2018 IEEE 27th Asian Test Symposium

RiskCap: Minimizing Effort of Error Regulation
for Approximate Computing

Shuhao Jiang, Jiajun Li, Xin He', Guihai Yan, Xuan ZhangT, Xiaowei Li
State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences
TWashington University in St. Louis
{jiangshuhao, lijiajun, yan, Ixw } @ict.ac.cn, {xin.he, xuan.zhang} @wustl.edu

Abstract—Quality management, which is responsible for con-
trolling approximation quality to meet user requirement, plays
a key role in the applicability of approximate computing. An
effective and efficient quality management needs to be accurate
to detect intolerable errors meanwhile light-weight in nature.
However, it is difficult to design such a quality management sat-
isfying both the two demands and existing work usually optimizes
for one demand at the expense of the other. In this paper, we
aim to achieve higher energy efficiency of quality management by
optimizing detection accuracy and overhead simultaneously. We
observe that the detection difficulty varies across inputs and there
exists much redundant computation in detection process. Based
on this observation, a cascaded quality management which can
minimize the overhead and doesn’t lower detection accuracy is
proposed. The proposed solution pays more proper computation
effort according to different detection difficulties of inputs so
as to avoid unnecessary energy consumption. What’s more, by
exploring the design space sufficiently and effectively, we can
assure the highest energy-efficiency of the proposed topology. The
experiment results demonstrate that our approach can achieve
much greater energy-efficiency than existing solutions.

Index Terms—approximate computing, quality management,
progressive detection

I. INTRODUCTION

With the staggering Moore’s law and Dennard scaling [1],
approximate computing is believed to be a promising comput-
ing paradigm to improve energy efficiency, especially for those
applications with intrinsic error resilience [2]. Surprisingly,
“resilient” applications have been found in a broad range
of domains such as machine learning, computer vision, web
search, and cyber-physical systems [3]-[5].

Many approximation techniques have been proposed, in-
cluding approximate LUT [5], [6], approximate logic and
memory [7] and approximate accelerators [4], [8]-[11]. Al-
though these techniques fuel better energy efficiency, how to
guarantee the quality and acceptability of final results is still
an open problem. An effective computing quality management
scheme, which plays a decisive role in the applicability of
approximate computing, is critical.

The basic task of quality management is to detect unac-
ceptable errors (i.e. quality violations) and recover them for
satisfying certain level of target quality requirement. Rumba
[12] proposed three light-weight predictors to predict quality
violations based on input data. However, these predictors
turn out to be too simple to deliver good enough prediction

2377-5386/18/$31.00 ©2018 IEEE
DOI 10.1109/ATS.2018.00035

133

accuracy. Low prediction accuracy implies more false positives
or false negatives. False positive would lead to unnecessary
recoveries thus dampening the energy benefit from approxi-
mate computing while false negative would incur the risk of
unacceptable quality degradation.

To achieve higher accuracy, more sophisticated quality man-
agements are proposed. Wang et al. [13] proposed a quality
management design consisting of several light-weight pre-
dictors. Similarly, MITHRA [14] proposed a neural network
based detector. However, the starting point of these work is
mainly for enhancing accuracy so such methods induce con-
siderable overhead. High overhead of complicated predictors
offsets a considerable proportion of benefits from approximate
computing, and results in the limitation of the overall energy
enhancement. For example, the proposed solution in [13] only
achieve 11% to 23% energy savings over simple predictors of
Rumba.

This problem has also been noticed by some researchers.
For example, Xu et al. [15] tried to obtain higher energy-
efficiency through approximate accelerator and error controller
(for quality manangement) co-design. Nevertheless, the ineffi-
ciency problem caused by overhead of error controller is still
severe. Fig. 1(a) compares energy of approximate accelerator
(A) and error controller (C) in [15]. On average, the energy
of error controller occupies up to 65% of the accelerator.

Due to the great difficulty of traditional tradeoff between
high accuracy and low overhead, more new beneficial prop-
erties should be explored to improve energy efficiency of
quality management. One of promising properties is that the
detecting difficulty of quality violations varies widely across
input data. This phenomenon is quite intuitive. As shown in
Fig. 1(b), suppose a simple case including 2-D input data and
corresponding distributions of quality violation (label ” 4)
and safe approximation (label ” —), then it is easy to find
that the points in centering band is harder to detect than those
out of band. This observation implies that computation effort
of error controlling should be judiciously allocated according
to the difficulty of input instances. However, existing work
on quality management expends equal effort on all inputs and
lacks effective methodology to mine this potential benefit.

