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Abstract— A novel multivariate deep causal network model
(MDCN) is proposed in this paper, which combines the theory
of conditional variance and deep neural networks to identify
the cause-effect relationship between different interdependent
time-series. The MCDN validation is conducted by a double
step approach. The self validation is performed by information
theory-based metrics, and the cross validation is achieved by a
foresting application that combines the actual interdependent
electricity, transportation, and weather datasets in the City of
Tallahassee, Florida, USA.

I. INTRODUCTION

Discovering causal models from observational and inter-
vention data is an important first step preceding counter
factual reasoning; however, in such a causal network, the
extent to which the direction of edges can be identified from
purely observational data is still limited in the literature.
Techniques based on conditional independence such as Peter
Clarke’s tests can only discover edge directions within the
limits of Markov equivalence [1]. Several causality methods
have also been extensively studied in the past including
Granger causality test [2], Pearl’s causality model [3], and
Structural Equation Modeling methods [4]. In order to
determine the direction of a pairwise casual relationship,
statistical techniques can, in certain conditions, augment the
causal discovery process. Furthermore, the causal modeling
methods have recently started utilizing emerging techniques
such as neural networks-based ones[5]. In order to fill this
gap, in this paper, we propose a novel approach, namely the
Multivariate Deep Causal Networks (MDCN), to detect the
causal relationships between multivariate series of datasets
through the use of a deep neural network structure.
Deep Neural Networks (DNN) are multilayer neural net-
works that consist of more than one layer of hidden units as
inputs and its corresponding outputs. One of the fundamental
part of a DNN is the Activation Functions, which are the
deciding factors for the activation and functioning of a
node. Whether the received information by a neuron is
relevant for the given information or should it be ignored is
also decided by the activation functions. The most popular
activation functions (learning units) are namely Logistic
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Sigmoid (logsig), Hyperbolic Tangent, and Exponential Lin-
ear Unit (ELU). This paper utilizes a first order derivative
of the sigmoid hyperbolic activation function, which can
successfully determine both linear and non-linear relation-
ships. To validate the proposed MDCN, various information
theory-based distance metrics are utilized in this paper. The
predicted outcome is validated by measuring the Kullback-
Leibler Divergence (KLD) and the Maximum Mean Discrep-
ancy (MMD) indices. KLD is a statistical distance matrix,
which is utilized to measure the difference between different
distribution functions considered over the same variable.

Furthermore, a cross validation is performed in order to eval-
uate the observed causal relationship. This involves perform-
ing a load forecasting study combining the direct causal vari-
ables as predictors in forecasting the electricity consumption.
The established causality relationship thus helps in selecting
the most informative and relevant variables in predicting the
electricity consumption. The proposed causality method is
further validated using synthetic datasets and compared with
other well established causality methodologies.

Load forecasting is crucial for power system planning and
operation. It helps in maintaining the balance between the
electricity supply and demand. There have been many studies
focusing on short term load forecasting combining various
factors such as economic and weather parameters [6], [7]. In
this paper, a real-world electricity load forecasting applica-
tion is performed by combining electricity, transportation and
weather data which is in continuation to our previous works
[6],[8],[9]. The contributions of this paper can be listed as
follows:

• This study develops a novel multi-variable causality
analysis method using a Deep Neural Networks struc-
ture called MDCN;

• A novel activation function, the first order derivative
of sigmoid hyperbolic, is proposed for Deep Neural
Networks;

• MDCN is utilized for enhancing electricity load fore-
casting accuracy considering the interdependencies
between electricity consumption, human mobility, and
weather conditions.

In the next section, we focus on the state of the art causal
models and present the proposed novel causality approach.
Section III introduces the various validation techniques for
the causal models. The results and conclusions are presented
in the final section of the paper.
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II. METHODOLOGY

This section introduces the proposed methodology. In this
paper, a causality analysis is conducted to relate electricity
with transportation and weather parameters. The proposed
causal model is also compared with other well established
causal models. These causal models are then validated using
Information theory based metrics. The causal relationship
is utilized in load forecasting to ensure the use of most
informative predictors.

