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Abstract—Research has produced many types of authentica-
tion systems that use machine learning. However, there is no
consistent approach for reporting performance metrics and the
reported metrics are inadequate. In this work, we show that
several of the common metrics used for reporting performance,
such as maximum accuracy (ACC), equal error rate (EER) and
area under the ROC curve (AUROC), are inherently flawed.
These common metrics hide the details of the inherent trade-
offs a system must make when implemented. OQur findings show
that current metrics give no insight into how system performance
degrades outside the ideal conditions in which they were designed.
We argue that adequate performance reporting must be provided
to enable meaningful evaluation and that current, commonly used
approaches fail in this regard. We present the unnormalized
frequency count of scores (FCS) to demonstrate the mathematical
underpinnings that lead to these failures and show how they can
be avoided. The FCS can be used to augment the performance
reporting to enable comparison across systems in a visual way.
When reported with the Receiver Operating Characteristics curve
(ROC), these two metrics provide a solution to the limitations
of currently reported metrics. Finally, we show how to use
the FCS and ROC metrics to evaluate and compare different
authentication systems.

I. INTRODUCTION

Many authentication systems utilizing machine learning
have been proposed (see Table II). However, there is no
clear agreement in the community about how these systems
should be evaluated or which performance metrics should
be reported. Specifically, publications often report misleading
single-number summaries which include true positive rate
(TPR), false positive rate (FPR), equal error rate (EER), area
under ROC curve (AUROC), and maximum accuracy (ACC).
Figure 1 enumerates the reporting rates of common metrics
for thirty-five recent publications.

Improving the metrics and reporting methods can resolve
two primary obstacles to the evaluation of authentication sys-
tems. These obstacles are (1) skew in the distributions used to
train and evaluate the systems, and (2) misleading comparisons
that arise from the reported metrics. For example, skew within
the population of study participants can artificially inflate the
maximum accuracy. Additionally, misleading comparisons can
result from commonly reported metrics. For example, it is
inappropriate to conclude that one system performs better than
another by comparing an EER of 0.05 to 0.10. Similarly, an
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Fig. 1: The frequency of reported metrics from Table I for
thirty-five recent publications surveyed from venues listed in
Table II. Classical biometric and detection summaries such as
EER and TPR are often reported because they are widely used
in the literature. The FPR is the most reported because it is
the common element for two frequently reported metric pairs,
the (TPR,FPR) and (FPR,FRR).

accuracy of 80% versus 90% does not allow clear inferences
about the system performance.

We show the following three primary flaws with existing
metrics: 1) It is incomplete to report performance using solely
single-number metrics, like the ACC, FPR, TPR, FAR, and
FRR. Single-number summaries hide the details of how and
what errors occurred. For example, because if a system was
trained on mostly unauthorized users’ data, it will learn to
recognize unauthorized users very well and may not recognize
authorized users. 2) Reporting performance results without
the parameters of the model hinders the implementation of
the system. The system cannot be faithfully replicated when
only the performance is reported. 3) Performance comparisons
cannot be made when using single-number summaries derived
from the ROC. One cannot conclude that one system will
perform better than another in a target application by direct
comparison of the EER and other ROC-derived summaries.

In this paper, we uniquely propose and demonstrate how
the ROC, combined with the unnormalized Frequency Count
Scores (FCS) (shown in Figure 2), aids in the ability to
understand the trade-offs for authentication performance and
adequately evaluate the proposed approach. The major contri-
butions of the paper are as follows:

e We show how commonly used metrics in authenti-
cation systems, including TPR, FPR, EER, AUROC,
ACC, and GC are inherently flawed metrics for un-
derstanding authentication system performance.

e  We survey eleven top publication venues where au-
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Fig. 2: The left figure is the ROC curve of an authentication
system. The right figure is its corresponding FCS that displays
score distributions for measurements of authorized and unau-
thorized users. The ROC curve is computed by varying the
value of the threshold required to grant access and computing
the true positive rate (TPR) and the false positive rate (FPR).
The FCS is a histogram of measurement scores separated by
ground truth. In this FCS figure, the blue histogram represents
unauthorized users’ scores, determined by the ground truth
of the measurement. The red histogram in the FCS figure
represents authorized users’ scores.

thentication systems based on machine learning are
proposed. We identified thirty-five recent (2016-2018)
proposed authentication systems and identified their
reporting themes and common flaws.

e  We show how any single-number summary provides
incomplete information for the evaluation of authenti-
cation systems.

e We propose unnormalized Frequency Count Scores
(FCS) as an augmentation to current authentication
metrics that enable visual comparison and identifica-
tion of some errors.

e We show how using the FCS with the ROC can
further solve the limitations associated with current
authentication system metrics.

e We demonstrate flawed comparisons with existing
datasets by reimplementing the proposed systems.

II. REVIEW OF RECENT AUTHENTICATION SYSTEMS

To determine the current state of performance metric
reporting, we surveyed recent research published in top
venues. The selection criteria for including papers in the
review was the following: (1) The article was published in
a top venue for systems security, mobile computing, human-
computer interaction, or pattern recognition for authentication.
These venues included NDSS, CCS, CHI, IMWUT/UbiComp,
INFOCOM, MobiCom, MobiSys, SOUPS, SS&P (Oakland),
USENIX Security and Pattern Recognition journal. Machine
learning venues (e.g. NIPS) were not included due to their
primary focus on algorithms and lack of attention to system
applications. (2) In order to evaluate current practices, the
paper had to be published within the last 2 years (2016 to
2018). (3) The paper had to propose an authentication scheme.
Specifically, the paper had to use machine learning to label

Definition

Description

TP True Positive Authorized legitimate users count.

FP False Positive Authorized illegitimate users count.

N True Negative Denied illegitimate users count.

FN False Negative Denied legitimate users count.

CM Confusion Matrix Table of contingency counts.

ACC Maximum Accuracy Probability of a correct declaration.

TPR True Positive Rate How often a legitimate users is authorized.

TNR True Negative Rate How often an illegitimate user is denied.

FIS/fR) Fg;i:epjzzlct:; gzi) How often an illegitimate user is authorized.

FFI\II{];) F;;T:el\gf}zg:%];z;e How often a legitimate user is denied.

ROC Receiver operator Curve of (TPR, FPR) by varying threshold
characteristic curve

ERR Equal Error Rate The point that TPR equals 1-FPR

AUROC Area under the Probability of scores of random legitimate
ROC curve users are higher than illegitimate user.

GC Gini-coefficient Calculated from the AUROC

FCS Unnormalized frequency  Histogram of scores separated by

count of scores ground truth

TABLE I: Performance metric name abbreviations

Venue References

CCS [34], [44], [55]

CHI [12], [33], [41], [42]

IMWUT/UbiComp [11], [20], [25], [35], [48]

INFOCOM [81, [36], [45], [51], [53]
MobiCom [15], [32]
MobiSys [71, [31]

NDSS [51, [171, [49], [50]

Pattern Recognition [2], [9], [18], [24], [38], [40], [54]
SS&P (Oakland) [46]
SOUPS [10], [30]

TABLE II: Publications surveyed grouped by venues

users as authorized and unauthorized (as opposed to identifying
users from a group). Although we identified many related
papers (n = 58), only 35 proposed an authentication scheme
and were included in the review. We note that we did not find
any publications matching our criteria from USENIX Security.