In this paper, we propose RiskCap, an efficient quality
management which is optimized on both detection accuracy
and overhead. RiskCap is a cascaded structure consisting of

IEEE
computer
® psoaety

2 = s
Q Easy
z 7 Z
B Z z
g0 Hard
I ~ 7 %
- £ T %
[o Z . @ *
& +
20 7
] + K
5] + Z + 7
A
+ Easy©
BS jmeint fft bessel avg Dim 1

(a) (b)

Fig. 1. (a) Energy comparison in [15]. (b) Variety of detection difficulty.

multiple stages. The key of this cascade design is to realize
such a procedure: The easy-to-detect inputs can terminate at
earlier stages while hard-to-detect inputs will go deeper to
be analyzed further. We call this procedure as progressive
detection. Through progressive detection, RiskCap only takes
necessary effort according to detection difficulties of inputs,
thus reducing the overhead of quality management. What’s
more, the overhead reduction is not at cost of detection accu-
racy drop. Besides, we also design a low-overhead cascaded
structure to support progressive detection. At last, an efficient
heuristic algorithm is presented to explore the optimal topolo-
gy configuration (e.g. number of stages, size of each stage etc.)
for highest energy-efficiency. Overall, RiskCap can achieve
higher energy-efficiency owing to high detection accuracy and
efficient progressive detection. The experiment demonstrates
that our approach can achieve much higher energy-efficiency
than existing solutions.

The rest of the paper is organized as follows. In Section
II, we gives an overview of related work. In Section III, we
introduce the design and structure of RiskCap. Experimental
results are given in section IV. At last, section V concludes
the paper.

II. RELATED WORK

The basic idea of approximate computing is to simplify
the exact computing or replacing it with approximate versions
to achieve energy-efficiency gains. Although errors are intro-
duced to outputs in this process, they will still be acceptable
if the quality loss of outputs is under the tolerant range. Over
the years, many approximate computing techniques have been
proposed. Loop perforation [3] skips the iterations of loops
randomly to reduce computation. Approximate accelerators
[4], [8], [16] are designed to replace the exact execution of
kernel code regions to speed up error-resilient applications.
Accuracy-configurable logic units like [17] are proposed to
realize approximate computing on circuit level.

However, the availability of approximate computing tech-
niques depends heavily on whether quality of approximate
output satisfies the requirement. The quality requirements usu-
ally are some defined metrics, e.g. PSNR for image processing
applications. To ensure output quality satisfies the requirement,
quality management should detect unacceptable errors(i.e.
quality violations) effectively. Green [18] and SAGE [19]
runtime check the output quality periodically by comparing
sampling approximation results and accurate results. But these
methods failed to cover the large-error outputs that escape

134

H(x)=wh (x)+w,h,(x)+w,h, (x)

S - . .
Data
g Vv v v
/Topology Exploratlon Methodology/ @ 4—_|
User Stage Stage Stage Execution
Input

Execution
Fig. 2. The framework of RiskCap.

the sampling while checking all outputs is too computation-
expensive.

Using machine learning methods to predict quality viola-
tions based on input data of applications turn out to be a
promising technique to quality management. Rumba [12] pro-
posed 3 kinds of light-weight predictors. By checking errors
according to inputs, Rumba can cover all data meanwhile
consuming little energy. But the three predictors are based
on simple models, so the prediction accuracy is limited.

Therefore, more complex predictors are presented for higher
accuracy. Ting Wang et al. [13] combine weak predictors to

strong predictor for higher accuracy. Mahajan et al. [14]
proposed a neural-based predictor with statistical guarantees.
But the starting point of these work is simply for enhancing
accuracy so considerable overhead is brought, as a result, the
overall energy enhancement is limited.

