
RiskCap: Minimizing Effort of Error Regulation

for Approximate Computing

Shuhao Jiang, Jiajun Li, Xin He†, Guihai Yan, Xuan Zhang†, Xiaowei Li

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences
†Washington University in St. Louis

{jiangshuhao, lijiajun, yan, lxw }@ict.ac.cn, {xin.he, xuan.zhang}@wustl.edu

Abstract—Quality management, which is responsible for con-
trolling approximation quality to meet user requirement, plays
a key role in the applicability of approximate computing. An
effective and efficient quality management needs to be accurate
to detect intolerable errors meanwhile light-weight in nature.
However, it is difficult to design such a quality management sat-
isfying both the two demands and existing work usually optimizes
for one demand at the expense of the other. In this paper, we
aim to achieve higher energy efficiency of quality management by
optimizing detection accuracy and overhead simultaneously. We
observe that the detection difficulty varies across inputs and there
exists much redundant computation in detection process. Based
on this observation, a cascaded quality management which can
minimize the overhead and doesn’t lower detection accuracy is
proposed. The proposed solution pays more proper computation
effort according to different detection difficulties of inputs so
as to avoid unnecessary energy consumption. What’s more, by
exploring the design space sufficiently and effectively, we can
assure the highest energy-efficiency of the proposed topology. The
experiment results demonstrate that our approach can achieve
much greater energy-efficiency than existing solutions.

Index Terms—approximate computing, quality management,
progressive detection

I. INTRODUCTION

With the staggering Moore’s law and Dennard scaling [1],

approximate computing is believed to be a promising comput-

ing paradigm to improve energy efficiency, especially for those

applications with intrinsic error resilience [2]. Surprisingly,

“resilient” applications have been found in a broad range

of domains such as machine learning, computer vision, web

search, and cyber-physical systems [3]–[5].

Many approximation techniques have been proposed, in-

cluding approximate LUT [5], [6], approximate logic and

memory [7] and approximate accelerators [4], [8]–[11]. Al-

though these techniques fuel better energy efficiency, how to

guarantee the quality and acceptability of final results is still

an open problem. An effective computing quality management

scheme, which plays a decisive role in the applicability of

approximate computing, is critical.

The basic task of quality management is to detect unac-

ceptable errors (i.e. quality violations) and recover them for

satisfying certain level of target quality requirement. Rumba

[12] proposed three light-weight predictors to predict quality

violations based on input data. However, these predictors

turn out to be too simple to deliver good enough prediction

accuracy. Low prediction accuracy implies more false positives

or false negatives. False positive would lead to unnecessary

recoveries thus dampening the energy benefit from approxi-

mate computing while false negative would incur the risk of

unacceptable quality degradation.

To achieve higher accuracy, more sophisticated quality man-

agements are proposed. Wang et al. [13] proposed a quality

management design consisting of several light-weight pre-

dictors. Similarly, MITHRA [14] proposed a neural network

based detector. However, the starting point of these work is

mainly for enhancing accuracy so such methods induce con-

siderable overhead. High overhead of complicated predictors

offsets a considerable proportion of benefits from approximate

computing, and results in the limitation of the overall energy

enhancement. For example, the proposed solution in [13] only

achieve 11% to 23% energy savings over simple predictors of

Rumba.

This problem has also been noticed by some researchers.

For example, Xu et al. [15] tried to obtain higher energy-

efficiency through approximate accelerator and error controller

(for quality manangement) co-design. Nevertheless, the ineffi-

ciency problem caused by overhead of error controller is still

severe. Fig. 1(a) compares energy of approximate accelerator

(A) and error controller (C) in [15]. On average, the energy

of error controller occupies up to 65% of the accelerator.

Due to the great difficulty of traditional tradeoff between

high accuracy and low overhead, more new beneficial prop-

erties should be explored to improve energy efficiency of

quality management. One of promising properties is that the

detecting difficulty of quality violations varies widely across

input data. This phenomenon is quite intuitive. As shown in

Fig. 1(b), suppose a simple case including 2-D input data and

corresponding distributions of quality violation (label ” + ”)

and safe approximation (label ” − ”), then it is easy to find

that the points in centering band is harder to detect than those

out of band. This observation implies that computation effort

of error controlling should be judiciously allocated according

to the difficulty of input instances. However, existing work

on quality management expends equal effort on all inputs and

lacks effective methodology to mine this potential benefit.