In order to find these articles, one researcher used the
Google Scholar search engine to limit results to these venues
and included the following search terms: authentication, be-
havioral, biometric, machine learning, password, recognition,
and access. A second researcher separately reviewed the venue
proceedings using the search terms in order to generate a
complete list of related work.

In the thirty-five publications that were surveyed, we dis-
covered no uniform approach for reporting metrics. However,
there were several recurring themes. Figure 1 shows that the
most common metric reported is the FPR since the FPR
is the common element in two different but related metric
pairs: the (TPR,FPR) and (FPR,FRR) pairs. These pairs are
often reported when one value is held constant and the other
is minimized (e.g. fixing the FPR and adjusting the system
parameters until the TPR is optimized). There is often no
justification for the value that is chosen to be held constant.
Another frequently reported metric is the EER. It is often
reported for comparison with existing systems in the literature.
Unfortunately, without a uniform approach, we cannot make
comparative quantitative conclusions about the performance
across all the proposed systems.

Sixteen (less than half) of the publications reported the
ROC. Eleven of the publications that reported the ROC had
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Fig. 3: The flaws noted in Section II-A occur several times in
many of the publications. We note that the common practice
of recruiting N participants and then electing one as the au-
thorized user often leads to skewed measurement populations.
Twenty-three of the thirty-five papers surveyed had skewed
measurement populations.

measurement populations that were skewed (here measurement
population is defined as the set of measurements from users).
In some of these cases we concluded that the effects of the
skew did not impact the validity of the claims because the
performance claims were based on the ROC.

A. Common Flaws

We observed three flaws that were common to many
publications. The three flaws are as follows:

1) Flaw 1: Incomplete performance reporting. Reporting
based solely on single-summary metrics is incomplete. For ex-
ample, the maximum accuracy (ACC) metric does not identify
the type of user (authorized or unauthorized) an error was made
on. For example, an accuracy of 90% does not mean that the
system makes errors 10% of the time. A system may have been
tested on data it would almost always get correct. Specifically,
if a system was trained on mostly unauthorized users’ data,
it will learn to recognize unauthorized users very well. If this
system is only tested on unauthorized users, the ACC metric
will be very high. However, because this system was built on
only unauthorized users’ data, it may not recognize authorized
users very well. The system will not be trained to identify
authorized users’ data because it has no model for authorized
users. The model is thus incomplete when trained on data that
is either mostly authorized or unauthorized users.

Comparisons made solely based on TPR, FPR, or FRR are
also incomplete. It is not possible to tell if the optimized value
is the result of better discrimination between users or simply an
adjustment of system parameters for the purpose of inflating a
metric. Since the (TPR,FPR) and (FPR,FRR) are the result of a
specific compromise between the two kinds of errors. One can
trade one error type for another by adjusting the parameters
(e.g. threshold), without improving overall performance.

It is imperative that authors incorporate this knowledge
into the interpretation of their metrics. If the authors do not
report the frequency of authorized and unauthorized users’
data, then the ACC metric provides little information about
the system. Of the thirty-five publications surveyed, eleven
directly exhibited this flaw. Several others made performance
claims based only on one of these metrics but also reported
other metrics for comparison.

2) Flaw 2: Results without model parameters. Performance
results reported without the parameters of the model hinders
the implementation of the system. The confusion matrix (CM),

and all metrics derived from it (e.g. the ACC or TPR), depend
on the threshold used to obtain the results. For metrics derived
from the confusion matrix, the system cannot be implemented
when only the performance is reported. Researchers tend to
determine their own thresholds in isolation when they design
a system (they cannot know what an implementer would need).
If the threshold is unknown, the conditions under which the
original research was completed cannot be replicated. We
recommend that the ROC and FCS are reported to surpass this
limitation. The ROC and FCS show how the system responds
to changes in the threshold and covers a range of possible
thresholds enabling implementers to choose the threshold that
is right for their application.

Every machine learning algorithm has parameters that,
when adjusted, significantly change their behavior (e.g. slack
factor, size and number of hidden layers, K). Since machine
learning usage is often off-the-shelf, it is easy to overlook the
necessary parameters required to use the system even though
these parameters control the behavior of one of the most
critical parts of the system. In our survey, seventeen of the
thirty-five publications left out the parameters of the machine
learning algorithms used. Without these parameters, the task
of replicating the system becomes much more difficult.

In one case, a publication studied the effects of environ-
ment on the system performance by comparing the accuracy
of the system in several environments. Based on the described
methods, the test data had a positive bias as the authors elected
a very small subset of the participants to be attackers. The
publication did not disclose whether the threshold remained the
same in all environments tested. The authors concluded that
since the accuracies were less than 5% from each other, that
the environmental effects were negligible. However, because
the population was skewed, that less than 5% difference could
also be accounted for by shifting the threshold in each of the
environments. Since the data was mostly comprised of positive
samples from authorized users, moving the threshold up or
down could yield more or less correct decisions purely due to
sampling effects.

3) Flaw 3: Misleading interpretations. Performance com-
parisons cannot be made when using single-number summaries
derived from the ROC. Direct comparison of the EER (and
other ROC-derived summary metrics) does not show whether
one system performs better than another. Two systems with
similar values for these metrics can have very different ROCs.
Because the ROCs are different, the performance will be
different when implemented. When a system is implemented,
it must be implemented with a target application in mind
(e.g. banking or loyalty discounts). These different target
applications come with requirements for the amount of false
positives (wrong people allowed in) or the amount of false
negatives (correct people kept out) that the application can
tolerate. In our survey, seven of the thirty-five papers drew
direct comparisons about system performance by comparing
one of these summary values. Twenty-two of the thirty-five
papers reported one of the metrics with the expectation that
similar systems could be compared using these summaries.

Systems with different ROCs behave differently when
implemented. These differences can lead to unexpected be-
havior because the error rates of the implemented system
may differ from the error rates the implementer expected.



As a toy example, consider a case in which an implementer
desired to improve the performance of an application that
used Touchalytics [16] and required the false positive rate
to be 0.1. In this scenario, the implementer may consider
switching to SVC2004 [28]. The implementer may look at
the EER of SVC2004 which is 0.185 and compare this to
the Touchalytics EER of 0.198. From this comparison, an
implementer would conclude that the system’s performance
will improve. He or she would be unpleasantly surprised when
their true positive rate dropped from 0.8 to 0.6 at the false
positive rate their application required. Therefore, comparing
systems on these metrics can lead to detrimental, real-world
security consequences.

