network used in CMEN belongs to the class of
RNN structures. The architecture of CMEN is illustrated in
Fig. 1.
The inputs to the CMEN structure are filtered based on the
Global Markov property. A stochastic process is known to con-
tain Markov property if the conditional distribution of future
states of the process (conditional on both past and present states)
depends only upon the present state and not on the sequence of
future events.
Definition 1 (The Global Markov Property):A probability

distribution P satisfies Global Markov property for an undirected
graph G if for any arbitrary disjoint subset of nodesX,Y,Zsuch
thatZseparatesXandYon the graph G, the distribution satisfies
X⊥⊥Y|Z.
Global Markov property consists of many conditional inde-
pendence relations where it is feasible to test for a subset of those
independencies that implies to others. A local Markov property
designates a smaller set of conditional independence relations
that implies all other conditional independence relations that is
held under the Global Markov property [11].
For a better clarification of using Global Markov property
for down selecting variables, a graphical model is illustrated in
Fig. 2. Consider the entire system of nodes as V in this figure. As
observed, the direct dependence is characterized by the edges
as shown inFig. 2(b), between nodes 1 and 2, nodes 2 and 4,
nodes 3 and 4 that are the down selected group of variables as
seen inFig. 2(c). As seen inFig. 1, the input data in this paper
include historical data of electricity, transportation, and weather.
The inputs are grouped into two categories based on strong and
weak Markov property.
The categorized strong and weak Markov based data are fed

into two Elman networks as shown inFig. 1. Time-series vari-
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Fig. 2. Example of Directed acyclic structure representation based on
Global Markov property.

Fig. 3. Comparing CMEN with other standard neural network
structures.

ables are fed into each Elman networks, which are evaluated for
conditional independence to establish causal relationships in the
form of edges in the output causal graph.
As observed inFig. 1, Elman network 1 consists ofminputs
selected with weak Markov property and rest of the inputs con-
sisting the strong Markov propertym+1,...,nare fed into
Elman network 2. The outputs of these networks combined to-
gether form the input to the final Elman network that gives the
causal predicted outcome.
In an Elman network, the hidden layer outputs are used as

feedbacks onto itself through a context layer. Therefore, the
difference between Elman network and the other two layers
networks lies in the connection of the first recurrent layer. The
presence of a context layer provides a delay in the connection
storing values from the previous time step, which can be used
in the current time step.
As seen inFig. 3, a standard RNN consists of one forward

hidden layer, with a single input and output layer. CMEN has
four layers of function, the input layer, hidden layer, feedback,
and the output layer. This network structure consists of one
hidden layer and one output layer. The hidden layer neurons
and the output layer neurons use nonlinear hyperbolic-tangent-
sigmoid and pure linear activation functions, respectively.xt−1
andxtare the input time series that have been selected based
on strong Markov property between them, whereasht,ht−1,...
are the forward hidden layer. In the ERNN structure, there is an
additional backward hidden layerht,ht−1,..., which is then
added to the concatenate layer [6]. Due to the complexity of
ERNN and its additional layers, it usually has longer computa-
tion time as compared with CMEN due to the simpler structure
of CMEN.

The outputotof CMEN network is shown inFig. 3(b)

Ot=G+Vht (1)

ht=[σ(b+Wht−1+Wct+Uxt)]. (2)

FromFigs. 1and3, the output layers of CMEN are given as
follows:

Ot1=R1(n)[f1W1,f2W2,...,fmWm] (3)

Ot2=R2(n)[fm+1Wm+1,fm+2Wm+2,...,fnWn] (4)

Ot=R3(n)[Ot1W1,Ot2W2]. (5)

In aforementioned equations,Ot1,Ot2,Otrepresent the out-
puts of each Elman network inside the CMEN structure as illus-
trated inFig 1. R(n) represents each Elman network structure and
Wnrepresents the weights from the hidden layer. The following
equations define the logistic and hyperbolic tangent activation
functions

σ=ψ(z)=
1

1+e−z
(6)

σ=ψ(z) = tanh(z)=
2

1+e−2z
−1. (7)

The outputs from the CMEN structure form a directed graph
(causal graph) that is created based on the conditional indepen-
dence test from each Elman Network. That is, a lower value
of conditional independence results in a directed edge while a
higher value results in no edges between the nodes or discon-
nected nodes. In the associated causal graphs, there are various
representations involved that emphasize the relations between
the variables under consideration. Arrows (directed edges) rep-
resent the direct causal relationship, which represents the di-
rection of information flow. Lines without arrows represent an
association.