In this paper, we propose RiskCap, an efficient quality

management which is optimized on both detection accuracy

and overhead. RiskCap is a cascaded structure consisting of

133

2018 IEEE 27th Asian Test Symposium

2377-5386/18/$31.00 ©2018 IEEE
DOI 10.1109/ATS.2018.00035

BS jmeint fft bessel avg
0

0.2

0.4

0.6

0.8

1

1.2

E
n

e
rg

y
(C

)
:

E
n

e
rg

y
(A

)

(a) (b)

Fig. 1. (a) Energy comparison in [15]. (b) Variety of detection difficulty.

multiple stages. The key of this cascade design is to realize

such a procedure: The easy-to-detect inputs can terminate at

earlier stages while hard-to-detect inputs will go deeper to

be analyzed further. We call this procedure as progressive

detection. Through progressive detection, RiskCap only takes

necessary effort according to detection difficulties of inputs,

thus reducing the overhead of quality management. What’s

more, the overhead reduction is not at cost of detection accu-

racy drop. Besides, we also design a low-overhead cascaded

structure to support progressive detection. At last, an efficient

heuristic algorithm is presented to explore the optimal topolo-

gy configuration (e.g. number of stages, size of each stage etc.)

for highest energy-efficiency. Overall, RiskCap can achieve

higher energy-efficiency owing to high detection accuracy and

efficient progressive detection. The experiment demonstrates

that our approach can achieve much higher energy-efficiency

than existing solutions.

The rest of the paper is organized as follows. In Section

II, we gives an overview of related work. In Section III, we

introduce the design and structure of RiskCap. Experimental

results are given in section IV. At last, section V concludes

the paper.

II. RELATED WORK

The basic idea of approximate computing is to simplify

the exact computing or replacing it with approximate versions

to achieve energy-efficiency gains. Although errors are intro-

duced to outputs in this process, they will still be acceptable

if the quality loss of outputs is under the tolerant range. Over

the years, many approximate computing techniques have been

proposed. Loop perforation [3] skips the iterations of loops

randomly to reduce computation. Approximate accelerators

[4], [8], [16] are designed to replace the exact execution of

kernel code regions to speed up error-resilient applications.

Accuracy-configurable logic units like [17] are proposed to

realize approximate computing on circuit level.

However, the availability of approximate computing tech-

niques depends heavily on whether quality of approximate

output satisfies the requirement. The quality requirements usu-

ally are some defined metrics, e.g. PSNR for image processing

applications. To ensure output quality satisfies the requirement,

quality management should detect unacceptable errors(i.e.

quality violations) effectively. Green [18] and SAGE [19]

runtime check the output quality periodically by comparing

sampling approximation results and accurate results. But these

methods failed to cover the large-error outputs that escape

Fig. 2. The framework of RiskCap.

the sampling while checking all outputs is too computation-

expensive.

Using machine learning methods to predict quality viola-

tions based on input data of applications turn out to be a

promising technique to quality management. Rumba [12] pro-

posed 3 kinds of light-weight predictors. By checking errors

according to inputs, Rumba can cover all data meanwhile

consuming little energy. But the three predictors are based

on simple models, so the prediction accuracy is limited.

Therefore, more complex predictors are presented for higher

accuracy. Ting Wang et al. [13] combine weak predictors to

a strong predictor for higher accuracy. Mahajan et al. [14]

proposed a neural-based predictor with statistical guarantees.

But the starting point of these work is simply for enhancing

accuracy so considerable overhead is brought, as a result, the

overall energy enhancement is limited.

To light the over-weighted predictor, Xu et al. [15] pro-

pose an iterative training method to explore the topologies

of the accelerator (which is approximate) and the predictor

comprehensively. Therefore, a more balanced topology of

approximate accelerator-predictor framework is achieved for

higher energy-efficiency. But the optimal topology shown in

[13] indicates that the predictor size is almost equal to the

approximate accelerator, so more novel and effective methods

to lighten the predictor is desired.

