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Shape Preserving Incremental Learning for
Power Systems Fault Detection

Jose Cordova , Carlos Soto, Mostafa Gilanifar, Yuxun Zhou, Anuj Srivastava,

and Reza Arghandeh ,Senior Member, IEEE

Abstract—This letter presents a shape preserving
incremental learning algorithm that employs a novel
shape-based metric called the Fisher–Rao amplitude-phase
distance (FRAPD) metric. The combined amplitude and
phase distance metric is achieved on a function space from
the Fisher-Rao elastic registration. We utilize an exhaus-
tive search method for selecting the optimal parameter
that captures the amplitude and phase distance contri-
bution in FRAPD when performing a clustering process.
The proposed incremental learning structure based on the
shape preserving FRAPD distance metric utilizes continu-
ously updated fault shape templates with the Karcher mean.
The seamless updating of abnormal events enhances the
clustering performance for power systems fault detec-
tion. The algorithm is validated using the actual data from
real-time hardware-in-the-loop testbed.

Index Terms—Shape-based data analysis, incremental
learning, event detection, fault detection, power distribu-
tion networks.

I. INTRODUCTION

THE ADVENT of advanced measurement devices such
as Phasor Measurement Units (PMU) provides higher

resolution and granularity data from power systems. These
advances introduce more opportunities for using various data
analysis methods in different applications for detecting and
analyzing complex events. Examples of these applications are:
topology detection [1], fault detection [2]–[4], and network
modeling [5] in power distribution systems. Classical methods
such as the traveling wave-based [6] and the impedance-based
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methods [7], [8] are among the most established methods for
power systems fault detection. However, these methods depend
heavily on prior knowledge of the network topology [9].
With recent advancements in machine learning and statistical
inference, data-driven fault detection methods are gaining more
attention. In the literature, Neural Networks (NN) [10] and
Support Vector Machines (SVM) [11] are among the most
used methods for fault detection in power systems. However,
accurate fault detection requires retraining the model which
may require a significant amount of time for convergence [9].
Using incremental learning can accelerate the time needed for
convergence through continuous updating of the training dataset.
The shape-based data analysis typically examines differ-
ent datasets in a function space that provides information on
the data structure by preserving their characteristic shapes.
In the problem of fault detection, the shape of fault events
may be a key to better diagnose the type of fault events.
Cordovaet al.[3] proposed a fault clustering method using
a shape-based distance with square-root velocity function
(SRVF). The SRVF transforms the Riemannian space under
the Fisher-Rao metric to a standardL2norm which makes
the geodesic calculations less complex. In that publication,
similar fault events are clustered together by the amplitude-
distance component obtained from the registration under the
Fisher-Rao metric (RFRM) framework. However, the RFRM
framework provides a second component, the phase distance,
which ostensibly contributes to the representation of a signal
in a Hilbert space.
In this letter, we propose a novel metric for joining both the
amplitude and phase components resulting from the RFRM
by weighting the joint distance component in a Hilbert space.
The joint distance component preserves the shape of a sig-
nal during the clustering process. Additionally, we propose
an approach to find the optimal amplitude-phase weighting
parameters using an exhaustive search. The proposed Fisher-
Rao amplitude-phase distance (FRAPD) metric utilizes both
the Fisher-Rao amplitude distance (FRAD) and the Fisher-Rao
phase distance (FRPD). In this letter, the FRAPD combines
amplitude and angle shift information that are caused by fault
occurrence on voltage and current measurements within power
distribution networks.
Moreover, the use of RFRM allows the construction of
fault templatesutilizing the Karcher mean. The fault templates
result from time-aligned signals and represent the clustered
fault events. They preserve the characteristic phase angle shift
and amplitude similarities between different fault types. The
templates are incrementally updated as more faults occur.
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Fig. 1. Overview of the fault detection with elastic registration distances
under Fisher-Rao metric.

The contributions and novelties in this letter are as follows:
•We propose a novel shape-based distance function on a
Hilbert sphere space for data clustering called Fisher-Rao
Amplitude-Phase Distance (FRAPD). The FRAPD com-
bines the weighted amplitude and phase components from
the RFRM outcomes under SRVF representation.