B. State-of-the-Art Causal Models

The proposed CMEN method is validated based on the
comparison with other established causality methods such as
Granger causality, Peter–Clark’s algorithm, and SEM methods.
1) Multivariate Granger Causality Test: The spectral density
matrixS(ω)forms an important section of multivariate
granger causality, which can give many statistical infer-
ences such as multiple coherence, autopower, and partial
coherence. This approach is beneficial in both theoretical
and practical terms. Consider a spectral density matrix
S(ω)that satisfies

π

−πlog|S(ω)|dω >−∞,the spec-
tral density matrix factorization theorem ensures that it
can be decomposed into a set of unique minimum-phase
functions

S(ω)=ψ(ω)ψ∗(ω). (8)

In aforementioned equation is the minimum-phase spectral
density matrix factor that has a Fourier series expansion in non-
negative powers ofeiω:ψ(ω)= ∞

k=0Rke
iω,andψ∗is its

complex conjugate transpose [12].
2) The Peter–Clarke’s Causality Test: The Peter–Clarke’s
algorithm, starts with assigning a multivariate dataset
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to an undirected graph G comprising of a set of ver-
tices V, is tested for conditional independence relations
consisting of a significance level0<α<1. The algo-
rithm is initiated with an undirected graph, then modi-
fies the structure of the graph by eliminating the edges
with zero conditional independence, and altering again
based on first-order conditional independence relations,
iteratively

ρ{i,j|k}=
ρ{i,j|kh}

− ρ{i,h|kh}
ρ{j,h|kh}

√
{(1−ρ

{i,h|kh}
{2}})(1−ρ2

{j,h|kh}

.

(9)
In the aforementioned equation, we assume that distribu-

tion P of the random vector X is multivariate normal. For
i=j∈1,...,ρ,k⊆1,...,ρ,i,jandρis the partial corre-
lation betweenXiandXj[13].
3) Structural equation modeling: SEM is an approach used
to quantize and evaluate the models revealing linear rela-
tionships among multivariate systems. SEM models con-
sist of manifest variables, unobserved variables, or latent
variables which can be independent (exogenous) or de-
pendent (endogenous). Latent variables are mostly hy-
pothetical elements which are not measurable quantities.
The manifest variables, on the other hand, serve as the
identifiers of the underlying elements [14].

C. CMEN Causal Model Validation

The validation of observed causal relationships is based on
two well-known information theory-based indexes as follows:
1) Maximum mean discrepancy: MMD provides a score for
each candidate solution, reflecting how well this can-
didate solution describes the observational data. The
MMD computes the Reproducing Kernel Hilbert Spaces
(RKHS) distance between two sample sets based on
some kernelkdefined onRdwheredis the dimen-
sion of the candidate time-series dataset. Generally, if
μk(z)is a function defined onR

dwithμk(z)(x)=
1
n

n
i=1k(zi,x)associated withz=(z1,...zn), where

zandzare the original and generated candidate solu-
tions,xis a function of the input time series, andnis
the sample size of the dataset. The MMD measures the
squared distance between the functions associated with
sampleszandzas follows:

MMDk(z, z)=
1

n2

n

i,j

k(zi,zj)+
1

n2

n

i,j

k(zi,zj)

−
2

n∗n

n

i=1

n

j=1

k(zi,zj). (10)

The sought score function, measuring the quality of the candi-
date solution from the MMD distance between the observational
and the estimated samples, is notedLMMDG . As MMD describes
the distance between the original and predicted dataset, smaller
scores signify a better match [7].