In several of the surveyed publications the EER and AU-
ROC were used in two different ways. In the first use case,
authors made direct claims about the relative behavior of two
or more systems either by comparing the proposed system to
an existing system which uses the same types of measurements
or by adjusting the parameters for their own measurements, to
determine the impact on the metric. In some cases, authors
concluded that a change in parameter had no impact on
performance because the metric was unchanged. However,
because they did not include the ROC, we do not know what
effect the changes had on the ends of the curve. In contrast,
some authors reported the ROC for multiple parameterizations
of their system demonstrating that their systems behavior
was predictable over a wide range of parameterizations, even
though they did not make this claim.

In the second use case, the EER or AUROC is reported with
the expectation that these metrics will be used to compare the
proposed system to other competing systems. This use case
only allows for naive comparisons such as those detailed in
Section II-B. Since the second use case requires knowing what
the authors intended the reported metric to be used for, we did
not count these cases as evidence of flaw 3.

B. A naive comparison

Table III enumerates the top five systems based on the
reported performance metrics. We consider the three most
common metrics: the EER, ACC, and FPR. For any single
metric, this comparison fails to produce a meaningful result
for several reasons.

e Not all publications report the same metric. Compari-
son across different metrics does not have a meaning-
ful interpretation.

e Individually using any of the three above-mentioned
metrics can lead to flawed conclusions because no
individual metric captures the complete performance.

e Just because a system optimizes a metric, does not
mean that it can be utilized in the target application
(e.g. an approach implemented for keyboards may not
work on touchscreens directly).

It is clear that such a naive comparison cannot lead to an
informed comparison of the proposed systems. It is even
difficult to identify if a system is suitable because some of
the metrics fail to provide information that is relevant to the
context of the target application (e.g. an FPR may not be
achieved at a target TPR).

EER % ACC % EPR %
0.00 0] | 99.30 [55] | 0.00 [11]
0.34 [24] | 98.61 [32] | 0.01 [9]
0.59 [21 | 98.47 [51] | 0.10 [35]
0.95 [40] | 98.00 [53] | 0.10 [5]
1.26 [55] | 97.00 [42] | 0.10 [40]

TABLE III: The top five authentication systems according to a
naive comparison of their best reported values for EER, ACC,
and FPR metrics. These metrics are reported the most often
but rarely yield a meaningful comparison. There is no clear
winner as each of the top five performers in each category
varies significantly.

Of importance, system evaluation requires the ability to
evaluate the potential security trades-offs of a system. Instead
of answering the question, “Has the system produced a single
metric that has surpassed a seemingly adequate threshold?”
implementers need to answer the question, “Can this system
be tuned to meet the needs of my application such that reported
metrics show possible security trade-offs?” Many of the current
metrics that are reported fail to answer the latter question.

These flaws occur in many of the publications surveyed.
Figure 3 enumerates the observation frequency of each of
the described flaws. We also note that almost two-thirds
of publications have skewed measurement populations. It is
common practice to recruit N participants, take M num-
ber of measurements from each of them, and then elect
one participant as the authorized user. When this is done,
the measurement populations are skewed because there are
N — 1 x M measurements from unauthorized users, and only
M measurements from authorized users. In some cases, we
were unable to assess whether the measurement population was
skewed because the publication did not report the sources of
measurements. This was the case in 23 of the 35 publications
we reviewed. However a few reported balanced accuracy in
an attempt to compensate for the skew. As we will see, had
the FCS been reported, we would have been able to visually
assess if there was measurement population skew. One of the
publications actually reported a normalized FCS but did not
use it for analysis.

III. RELATED WORK

We discovered only one publication in the systems security
community that has studied how performance metrics are
reported [13]. They studied flaws that occur in reporting for
continuous authentication systems. They note that the EER is
among the most popular metrics and observe the misleading
characteristics of only reporting the EER and false negative
rate (FNR). They also note that data sets are rarely made
available, which creates a barrier to follow-up analyses. They
additionally advocate for the use of the Gini Coefficient (GC)
which is functionally related to the AUROC. We show that
the GC and AUROC are also flawed metrics that hinder the
comparison and implementation of a system and we instead
advocate for the combination of FCS and the ROC.

Bonneau et al. [3] compared different types of authenti-
cation systems to text passwords with qualitative metrics in
usability, deployability, security. They provide a wide range
of real-world constraints but they did not provide quantitative



approaches to evaluate the metrics. In contrast, we focus on
quantitative metrics in this paper.

The efficacy of the EER in communicating performance
has been questioned in other fields [37]: the EER has the
significant disadvantage of representing only a single point
in the performance continuum and that this misrepresents the
capabilities of a system. The paper [37]: argues for the ROC
as the main performance metric but does not consider how
measurements are separated, nor the utility of looking at score
range overlap (we will address how these factors limit the
utility of the ROC). Others [39], [14] have argued for using
the ROC curve over the accuracy as a performance metric.
Papers from several fields, including clinical medicine [56],
chemistry [4] and psychiatry [47], have been arguing for
the use of the ROC. Although many disciplines call for the
usage of the ROC, the interpretation and consequences of a
classification error are distinct to each discipline. In our work,
we focus on classification error in the context of authentication
and show how the ROC alone is an inadequate metric.

Prior research has used normalized histograms to estimate
score distributions [26]. This approach is fundamentally differ-
ent from what we propose. We propose that an unnormalized
metric - the Frequency Counts of Scores (FCS) can be used
to diagnose security flaws for authentication systems. This
approach is not widely known or applied.

Some of the flaws we discuss may be known in the machine
learning community. For example, previous research in ma-
chine learning has discussed population skew [14]. However,
our work clearly shows that our suggestions are unknown in
this context and novel to the authentication systems commu-
nity. Thus, it is imperative that the flaws and our proposed
recommendations are discussed.

In summary, using EER as a performance metric has been
questioned in continuous authentication systems and other
fields. However, there is no work that propose a convincing
alternative metrics to EER. We are the first to propose the
FCS in addition to the ROC to augment the comparability
of authentication systems. Although prior texts discussed the
normalized histogram for estimating score distributions, we
are the first to use the unnormalized FCS for diagnosing
security flaws of authentication systems. The FCS addresses
the deficiencies in the availability of data for analysis by
enabling analyses to be done on the distribution of scores.
This is true even in cases where the data may be sensitive and
cannot be made available to the public. The FCS can be used
to directly identify thresholds that fit the application criteria.
Analysis of the scores can give insight into the modifications
a score function might need to achieve better separation of
users. With FCS, we can identify two types of flaws in the
surveyed publications in top venues: incomplete performance
reporting and misleading metric interpretation.

IV. MACHINE LEARNING IN AUTHENTICATION SYSTEMS

Authentication systems that utilize machine learning can
use a variety of methods to distinguish users (e.g. fingerprints,
visited locations, and keystroke dynamics). Regardless of the
authentication method, the machine learning methods used to
classify the measurements are the same. Figure 4 shows how

machine learning in most authentication systems includes three
major operations: preprocessing, scoring and thresholding.

In the preprocessing operation, the measurements are fil-
tered, re-centered and scaled [43]. This operation may discard
measurements that fail to meet any admissibility criteria the au-
thentication system may have (e.g. measurements that are too
short). Scoring applies a mathematical function (f : M — R)
to the measurements to generate a numerical summary of the
measurements (by numerical summary, we mean a number
that is used to describe a characteristic of a dataset). Scores
of measurements from authorized users by convention score
higher (to the right of) than those of unauthorized users [23].