Utilizing variety of classification difficulty to reduce energy

of machine learning algorithm is an active area of research.

Recent work [20], [21] has also proved that this property

exists pervasively in many other applications and achieved

considerable improvement on energy and performance through

multiple classifiers. However, these work tried to transform

the indivisible classifiers into multiple components, which will

bring considerable overhead. In addition, it lacks theoretical

foundation to prove this transformation is trustworthy enough

to maintain the original classification capability, which is

critical to quality management.

We propose a cascaded structure for minimizing effort of

quality management by progressive detection. Unlike existing

work, which pays equal detection effort on all invocations,

our methodology can dynamically adjust computation effort

according to inputs. Besides, since the proposed structure is

cascaded in nature (described in section III), we don’t need

to pay much overhead for transformation and worry about the

degradation of detection accuracy.

134

III. THE FRAMEWORK OF RISKCAP

The framework of RiskCap is shown in Fig. 2. The procde-

dure of RiskCap is divided into two phases, offline phase and

online phase. In offline phase, we train the cascaded structure

according to representative training data, quality requirement

and given approximate method. In online phase, we detect

each user input should be executed in approximate version or

exact version.

Besides, the framework of RiskCap consists of three com-

ponents. The first component A© is an ensemble learning

model [22] on which progressive detection is based. Ensemble

methods combine several weak (light weight but low accuracy)

detectors to achieve higher detection accuracy. In ensemble

learning, the weak detector is known as basic detector. A typ-

ical combination method is to combine the detection outputs

of basic detectors in a weighted averaging way, which makes

ensemble models cascaded in nature. In Fig. 2, outputs of

basic detectors are represented by hi(x) and their combination

is H(x). The second component B© is the cascaded structure

that supports progressive detection. The last component C© is

the heuristic algorithm to find the optimal topology on energy-

efficiency.

We will explain how the progressive detection (based on the

ensemble model) works in section III-A. The low-overhead

cascaded structure design is presented in section III-B. The

heuristic algorithm to find the optimal topology is described

in section III-C.

A. The Progressive Detection

The progressive detection is to terminate early for easy-to-

detect inputs while analyze further for hard-to-detect inputs.

We construct the progressive detection based on two basic

observations: (1) A strong (high accuracy) detector can be

constructed through combining several weak detectors; (2)

The quality management in approximate computing can be

regarded as a binary classification task. The first observation

is validated by ensemble learning methods like adaboost and

random forest algorithm. A typical prediction methodology of

ensemble learning is as follows:

H(x) =
N∑

i=1

wihi(x) (1)

where H(x) is combined detection result, h(x) and w denote

detection result and weight value of individual basic detector

respectively, and N is the number of basic detectors. Basic

detectors have similar structure but different parameters. Based

on the first observation, although basic detectors yield limited

accuracy because of their lightness, the combination of them

can yield high detection accuracy. Note that all basic detectors

have indispensable contribution to final result so none of detec-

tors is redundant. This observation guarantees the feasibility

of cascaded structure with high detection accuracy, and the

simplest example is that we can take each basic learner as

one stage.

However, Eq. 1 doesn’t guarantee the progressive detection

because the combined result is fluctuant in common scenarios,

(a) (b)

Fig. 3. (a) Combination procedure of regression. (b) Combination procedure
of binary classification.

such as regression. Fig. 3(a) shows the conceptual view of

this scenario. In a regression task, although weights w are all

positive, h(x) can be positive and negative, so the final result

can not be determined until the last detector finishes. Obvi-

ously, progressive detection is infeasible in such scenarios. To

enable progressive detection, the combination result must be

an incremental procedure, and a typical example is the binary

classification. As shown in Fig. 3(b), in binary classification,

h(x) is either 0 or 1, so the combination result keeps growing

from beginning to end. Once the partial sum exceeds the

threshold (typically 1/2 of ceiling limit), the computation can

be terminated safely without worrying about degradation of

accuracy. As the second observation indicates, the quality

management in approximate computing can be abstracted as a

binary classification task [14], where class 1 donates a quality

violation while class 0 means a safe approximation. As a

result, the two observations ensure progressive detection with

high accuracy.