•We propose an exhaustive search optimization scheme
to select optimal weighting parametersλin FRAPD for
more accurate clustering.

•We propose a shape preserving incremental learning algo-
rithm for power system fault detection by applying our
novel FRAPD metric and producing fault templates using
the Karcher mean. The incremental updating of fault
events enhances the data clustering performance.
This letter is structured as follows: in Section II, we

present the computation of the shape-based distance under
the Fisher-Rao metric. Additionally, the incremental learn-
ing algorithm based on the Karcher mean is explained. In
Section III, we describe the real-time use case simulated to val-
idate our framework. Discussions of the fault detection results
are presented in Section IV.

II. ELASTICREGISTRATIONUNDERFISHER-RAO
METRICWITHSRVF REPRESENTATION

In this letter, we propose an incremental learning algorithm
for fault detection that preserves the shape of fault signals
using elastic registration (or alignment) under Fisher-Rao
metric (RFRM). The primary objective is to cluster the mea-
surement data streams from different electrical fault conditions
using three-phase voltage and current measurements.
The overall architecture of the shape preserving incremental

learning algorithm for fault detection is presented inFig. 1.
The components of the proposed methodology are described
in five steps:
Step 1.Input Data:The training data sets are recorded fault

events that include three-phase voltage and current measure-
ments by PMU devices. Data streams can represent the phasor
magnitude or angle value (i.e.,V∠φ) (See Section III).
Step 2.Events Space Construction:The fault data repre-
sented by the function spaceV=V(t):[0,T]→ R3(i.e.,
3-phase voltage) is then transformed by means of a square-
root velocity function (SRVF) into a new event space. In
this new event space, the Fisher-Rao metric becomes theL2

norm. In other words, the SRVF transforms the event space
(PMU streams) into a function space where the RFRM can be

implemented in a less complex manner. This will be further
discussed in Section II-B.
Step 3. Calculate the Fisher-Rao Amplitude-Phase

Distances in the Shape Space:A novel amplitude-phase based
pairwise matrix distance is calculated by weighting the con-
tribution of the amplitude and phase shape components of the
data streams for the clustering problem. The weighted contri-
bution of each component is tuned by a parameterλdefined
in Section II-D.
Step 4. Clustering With Fisher-Rao Amplitude-Phase
Distance:The clustering is performed by a hierarchical pro-
cess applied to the amplitude-phase distance (FRAPD) matrix.
As a result, similar events are grouped together for event
detection purposes.
Step 5.Shape Preserving Incremental Learning:The fault

event clusters are utilized for constructing fault templates that
are the representative shapes of fault events. This step is per-
formed by using the Karcher mean. Then, the fault templates
created are continuously updated as new faults occur. These
constant updates increase the performance of the algorithm in
distinguishing different types of faults.

A. Events Space Construction

To perform elastic registration under the Fisher-Rao metric,
we first need to transform the function space composed by data
streams. The three-phase voltage and current data streams from
a time-synchronized measurement device such as a distribution
PMU are defined as follows:

V=V(t):[0,T]→ R3

I=I(t):[0,T]→ R3. (1)

whereV=[Va(t),Vb(t),Vc(t)]andI=[Ia(t),Ib(t),Ic(t)]
witht∈[0,T] and T being the event’s length. An event space
is defined as a subset of functionsB:[0,T]→ R3matched
with necessary smoothness and integrability conditions. The
spaceFand the elements of that space, i.e., the signals of
lengthT, are denoted asB∈F. We utilize a functional data
analysis approach to interpret the events as shapes. Following
the shape-based methodology in [12], we compute the event
shape spaceSby interpreting the spaceFas a Riemannian
manifold with the Fisher-Rao Riemannian metric [12]. The
event spaceFis transformed to a pre-shape spaceSwith the
Square Root Velocity Function operator denoted bySRVF(·).
The elements ofSare then denoted byqwhich is defined as:

SRVF(B)=q(t)=Ḃ(t)/|̇B(t)|. (2)

Consequently, we define a space of the equivalence classes
ofqunder warping scale (γ(t)) in the time domain of the
event signals. The warping functionγis defined as an opera-
tor function. Given a pair of functionsf1andf2∈F,wesay
thatf1(γ (t))andf2are well aligned. Here, space is a quotient
spaceS/ , where comprises the set of all domain warp-
ing functionsγ(t). In practice, instead of working with the
full space of , we restrict the set to all continuous, weakly
increasing boundary preserving warping functions.