The scoring operation is the most critical part of the
authentication process. Scoring measurements well enables
unambiguous classifications by separating measurements. The
better scoring is at separating measurements, the fewer errors
will be made. The scores between different authentication
systems are rarely comparable and bare no direct relevance
to each other, even if the systems measure the same thing.

Thresholding uses the score (a numerical summary) as
evidence for a decision. The choice threshold establishes the
minimum required score to be deemed authorized. For any
user’s measurements, if the score is below the threshold, the
user will be denied access. Similarly, if the user’s score is
above the threshold, the user will be granted access. The
further away the score is from the threshold, the more confident
we can be in our classification. Thus, user measurements that
score significantly higher than the threshold are considered
strong evidence for a decision to grant access. User measure-
ments that score significantly lower than the threshold yield a
confident decision to deny access. In this sense, the choice of
threshold dictates the strength of the decision.

A. How authentication systems research is consumed

While there is no formula for implementing a proposed sys-
tem from its publication description, there is a common theme
that many publications follow. Many publications start with a
description of what is measured and why it is important to be
measured. A case then is made for why the measured quantities
will produce good performance or have some additional benefit
(e.g. easy to remember, resistant to some types of attacks, and
require fewer resources). A classification algorithm is typically
chosen based on criteria such as ease of implementation or
good performance with available data for a chosen metric.
Finally, a user study is performed to validate the design choices
made, demonstrate the claims of utility or defensibility, and
potentially compare to existing systems.

An implementer of these systems will have to determine
what was measured from the description, and then collect those
measurements. The implementer will then need to use the
classification and compare the performance metrics achieved
by their implementation against those reported in the publi-
cations. The implementer will have to pick a system based
on a comparison of the reported performance values, the
ability to recreate the measurement apparatus (e.g. collecting
heart rhythms or breath sounds), and applicability of the
system’s benefits to their specific case (e.g. the need for
resistance to shoulder surfing). As we will see, comparing
performance values between publications is often challenging
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Fig. 4: The use of machine learning as a classifier is common to many authentication systems. The preprocessing phase prepares
measurements by filtering, re-centering and scaling. The scoring phase applies a mathematical function to the measurements to map
them to a number. The thresholding phase compares the number to a fixed threshold to make a decision. The full authentication
system feeds measurements taken from the user to the machine learning classifier and then evaluates the performance based on

the decisions that come out of it.

for a variety of reasons, complicating the process of choosing
a system. Implementing the classification algorithm can also
prove daunting because the descriptions are often inadequate
(e.g. often lacking critical parameter values).

B. How classifiers work

The performance of a classifier is influenced by two major
factors. The first is how well the scoring function separates
the measurements from different users and the second is how
well the threshold is chosen.

The scoring operation plays the most important role in
the authentication system performance. The score function’s
ability to separate measurements via their score values reflects
the underlying capability of the measurements collected to
separate users. The score function can be seen as extract-
ing information, in the form of score separation, from the
measurements. If all the measurements from authorized users
are distinct from the measurements of unauthorized users, an
optimal score function was achieved. If the distinction between
authorized and unauthorized users is inadequate, the score
function will be inadequate.

The thresholding operation comes immediately after the
scoring operation in importance. The selection of a threshold
represents the choice of a compromise between error types that
a classification system can make [27]. It cannot eliminate error;
it can only trade one type of error for another (e.g. decrease the
error of authorizing illegitimate users by increasing the error
of denying legitimate users). If the scoring function provides
good separation, there will be many choices of threshold that
yield a good compromise between the error types. Several of
the metrics (e.g. EER and ACC) fix a specific threshold and
derive a performance metric value from this fixed point. The
threshold is often chosen to optimize this metric and it is only
this optimized value that is reported.

C. Why authentication systems make mistakes

From a security standpoint, what distinguishes one system
from another is not the measurements they collect, but how
well they tell authorized users apart from unauthorized users.
For example, the problem of granting access to the wrong
person has severe consequences if the target application is
banking. On the other hand, the problem of denying access
to the correct person is not a significant infraction if the target
application is loyalty discounts.

Measurements collected from users are often random with
an unknown distribution. When these random measurements
are fed into a scoring function, the resulting scores will also be
randomly distributed. These variable scores will be compared
against a fixed threshold and a decision will be made to grant
or deny access based on this comparison. If the randomness
of the measurements causes the score to incorrectly cross the
threshold, an error is made.

The scores of measurements from authorized users score
higher than measurements from unauthorized users; therefore,
if a score falls above the threshold, it is assumed to have come
from an authorized user. If a score is below the threshold,
it is assumed to have come from an unauthorized user. In
the ideal case, all authorized users’ measurements will score
much higher than those of unauthorized users. This, however,
is rarely the case. Often the scores from both types of users
overlap (see Figure 2) because of the randomness in the
measurements. The greater the overlap between scores, the
more likely it is that the system will make a mistake and thus
make more errors [19].

V. COMMON PERFORMANCE METRICS
USED IN AUTHENTICATION

For every decision a classifier must make, there are four
possible contingencies: (1) authorize a legitimate user (true
positive or TP), (2) authorize an illegitimate user (false positive
or FP), (3) deny an illegitimate user (true negative or TN), and



Measurement Source

Authorized Unauthorized
(Positive) (Negative)
Grant Access
(Positive) s FP
Deny Access
(Negative) EN ™
_ _TP _ FP
TPR = 7pirw FPR = $po7w
_ TP+TN
ACC = TPITN+FNIFP

TABLE IV: For a single value of the threshold, the confusion
matrix (CM) arranges the counts of all possible contingencies
in a grid.

(4) deny a legitimate user (false negative or FN). The decision
counts (TP, FP, TN, FN) are the fundamental components
of all performance metrics. To compute these counts, the
authentication system is used on a set of measurements where
the ground truth is known. Once the scoring and thresholding
is complete, the authentication system will produce a set of
decisions based on those measurements. The counts are then
computed by comparing the decisions with the ground truth.

There are two families of metrics which differ in the metric
from which they are derived (shown in Figure 5). The families
are: (1) confusion matrix (CM) derived metrics which depend
on the threshold and (2) ROC curve derived metrics which may
not depend on the threshold. The CM is a count of all possible
contingencies arranged in a grid. This contingency table is
computed for a fixed value of the threshold and thus depends
on it. All related metrics inherit this dependence. Many of the
other performance metrics are ratios of the counts enumerated
in the confusion matrix (e.g. ACC).

The ROC represents many confusion matrices under vary-
ing values of the threshold and thus does not depend on it.
Metrics derived from the ROC may be specific points on the
ROC, such as the EER, or functions of the ROC (e.g. AUROC).
Since the EER is a specific point on the ROC, it corresponds
to a specific value of the threshold. Figure 5 shows the
relationships between the CM related metrics and ROC curve
related metrics.