A. Multivariate Deep Causal Network (MDCN)

A directed acyclic graph (DAG) is a graph with directed
edges which are used in causality theory to illustrate direct
causal relationships. A directed graph is represented as D =
(V,E, f) consisting of a set of nodes V, edges E and a
mapping f : E → V ∗ V . The V consists of the various
input data variables and the edges describe the relationship
between the variables. A generic form of the proposed causal
model is illustrated in Figure 1. Where, X = X1, X2, ..., Xm

are the inputs to the first batch of hidden layers, based
on the low conditional variance between them. Similarly,
Y = Xm+1, Xm+2, ..., Xn are inputs to the second set of
hidden layers. These inputs are sorted based on conditional
variance test. The inputs to each hidden layer are categorized
based on conditional variance test.

Fig. 1. Generic causal structures

The Conditional variance shows variance of a random vari-
able given the values of one or more other variables. Consider
two distinct variables X and Y. The conditional mean of Y
given X = x is defined as

µY |X = E[Y |x] =
∑
y

yh(y|x) (1)

The conditional variance of Y given X = x is given as:

σ2
Y |X = E[Y − µY |x]2|x =

∑
y

[Y − µY |x]2h(y|x) (2)

After categorizing the inputs based on conditional variance as
shown in Figure 2, activation functions are applied to initiate
the functioning of the hidden layers of the MDCN. The two
most common activation functions are the logistic sigmoid
and hyperbolic ones [7] The logistic sigmoid activation
function can be written as:

f(x) =
1

1 + e−x
(3)

Fig. 2. The overall structure of proposed MDCN method

The hyperbolic activation function is given as:

f(x) =
ex − e−x

ex + e−x
(4)

From the above, sigmoid hyperbolic function can be written
as a product of Equation 3 and Equation 4:

f(x) =
ex(2 + ex)− 1

ex + e−x + e−2x + 1
(5)

The derivative of sigmoid hyperbolic function outperforms
the logistic sigmoid activation function in terms of computa-
tion efficiency and thus is used as the activation function
in this paper. The first order derivative of the sigmoid
hyperbolic function can be written as shown below:

f ′(x) =
e2x(e3x + 3ex + 2)

(e2x + 1)2
(6)

The number of hidden layers is an essential part in the
overall functioning of the neural network. There are various
approaches to choose the optimal number of hidden layers.
This paper considers the heuristic forward approach where a
small number of hidden neurons are selected. The numbers
are gradually increased by evaluating the performance of the
neural network. 6 hidden layers have been used in MDCN
causal methodology. As illustrated in Figure 2 the outcomes
of low conditional variance and high conditional variance
DNN units are then fed into the final DNN unit, which results
in the causal model (graph) that relates the input variables
(in our use case electricity, traffic, and weather data). The
resultant causal model is validated in two steps as discussed
below.
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B. State-of-the-art Causal Models

1) Peter Clark’s causal model: : The Peter-Clarke’s(PC)
algorithm, begins with a graph G consisting of a group of ver-
tices V that indicates the input data variables.A conditional
independence (CI) test with a significance level 0 < α < 1
is conducted. Initially starting with an undirected graph, this
algorithm shapes this graph by excluding edges with no CI
relations. The structure if formed based on first order CI test
[10].
2) Multivariate Granger Causality Test: A multivariate
granger causality (MGC) approach can be developed by
factorizing the spectral density matrix. The spectral density
matrix denoted by S(ω) constitutes a major branch of the
multivariate Granger causality, that provides reasoning using
different tools for example auto-power, such as multiple and
partial coherence etc [11].
3) Structural Equation Modeling: An approach for evalu-
ating models containing linear relationships among multi
variable systems. SEM models consist of manifest and latent
variables, which can be independent (exogenous) or depend-
ent (endogenous). The theory behind the SEM model is
established by characterizing a pattern of linear relationships
among a set of observable and exogenous variables. The
disadvantages of using SEM includes the complexity of
theory itself and the application, and varying robustness for
different factor scores [12].

III. MDCN CAUSAL MODEL VALIDATION

The proposed MDCN model performance is first compared
with the state of the art causality techniques using different
information theory based metrics. An electricity load fore-
casting study is then performed as a cross validation to to
show the impact of resultant causal outcomes.