To light the over-weighted predictor, Xu et al. [15] pro-
pose an iterative training method to explore the topologies
of the accelerator (which is approximate) and the predictor
comprehensively. Therefore, a more balanced topology of
approximate accelerator-predictor framework is achieved for
higher energy-efficiency. But the optimal topology shown in
[13] indicates that the predictor size is almost equal to the
approximate accelerator, so more novel and effective methods
to lighten the predictor is desired.

Utilizing variety of classification difficulty to reduce energy
of machine learning algorithm is an active area of research.
Recent work [20], [21] has also proved that this property
exists pervasively in many other applications and achieved
considerable improvement on energy and performance through
multiple classifiers. However, these work tried to transform
the indivisible classifiers into multiple components, which will
bring considerable overhead. In addition, it lacks theoretical
foundation to prove this transformation is trustworthy enough
to maintain the original classification capability, which is
critical to quality management.

We propose a cascaded structure for minimizing effort of
quality management by progressive detection. Unlike existing
work, which pays equal detection effort on all invocations,
our methodology can dynamically adjust computation effort
according to inputs. Besides, since the proposed structure is
cascaded in nature (described in section III), we don’t need
to pay much overhead for transformation and worry about the
degradation of detection accuracy.

III. THE FRAMEWORK OF RISKCAP

The framework of RiskCap is shown in Fig. 2. The procde-
dure of RiskCap is divided into two phases, offline phase and
online phase. In offline phase, we train the cascaded structure
according to representative training data, quality requirement
and given approximate method. In online phase, we detect
each user input should be executed in approximate version or
exact version.

Besides, the framework of RiskCap consists of three com-
ponents. The first component @ is an ensemble learning
model [22] on which progressive detection is based. Ensemble
methods combine several weak (light weight but low accuracy)
detectors to achieve higher detection accuracy. In ensemble
learning, the weak detector is known as basic detector. A typ-
ical combination method is to combine the detection outputs
of basic detectors in a weighted averaging way, which makes
ensemble models cascaded in nature. In Fig. 2, outputs of
basic detectors are represented by h;(x) and their combination
is H(z). The second component B) is the cascaded structure
that supports progressive detection. The last component © is
the heuristic algorithm to find the optimal topology on energy-
efficiency.

We will explain how the progressive detection (based on the
ensemble model) works in section III-A. The low-overhead
cascaded structure design is presented in section III-B. The
heuristic algorithm to find the optimal topology is described
in section III-C.

A. The Progressive Detection

The progressive detection is to terminate early for easy-to-
detect inputs while analyze further for hard-to-detect inputs.
We construct the progressive detection based on two basic
observations: (1) A strong (high accuracy) detector can be
constructed through combining several weak detectors; (2)
The quality management in approximate computing can be
regarded as a binary classification task. The first observation
is validated by ensemble learning methods like adaboost and
random forest algorithm. A typical prediction methodology of
ensemble learning is as follows:

N
H(z) =Y wihi(x) (1)
i=1

where H (x) is combined detection result, A(x) and w denote
detection result and weight value of individual basic detector
respectively, and N is the number of basic detectors. Basic
detectors have similar structure but different parameters. Based
on the first observation, although basic detectors yield limited
accuracy because of their lightness, the combination of them
can yield high detection accuracy. Note that all basic detectors
have indispensable contribution to final result so none of detec-
tors is redundant. This observation guarantees the feasibility
of cascaded structure with high detection accuracy, and the
simplest example is that we can take each basic learner as
one stage.

However, Eq. 1 doesn’t guarantee the progressive detection
because the combined result is fluctuant in common scenarios,

135

A A
Ceiling limit
£ £ & Label 1
=}
(%] (%]
Sl ____ . N s T
& Threshold & \ ThreZhoId ‘]’
ermination Label 0
point

Num of Basic Detectors Num of Basic Detectors

(2) (®)

Fig. 3. (a) Combination procedure of regression. (b) Combination procedure
of binary classification.

such as regression. Fig. 3(a) shows the conceptual view of
this scenario. In a regression task, although weights w are all
positive, h(z) can be positive and negative, so the final result
can not be determined until the last detector finishes. Obvi-
ously, progressive detection is infeasible in such scenarios. To
enable progressive detection, the combination result must be
an incremental procedure, and a typical example is the binary
classification. As shown in Fig. 3(b), in binary classification,
h(z) is either O or 1, so the combination result keeps growing
from beginning to end. Once the partial sum exceeds the
threshold (typically 1/2 of ceiling limit), the computation can
be terminated safely without worrying about degradation of
accuracy. As the second observation indicates, the quality
management in approximate computing can be abstracted as a
binary classification task [14], where class 1 donates a quality
violation while class 0 means a safe approximation. As a
result, the two observations ensure progressive detection with
high accuracy.