A. Confusion Matrix (CM) related metrics

Table IV shows a confusion matrix and the related metrics
derived from it. The true positive rate (TPR) and false positive
rate (FPR) are two key metrics that are computed from a con-
fusion matrix to evaluate authentication system performance.
TPR is interpreted as the probability that an authorized user
will successfully authenticate and FPR is the probability that
an unauthorized user will successfully authenticate. FPR is
sometimes called the false accept rate (FAR). Other ratios
often reported include the false negative rate (FNR) which
is alternatively called the false reject rate (FRR), and the true
negative rate (TNR).

The maximum accuracy (ACC) is another key metric for
authentication system performance. It is interpreted as the
relative frequency of a correct classification of a measurement
source, regardless of its origin. Since the accuracy is a function
of the threshold, often the value of accuracy that is reported
is the maximum across all thresholds. The maximum accu-
racy represents the best performance the classifier can offer,
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Fig. 5: Many of the commonly reported metrics are derived
from the CM or the ROC. The ROC represents multiple CMs
under varying thresholds. The connection between the ROC
and the CM is realized through the (TPR, FPR) pairs. Each
point on the ROC is one (TPR, FPR) pair for a fixed value of
the threshold.

however, solely reporting accuracy can be misleading. Because
only a single threshold is represented in this performance
metric, consumers of the research cannot know how the
accuracy will change if the threshold changes. This may lead
to the conclusion that a system is unfit for an application
because the accuracy achieved is below an error requirement
even though a judicious choice of threshold would satisfy an
FPR requirement (at the cost of some TPR).

1) Other accuracy metrics: The maximum accuracy is not
the only accuracy metric reported. There are several other
metrics that are functions of the values across the columns
of the CM, such as the balanced accuracy (BAC), F} score
and half total error rate (HTER). Some of these metrics, such
as BAC and HTER, attempt to weight the ratios to adjust for
skews within the measurement populations. We note that these
metrics are also functions of the confusion matrix, and thus
still dependent on the value of the threshold. These metrics are
reported less frequently than others considered in this paper,
and they share many issues with the metrics that we consider.

B. ROC curve related metrics

Despite the overwhelming reliance on single threshold
metrics generated by a confusion matrix, they have limited
utility. Single threshold metrics present an incomplete picture
of the system’s performance. All of these metrics give no
indication of how changes to the threshold affect the behavior
of the metric. If the thresholds that were used to derive
the metric are not reported, it is not possible to repeat the
experiment to determine if the achieved metric values can be
obtained in subsequent trials. To implement a system, some
insight into the relationship between the performance metrics
and the threshold is needed.

The ROC is computed by varying the authentication thresh-
old from the maximum to the minimum possible values
of the score and calculating the TPR and FPR for each
threshold value. As the threshold lowers, scores that were
not initially high enough to grant access will eventually rise
above the threshold. Consequently, the probability that an
unauthorized user is erroneously granted access because the
random variation caused their measurements to score above
the threshold. However, if the random variation caused an



authorized user’s measurements to score lower than is typical,
the user would still be granted access because the threshold is
lower. Eventually, as the threshold is lowered, both the number
of TPs and the number of FPs will increase. Each value of
threshold represents a specific trade-off between the TPR and
FPR. Taken as a pair, the (FPR, TPR) is a parametric function
of the threshold. This parametric curve drawn as the threshold
varies is the ROC curve (see Figure 2). Also shown is the line
of indifference, y = x (green line of Figure 2). If the ROC
is close to this line, the system performance is comparable to
blind guessing.

There are three common single-number performance met-
rics for summarizing the ROC curve: the EER, the AUROC
(or AUC in some texts), and the GC.

1) Equal Error Rate (EER): As Figure 2 shows, it is the
point on the ROC where the FPR =1 — TPR. It is easily
identified as the intersection of the line y = 1 — z (red
dashed line of Figure 2) and the ROC curve. It represents the
probability of making an incorrect positive or negative decision
in equal probability. Since the ROC is a parametric curve, there
is a specific value of the threshold that corresponds to the EER.

2) Area Under the ROC Curve (AUROC): The AUROC is
defined as the area below the ROC curve and is depicted as
the shaded region in Figure 2. It reflects the probability that
a random unauthorized user’s measurement is scored lower
than a random authorized user’s measurement [23]. It can be
interpreted as a measure of how well a classifier can separate
measurements of an authorized user from their unauthorized
counterparts. In Figure 2, the AUROC is computed for the
given ROC.

3) Gini Coefficient (GC): The Gini Coefficient (GC) is
functionally related to the AUROC as follows [22]: GC =
2 x AUROC — 1. It also tries to quantify how much separation
there will be in the measurements.

VI. PROPOSED METRIC:
THE FREQUENCY COUNT OF SCORES (FCS)

We propose the Frequency Count of Scores (FCS) as an
additional performance metric to be reported with the ROC
curve. Figure 2 shows examples of the FCS coupled with the
ROC. The FCS provides the ability to visually diagnose and
explain the achieved performance reported in the ROC because
the ROC can be constructed from the FCS. By examining the
distribution skew and overlap of the score frequencies, we can
determine if the proposed systems exhibit any biases towards a
positive or negative decision. We can also justify the reported
performance observed in the ROC by examining how well the
score distributions are separated. Good score separation will
yield good system performance which will be reflected in an
ROC with a low EER. Sensitivity to changes in the threshold
can be assessed by looking at how the scores are spread relative
to each class. The two metrics complement each other.

The FCS is a fundamental metric that is different from the
ROC and the confusion matrix. It is considered fundamental
in this context because it is not derived from the CM or the
ROC. It can be used to diagnose model problems, compare
systems, and validate implementations. The FCS is constructed
by identifying the maximum and minimum scores across all

measurements and then choosing a common bin width over
this range. Scores are separated by the ground truth and then
plotted as separate histograms which are binned using the
common bin width. The bin width is a free parameter that
can be chosen to reflect the amount of data available and the
observed score variability.

The FCS should not be normalized to make it look like a
distribution. The unnormalized version makes the population
skews, score distribution imbalances and score overlap regions
visually apparent. The FCS is a useful addition to the reported
metrics because it allows a research consumer to visually
perform additional analyses which would not be possible with
the ROC or CM metrics alone.

How the scores are distributed plays a central role in the
performance of a system. A large majority of the decision
errors are made because the random variation in measurements
causes the scores to erroneously cross a chosen threshold.
Because the measurements are not deterministic, the scores
are variable even if they are a deterministic function of the
measurements. How well the score function separates mea-
surements in the presence of this variability dictates the range
of possible error trade-offs between TPR and FPR for a system.
If the separation of scores is large, then it is possible to achieve
high TPR while keeping the FPR low. Since each choice of
threshold represents a compromise between TPR and FPR,
larger score separation implies better choices of threshold.