A. MDCN Self Validation

For the purpose of self validation, the following distance
metrics considered:
1) Kullback-Leibler Divergence: The Kullback-Leibler Di-
vergence (KLD), denotes the difference between two prob-
ability distributions p and q. For example, KLD of q from
p, written as KLD(p, q), signifies the amount of information
lost when q is used to approximate p. The Kullback-Leibler
Divergence is computed as shown below:

KLD(p||q) =
∑
xεX

pln
p

q
(7)

The KLD measures the expected number of extra bits re-
quired to code samples from p when performed based on
the values of q. Basically, p represents the actual distribution
of the data or a very close approximation of the distribution
[13].
2) Jensen-Shannon Divergence: The Jensen–Shannon Di-
vergence (JSD) is a technique used for measuring the correla-
tion of different probability distributions. The JSD is defined
as shown in equation below:

JSD[p, q] =
1

2
KLD[p||n] + 1

2
KLD[q||n] (8)

In the above equation, n = (p + q)/2 is an equal blend of
distribution functions p and q[14]. The optimization of JSD
is performed by using the data density.
3) Maximum Mean Discrepancy: The Maximum Mean Dis-
crepancy (MMD) was first introduced as a distribution func-
tion matrix[15].

MMD[p, q] = (Ep,q[k(x, x
′)−2k(x, y)+k(y, y′)])1/2 (9)

In the above equation, x and x’ are the random variables with
distribution p. y and y’ are independent random variables
with distribution q. Equation 9 represents the MMD of those
distributions. Also, Epq denotes the expectations with respect
to p and q respectively [16].

B. MDCN Cross Validation

The causal relationships thus achieved signifies information
flow between directly causal variables. In order to quantify
the flow of information between the causal variables, a
predictive analysis has been performed. As a second step
validation of the observed causal relationships, a short term
electricity load forecasting is performed using the state-
of-the-art forecasting methods. The resultant causal graphs
denote the variables that have a direct cause on electricity
consumption. Such variables are used as predictor variables
to train the neural network. This paper studies different
time series forecasting methodologies such as ARMA [17],
Support Vector Machine (SVM) [18], Deep Neural Net-
works(DNN) [19] and Multi Linear Regression(MLR) [20].

IV. DATA DESCRIPTION

The City of Tallahassee, Florida electricity consumption data
which is used in this study has 30 min sampling rate for the
entire year of 2015. Over 8 million data points were analyzed
for the selected neighborhoods selected.

Fig. 3. Neighborhood considered for case study
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For this paper, a neighborhood in the southeast part of the
city is considered. The State of Florida consists of about 5000
Telemetered Traffic Monitoring Sites (TTMS) located around
the state that streams and collects real time traffic flow
information. Florida Department of Transportation (FDOT)
receives high-volume and high-speed data collected for each
and every lane with an interval of 1 hour. Figure 3 represents
the neighborhood under consideration for the application of
the MDCN causality and load forecasting.

V. RESULTS AND DISCUSSIONS

Since electricity is highly impacted by weather changes, the
causal models reveal a direct causal relationship between
weather factors and electricity. Also, transportation which
implies human mobility also influences electricity consump-
tion. Therefore, north and south bound traffic also affects
electricity consumption.
This section presents the result of the above mentioned
methodology on actual electricity, transportation and weather
data acquired from the city of Tallahassee.

Fig. 4. Causal model outcomes from left: (a) MDCN, (b) PC, (c) SEM
and (d) MG

To validate the performance of proposed MDCN causality
model, we compare the resultant causal graph with three
other causality methodologies including PC, SEM and MGC
as illustrated in Figure 4. In this causal graph arrows de-
note direct causal relationship and line denotes dependency
between the variables. In the causal graphs, E denotes elec-
tricity consumption, NB and SB represents north bound and
south bound traffic flow, H and W represent the heat index
and wind chill respectively. The rain rate, solar irradiation
and wind speed are represented by R, S and WS respectively.
For example, for the MDCN causal model as shown in
Figure 4 (a), Electricity consumption, denotes a direct effect
from North Bound traffic flow. Also weather parameters such

as Wind Chill, Solar Irradiation and Wind Speed shows
direct causal relationship with E. A study including the
neighborhood population (P) as a variable in this analysis
exhibited some causal relationship over a training dataset
of 1 year. This can be explained since rate of change of
population is significantly lower and hence population can
be informative in a long term load forecasting.
For better comparing the various causal models, information
theory based distance metrics such as MMD, KLD and JSD
have been calculated as explained in Section II. The mean
values of the distance metrics are given in the Table III:

TABLE I
MEAN DISTANCE METRICS TABLE FOR DIFFERENT CAUSALITY

APPROACHES

Causal Approach KLD JSD MMD
MDCN 0.21 0.18 0.23
SEM 0.62 0.47 0.72
PC 0.76 0.67 0.49

MGC 0.82 0.79 0.56

As observed in the table III, all the three distance metrics
for the MDCN causal model outperforms considerably the
other state-of-the-art causal models. For example, the KLD
for MDCN is decreased by 66.13%, 72.37% and 74.39%
when compared with SEM, PC and MGC causal models re-
spectively. For further validation a load forecasting study was
performed by combining the combination of inputs depicted
to have a direct influence on electricity consumption.
To quantize the forecasting performance in this paper, we
use two well known error indices. In order to compare each
forecasting method, we used the Mean Absolute Percentage
Error (MAPE) as defined by equation below:

MAPE =
100

m

m∑
t=1

|x(t)− x
′(t)

x′(t)
| (10)

Along with MAPE, Root Mean Square Error (RMSE) as
defined by equation below, has also been considered as an
additional index for measuring the error.

RMSE = 2

√√√√ 1

m

m∑
i=1

[x(t)− x′(t)]2 (11)

In equation (10) and (11), x(t) and x’(t) represent the original
and predicted values respectively and m is the total number
of observations. The resulting average MAPE and RMSE
for load forecasting for a 1 week period using 3 months of
training data are seen in Table II:
It is evident from table II that among the four selected load
forecasting techniques, DNN outperforms the other methods.
The table also shows the effect of combining all the variables
as predictors without any causality techniques. It is observed
that combining causality technique as the preprocessor for
the load forecasting results in reduces the error in all cases.
For example, the reduction in MAPE for DNN based load
forecasting when combined with MDCN causality model
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Fig. 5. 1 Week ahead forecasting for a week of January 2016

TABLE II
LOAD FORECASTING ERROR INDICES FOR 1 WEEK

Method Error Index No Causal PC SEM MDCN
ARMA MAPE 7.53 4.15 3.32 2.43

RMSE 12.65 6.33 5.87 4.11
MLR MAPE 6.32 4.42 5.62 4.21

RMSE 11.41 6.27 7.61 5.93
SVM MAPE 6.81 3.86 5.14 4.12

RMSE 12.18 6.77 6.98 7.13
DNN MAPE 5.61 2.96 3.22 2.11

RMSE 11.12 4.27 3.61 2.23

results in error reduction in comparison with no causal, PC
and SEM models are 62.38%, 26.72% and 34.47% relatively.
Figure 6 illustrates the result of having different number
of hidden layers. It is seen that, for MDCN, the number
of hidden layers is inversely proportional to the electricity
forecasting error. In this case study, 6 hidden layers are
found to provide the most accurate result, therefore MDCN
consists of 6 hidden layers containing 6 neurons each. It
is also observed that on addition of more hidden layers, a
saturation is achieved in the error percentages.

Fig. 6. Load Forecasting MAPE for various number of hidden layers in
MDCN

The importance of analyzing causal relationships can be
observed in Figure 7. It also depicts an Intervention As-
sessment based MAPE. The Intervention Assessment defines
the process of combining all the variables as predictors
irrespective of any causal significance. It is observed that, the
MAPE in case of intervention assessment is higher, since the
predictors use a combination of irrelevant variables as input

predictors. The MAPE reduces when inputs combines past
values of electricity consumption with weather parameters
(E-W). Also combining electricity consumption with traffic
flow information (E-T) makes a further reduction in error.
However, the highest accuracy is achieved when historical
values of electricity consumption is combined with weather
parameters and traffic flow information (E-W-T). The relative
decrease in MAPE when compared to E only, E-W, E-T is
84.14%, 71.71% and 58.58% respectively.

Fig. 7. MAPE for combination of different Inputs

VI. VALIDATION USING SYNTHETIC DATASET

The causal models are further validated using synthetic data-
set. The datasets were generated following the methodology
in [21]. The 5 series dataset consists of a ground truth causal
relationship as shown in Figure 8.