TABLE I
PARAMETERTUNING FORDIFFERENTLOADFORECASTINGMETHODSUSED

INTHISPAPERWITH1YEARTRAININGDATASET

2) Kullback–Leibler divergence: Measuring the disparity
between two probability distributions over the same vari-
ablexis called the KLD denoted byDKL.TheKLDis
a measure of the difference between the two probability
distributionsp(x)andq(x)with a discrete random vari-
ablex. TheDKL ofq(x)fromp(x)is derived as
follows:

DKL(p(x)||q(x)) =
x∈X

p(x)ln
p(x)

q(x)
. (11)

D. CMEN Cross Validation Using Load Forecasting
Problem

As a cross validation, a short-term load forecasting is per-
formed by combining the various direct causal variables to
predict the electricity consumption (E). The inputs to the dif-
ferent forecasting techniques include normalized form of the
time-series datasets consisting of electricity consumption, traf-
fic count, and weather. The training dataset has been varied
from a dataset spanning 1 year, 6 months, 3 months, 1 month,
and 1 week. The various techniques considered in this paper
for load forecasting are autoregressive moving average with ex-
planatory variables (ARIMAX), multilinear regression (MLR),
support vector regression (SVR), feedforward neural network
(ANN), recurrent neural network (RNN), and deep neural net-
work (DNN). It is to be noted that state-of-the-art load fore-
casting techniques were performed using relevant packages in
R environment with self-tuning capabilities.Table Iprovides
some more details about the R packages used, the best param-
eters selected as the outcome of the self-tuning process. In the
following results section,Table IVenumerates the error per-
centages that were obtained as a result of using the parameters
fromTable I.
The causality graphs were primarily validated using MMD

and KLD. The direct causal variables were then utilized in load
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Fig. 4. Tallahassee: Southeast neighborhood highlighted.

forecasting. The load forecasting profiles are then evaluated
by comparing three different error indexes MAPE, RMSE, and
MAE as discussed in the Appendix.

III. CASESTUDY

Tallahassee, the capital of Florida, is the most populated
city in Leon County, hosting 180 741 population according to
the U.S. census. Tallahassee area hosts six telemetered traffic
monitoring sites (TTMS) that continuously collect traffic data.
These data show traffic counts for every hour of each day by
month and direction for any permanent TTMS location. For
the case study, a TTMS site located on the Southeast Highway
(2-lane, 2-way) adjacent to the neighborhood of the southeast of
Tallahassee is used. This highway is the only roadway that con-
nects this neighborhood to the downtown Tallahassee, and there-
fore, people use it every day for commuting purposes.
Fig. 4shows the residential community near the selected

TTMS location, where the total population is approximately 560
inhabitants. For the case study application, the 2015 electrical
power consumption of approximately 4 million measurements
are analyzed monthly for every customer. Our case study also
consists of weather variables including dew point (D), heat index
(HI), humidity (H), rain rate (R), solar irradiation (SI), temper-
ature (T), and wind speed (W). These parameters are sampled
at 30 min for year 2015.

IV. RESULTS ANDDISCUSSION

In this section, to begin the discussion regarding the proposed
hypothesis of joint information between electricity and trans-
portation networks, an example is illustrated inFig. 5that shows
the electricity consumption for a typical house in the abovemen-
tioned neighborhood for a period of 24 h. It also shows the north
and southbound traffic counts in the highway adjacent to the
neighborhood. It can be observed that traffic count and electric-
ity consumption curves exhibit similar patterns such as similar
morning and evening peaks. Since the neighborhood in the case
study is located in the southeast part of the city, the northbound
traffic observes a peak in the morning when residents head to

Fig. 5. Twenty-four hour curve for electricity consumption for a typi-
cal house and the traffic count on the nearby highway for the selected
neighborhood as shown inFig 4.

TABLE II
MI BETWEENELECTRICITY ANDTRANSPORTATION

work and an evening peak is observed in the southbound traffic.
The provided causality tests further strengthen the hypothesis of
direct interdependence between electricity and traffic patterns
in the neighborhood.
To validate the accuracy of the hypothesis of existence of

information transfer between transportation and electricity con-
sumption, an Information Theory-based tool, namely mutual
information (MI) is adopted. MI measures the information on
which variable discloses about another variable. That is, if two
variables are interdependent, their MI will be greater than zero.
In other words, stronger interdependence results in larger MI
values.
Table IIindicates the values of MI between electricity and

northbound traffic as well as between electricity and southbound
traffic. The positive values indicate some amount of information
flow between both the datasets. Also, the higher value of MI
between electricity and north bound traffic implies a higher
amount of information flow between them.
The proposed CMEN causality approach is implemented on
the dataset mentioned in Section III. Every dataset consists of
a different sampling rate. That is, electricity consumption and
weather data are sampled at every 30 min, whereas transporta-
tion datasets are achieved every 60 min. This disproportion has
been corrected by using interpolation so that the interpolated
transportation data values are resampled each 30 min.
As a validation for the proposed methodology, outputs of