1) The FCS can be used to gain performance insights
beyond what the existing metrics show: Many of the existing
metrics can actually be derived from the FCS. For example,
the TPR can be computed as the relative frequency of positive
scores that lie beyond the threshold.The proportion of the score
range from authorized and unauthorized users that overlaps is
important because many of the performance metrics, such as
the EER and ACC, attempt to summarize system performance
by quantifying how often a measurement from either user will
get a score in this overlapping range. The ACC and EER
both depend on the width of the overlapping region as well
as the relative frequency of the scores that fall within this
overlap. Neither metric considers the portion of the scores
that lie outside the overlapping score region for either score
distribution (authorized and unauthorized). It is this lack of
consideration for these other aspects of the scoring that cause
these metrics to be incomplete. By reporting the FCS, difficult
concepts can be easily visualized. Consider the AUROC: its
definition is very technical, and is thus difficult to interpret.
However, if we look at two different FCS and note the score
overlaps are smaller in one vs. the other, we have captured the
essence of what the AUROC is trying to measure.

Some insights into system performance that only the FCS
can provide are gained by considering scores that lie outside
the overlapping region. Performance metrics, such as the TPR,
are directly impacted by the portion of these types of scores.
For example, authorized users’ scores that lie outside the
overlap can only contribute to the TPR. If this portion is not
empty, then the TPR may never practically reach zero (e.g.
there is a threshold for (A) of Figure 7 that achieves non-zero
TPR at zero FPR because scores above this threshold could
not have come from unauthorized users). Although this can be
visually confirmed on the ROC, it would be difficult to identify
why it happens from the ROC.



The differing slopes of the ROCs in Figure 7 do not indicate
how sensitive the classifier is to changes in the threshold.
A research consumer cannot ascertain how far along the
ROC a change in the threshold will move them purely by
looking at the ROC. However, this information can be gathered
by looking at the spread of the score distributions in the
FCS. If the scores are spread wide relative to the width of
the overlapping region, then the classifier is not particularly
sensitive to the threshold. If the width of the overlapping region
is small compared to the score distributions, small changes in
the threshold will cause significant movement along the ROC.

If scores from authorized users that are above the overlap
occur with higher relative frequency than scores within the
overlap, then the authentication system will produce more
positive declarations. A similar result holds for the TNR and
unauthorized users’ scores which are below the overlap. When
examining the FCS of a proposed system, if only one user has
scores that lie outside the overlap (e.g. FCS (F) in Figure 8),
the system may be biased towards decisions in favor of that
type of user (e.g denying access since most of the scores range
comes from unauthorized users). Without the FCS, it is difficult
to determine if a proposed system has this kind of flaw, even
if the ROC is reported.

VII. FLAWS WITH EXISTING METRICS

In this section, we discuss in detail the implications of the
observed flaws we summarized in Section II. We note the cases
where the FCS aids in diagnosing whether a flaw is present or
explains why the flaws occur.

A. Incomplete performance reporting

Skews within the measurement population can artificially
inflate some CM derived metrics. Measurements are often split
into training and testing data. Training data is used to build a
model and testing data is used to compute performance met-
rics. If the measurement population is skewed, both data sets
will exhibit this skew. If this approach is coupled with a report
that uses only a single performance metric, misconceptions
arise. For example, in one of the papers we reviewed, the
authors only report the FNR. Unfortunately, their measurement
population was skewed. From their reporting, we cannot know
whether the low FNR is due to their system’s ability to discern
users or due to a skew in the measurement population.

If we only have a single metric available, such as the
ACC for two systems we are trying to compare, the system
with the better value can be deemed superior. On the surface
this seems like a perfectly fine criteria. For example, given
that the interpretation of the ACC as an approximation of the
probability of a correct classification, a higher ACC would
seem to indicate superior performance. Unfortunately, relying
on the ACC as the sole criteria can be very misleading. It
is possible that the ACC value was inflated by skew in the
measurement population.

When a classifier has poor ACC, the scores from authorized
and unauthorized measurements will have significant overlap
(as seen in the left side of Figure 6). These overlapping
scores are ambiguous and thus difficult to classify. If we
skew the measurement population to have mostly unauthorized
users, the scores from the unauthorized users overshadow the
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Fig. 6: Measurement population skew can cause low accu-
racy classifiers to have artificially high accuracy values. On
the left side, the set of 2000 measurements is evenly split
between authorized and unauthorized. We drew the FCS and
computed maximum accuracy ACC =~ 60% and the ROC
under this measurement split. On the right side, the set of
2000 measurements is skewed to include 10% authorized and
90% unauthorized measurements. Because of this skew, the
FCS shows that the positive scores are effectively buried
in the negative scores. The maximum accuracy achieved is
ACC =~ 90% which is reached by choosing a threshold that
results in mostly negative declarations. This reported accuracy
is misleading because the scoring function was the same.

scores from the authorized users’ measurements (right side of
Figure 6). In this instance, possible values of the threshold
that cause the classifier to make mostly negative decisions
(denials of access) will be favored because most classifiers
are optimized by minimizing the error over the data on which
they are trained [1]. Since the test data is skewed in the same
way, a classifier that returns mostly negative decisions will be
correct most of the time. This skew in the test data will make
the classifier appear to be more accurate because it is being
tested on data it would always get correct.

While the detrimental effects of skew are evident for the
ACC, any metric that depends on both N and P at the same
time (cross column in the confusion matrix of Table IV)
will be affected by population skew [14]. For reference,
N = TN 4+ FN and P = TP + FP. Figure 6 also
demonstrates how the ROC is mostly unaffected by population
skew. Population skew can mask the poor score separation
by providing performance numbers that are artificially high.
However, these flaws are easily identified by the frequency
count of scores. The unnormalized counts in FCS show that
the total volume of scores from unauthorized users vastly
outnumber those of authorized users. This visualization helps
designers easily examine the skewed measurement population.
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Fig. 7: The EER does not represent a single ROC curve.
Instead, it represents a family of ROC curves. While each
member of this family have similar EER, their performance
varies significantly across the range of possible thresholds.
Unexpected sensitivity to changes in the threshold can lead
to surprises in system behavior when the thresholds used in
the implementation deviate from the published values. In this
case, ROC (F) is mostly inferior to ROC (A) because (A)
achieves a higher TPR at 0.0 FPR. However, according to the
EER, they are essentially the same. If an implementer has a
specific TPR or FPR target, the EER may be of little value to
them as they cannot determine how the TPR/FPR may vary
between the EER and their target. It should be noted that if
the target application can tolerate an FPR > EER then (F) is
the superior choice, however this tolerance cannot be known
to the researcher. There is no skew in these examples.

B. Results without model parameters

In the ideal case, the code used to derive the results of a
study would be published along with the proposed system.
This may not be feasible in all situations. However, most
of the systems that use machine learning do not implement
the algorithms from scratch. Instead, they often apply to
existing implementations in libraries such ask Weka [21] or
libSVM [6]. The novelty of these proposed systems often lies
in the complete end-to-end performance, not the algorithm
used to make decisions. Implementations of the proposed
systems can be simplified by having the model parameters
(e.g. SVM slack factor, number of hidden layers in the NN,
and learning rate) that were used to derive the reported results.
These parameters control the behavior of the algorithm and
reflect a value judgment made by the researcher based on
their understanding of the how the algorithm interacts with
the measurements.