B. Fisher-Rao Amplitude-Phase Distances in the
Shape Space

The methodology we propose seeks to combine the ampli-
tude and phase metric components into a single weighted
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metric that captures the angle shift for different fault events
in power systems. This section describes how to calculate
the Fisher-Rao amplitude and phase distance (FRAPD) in the
event shape spaceSusing the proposed framework.
The SRVF representation has the advantage of inducing a

transformation of the Fisher-Rao Riemannian metric to a stan-
dardL2norm. We defineL2([0,1],R)(or simplyL2)asthe
set of all square integrable functions, which are SRVFs in our
case. Then, for everyq∈L2there is a functionBthat has a
translation so that SRVF(B)=q. Using the chain rule, it can
be shown that by warping a functionfusingγ, the SRVF of
f◦γbecomes:

q̃(t)=(q◦γ)(t)γ̇(t). (3)

where the◦operator, from here on, denotes a composition
function. There isf(t)◦γ(t)= f(γ (t))for any givenf(t)
andγ(t). The variablẽqrepresents the SRVF off◦γ.This
transformation, a group action, will be denoted by(q,γ)=
(q◦γ)

√
γ̇. Using the theory presented in [13], for any two

SRVFsq1,q2∈L
2and anyγ∈ ,wehave(q1,γ)−

(q2,γ)= q1−q2. Wealsohave(q1,γ)= q1 which
is the group action of time warping acting isometrically on
elements of the SRVF space. This is another advantage of
using the Fisher-Rao metric. In general, (f,γ)= funder
theL2metric.
Restricting all curves to have the same length allows cal-
culation of the distance between curves in the event space
by merely computing the arc-length between two points on
the Hilbert sphere. Thus, we restrict the space to{q∈
L2||q|2dt= 1}which is an infinite-dimensional Hilbert
sphere. This restriction can be easily imposed by scaling each
qby dividing by its respective length. Then, the distance
between any two events [B1,B2], which have been transformed
toq1andq2in the sphereS

∞ is defined as:

FRAD(B1,B2)=inf
γ
||q1−q2◦γ γ̇||. (4)

We will follow the interpretation in [14] and denote it
as theamplitude distanceorFisher-Rao amplitude distance
(FRAD). In particular:FRAD(B(t))=FRAD(B(γ (t))), where
γ:[0,T]→ [0,T] is a warping (orientation-preserving dif-
feomorphism). Therefore, we define an amplitude of a function
Bas an equivalence class under all time warping:

FRAD(B)={B◦γ|γ[0,T]→ [0,T],γ∈S∞([0,T])}. (5)

The existence of an amplitude difference naturally leads to a
phase differencein the function spaceS. The phase difference
is the amount of necessary warpingγto align the curveB1to
B2to minimize the amplitude-distance between them after the
SRVF transformation. Notice that this notion of amplitude and
phase used for time warping should not be confused with the
phasor values of voltage and current in power systems. In this
context, amplitude and phase represent geometrical parameters
of mapped data points on the Hilbert sphere space.
In this letter, we utilized theRpackage “fdasrvf” [15] to
find an optimalγfunction which utilize a dynamic program-
ming approach as follows:

γ1→2=argmin
γ
dSRVF(q1,q2◦γ γ̇), (6)

whereγrepresents the optimal warping. The notationγ1→2
shows that the warping action is performed from curve 1 to

Algorithm 1Distance Calculations Under SRVF Framework

Input:SignalsBiwithi=1,2, ..,n.
Output: Amplitude and phase components distances:FRAD(Bi,Bj)
andFRPD(γi→j).
Initialization:

1:DefineBi(t):[0,T]→ R
3,i=1,2, ...,n.