B. Cascaded Structure Design

We construct the cascaded structure of RiskCap with two

main components, stage and valve. Fig. 4 shows a 3-stage

case of the design. The stage component includes one or more

basic detectors to detect quality violations. The basic detectors

can be linear model, decision tree and even shallow neural

network depending on the difficulty of quality controlling. In

train phase, we explore the optimal stage topology for energy-

efficiency such as the number, size and execution order of

basic detectors and number of detectors in each stage, and

detailed algorithm will be presented in section III-C.

The valve component is used for progressive detection at

runtime. The logic is as follows: When a binary h(x) is

calculated by one stage, we add product of w and h(x) to

the current partial sum (P sum/N sum). Then we compare

the new partial sum with threshold (i.e., 0.5 when the ceiling

limit is 1). If the partial sum exceeds threshold, which means

the detection result has been able to be determined now,

we turn off the valve so the subsequent stages will not be

activated for current input (e.g. stage 3 in Fig. 4). P sum

and N sum represent the positive partial sum (for class 1,

i.e. quality violation) and negative partial sum (for class 0, i.e.

safe approximation) respectively, in other words, we check the

possibility of early termination for both classes, and condition

triggering of either class will turn the valve off. Because the

135

Fig. 4. The cascaded structure of RiskCap.

valves between stages don’t execute simultaneously, the valve

component is reused through whole progressive procedure so

the overhead is negligible.

C. Topology Exploration Methodology

The goal of topology exploration is to find most beneficial

structure for energy-efficiency in offline phase. Various stage

topologies correspond to different accuracy-overhead tradeoff

points in feasible solution space. We conclude that determi-

native knobs of stage topology include the size, number and

execution order of basic detectors and how to map detectors

to stages. The effect of size and number knobs is intuitive.

Take decision tree as an example, size means number of nodes

in one tree and number represents number of trees. High

value of size and number can yield high detecting accuracy

while inducing high overhead. Order of detectors is also a

critical factor for energy-efficiency. Because of progressive

detection, easy-to-detect inputs will terminate earlier, but the

termination location may heavily depend on the execution

order of basic detectors. Considering the inevitable diversity

in accuracy of detectors, it may not be a wise choice to take

the ”worst-behavior” detector to execute first. At last, how to

map detectors to stages is also an essential problem. The case

that one basic detector maps one stage will lead to maximum

invocations of valve while mapping multiple detectors to one

stage may miss opportunities of early termination. We find it’s

more important for energy-efficiency to maximize opportunity

of early termination from experiments, so one to one mapping

is better.

As shown in Algo. 1, we propose an efficient heuristic

algorithm to find the most energy-efficient topology because

exhaustive searching in all topologies is very time consum-

ing. Firstly, we estimate the energy consumption of original

approximation case which has no quality management (line

1). Then we reduce search space of number and size by

setting quality and energy limits. Since the accuracy increase

is marginal with adding the number of detectors [22], we

predefine a conservative value of number where accuracy

increase has stopped (line 3). Then (to get smallest size BTlow)

we iteratively decrease size until approximation error of quality

management violates the target requirement q (line 4-7). Simi-

larly, we determined biggest size (BThigh) with which energy

of quality management doesn’t exceed certain proportion (γ)

of original energy consumption (line 8-11). Candidate topolo-

gies are constructed based on traditional training procedure of

ensemble learning methods, such as adaboost, random forests

(line 12). After that, we determine the optimal execution order

by developing two critical metrics(line 13):

Algorithm 1 Methodology to explore the optimal topology

Input: Basic detector set BT , training data D, approximate method
A, quality requirement q

Output: Optimal stage topology Topt

1: Eorig = Energy(A,D)
2: Initiate γ
3: N = SetMaxNum()
4: while Error(A,BT,N,D) < q do
5: BT = Decrease(BT)
6: end while
7: BTlow = BT
8: while Energy(BT) < γ ∗ Eorig do
9: BT = Increase(BT)

10: end while
11: BThigh = BT
12: CT = Train([1, N], [BTlow, BThigh, D])
13: [c vec, w vec] = GetPara(CT,A,D)
14: metric vec = c vec. ∗ w vec
15: prioriy = Sort(metric vec)
16: Topt = CT [prioriy]
17: return Topt

• Coverage of a basic detector (cvec in Algo. 1), which

indicates what proportion of input instances can be clas-

sified accurately on train data. Larger the coverage is, the

more likely input instances terminate early.

