






As a toy example, consider a case in which an implementer
desired to improve the performance of an application that
used Touchalytics [16] and required the false positive rate
to be 0.1. In this scenario, the implementer may consider
switching to SVC2004 [28]. The implementer may look at
the EER of SVC2004 which is 0.185 and compare this to
the Touchalytics EER of 0.198. From this comparison, an
implementer would conclude that the system’s performance
will improve. He or she would be unpleasantly surprised when
their true positive rate dropped from 0.8 to 0.6 at the false
positive rate their application required. Therefore, comparing
systems on these metrics can lead to detrimental, real-world
security consequences.

In several of the surveyed publications the EER and AU-
ROC were used in two different ways. In the first use case,
authors made direct claims about the relative behavior of two
or more systems either by comparing the proposed system to
an existing system which uses the same types of measurements
or by adjusting the parameters for their own measurements, to
determine the impact on the metric. In some cases, authors
concluded that a change in parameter had no impact on
performance because the metric was unchanged. However,
because they did not include the ROC, we do not know what
effect the changes had on the ends of the curve. In contrast,
some authors reported the ROC for multiple parameterizations
of their system demonstrating that their systems behavior
was predictable over a wide range of parameterizations, even
though they did not make this claim.

In the second use case, the EER or AUROC is reported with
the expectation that these metrics will be used to compare the
proposed system to other competing systems. This use case
only allows for naı̈ve comparisons such as those detailed in
Section II-B. Since the second use case requires knowing what
the authors intended the reported metric to be used for, we did
not count these cases as evidence of flaw 3.

B. A naı̈ve comparison

Table III enumerates the top five systems based on the
reported performance metrics. We consider the three most
common metrics: the EER, ACC, and FPR. For any single
metric, this comparison fails to produce a meaningful result
for several reasons.

• Not all publications report the same metric. Compari-
son across different metrics does not have a meaning-
ful interpretation.

• Individually using any of the three above-mentioned
metrics can lead to flawed conclusions because no
individual metric captures the complete performance.

• Just because a system optimizes a metric, does not
mean that it can be utilized in the target application
(e.g. an approach implemented for keyboards may not
work on touchscreens directly).

It is clear that such a naı̈ve comparison cannot lead to an
informed comparison of the proposed systems. It is even
difficult to identify if a system is suitable because some of
the metrics fail to provide information that is relevant to the
context of the target application (e.g. an FPR may not be
achieved at a target TPR).

EER % ACC % FPR %

0.00 [9] 99.30 [55] 0.00 [11]

0.34 [24] 98.61 [32] 0.01 [9]

0.59 [2] 98.47 [51] 0.10 [35]

0.95 [40] 98.00 [53] 0.10 [5]

1.26 [55] 97.00 [42] 0.10 [40]

TABLE III: The top five authentication systems according to a
naı̈ve comparison of their best reported values for EER, ACC,
and FPR metrics. These metrics are reported the most often
but rarely yield a meaningful comparison. There is no clear
winner as each of the top five performers in each category
varies significantly.

Of importance, system evaluation requires the ability to
evaluate the potential security trades-offs of a system. Instead
of answering the question, “Has the system produced a single
metric that has surpassed a seemingly adequate threshold?”
implementers need to answer the question, “Can this system
be tuned to meet the needs of my application such that reported
metrics show possible security trade-offs?” Many of the current
metrics that are reported fail to answer the latter question.

These flaws occur in many of the publications surveyed.
Figure 3 enumerates the observation frequency of each of
the described flaws. We also note that almost two-thirds
of publications have skewed measurement populations. It is
common practice to recruit N participants, take M num-
ber of measurements from each of them, and then elect
one participant as the authorized user. When this is done,
the measurement populations are skewed because there are
N − 1×M measurements from unauthorized users, and only
M measurements from authorized users. In some cases, we
were unable to assess whether the measurement population was
skewed because the publication did not report the sources of
measurements. This was the case in 23 of the 35 publications
we reviewed. However a few reported balanced accuracy in
an attempt to compensate for the skew. As we will see, had
the FCS been reported, we would have been able to visually
assess if there was measurement population skew. One of the
publications actually reported a normalized FCS but did not
use it for analysis.

III. RELATED WORK

We discovered only one publication in the systems security
community that has studied how performance metrics are
reported [13]. They studied flaws that occur in reporting for
continuous authentication systems. They note that the EER is
among the most popular metrics and observe the misleading
characteristics of only reporting the EER and false negative
rate (FNR). They also note that data sets are rarely made
available, which creates a barrier to follow-up analyses. They
additionally advocate for the use of the Gini Coefficient (GC)
which is functionally related to the AUROC. We show that
the GC and AUROC are also flawed metrics that hinder the
comparison and implementation of a system and we instead
advocate for the combination of FCS and the ROC.