Fig. 8. Synthetic Data Ground Truth Causal Model

The performance of the causality tests were compared by
using different forecasting methods: ARMA, SVM and MLR
using the synthetic dataset. The Table below provides the
comparison of the different causal models with the forecast-
ing approaches. The causal graphs achieved on the synthetic
dataset has also been illustrated in Figures 9-12.
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TABLE III
FORECASTING MAPE FOR SYNTHETIC DATASET BASED COMPARISON

OF VARIOUS CAUSAL MODELS

Causal Approach ARMA MLR SVM
MDCN 0.16 0.13 0.11
SEM 0.33 0.37 0.41
PC 0.26 0.22 0.19

MGC 0.48 0.42 0.33

Fig. 9. Synthetic dataset on Multivariate Granger causality

Fig. 10. Synthetic dataset on PC algorithm

Fig. 11. Synthetic dataset on MDCN

Fig. 12. Synthetic dataset on SEM

VII. CONCLUSIONS

We propose a novel approach for causality combining con-
ditional variance and a deep neural network structure. The
proposed MDCN causal approach outperformed the other
state-of-the-art causality methods in the self validation as
well as cross validation. Using the MDCN causal model as
a preprocessor for the electricity load forecasting to combine
transportation and weather along with electricity brings down
the relative error percentage by 84.14% for the case study
under consideration.

ACKNOWLEDGMENT

The authors would like to thank the City of Tallahassee for
providing the data and expertise. Special thanks also goes
to Prof. Mattia Zorzi and Prof. Alessandro Chiuso from the
University of Padova, Italy for their advice and counsel about
causality analysis.

REFERENCES

[1] J. Koster, ‘1. causation, prediction, and search. 2nd edn. peter spirtes,
clark glymour and richard scheines, mit press, cambridge, ma, 2000.
no. of pages: 543. isbn 0-262-19440-6’, Statistics in Medicine, vol.
22, no. 13, pp. 2236–2237, 2003.

[2] C. W. J. Granger, ‘Investigating causal relations by econometric
models and cross-spectral methods’, Econometrica, vol. 37, no. 3,
pp. 424–438, 1969, ISSN: 00129682, 14680262.

[3] J. PEARL, ‘Causal diagrams for empirical research’, Biometrika, vol.
82, no. 4, pp. 669–688, 1995.

[4] D. Yang, H. Chen, Y. Song and Z. Gong, ‘Granger causality for
multivariate time series classification’, in 2017 IEEE International
Conference on Big Knowledge (ICBK), Aug. 2017, pp. 103–110.

[5] L. Q. Uddin, A. Clare Kelly, B. B. Biswal, F. Xavier Castellanos and
M. P. Milham, ‘Functional connectivity of default mode network
components: Correlation, anticorrelation, and causality’, Human
Brain Mapping, vol. 30, no. 2, 2009.

[6] K. S. L. Madhavi, J. Cordova, M. B. Ulak, M. Ohlsen, E. E.
Ozguven, R. Arghandeh and A. Kocatepe, ‘Advanced electricity
load forecasting combining electricity and transportation network’, in
2017 North American Power Symposium (NAPS), Sep. 2017, pp. 1–6.

[7] S. R. Salkuti, ‘Short-term electrical load forecasting using radial
basis function neural networks considering weather factors’, Elec-
trical Engineering, Jan. 2018.

[8] L. M. K. Sriram, M. Gilanifar, Y. Zhou, E. E. Ozguven and R.
Arghandeh, ‘Causal markov elman network for load forecasting in
multi network systems’, IEEE Transactions on Industrial Electronics,
pp. 1–1, 2018, ISSN: 0278-0046. DOI: 10.1109/TIE.2018.
2851977.

[9] M. B. Ulak, A. Kocatepe, L. M. Konila Sriram, E. E. Ozguven and
R. Arghandeh, ‘Assessment of the hurricane-induced power outages
from a demographic, socioeconomic, and transportation perspective’,
Natural Hazards, vol. 92, no. 3, pp. 1489–1508, Jul. 2018, ISSN:
1573-0840. DOI: 10.1007/s11069-018-3260-9. [Online].
Available: https://doi.org/10.1007/s11069- 018-
3260-9.

[10] P. Spirtes and K. Zhang, ‘Causal discovery and inference: Concepts
and recent methodological advances’, Applied Informatics, vol. 3,
no. 1, p. 3, Feb. 2016.

[11] R. R. Ahmed, J. Vveinhardt, D. Streimikiene and M. Fayyaz,
‘Multivariate granger causality between macro variables and kse 100
index: Evidence from johansen cointegration and toda & yamamoto
causality’, Economic Research-Ekonomska Istraživanja, vol. 30, no.
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