• Weight of a basic detector (wvec in Algo. 1). Obviously,

the weight w reflects the influence of a basic detector on

final results. Basic detector with larger weight should be

granted higher priority.

In detail, wvec can be achieved directly from traditional train-

ing procedure and we achieve cvec by calculating prediction

accuracy of each trained detector on training data.

Using the two metrics, we avoid to evaluate all the execution

order cases thus reducing the exploration space further. Then

we reorder the computation priority of candidate topology (line

14-16) and get the most energy-efficient topology.

IV. EVALUATION

A. Experimental Setup

Similar to existing work [12]–[14], we evaluate our pro-

posed framework with Neural Processing Unit (NPU) from

[4], in which a neural network is trained to approximate

the execution of computation-intensive code. Then we use

RiskCap to control the quality of NPU approximation at

different quality requirements. In detail, we construct RiskCap

by utilizing decision tree as the basic detector and adaboost

for training. The cascaded structure and topology exploration

is given in section III-B and III-C. Then we estimate the

efficiency of proposed framework to manage the quality of

NPU approximation at different levels. It should be noticed

that the proposed scheme is not limited to NPU but suitable

for other approximate techniques as well.

Application benchmarks: We select 5 benchmark applica-

tions from [4], as shown in Table I. The NPU topologies, train

data and test data are listed. The last column of Table I is the

evaluation metric on approximation quality and the initial error

values which are measured by always invoking approximate

136

TABLE I
BENCHMARK INFORMATION AND ACCELERATOR TOPOLOGIES

Applications Domain Train Data Test Data NN Topology Evaluation Metric

BS Financial Analysis 100k inputs 200k inputs 6->8->8->1 Mean Relative Error(14.90%)

inversek2j Robotics 50k random (x,y) point) 500k random (x,y) point 2->2->2->2 Mean Relative Error(10.45%)

jmeint 3D Gaming 10k pairs of 3D triangles 1000k pairs of 3D triangles18->32->8->2 Miss Rate(20.72%)

kmeans Machine Learning50k pairs random (r,g,b) values 512x512 pixel image 6->8->4->1 Mean Output Diff(8.40%)

sobel Image Processing 512x512 pixel image 3x512x512 pixel images 9->8->1 Mean Pixel Diff(15.8%)

NN accelerators. For quality management, we choose decision

tree as the basic detector to construct cascaded controller and

combine basic detectors in adaboost algorithm [22].

Energy modeling: We collect the architectural activities

of the NN accelerator using GEM5 [23] simulator. After that,

McPAT [24] is employed to estimate energy consumption. The

micro-architectural configurations of X86 64 CPU and NN

accelerators parameters for GEM5 are consistent with [12].

We calculate RiskCap quality management separately and

specify it at the register-transfer logic (RTL) level, then we use

Synopsys Power Compiler to estimate its energy consumption.

B. The Effectiveness of RiskCap

In this section, we present experimental results to demon-

strate the effectiveness of topology exploration and progressive

detection of RiskCap.

1) Topology Exploration: Fig. 5(a) shows the reduced space

of topology exploration on benchmark BS, by utilizing the

algorithm presented in section III-C. The topology exploration

on other benchmarks follows the same methodology. The

x-axis of Fig. 5(a) denotes the number of detectors, we

predefined this value as 15, which is a empirical value based

on enough experimental trials, and higher value turn out to

have quite limited enhancement on accuracy. The y-axis is the

scope of detector size, which is determined with quality and

energy constraints. From 35 candidate topologies, the optimal

one is stared and it’s number and size are 7 and 5 respectively.