Bonneau et al. [3] compared different types of authenti-
cation systems to text passwords with qualitative metrics in
usability, deployability, security. They provide a wide range
of real-world constraints but they did not provide quantitative
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approaches to evaluate the metrics. In contrast, we focus on
quantitative metrics in this paper.

The efficacy of the EER in communicating performance
has been questioned in other fields [37]: the EER has the
significant disadvantage of representing only a single point
in the performance continuum and that this misrepresents the
capabilities of a system. The paper [37]: argues for the ROC
as the main performance metric but does not consider how
measurements are separated, nor the utility of looking at score
range overlap (we will address how these factors limit the
utility of the ROC). Others [39], [14] have argued for using
the ROC curve over the accuracy as a performance metric.
Papers from several fields, including clinical medicine [56],
chemistry [4] and psychiatry [47], have been arguing for
the use of the ROC. Although many disciplines call for the
usage of the ROC, the interpretation and consequences of a
classification error are distinct to each discipline. In our work,
we focus on classification error in the context of authentication
and show how the ROC alone is an inadequate metric.

Prior research has used normalized histograms to estimate
score distributions [26]. This approach is fundamentally differ-
ent from what we propose. We propose that an unnormalized
metric - the Frequency Counts of Scores (FCS) can be used
to diagnose security flaws for authentication systems. This
approach is not widely known or applied.

Some of the flaws we discuss may be known in the machine
learning community. For example, previous research in ma-
chine learning has discussed population skew [14]. However,
our work clearly shows that our suggestions are unknown in
this context and novel to the authentication systems commu-
nity. Thus, it is imperative that the flaws and our proposed
recommendations are discussed.

In summary, using EER as a performance metric has been
questioned in continuous authentication systems and other
fields. However, there is no work that propose a convincing
alternative metrics to EER. We are the first to propose the
FCS in addition to the ROC to augment the comparability
of authentication systems. Although prior texts discussed the
normalized histogram for estimating score distributions, we
are the first to use the unnormalized FCS for diagnosing
security flaws of authentication systems. The FCS addresses
the deficiencies in the availability of data for analysis by
enabling analyses to be done on the distribution of scores.
This is true even in cases where the data may be sensitive and
cannot be made available to the public. The FCS can be used
to directly identify thresholds that fit the application criteria.
Analysis of the scores can give insight into the modifications
a score function might need to achieve better separation of
users. With FCS, we can identify two types of flaws in the
surveyed publications in top venues: incomplete performance
reporting and misleading metric interpretation.

IV. MACHINE LEARNING IN AUTHENTICATION SYSTEMS

Authentication systems that utilize machine learning can
use a variety of methods to distinguish users (e.g. fingerprints,
visited locations, and keystroke dynamics). Regardless of the
authentication method, the machine learning methods used to
classify the measurements are the same. Figure 4 shows how

machine learning in most authentication systems includes three
major operations: preprocessing, scoring and thresholding.

In the preprocessing operation, the measurements are fil-
tered, re-centered and scaled [43]. This operation may discard
measurements that fail to meet any admissibility criteria the au-
thentication system may have (e.g. measurements that are too
short). Scoring applies a mathematical function (f : M → R)
to the measurements to generate a numerical summary of the
measurements (by numerical summary, we mean a number
that is used to describe a characteristic of a dataset). Scores
of measurements from authorized users by convention score
higher (to the right of) than those of unauthorized users [23].

The scoring operation is the most critical part of the
authentication process. Scoring measurements well enables
unambiguous classifications by separating measurements. The
better scoring is at separating measurements, the fewer errors
will be made. The scores between different authentication
systems are rarely comparable and bare no direct relevance
to each other, even if the systems measure the same thing.

Thresholding uses the score (a numerical summary) as
evidence for a decision. The choice threshold establishes the
minimum required score to be deemed authorized. For any
user’s measurements, if the score is below the threshold, the
user will be denied access. Similarly, if the user’s score is
above the threshold, the user will be granted access. The
further away the score is from the threshold, the more confident
we can be in our classification. Thus, user measurements that
score significantly higher than the threshold are considered
strong evidence for a decision to grant access. User measure-
ments that score significantly lower than the threshold yield a
confident decision to deny access. In this sense, the choice of
threshold dictates the strength of the decision.

A. How authentication systems research is consumed

While there is no formula for implementing a proposed sys-
tem from its publication description, there is a common theme
that many publications follow. Many publications start with a
description of what is measured and why it is important to be
measured. A case then is made for why the measured quantities
will produce good performance or have some additional benefit
(e.g. easy to remember, resistant to some types of attacks, and
require fewer resources). A classification algorithm is typically
chosen based on criteria such as ease of implementation or
good performance with available data for a chosen metric.
Finally, a user study is performed to validate the design choices
made, demonstrate the claims of utility or defensibility, and
potentially compare to existing systems.