2:fori,j=1,2, ...,n.do
3: CalculateSRVF(Bi)andSRVF(Bj)with (2)
4: Computeγi→jwith (6)
5: FRAD(Bi,Bj)with (4)
6: ComputeFRPD(γi→j)with (7)
7:end for
8:returnFRAD(Bi,Bj)andFRPD(γi→j)

curve 2. The distance in the SRVF function space is rep-
resented bydSRVF.Thephase distanceorFisher-Rao phase
distance(FRPD) quantifies the amount of warping necessary
for alignment. It is measured as the distance from the iden-
tity warping functionγid(i.e., theγfunction performing no
warping) as follows:

FRPD(γ1→2)=cos
−1(γid, γ̇1→2). (7)

Hence, for every signalB1andB2, two distances will
be calculated: the amplitude distanceFRAD(B1,B2)and the
phase distanceFRPD(γ1→2). The RFRM is summarized in
algorithm 1.

C. Clustering With Fisher-Rao Amplitude-Phase
Distance

The amplitude (FRAD) and phase distances (FRPD) calcu-
lated in the previous section are then weighted to construct
a combined metric (FRAPD) that captures both components
resulting from the elastic registration under the Fisher-Rao
metric. Using the FRAPD, the FRPD and FRAD distances
mutually play a role in the classification of electrical faults as
follows:

FRAPD(B1,B2)=λ∗FRAD(B1,B2)

+(1−λ)∗FRPD(γ1→2). (8)

It is clear that for any two proper distancesd1andd2and
nonnegative constantsaandb,d:= ad1+bd2is also a
proper metric. Therefore, the FRAPD is a valid metric. We
haveλ∈[0,1] whereλ=0 gives us pure phase distance and
λ=1 gives us pure amplitude distance. To tune the weighting
parameter, the optimal value ofλis found by an exhaustive
search in the training process of the fault detection algorithm.

D. Shape Preserving Incremental Learning

After clustering the faults using FRAPD, we update the
labeled fault datasetBi(t):[0,T]→ R

3,i=1,2,...,n, with
a single representative fault template (shape) that will be uti-
lized in the clustering process. The constructed fault templates
are continuously updated as new events occur in the electric
grid as it is illustrated inFig. 1. This incremental learning
process improves the knowledge of the algorithm in detecting
different types of faults.
The representative fault template is computed with the

Karcher meanμF =
T
0μq(v)|μq(v)|dvas shown in algo-

rithm 2. As opposed to the commonly used arithmetic mean,
the Karcher mean is an intrinsic measure of center on the
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Algorithm 2Computing Karcher Mean of Amplitudes Under
SRVF Framework
Input:SignalsBiwithi=1,2, ..,n.
Output: Karcher MeanμKM
Initialization:

1:DefineBi(t):[0,T]→ R3,i= 1,2, ...,n. Calculateqi=
SRVF(Bi).Letμ0=μq=qjbe the initialization of the Karcher
mean for someqj∈{qi}

2:while μq−
1
n qi> do

3: Align eachqito the current Karcher mean estimate with (6)
4: Setμq=

1
n qi

5:end while
6:Compute Karcher mean byμF=

T
0μq(v)|μq(v)|dv

7:returnμF

Fig. 2. Comparison of Arithmetic Mean and Karcher Mean.

manifold on which the curves lies. If all curves are bimodal,
for instance, the Karcher mean is bimodal as well. In gen-
eral, the arithmetic mean does not guarantee this property. In
other words, the shape of the curves will be preserved by the
Karcher mean as shown inFig. 2. Note that in this graphical
example the original functions are sinusoidal curves. The arith-
metic mean does not capture the representative shape of the
original curves in either height or structure, while the Karcher
means does. At first glance, it may look similar to an arith-
metic mean, and that is because the SRVF space is flat. A
key component of our proposed algorithm is that time warp-
ing is done at every iterative step which acts isometrically in
the SRVF space.