By providing the parameters of the algorithms used, authors
enable replication of the research, benefiting the community in
two ways. First, the data analysis can be replicated exactly to
determine if other factors contributed to the reported results.
If the data is also available, follow-up analyses can be more
easily performed. Updated versions of the libraries that may
have fixes for vulnerabilities or performance enhancements
can be validated against existing results. Second, any poten-
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tial implementers of the system only need to replicate the
measurement collection and data processing portions of the
proposed systems. The properly parameterized software library
can essentially be treated as a black box.

C. Misleading performance metric interpretations

A key issue with reporting only a single performance
metric as a summary of the system is that the value of the
metric does not uniquely identify the classifier from which it
came. This information is lost, and with it all knowledge of
how the system performs when the parameters are adjusted.
In Figure 7, we can directly observe this issue in the EER
and AUROC performance metrics. The graph shows several
ROC curves from different score functions that all have very
similar EERs and AUROC:Ss. Each of the ROC’s linear portions
have different slopes. These differing slopes reflect different
sensitivities to the threshold, due to the difference in how the
scores are distributed. A change in the threshold has much
more impact on the ROC (F) than on the ROC (A) curve, thus
an implementation can fail in unexpected ways because the
implementers were unaware of this difference.

If we are only given the EER to evaluate a system and
we have a specific target for our TPR or FPR, we are unable
to determine from the EER if our target will be met. This
information is not knowable because many ROCs (and thus
many classifiers) have the same EER. Because we do not
know which classifiers were used, there are many possibilities
for how the performance can vary with the threshold. As
we note in the Introduction, many applications have specific
requirements for the TPR or FPR, which are attained by
controlling the threshold.

By definition, all ROCs must connect the point (0, 0) to the
point (1, 1) (i.e. setting the threshold of a classifier higher than
the maximum achieved score will result in O TPs and O FPs,
whereas setting it below the minimum will have the opposite
effect). The EER fixes a third point that the curve must pass
through. However, as depicted in Figure 7, these three points
do not uniquely determine the curve. There are many ROCs
that correspond to a small range of EERs due to what the EER
is measuring.

The EER is the point on the ROC in which the probability
of an incorrect denial of access is equal to the probability
of an incorrect granting of access. Both of these probabilities
are proportional to the width of the region of overlap in the
scores. In Figure 8, the corresponding FCS for each ROC in
Figure 7 is depicted. Each score distribution has the same width
of overlap region, however, the overlapping region moves to
the right as the figures are read left to right, top to bottom. As
the overlapping region moves right, it consumes more of the
score range for the authorized users’ measurements.

As the authorized users’ score range shrinks, the unau-
thorized users’ score range grows to maintain the width of
the overlap. Because all of the overlapping regions are the
same width in all cases, a threshold can be identified for each
score set that strikes the same balance between the two error
types (FP and FN). This threshold will be in a different place
for each of the different score distributions. However, each
classifier can be tuned to achieve the same EER by picking
the correct threshold, even though their individual tolerances to
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Fig. 8: These FCS graphs show where the shapes in Figure 7
come from. They were constructed so that as we move from
left to right and top to bottom, the region of scores that an
authorized source has to definitively identify as authorized is
shrinking, however the width of the overlap stays the same.
This explains why (A) has non-zero TPR at FPR(0.0) but
(F) does not. As the authorized score region is consumed by
the overlap in scores, there are fewer distinct scores from
the authorized user and thus fewer ways to get a purely
true declaration. This difference explains why the range of
possible trade-offs is worse for (F) than (A), as reflected in the
slope of the ROC. The ROCs are linear because these score
distributions are uniform (purely for example purposes). If the
distribution shape changes but the overlap region remains the
same, the EER behavior will be unchanged, however the ROC
will be more curved. There is no skew in these examples, only
the score distributions change.

threshold shifts vary greatly. Since there are fewer authorized
users’ scores, the sensitivity of the classifier to changes in the
threshold goes up because each change has a greater impact on
the classifications that are made causing the distinct differences
in slope in Figure 7.

A key shortcoming of the EER is that it focuses only on
the overlap between the score ranges. It fails to consider the
proportion of the score range that lies outside the overlapping
region for either measurement source or any asymmetries
in the distribution. Only scores that are within the overlap
contribute to classification errors because they can be con-
fused with scores from the alternate class. The proportion of
scores outside the overlap is as important as the width of the
overlap itself because it governs the probability that an easily
confused score will be observed. The EER fails to account
for asymmetries in the score distribution. The graph of FCS
depicted in Figure 8 makes the proportion and the asymmetry
visually apparent.
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There is no measurement population skew in any of the
graphs in Figure 8; instead, the authorized range is shrinking.
The unnormalized frequency count shows that the probability
mass across authorized measurement scores is being redis-
tributed over a smaller range. Thus, the score distributions
are becoming more asymmetric. The classifier is becoming
more biased because the probability of observing a score that
could only have come from an authorized user’s measurements
is getting smaller. Similar to the skew accuracy problem of
Section VII-A, observing the weight and range of the scores
from both measurement sources allows for the identification
of problems, with the authentication system making the over-
lapping region width and distribution asymmetry apparent.

1) AUROC and GC are also flawed: The AUROC is inter-
preted as the probability that scores of differing measurement
sources separate well [23]. This probability is proportional
to the width of the overlap in score range. As the width
of the overlap gets smaller, the probability increases. Thus
bigger values of the AUROC are desirable. If the AUROC
— 1, then all authorized users’ measurements will score higher
than unauthorized users’ measurements. The probability of
separation is maximum, thus there may be a threshold that
achieves perfect classification. Since the Gini Coefficient (GC)
is functionally related to the AUROC, it is also functionally
tied to the width of the overlap in score range.

Unfortunately, the AUROC and GC also exhibit interpreta-
tion flaws because they are summary metrics. They also mask
the complexity of the classifier performance. In Figure 7, the
AUROC was computed for each of the curves (the GC can
be computed from the formula). As expected, the range of the
AUROC does not vary significantly even though the resulting
ROCs are very different. The AUROC is within the range
(0.84—0.88) across the different classifiers. The AUROC does
not vary due to the width of the overlapping region which is
held constant, as seen in Figure 8. Like the EER, the AUROC
focuses heavily on the overlap of scores.

VIII. RECOMMENDATIONS FOR REPORTING: SOLUTIONS
TO THE PITFALLS OF CURRENT REPORTED METRICS

In the ideal case, authors would make all source material
available, including data and code. This approach would yield
the best results for system evaluation because evaluators and
implementers could verify their implementations against the
reference provided by the researcher.

Although there is no one-size-fits-all strategy for analysis,
we propose guidelines that can be followed to simplify the
task of evaluating the proposed system. The following three
suggestions may aid consumers of research, including an
implementer who needs to choose the best authentication
system for their target application.