An implementer of these systems will have to determine
what was measured from the description, and then collect those
measurements. The implementer will then need to use the
classification and compare the performance metrics achieved
by their implementation against those reported in the publi-
cations. The implementer will have to pick a system based
on a comparison of the reported performance values, the
ability to recreate the measurement apparatus (e.g. collecting
heart rhythms or breath sounds), and applicability of the
system’s benefits to their specific case (e.g. the need for
resistance to shoulder surfing). As we will see, comparing
performance values between publications is often challenging
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Fig. 4: The use of machine learning as a classifier is common to many authentication systems. The preprocessing phase prepares
measurements by filtering, re-centering and scaling. The scoring phase applies a mathematical function to the measurements to map
them to a number. The thresholding phase compares the number to a fixed threshold to make a decision. The full authentication
system feeds measurements taken from the user to the machine learning classifier and then evaluates the performance based on
the decisions that come out of it.

for a variety of reasons, complicating the process of choosing
a system. Implementing the classification algorithm can also
prove daunting because the descriptions are often inadequate
(e.g. often lacking critical parameter values).

B. How classifiers work

The performance of a classifier is influenced by two major
factors. The first is how well the scoring function separates
the measurements from different users and the second is how
well the threshold is chosen.

The scoring operation plays the most important role in
the authentication system performance. The score function’s
ability to separate measurements via their score values reflects
the underlying capability of the measurements collected to
separate users. The score function can be seen as extract-
ing information, in the form of score separation, from the
measurements. If all the measurements from authorized users
are distinct from the measurements of unauthorized users, an
optimal score function was achieved. If the distinction between
authorized and unauthorized users is inadequate, the score
function will be inadequate.

The thresholding operation comes immediately after the
scoring operation in importance. The selection of a threshold
represents the choice of a compromise between error types that
a classification system can make [27]. It cannot eliminate error;
it can only trade one type of error for another (e.g. decrease the
error of authorizing illegitimate users by increasing the error
of denying legitimate users). If the scoring function provides
good separation, there will be many choices of threshold that
yield a good compromise between the error types. Several of
the metrics (e.g. EER and ACC) fix a specific threshold and
derive a performance metric value from this fixed point. The
threshold is often chosen to optimize this metric and it is only
this optimized value that is reported.

C. Why authentication systems make mistakes

From a security standpoint, what distinguishes one system
from another is not the measurements they collect, but how
well they tell authorized users apart from unauthorized users.
For example, the problem of granting access to the wrong
person has severe consequences if the target application is
banking. On the other hand, the problem of denying access
to the correct person is not a significant infraction if the target
application is loyalty discounts.

Measurements collected from users are often random with
an unknown distribution. When these random measurements
are fed into a scoring function, the resulting scores will also be
randomly distributed. These variable scores will be compared
against a fixed threshold and a decision will be made to grant
or deny access based on this comparison. If the randomness
of the measurements causes the score to incorrectly cross the
threshold, an error is made.

The scores of measurements from authorized users score
higher than measurements from unauthorized users; therefore,
if a score falls above the threshold, it is assumed to have come
from an authorized user. If a score is below the threshold,
it is assumed to have come from an unauthorized user. In
the ideal case, all authorized users’ measurements will score
much higher than those of unauthorized users. This, however,
is rarely the case. Often the scores from both types of users
overlap (see Figure 2) because of the randomness in the
measurements. The greater the overlap between scores, the
more likely it is that the system will make a mistake and thus
make more errors [19].

V. COMMON PERFORMANCE METRICS

USED IN AUTHENTICATION

For every decision a classifier must make, there are four
possible contingencies: (1) authorize a legitimate user (true
positive or TP), (2) authorize an illegitimate user (false positive
or FP), (3) deny an illegitimate user (true negative or TN), and
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authorized user’s measurements to score lower than is typical,
the user would still be granted access because the threshold is
lower. Eventually, as the threshold is lowered, both the number
of TPs and the number of FPs will increase. Each value of
threshold represents a specific trade-off between the TPR and
FPR. Taken as a pair, the (FPR, TPR) is a parametric function
of the threshold. This parametric curve drawn as the threshold
varies is the ROC curve (see Figure 2). Also shown is the line
of indifference, y = x (green line of Figure 2). If the ROC
is close to this line, the system performance is comparable to
blind guessing.

There are three common single-number performance met-
rics for summarizing the ROC curve: the EER, the AUROC
(or AUC in some texts), and the GC.