CMEN method is compared with other state-of-the-art causal
methodologies.Fig. 6illustrates the resultant causality graphs
for the case study using the aforementioned causality meth-
ods. In the causal graphs, arrows signify direct causal relation-
ship, and nodes signify different variables considered. Granger
causality graph fromFig. 6(a)illustrates the direct causal re-
lationship of electricity (E) with northbound traffic (N), heat
index (HI), humidity (H), and temperature (T). On the other
hand, E is observed to have some indirect association with rain
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Fig. 6. Causal graphs based on a 1-year training dataset. (a) Granger Causality Test. (b) Peter–Clark’s algorithm. (c) SEM. (d) CMEN.

TABLE III
MMDANDKLDFORDIFFERENTCAUSALMODELS

rate R, dew point D, and wind speed W, whereas SEM implies a
direct causal relationship for electricity with southbound traffic
(S), T, R, H, and SI. The causal model achieved by the PC algo-
rithm follows a similar pattern as the SEM, which illustrates that
electricity is directly related to temperature, humidity, rain rate,
and also the southbound traffic. CMEN implies that the elec-
tricity is impacted from temperature, humidity, rain rate, and
northbound traffic flow. The CMEN is the only causal method
that illustrates causal relationship of wind speed on electricity
consumption. These dependencies are characterized and ana-
lyzed for the amount of information they provide in predicting
electricity consumption.
To validate the causality relationships that are observed in

Fig. 6, we calculate the MMD and KLD which represent
the divergence of the predicted time series as explained in
Section II-C. For calculating the MMD and KLD, we obtain
the probability distribution function of the direct causal time-
series variables represented as edges between pairwise nodes.
Through the amplitude statistics, the interval[a, b](with a
and b indicating the minimum and maximum of a time se-
riesS(t)=yt;(t=1,...,n)is initially divided into a finite
numberNbinof nonoverlapping subintervals. The conventional
histogram method is performed, which is established by count-
ing the relative frequencies of the time-series variables within
each subinterval. A lower value of MMD signifies a better match
for the candidate solutionz, which is the electricity load esti-
mation. Similarly, a lower value of the KLD divergence indi-
cates a better causal prediction. The validation of all four causal
methods is performed by comparing the KLD and MMD val-
ues for each model. As shown inTable III, the MMD and KLD

TABLE IV
MAPEANDRMSEFORLOADPROFILESFORECASTED FOR1 WEEKAHEAD
BYCOMBININGE-W-T DATASETSWITH AHISTORICALTRAININGDATASET

OF1YEAR

scores for CMEN are the lowest among the other causal models,
therefore, CMEN provides a better causal relation between dif-
ferent predictors.
To understand the advantages of conducting causality analy-
sis, we compared the load forecasted after biasing input time se-
ries based on causal models (combined electricityE, weatherW,
and transportationTdatasets).Table IVenumerates the MAPE,
RMSE, and MAE over a forecasted period of one week with 1
year training dataset.
To emphasize the effect of causal estimation as a prepro-
cessing step for load forecasting, a noncausal-based load fore-
casting is performed. The result of the one week load forecast-
ing is shown inFig. 7. It is observed fromTable IVthat the
MAPE, RMSE, and MAE values for load forecasting are con-
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Fig. 7. One week ahead load forecasting (for an average household) performed based on CMEN causal prediction with a 1-year historical training
dataset.

Fig. 8. MAPE for different input combination of 1 day ahead load fore-
casted profiles with a historical training dataset of 1 year.