III. CASE-STUDY

In this section, we describe the datasets and the grid mod-
els used for validating our proposed methodology. For the first
case study, we have modeled the IEEE 13-nodes test feeder in
Real Time Digital Simulator (RTDS) that resembles real-field
conditions that come inherently with distribution networks (see
Fig. 3). The hardware setup for this feeder can be found
in [16].
As it is shown inFig. 3, we have placed three PMUs on the

secondary side of the feeder (node 632) to resemble the scarce
presence of monitoring devices in power distribution systems.
It is a common practice to put monitoring devices at the start of
the feeder measuring currents and voltages. For this case study,
the data streams correspond to the magnitudes of both voltage
and current measured by the PMUs. Fault events have been
placed in three different locations, nodes 645, 691, and 680,
as shown inFig. 3. The events were created with a duration
of 0.2 seconds (approx. 12 cycles). Fault impedances for each
fault type were changed following a random distribution with
a low impedance value ranging between 0.01 and 0.015 ohms.
In our real-time RTDS simulations setup, events for each

possible phase combination of the 11 fault types (shown in
Fig. 4) were simulated 50 times. This gives a total of 550
events simulated using this realistic model for each location.
Furthermore, having three different locations where faults are
applied gives a total number of 1650 observations. The phases

Fig. 3. Experimental setup of IEEE 13-Nodes test feeder model in
RTDS/RSCAD.

Fig. 4. Fault types simulated in RTDS/RSCAD. Note that fault
impedance is not shown for easier visualization.

were labeled as A, B, and C with ground represented by G.
Fig. 5shows an example of a single-line-to-ground (AG) as
seen from the feeder node, where the measurement device was
located.
To further validate the proposed algorithm, we have per-
formed fault event detection in the IEEE 37-nodes test feeder
as a second case study. The fault events simulated with this
model were performed in a hardware-in-the-loop setup inside
an RT-LAB environment developed by Opal-RT. For more
details on the technical setup of this model, we refer the reader
to [17]. In a similar setup as with the 13-nodes test feeder, we
have placed fault events in three different locations with ran-
dom fault impedances and one PMU monitoring the feeder.
The data streams corresponding to the magnitude and angle
of both voltage and current phasors were measured by the
PMU. We emulated three different fault types (AG, AB, and
ABCG) with 99 events each for a total of 297 fault events.
This gives a total of 891 fault events for this feeder.

IV. RESULTS ANDDISCUSSION

In this section, we validate the proposed FRAPD metric and
we implement the shape preserving incremental learning algo-
rithm for fault detection in power systems using two different
datasets achieved from different digital real-time simulators
testbeds. The objective of each experimental setup is to accu-
rately cluster together similar fault events by their specific
type depicted inFig. 4. Fault clusters are obtained by a pair-
wise distance matrix that is based on the novel FRAPD metric
introduced in Section II.
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Fig. 5. Single-line-to-ground at node 680 in IEEE 13-nodes test feeder.

Fig. 6. Clustering 11 fault types at location 680 in the IEEE 13-nodes
test feeder.

To better visualize the scatter patterns of clustered data
in two dimensions,Fig. 6 shows the multidimensional
scaling (MDS) plot resulting from the fault detection at node
680 of the IEEE 13 nodes test feeder. In general, MDS is
a tool to reproduce the observed distances in any number of
directions for data clusters. The orientations are arbitrary and
they are useful for visualizing clusters from an N-dimensional
distance matrix. The different clusters have been colored by
their true label for better visualization (i.e., 11 fault types).
This figure illustrates the weighted clusters under the proposed
FRAPD metric, that is, the inclusion of both FRAD and FRPD
components of the elastic registration-based algorithm.
To show the accuracy of fault detection using the proposed

FRAPD with the incremental learning method, the multivariate
accuracy (mACC) for the IEEE 13-nodes model is shown in
Fig. 7. The prediction accuracy rate is shown by the diagonal
bars while the false positive and negative errors are represented
by the off-diagonal bars.Fig. 7a shows the mACC as a result
of considering the FRAD only. It can be observed that the
FRAD presents accurate results for line-to-line fault classifi-
cation.Fig. 7b shows the results for fault detection utilizing
the FRPD. The results obtained for single-line-to-ground and
three-line-to-ground faults are observed to be consistent. The
off-diagonal misclassified elements can be explained inFig. 6.
It can be observed that some of the clusters may be too close to
the others (have similar shapes). Therefore, there is an overlap
of some of the fault events distances over other types of faults.
The proposed methodology using novel FRAPD is illustrated
inFig. 7c. This figure shows that the accuracy represented by
the diagonal improves significantly concerning the previously
mentioned methods.
We summarize the misclassification rate of the FRAPD clus-
tering method for the IEEE 13-nodes test feeder as shown in