B. Cascaded Structure Design

We construct the cascaded structure of RiskCap with two
main components, stage and valve. Fig. 4 shows a 3-stage
case of the design. The stage component includes one or more
basic detectors to detect quality violations. The basic detectors
can be linear model, decision tree and even shallow neural
network depending on the difficulty of quality controlling. In
train phase, we explore the optimal stage topology for energy-
efficiency such as the number, size and execution order of
basic detectors and number of detectors in each stage, and
detailed algorithm will be presented in section III-C.

The valve component is used for progressive detection at
runtime. The logic is as follows: When a binary h(x) is
calculated by one stage, we add product of w and h(x) to
the current partial sum (P sum/N sum). Then we compare
the new partial sum with threshold (i.e., 0.5 when the ceiling
limit is 1). If the partial sum exceeds threshold, which means
the detection result has been able to be determined now,
we turn off the valve so the subsequent stages will not be
activated for current input (e.g. stage 3 in Fig. 4). P sum
and N sum represent the positive partial sum (for class 1,
i.e. quality violation) and negative partial sum (for class 0, i.e.
safe approximation) respectively, in other words, we check the
possibility of early termination for both classes, and condition
triggering of either class will turn the valve off. Because the

Input instance [Stage
—

1

'
2

X h(x)

Classification
stage

Fig. 4. The cascaded structure of RiskCap.

valves between stages don’t execute simultaneously, the valve
component is reused through whole progressive procedure so
the overhead is negligible.

C. Topology Exploration Methodology

The goal of topology exploration is to find most beneficial
structure for energy-efficiency in offline phase. Various stage
topologies correspond to different accuracy-overhead tradeoff
points in feasible solution space. We conclude that determi-
native knobs of stage topology include the size, number and
execution order of basic detectors and how to map detectors
to stages. The effect of size and number knobs is intuitive.
Take decision tree as an example, size means number of nodes
in one tree and number represents number of trees. High
value of size and number can yield high detecting accuracy
while inducing high overhead. Order of detectors is also a
critical factor for energy-efficiency. Because of progressive
detection, easy-to-detect inputs will terminate earlier, but the
termination location may heavily depend on the execution
order of basic detectors. Considering the inevitable diversity
in accuracy of detectors, it may not be a wise choice to take
the ”worst-behavior” detector to execute first. At last, how to
map detectors to stages is also an essential problem. The case
that one basic detector maps one stage will lead to maximum
invocations of valve while mapping multiple detectors to one
stage may miss opportunities of early termination. We find it’s
more important for energy-efficiency to maximize opportunity
of early termination from experiments, so one to one mapping
is better.

As shown in Algo. 1, we propose an efficient heuristic
algorithm to find the most energy-efficient topology because
exhaustive searching in all topologies is very time consum-
ing. Firstly, we estimate the energy consumption of original
approximation case which has no quality management (line
1). Then we reduce search space of number and size by
setting quality and energy limits. Since the accuracy increase
is marginal with adding the number of detectors [22], we
predefine a conservative value of number where accuracy
increase has stopped (line 3). Then (to get smallest size B7},,,)
we iteratively decrease size until approximation error of quality
management violates the target requirement ¢ (line 4-7). Simi-
larly, we determined biggest size (BT};45,) with which energy
of quality management doesn’t exceed certain proportion ()
of original energy consumption (line 8-11). Candidate topolo-
gies are constructed based on traditional training procedure of
ensemble learning methods, such as adaboost, random forests
(line 12). After that, we determine the optimal execution order
by developing two critical metrics(line 13):