After that, we decide the optimal execution order based on

metric coverage and metric weight. To illustrate the impact of

execution order on early termination and the effectiveness of

our metrics, Fig. 5(b) compares the worst order and optimal

order case on distribution of early termination. By tracing

termination locations, we can conclude that the distribution

of termination locations in optimal order case is more biased

to the left than that in worst case. Overall, average termination

location in optimal order is 4.13 while the value in worst case

is 6.20, which increases 30% additional computation. When

the optimal order of each candidate topology is determined, the

(a)

3 4 5 6 7

Termination Location

0

0.1

0.2

0.3

0.4

0.5

P
e
rc

e
n

ta
g

e

optimal case

worst case

(b)

Fig. 5. (a) Topology exploration in benchmark BlackScholse (BS). (b) The
impact of execution order on early termination in benchmark BS.

BS Inversek2jjmeint kmeans sobel

Benchmark

0

0.2

0.4

0.6

0.8

1

In
a
c
ti

v
e
 R

a
ti

o

Fig. 6. Inactive ratios in different applications.

most energy-efficient one can be found easily. For benchmark

BS, the optimal topology is marked in Fig. 5(a).

2) Inactive Ratio: To demonstrate the potential benefits of

progressive detection, we define the inactive ratio as a metric.

Since progressive detection can realize early termination of

detection, the subsequent detectors after termination location

will be inactive state. Inactive ratio denotes the ratio of average

number of inactive detectors compared with number of all

detectors. As shown in Fig. 6, the inactive ratio is above

40% in almost all applications, which implies we can save

considerable computation by progressive detection.

C. Prediction Accuracy

The prediction results are presented in Fig. 7 when targeting

on 7.5%, 5.0% and 2.5% quality loss. We also present the best

prediction accuracy of detectors in Rumba [12] and Wang’s

work [13] for comparison.

According to the results shown in Fig. 7, we demontrate

that the proposed framework can yield high enough detection

accuracy compared with existing work. For example, targeting

on 7.5% quality loss(i.e. 92.5% quality requirement), Rumba

can only achieve 81% accuracy on sobel benchmark while

the prediction accuracy of our framework is 97%. Higher

accuracy indicates that more computation can be executed in

approximate version without violating the quality requirement

thus bringing more energy benefit. Besides, Wang’s work can

also achieve 95% accuracy, which is comparable with our

results. However, considering the limited space of further

enhancement on accuracy and the high overhead of Wang’s

design, it is an acceptable result.

D. Energy Savings

In this section, we compare the system energy efficiency of

different quality detectors. Fig. 8 shows the energy consump-

tion using different quality detectors when targeting on 5.0%

quality loss requirement.

Through the results shown in Fig. 8, we find that our quality

management can always achieve lowest energy consumption.

137

BS Inversek2j jmeint kmeans sobel

Benchmark

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Rumba Wang RiskCap

(a) Target 7.5% quality loss

BS Inversek2j jmeint kmeans sobel

Benchmark

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Rumba Wang RiskCap

(b) Target 5% quality loss

BS Inversek2j jmeint kmeans sobel

Benchmark

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Rumba Wang RiskCap

(c) Target 2.5% quality loss

Fig. 7. The prediction accuracy when targeting different error constraints.

Take the sobel as an example, the proposed detector can

achieve 42.1% energy reduction over Rumba, whose energy

is normalized to 1 as the baseline. Compared with Wang’s

detector, our detector can achieve 20.0% energy reduction on

sobel. The energy benefit of RiskCap comes from two reasons:

the first one is high prediction accuracy, which reduces the en-

ergy consumption of unnecessary recoveries. And the second

one is progressive detection with optimal topology, which can

dynamically adjust computation effort based on controlling

difficulty other than paying equal effort on all inputs, thus

lightening the overhead of quality controlling greatly. Because

of lacking effective methodology to achieve both properties,

existing work can not provide comparable energy efficiency

compared with our design. On average, RiskCap can achieve

25.4% energy benefit over Wang and 40.6% energy benefit

over Rumba.

BS Inversek2j jmeint kmeans sobel

Benchmark

0

0.5

1

1.5

E
n

e
rg

y

Rumba Wang RiskCap

Fig. 8. The normalized energy of different predictors (5.0% quality loss).