TABLE I
CASEI: CONFUSIONMAT R I X F O RFAULTCLASSIFICATION INIEEE
13-NODESTESTFEEDER(VALUESARE INPERCENTAGE)

TABLE II
CASEII: CONFUSIONMAT R I X F O RFAULTCLASSIFICATION INIEEE

37-NODESTESTFEEDER(VALUESARE INPERCENTAGE)

Table I. Results show that utilizing both the FRAD and FRPD
components as a compound FRAPD metric improves the fault
detection mACC up to 90.6%. As depicted inTable I,the
false positive and false negative errors are considerably low
with 6.06% and 3.33% respectively. The use of the combined
FRAPD components provides a considerable relative improve-
ment of 75% and 83% over FRAD and FRPD methodologies
respectively.
Additionally, to find the optimal value ofλin the FRAPD
metric (as shown in Eq. (8)), we perform different optimization
approaches. The exhaustive search algorithm outperforms
the other methods such as the Bayesian linear regression
(B-FRAPD) approach by 57% as enumerated inTable I.
Moreover, we compared the FRAPD classification accu-
racy with the state-of-the-art machine learning methods.
Classification based on a support vector machine (SVR) was
configured with the parameter tuning functiontunefrom [18].
Also, we have trained a Neural Network (NN) with learning
one hidden layer and a threshold of 0.01 configured with [19].
Both machine learning methods work withBi(t):[0,T]→
R3,i=1,2,...,nas the signals to perform the classification.
As shown inTable I, the proposed FRAPD-based methodology
outperforms both SVM and NN, improving the classification
accuracy by 85% and 82% respectively.
We implemented our FRAPD-based fault detection algo-
rithm on a second dataset from the IEEE 37-nodes test feeder
for more comprehensive validation. This model was discussed
in Section III.Table IIshows the confusion matrix for the fault
classification using IEEE 37-nodes test feeder. It demonstrates
that the results are consistent with respect to the 13-nodes
test feeder. Results show that the use of FRAPD improves
the accuracy as compared to the FRAD and FRPD methods
by 83% and 84% respectively. Additionally, we compared our
methodology with the B-FRAPD, and machine learning meth-
ods SVM and NN. Once again, our proposed methodology
outperforms SVM and NN by more than 82% relatively. A
crucial observation is that the misclassification total error in
this case study is less than the misclassification total error
resulting from the 13-nodes test feeder. This is expected, as
the 37-nodes test feeder data contains the electrical phase angle
along with the magnitudes for voltage and current measure-
ment from the PMUs. The PMU phasor measurements give
the shape preserving algorithm more information regarding
voltage and current signals.
To show the incremental learning algorithm impact in the

fault detection performance, we compared the fault detection
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Fig. 7. Confusion Matrix for different methods for the IEEE 13-nodes test feeder. Diagonal terms are correct identifications and off-diagonal ones
are misclassifications. mACC for multi-class detection accuracy: (a) Clustering with FRAD; (b) Clustering with FRPD; (c) Clustering with FRAPD
distance.

Fig. 8. Incremental algorithm average accuracy percentage (training
dataset) for 300 fault events at nodes 645, 680, and 691 in the IEEE
13-Nodes test feeder.

accuracy using the incremental and non-incremental learning
approaches as shown inFig. 8. This figure illustrates that
the incremental learning algorithm needs a lesser number of
training data to get to 91% overall accuracy as compared to
the non-incremental learning. In fact, the incremental learning
reaches higher accuracy after 100 samples as opposed to the
non-incremental methodology.

V. CONCLUSION

This letter proposes a shape preserving incremental learning
fault detection algorithm using Fisher-Rao elastic registra-
tion. The new Fisher-Rao amplitude-phase distance metric
(FRAPD) was utilized to perform clustering of fault signals
with similar characteristics. The results show that the FRAPD
shape-based clustering outperformed state-of-the-art machine
learning techniques such as SVM and NN by reducing fault
detection error up to 85%. Moreover, the combined FRAPD
was compared to utilizing the amplitude and phase distance
components individually as a shape-based clustering metric.
Results show that the FRAPD-based classification improved
75% and 83% respectively.
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