136

Algorithm 1 Methodology to explore the optimal topology

Input: Basic detector set BT, training data D, approximate method
A, quality requirement g
Output: Optimal stage topology Topt
i Eorig = Energy(A, D)
. Initiate
N = SetMaxNum()
: while Error(A, BT, N, D) < q do
BT = Decrease(BT)
: end while
: BTijow = BT
: while Energy(BT) < v * Eorig do
BT = Increase(BT)
: end while
: BThigh = BT
: CT = Train([1, N, [BTiow, BThigh, D])
i |e_vec, w_vec] = GetPara(CT, A, D)
: metric_vec = c_vec. ¥ w_vec
: prioriy = Sort(metric_vec)
: Topt = CT[prioriy)
: return 7o,y

—_
LR LR~ O 0

e Coverage of a basic detector (cy.. in Algo. 1), which
indicates what proportion of input instances can be clas-
sified accurately on train data. Larger the coverage is, the
more likely input instances terminate early.

Weight of a basic detector (wye. in Algo. 1). Obviously,
the weight w reflects the influence of a basic detector on
final results. Basic detector with larger weight should be
granted higher priority.

In detail, w,.. can be achieved directly from traditional train-
ing procedure and we achieve c,.. by calculating prediction
accuracy of each trained detector on training data.

Using the two metrics, we avoid to evaluate all the execution
order cases thus reducing the exploration space further. Then
we reorder the computation priority of candidate topology (line
14-16) and get the most energy-efficient topology.

IV. EVALUATION
A. Experimental Setup

Similar to existing work [12]-[14], we evaluate our pro-
posed framework with Neural Processing Unit (NPU) from
[4], in which a neural network is trained to approximate
the execution of computation-intensive code. Then we use
RiskCap to control the quality of NPU approximation at
different quality requirements. In detail, we construct RiskCap
by utilizing decision tree as the basic detector and adaboost
for training. The cascaded structure and topology exploration
is given in section III-B and III-C. Then we estimate the
efficiency of proposed framework to manage the quality of
NPU approximation at different levels. It should be noticed
that the proposed scheme is not limited to NPU but suitable
for other approximate techniques as well.

Application benchmarks: We select 5 benchmark applica-
tions from [4], as shown in Table I. The NPU topologies, train
data and test data are listed. The last column of Table I is the
evaluation metric on approximation quality and the initial error
values which are measured by always invoking approximate

TABLE I
BENCHMARK INFORMATION AND ACCELERATOR TOPOLOGIES

IApplications| Domain Train Data Test Data NN Topology Evaluation Metric
BS [Financial Analysis| 100k inputs 200k inputs 6->8->8->1 [Mean Relative Error(14.90%)
inversek2j Robotics 50k random (x,y) point) 500k random (x,y) point | 2->2->2->2 [Mean Relative Error(10.45%)
jmeint 3D Gaming 10k pairs of 3D triangles [1000k pairs of 3D triangles|18->32->8->2 Miss Rate(20.72%)
kmeans |Machine Learning|50k pairs random (r,g,b) values| 512x512 pixel image 6->8->4->1 | Mean Output Diff(8.40%)
sobel Image Processing 512x512 pixel image 3x512x512 pixel images 9->8->1 Mean Pixel Diff(15.8%)
NN accelerators. For quality management, we choose decision !
tree as the basic detector to construct cascaded controller and o8
combine basic detectors in adaboost algorithm [22]. °
Energy modeling: We collect the architectural activities Eo.e
of the NN accelerator using GEM5 [23] simulator. After that, 2
MCcPAT [24] is employed to estimate energy consumption. The g 04
micro-architectural configurations of X86_64 CPU and NN s
accelerators parameters for GEMS are consistent with [12].

We calculate RiskCap quality management separately and
specify it at the register-transfer logic (RTL) level, then we use
Synopsys Power Compiler to estimate its energy consumption.
B. The Effectiveness of RiskCap

In this section, we present experimental results to demon-
strate the effectiveness of topology exploration and progressive
detection of RiskCap.