V. CONCLUSIONS

In this paper, we proposed a cascaded quality management

framework for approximate computing, in which we enhance

the energy efficiency by paying more proper computation

effort of quality detection on different inputs. To achieve this,

a light-weight structure supporting progressive detection and a

heuristic algorithm to explore most energy-efficient topology

are proposed. The experiment results show that our solution

can achieve average 25.4% higher energy benefits over state-

of-art techniques.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-

ence Foundation of China under Grant Nos. 61532017,

61572470, 61432017, 61521092, 61376043, and in part by

Youth Innovation Promotion Association, CAS under grant

No.Y404441000. The corresponding authors are Guihai Yan

and Xiaowei Li.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,

“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE

Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[2] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Computing

approximately, and efficiently,” DATE ’15, 2015.

[3] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard, “Using

code perforation to improve performance, reduce energy consumption, and respond

to failures,” 2009.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for

general-purpose approximate programs,” in MICRO, pp. 449–460, IEEE Computer

Society, 2012.

[5] X. He, G. Yan, F. Sun, Y. Han, and X. Li, “Approxeye: Enabling approximate

computation reuse for microrobotic computer vision,” 2017.

[6] X. He, W. Lu, G. Yan, Y. Han, and X. Li, “Exploiting the potential of compu-

tation reuse through approximate computing,” IEEE Transactions on Multi-Scale

Computing Systems, 2016.

[7] Y. Tang, Y. Wang, H. Li, and X. Li, “Approxpim: Exploiting realistic 3d-stacked

dram for energy-efficient processing in-memory,” IEEE, 2017.

[8] M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable associative memory

for approximate computing,” in DATE, pp. 1327–1332, IEEE, 2016.

[9] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible dataflow

accelerator architecture for convolutional neural networks,” in HPCA, 2017.

[10] X. He, W. Lu, G. Yan, and X. Zhang, “Joint design of training and hardware

towards efficient and accuracy-scalable neural network inference,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, pp. 1–1, 2018.

[11] X. He, W. Lu, G. Yan, and X. Zhang “AxTrain: Hardware-Oriented Neural Network

Training for Approximate Inference,” in ISLPED, ACM, 2018.

[12] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online quality

management system for approximate computing,” in ISCA, pp. 554–566, IEEE,

2015.

[13] T. Wang, Q. Zhang, N. S. Kim, and Q. Xu, “On effective and efficient quality

management for approximate computing,” in ISLPED, pp. 156–161, ACM, 2016.

[14] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh,

“Towards statistical guarantees in controlling quality tradeoffs for approximate

acceleration,” in ISCA, pp. 66–77, IEEE Press, 2016.

[15] C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang, “On quality trade-

off control for approximate computing using iterative training,” in DAC ’17, (New

York, NY, USA), pp. 52:1–52:6, ACM, 2017.

[16] Y. Wang, H. Li, and X. Li, “Real-time meets approximate computing: An elastic

cnn inference accelerator with adaptive trade-off between qos and qor,” DAC ’17,

2017.

[17] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented

approximate adder design and its application,” in ICCAD, pp. 48–54, IEEE Press,

2013.

[18] W. Baek and T. M. Chilimbi, “Green: a framework for supporting energy-conscious

programming using controlled approximation,” in ACM Sigplan Notices, vol. 45,

pp. 198–209, ACM, 2010.

[19] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-tuning

approximation for graphics engines,” in MICRO, pp. 13–24, ACM, 2013.

[20] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, “Scalable-effort

classifiers for energy-efficient machine learning,” in DAC ’15, (New York, NY,

USA), pp. 67:1–67:6, ACM, 2015.

[21] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for energy-efficient

and enhanced pattern recognition,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2016, pp. 475–480, IEEE, 2016.

[22] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC press, 2012.

[23] N. Binkert, B. Beckmann, G. Black, and Reinhardt, “The gem5 simulator,” ACM

SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,

“Mcpat: an integrated power, area, and timing modeling framework for multicore

and manycore architectures,” in MICRO, pp. 469–480, IEEE, 2009.

138