1) Equal Error Rate (EER): As Figure 2 shows, it is the
point on the ROC where the FPR = 1 − TPR. It is easily
identified as the intersection of the line y = 1 − x (red
dashed line of Figure 2) and the ROC curve. It represents the
probability of making an incorrect positive or negative decision
in equal probability. Since the ROC is a parametric curve, there
is a specific value of the threshold that corresponds to the EER.

2) Area Under the ROC Curve (AUROC): The AUROC is
defined as the area below the ROC curve and is depicted as
the shaded region in Figure 2. It reflects the probability that
a random unauthorized user’s measurement is scored lower
than a random authorized user’s measurement [23]. It can be
interpreted as a measure of how well a classifier can separate
measurements of an authorized user from their unauthorized
counterparts. In Figure 2, the AUROC is computed for the
given ROC.

3) Gini Coefficient (GC): The Gini Coefficient (GC) is
functionally related to the AUROC as follows [22]: GC =

2×AUROC−1. It also tries to quantify how much separation
there will be in the measurements.

VI. PROPOSED METRIC:
THE FREQUENCY COUNT OF SCORES (FCS)

We propose the Frequency Count of Scores (FCS) as an
additional performance metric to be reported with the ROC
curve. Figure 2 shows examples of the FCS coupled with the
ROC. The FCS provides the ability to visually diagnose and
explain the achieved performance reported in the ROC because
the ROC can be constructed from the FCS. By examining the
distribution skew and overlap of the score frequencies, we can
determine if the proposed systems exhibit any biases towards a
positive or negative decision. We can also justify the reported
performance observed in the ROC by examining how well the
score distributions are separated. Good score separation will
yield good system performance which will be reflected in an
ROC with a low EER. Sensitivity to changes in the threshold
can be assessed by looking at how the scores are spread relative
to each class. The two metrics complement each other.

The FCS is a fundamental metric that is different from the
ROC and the confusion matrix. It is considered fundamental
in this context because it is not derived from the CM or the
ROC. It can be used to diagnose model problems, compare
systems, and validate implementations. The FCS is constructed
by identifying the maximum and minimum scores across all

measurements and then choosing a common bin width over
this range. Scores are separated by the ground truth and then
plotted as separate histograms which are binned using the
common bin width. The bin width is a free parameter that
can be chosen to reflect the amount of data available and the
observed score variability.

The FCS should not be normalized to make it look like a
distribution. The unnormalized version makes the population
skews, score distribution imbalances and score overlap regions
visually apparent. The FCS is a useful addition to the reported
metrics because it allows a research consumer to visually
perform additional analyses which would not be possible with
the ROC or CM metrics alone.

How the scores are distributed plays a central role in the
performance of a system. A large majority of the decision
errors are made because the random variation in measurements
causes the scores to erroneously cross a chosen threshold.
Because the measurements are not deterministic, the scores
are variable even if they are a deterministic function of the
measurements. How well the score function separates mea-
surements in the presence of this variability dictates the range
of possible error trade-offs between TPR and FPR for a system.
If the separation of scores is large, then it is possible to achieve
high TPR while keeping the FPR low. Since each choice of
threshold represents a compromise between TPR and FPR,
larger score separation implies better choices of threshold.

1) The FCS can be used to gain performance insights
beyond what the existing metrics show: Many of the existing
metrics can actually be derived from the FCS. For example,
the TPR can be computed as the relative frequency of positive
scores that lie beyond the threshold.The proportion of the score
range from authorized and unauthorized users that overlaps is
important because many of the performance metrics, such as
the EER and ACC, attempt to summarize system performance
by quantifying how often a measurement from either user will
get a score in this overlapping range. The ACC and EER
both depend on the width of the overlapping region as well
as the relative frequency of the scores that fall within this
overlap. Neither metric considers the portion of the scores
that lie outside the overlapping score region for either score
distribution (authorized and unauthorized). It is this lack of
consideration for these other aspects of the scoring that cause
these metrics to be incomplete. By reporting the FCS, difficult
concepts can be easily visualized. Consider the AUROC: its
definition is very technical, and is thus difficult to interpret.
However, if we look at two different FCS and note the score
overlaps are smaller in one vs. the other, we have captured the
essence of what the AUROC is trying to measure.

Some insights into system performance that only the FCS
can provide are gained by considering scores that lie outside
the overlapping region. Performance metrics, such as the TPR,
are directly impacted by the portion of these types of scores.
For example, authorized users’ scores that lie outside the
overlap can only contribute to the TPR. If this portion is not
empty, then the TPR may never practically reach zero (e.g.
there is a threshold for (A) of Figure 7 that achieves non-zero
TPR at zero FPR because scores above this threshold could
not have come from unauthorized users). Although this can be
visually confirmed on the ROC, it would be difficult to identify
why it happens from the ROC.
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