1) Topology Exploration: Fig. 5(a) shows the reduced space
of topology exploration on benchmark BS, by utilizing the
algorithm presented in section III-C. The topology exploration
on other benchmarks follows the same methodology. The
x-axis of Fig. 5(a) denotes the number of detectors, we
predefined this value as 15, which is a empirical value based
on enough experimental trials, and higher value turn out to
have quite limited enhancement on accuracy. The y-axis is the
scope of detector size, which is determined with quality and
energy constraints. From 35 candidate topologies, the optimal
one is stared and it’s number and size are 7 and 5 respectively.
After that, we decide the optimal execution order based on
metric coverage and metric weight. To illustrate the impact of
execution order on early termination and the effectiveness of
our metrics, Fig. 5(b) compares the worst order and optimal
order case on distribution of early termination. By tracing
termination locations, we can conclude that the distribution
of termination locations in optimal order case is more biased
to the left than that in worst case. Overall, average termination
location in optimal order is 4.13 while the value in worst case
is 6.20, which increases 30% additional computation. When
the optimal order of each candidate topology is determined, the

’ ! 05
0.9

2 0.4
3 0.8

4 0.7 3

5 0.6 -2

6 0.5 1
7 0.4

0

1.3 56 7 9 11 13 15

o

Size
Percentage

o

=}

v
optimal case
Il worst case
3 4 5 6 7
Number Termination Location

(a) (b)
Fig. 5. (a) Topology exploration in benchmark BlackScholse (BS). (b) The
impact of execution order on early termination in benchmark BS.

137

BS Inversek2jmeint kmeans sobel
Benchmark

Fig. 6. Inactive ratios in different applications.

most energy-efficient one can be found easily. For benchmark
BS, the optimal topology is marked in Fig. 5(a).

2) Inactive Ratio: To demonstrate the potential benefits of
progressive detection, we define the inactive ratio as a metric.
Since progressive detection can realize early termination of
detection, the subsequent detectors after termination location
will be inactive state. Inactive ratio denotes the ratio of average
number of inactive detectors compared with number of all
detectors. As shown in Fig. 6, the inactive ratio is above
40% in almost all applications, which implies we can save
considerable computation by progressive detection.

C. Prediction Accuracy

The prediction results are presented in Fig. 7 when targeting
on 7.5%, 5.0% and 2.5% quality loss. We also present the best
prediction accuracy of detectors in Rumba [12] and Wang’s
work [13] for comparison.

According to the results shown in Fig. 7, we demontrate
that the proposed framework can yield high enough detection
accuracy compared with existing work. For example, targeting
on 7.5% quality loss(i.e. 92.5% quality requirement), Rumba
can only achieve 81% accuracy on sobel benchmark while
the prediction accuracy of our framework is 97%. Higher
accuracy indicates that more computation can be executed in
approximate version without violating the quality requirement
thus bringing more energy benefit. Besides, Wang’s work can
also achieve 95% accuracy, which is comparable with our
results. However, considering the limited space of further
enhancement on accuracy and the high overhead of Wang’s
design, it is an acceptable result.

D. Energy Savings

In this section, we compare the system energy efficiency of
different quality detectors. Fig. 8 shows the energy consump-
tion using different quality detectors when targeting on 5.0%
quality loss requirement.

Through the results shown in Fig. 8, we find that our quality
management can always achieve lowest energy consumption.

[Rumba BRI Wang _RiskCap|

[I Rumba EEWang [_RiskCap|

[I Rumba [Wang [RiskCap|

1 T T T T 1 T T
oy oy

© 08 © 08
3 S

o)

2 0.6 &’ 0.6
5 5

2 0.4 = 0.4
b1 B
202 002
[o

BS

Inversek2j jmeint kmeans sobel BS

Benchmark

(a) Target 7.5% quality loss

Inversek2j jmeint kmeans sobel
Benchmark

(b) Target 5% quality loss

o
®

o
=)

I

Prediction Accuracy
=

o
N}

BS Inversek2j jmeint kmeans sobel

Benchmark

(c) Target 2.5% quality loss

Fig. 7. The prediction accuracy when targeting different error constraints.

Take the sobel as an example, the proposed detector can
achieve 42.1% energy reduction over Rumba, whose energy
is normalized to 1 as the baseline. Compared with Wang’s
detector, our detector can achieve 20.0% energy reduction on
sobel. The energy benefit of RiskCap comes from two reasons:
the first one is high prediction accuracy, which reduces the en-
ergy consumption of unnecessary recoveries. And the second
one is progressive detection with optimal topology, which can
dynamically adjust computation effort based on controlling
difficulty other than paying equal effort on all inputs, thus
lightening the overhead of quality controlling greatly. Because
of lacking effective methodology to achieve both properties,
existing work can not provide comparable energy efficiency
compared with our design. On average, RiskCap can achieve
25.4% energy benefit over Wang and 40.6% energy benefit
over Rumba.