siderably higher when a causality approach is not conducted. An
interesting observation as seen in this table is that the CMEN
outperforms the other state-of-the-art causality approaches. For
example, the MAPE reduces by 73.91% when CMEN causal-
ity approach has been considered along with RNN-based load
forecasting when compared with the noncausal approach. When
compared with outcomes of Granger, PC algorithm, and SEM,
the MAPE (forecasting error) for CMEN-based load forecast-
ing is reduced by 47.06%, 41.94%, and 45.45%, respectively,
for RNN-based load forecasting. For a more fair comparison,
CMEN has also been compared with a neural network-based
causal methodology called ERNN [6] that was published re-
cently. CMEN outperforms ERNN with an error reduction of
16.66% when load forecasting has been performed.
For better validation of our proposed hypothesis regarding
joint information between electricity and traffic flows, load fore-
casting was performed based on different combinations of input
variables. The result of these different combinations is illus-
trated inFig. 8.
InFig. 8, “E” is the forecasting using the past values of elec-
tricity only. “E-W” is the forecasting based on inputs combining
electricity and weather parameters. Similarly, “E-T” stands for
the inputs combining electricity and transportation variables,
and “E-W-T” is the combination of electricity, weather, and
transportation values without considering causality relationship.
Also, “E-W-T(CMEN)” signifies a combination of electricity,
transportation, and weather based on CMEN causal model out-
put. It is observed that the MAPE is higher in the case of “E
only.” As observed inFig. 8, the MAPE reduces by 36.96%
when load forecasting is performed by “E-W,” and “E-T” re-

Fig. 9. Intervention assessment on a 1-day-ahead load forecasting pro-
file for causality and Markovian based selection with a training dataset of
1 year.

duces the MAPE further. Since “E-W-T” has more information
about electricity consumption, the MAPE is reduced by 54.55%.
Referring to our hypothesis in Section I, which indicates that
the interdependence between electricity and transportation net-
works results in additional information regarding the electricity
consumption and transportation patterns. The MAPE is further
reduced by 73.91% when CMEN-based causality is considered.
To emphasize the introduction of causality as a preprocessor,

Fig. 9illustrates the results of using causality analysis tools such
as CMEN in load forecasting, in comparison to load forecasting
performed by combining the entire dataset without considering
causal relationship. To validate the advantage of using global
Markov property as a preprocessing step to the causal model,
load forecasting was performed for the outcome of causality
without Global Markov property. It is seen that, without Markov
preprocessing, the MAPE is significantly higher by 42% when
compared with Global Markov property-based preprocessing.
An interesting observation from this figure is that the forecasting
error gap between causal and noncausal approach lies in the
number of variables. That is, more number of predictors implies
more information. However, causality helps us in selecting the
most relevant variable that consists of higher joint information
factor. As seen inFig. 9, using causality as a preprocessing block
reduces the error percentage by 73.91% for the case of “E-W-T.”
Another important aspect of load forecasting study is the
horizon of forecast. Various combinations of training and testing
sets of data are studied, and the results are depicted inFig. 10.
Three forecasting scenarios are performed including an hour
ahead, a day ahead, and a week ahead forecasting. The training
dataset is varied from 1 year, 3 months, 1 month, 1 week, and
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Fig. 10. MAPE for different load forecasting horizons.

1 day variables. For example, it is observed that increasing the
horizon from 3 months to 1 year does not result in a considerable
reduction in MAPE. Therefore, it shows that there is a saturation
point in terms of the training dataset horizon. In this paper, the
load forecasted for 1 week, 1 day, 1 h consisted of 3 months, 1
month, and 1 day training datasets, respectively.
Since weather plays a significant role in load forecasting, it

is also important to observe the change in prediction error when
load forecasting is performed in different times of the year.

V. CONCLUSION

This paper presented a causality-based approach in order to
understand the relationship between the transportation and elec-
tricity flow in urban environments through a novel causality
analysis, namely the CMEN. The CMEN was validated through
the comparison with the state-of-the-art causality analysis meth-
ods. It was further evaluated using different load forecasting
techniques to prove the proposed hypothesis regarding the infor-
mation affinity between electricity and transportation network
loads. Using a year worth of actual electricity and transporta-
tion network data in Tallahassee, Florida, the analysis showed
a tremendous improvement in electricity load forecasting ac-
curacy. For example, based on CMEN and RNN combining
weather and transportation data, the MAPE for electricity load
forecasting is reduced by 73.91% compared to the noncausal
approach for typical load forecasting that only utilizes electric-
ity data. Future work will be directed toward using this causality
method on sparse and low rank matrices and also scaling to a
larger dataset.

APPENDIX

MAPE =
100

n

n

t=1

y(t)−y(t)

y(t)
(12)

RMSE =
1

n

n

i=1
[y(t)−y(t)]2 (13)

MAE =
n
i=1|y(t)−y(t)|

n
. (14)

In the above equations,y(t) is the original value andy(t)isthe
forecasted value, whereasnis the total number of observations.
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