[IlRumba Elwang [JRiskCap|

BS

Inversek2j jmeint kmeans sobel

Benchmark

Fig. 8. The normalized energy of different predictors (5.0% quality loss).

V. CONCLUSIONS

In this paper, we proposed a cascaded quality management
framework for approximate computing, in which we enhance
the energy efficiency by paying more proper computation
effort of quality detection on different inputs. To achieve this,
a light-weight structure supporting progressive detection and a
heuristic algorithm to explore most energy-efficient topology
are proposed. The experiment results show that our solution
can achieve average 25.4% higher energy benefits over state-
of-art techniques.

ACKNOWLEDGMENT
This work is supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 61532017,

61572470, 61432017, 61521092, 61376043, and in part by
Youth Innovation Promotion Association, CAS under grant

138

No0.Y404441000. The corresponding authors are Guihai Yan

and Xiaowei Li.
REFERENCES

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, 1974.

S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Computing
approximately, and efficiently,” DATE 15, 2015.

H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard, “Using
code perforation to improve performance, reduce energy consumption, and respond
to failures,” 2009.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” in MICRO, pp. 449-460, IEEE Computer
Society, 2012.

X. He, G. Yan, F. Sun, Y. Han, and X. Li, “Approxeye: Enabling approximate
computation reuse for microrobotic computer vision,” 2017.

X. He, W. Lu, G. Yan, Y. Han, and X. Li, “Exploiting the potential of compu-
tation reuse through approximate computing,” IEEE Transactions on Multi-Scale
Computing Systems, 2016.

Y. Tang, Y. Wang, H. Li, and X. Li, “Approxpim: Exploiting realistic 3d-stacked
dram for energy-efficient processing in-memory,” IEEE, 2017.

M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable associative memory
for approximate computing,” in DATE, pp. 1327-1332, IEEE, 2016.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible dataflow
accelerator architecture for convolutional neural networks,” in HPCA, 2017.

X. He, W. Lu, G. Yan, and X. Zhang, “Joint design of training and hardware
towards efficient and accuracy-scalable neural network inference,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, pp. 1-1, 2018.

X. He, W. Lu, G. Yan, and X. Zhang “AxTrain: Hardware-Oriented Neural Network
Training for Approximate Inference,” in ISLPED, ACM, 2018.

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online quality
management system for approximate computing,” in ISCA, pp. 554-566, IEEE,
2015.

T. Wang, Q. Zhang, N. S. Kim, and Q. Xu, “On effective and efficient quality
management for approximate computing,” in ISLPED, pp. 156161, ACM, 2016.
D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh,
“Towards statistical guarantees in controlling quality tradeoffs for approximate
acceleration,” in ISCA, pp. 66-77, IEEE Press, 2016.

C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang, “On quality trade-
off control for approximate computing using iterative training,” in DAC *17, (New
York, NY, USA), pp. 52:1-52:6, ACM, 2017.

Y. Wang, H. Li, and X. Li, “Real-time meets approximate computing: An elastic
cnn inference accelerator with adaptive trade-off between qos and qor,” DAC ’17,
2017.

R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented
approximate adder design and its application,” in ICCAD, pp. 48-54, IEEE Press,
2013.

'W. Baek and T. M. Chilimbi, “Green: a framework for supporting energy-conscious
programming using controlled approximation,” in ACM Sigplan Notices, vol. 45,
pp. 198-209, ACM, 2010.

M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-tuning
approximation for graphics engines,” in MICRO, pp. 13-24, ACM, 2013.

S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, “Scalable-effort
classifiers for energy-efficient machine learning,” in DAC ’15, (New York, NY,
USA), pp. 67:1-67:6, ACM, 2015.

P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for energy-efficient
and enhanced pattern recognition,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016, pp. 475-480, 1IEEE, 2016.

Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC press, 2012.
N. Binkert, B. Beckmann, G. Black, and Reinhardt, “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“Mcpat: an integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in MICRO, pp. 469-480, IEEE, 2009.

(11

[2]

[3]

(4]

[51
(6]

[71
[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