First suggestion: Report as many metrics as possible in-
cluding both the ROC and the FCS. These two graphs enable
comparisons across many parameterizations and serve as a
visual check for biases. The FCS enables both researcher
and reader to diagnose issues with population skew and score
distribution via immediate visual analysis. It can also serve as
a diagnostic tool for implementations to verify that the scores
produced by the implemented system are within the range the
researcher originally reported. Other metrics such as the EER,



AUC and ACC should also be reported for comparison with
existing literature. These metrics can be added to abstracts
and introductions for glanceability but are not a substitute for
a complete analysis that includes an ROC and FCS.

Second suggestion: If the FCS cannot be reported, report
the ROC curve to enable an implementer to decide if the system
has a threshold that meets the error performance requirements
of their target application. Implementers can find specific
points on the ROC curve that satisfy their requirements and be
assured that if the implementation is faithful to the proposed
system, the can find a value of the threshold that yields the
chosen error rates.

Third suggestion: If the ROC cannot be reported (e.g. for
space constraints), report multiple summary metrics that are
not functionally dependent. Since each of the summary metrics,
EER, ACC, and AUROC only represent a single aspect of the
system’s performance, the reader can obtain a more thorough
evaluation of the performance if all three are reported. Report-
ing all three gives readers the ability to compare the proposed
systems from the existing body of literature that often only
report one or two of these metrics.

A. Case Study

To demonstrate how to use the ROC and FCS to compare
systems, we evaluated the authentication performance of three
existing datasets via the ROC and FCS. We will first describe
the datasets and classifiers that were built. Each publication
provides a dataset and a system model to test their dataset.
When the classifier is used on the dataset, an FCS and
ROC will be computed. Because each publication’s dataset
and classifier has its own population distribution and score
function, we expect the FCS and ROC from each publication’s
proposed system to be very different. We will show how to use
the ROC and FCS to decide between these systems.

1) Datasets and classifiers used to create ROCs and FCSs:
The SVC2004 dataset [52] is a public signature dataset with 40
types of signatures and 20 genuine samples for each signature.
We implemented the linear classifier of Principal Component
Analysis, proposed by Kholmatov [28]. The Touchalytics [16]
is a public touching behavioral biometric dataset with 41
participants’ continuous touching behavior data. We built the
authentication system with k-nearest-neighbors as described
in their paper. We selected k=100 and each user contributed
150 periods of touching behavior as templates. The dynamic
keystroke dataset [29] is a set of keystroke features that was
collected while users input a password. Typing behavior was
observed for 51 users, and each user contributed 400 typing
samples. The proposed system was built with a one-vs.-all-
classifier for each user. In our study, we randomly chose a user
and built the authentication system with Manhattan (scaled)
similarity that was described in the paper.

2) Analysis of these three systems with the FCS and ROC:
In Figure 9, we display the ROC curves for all three systems.
We assumed that the implementer has a fixed requirement
on the FPR of 0.1. To choose a system that meets our
requirements, we drew a solid black vertical line at our FPR
limit. Thus, we can visually identify the system that has the
highest TPR for our FPR limit. In this case, Keystroke is
the clear winner, even though it does not have the lowest
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Fig. 9: Comparing systems with a specific FPR target in mind
is done by finding the highest TPR for that FPR. To find the
highest, TPR draw a vertical line at that FPR and then identify
the ROC that crosses the line at the highest point. A similar
procedure works for specific TPR targets with horizontal lines.

EER. Thus, potential implementers would not able to assess a
proposed system when given only the EER.

We also see the slope of the ROC near the fixed FPR
target. Observe how quickly the TPR degrades if we need to
make the FPR tolerance lower. For example, the segment of the
ROC from SVC2004 classifiers around the FPR target is very
steep, indicating that a small change in threshold will lead
to a significant change of the system’s TPR and FPR rates.
In contrast, the ROC of the Keystroke dataset is very stable
because the TPR changes slightly with the change of FPR.
If we have an upper bound on the FPR and want a system
that gracefully degrades when the FPR target is lowered, the
Keystroke classifier is the clear winner. It should be noted that
if we could tolerate an FPR of 0.3 or higher, the Keystroke
system would be inferior to both SVC2004 and Touchalytics
when considering both the the TPR value for a fixed FPR and
the slope around a fixed FPR.

The FCS can be used to show the asymmetry of the score
distributions in detail. Figure 10 displays the ROC curves
of the three systems along with their corresponding FCS.
For example, the ROCs of SVC2004 and Touchalytics are
similar, but their FCS shows that the SVC2004 classifier has an
advantage because the authorized and unauthorized scores are
more separable than the Touchalytics classifier. Additionally,
the EERs of SVC2004 and Keystroke classifier are similar,
but their FCS shows that the SVC2004 classifier is superior
because the unauthorized and authorized users’ scores overlap
significantly in the Keystroke dataset.

From the FCS of Figure 10, we can observe the asym-
metry in the scores. The unauthorized users’ scores in the
Touchalytics classifiers almost cover the entire score range,
indicating that the classifiers can never be certain about grant-
ing access. Every authorized user’s score could have come
from an unauthorized user, thus this system may be biased to
deny access more often. The Keystroke classifiers are biased
in the other direction: all unauthorized users’ scores could
have come from an authorized user. The SVC2004 classifiers
have some score range which does not overlap, and thus can



% 1rc = 30 Authorized Users
5 ;
% EER ~0.185 8 [Junauthorized Users
> AUC =~ 0.869 2,20
% 05 Sl o
g S S 10
S e o J
= 0 — L o i nn
0.5, 1 0 0.5 1
False Positive Rate(a) SVC2004 Scores
2 =30
& S Authorized Users
° 8 20 [Junauthorized Users
= >
= %)
(2] c
& S 10
2 g
— -0
False P 05t Rat !
aise rositive rate .
(b) Touchalytics
2 1 = 3000
x S 3 Authorized Users
EER ~0.198 (| ;
0] O Unauthorized Users
2 AUC~ 0.856 >, 2000
» 0.5 ~o 2
g S © 1000
g o] 8
= 0 =
0.5. 0 0.5 1
False Posﬁlve Rate Scores

(c) Keystroke

Fig. 10: The FCS can be used to decide between different
systems that have similar EERs and ROCs.

make some decisions with certainty. If our application needs
to be balanced, SVC2004 is our best choice. If the application
needs to be biased towards denials, then we should choose
Touchalytics. If we want more positive decisions, Keystroke
has a higher probability of delivering them.

We have showed how relying on the EER can produce
erroneous conclusions about authentication systems. We have
provided evidence for the limitations of reporting the EER
in three systems: Keystroke, SVC2004, and Touchalytics.
We have also showed how the ROC and FCS should be
implemented as a solution to the limitations of single number
summaries. In Figure 10, we show how the FCS compliments
ROC to improve reporting authentication system metrics.

IX. DISCUSSION AND CONCLUSIONS

We have proposed robust metrics for evaluating machine
learning-based authentication systems: ROC curves and their
corresponding FCS. We argue for the ROC as a method
of reporting classification performance because it is able to
provide an overview of the authentication performance across
all thresholds. However, the ROC misses some scoring details,
such as the difference in the width of score ranges and
the asymmetry of score distributions. This scoring detail can
indicate whether a classification bias is present in the scoring
function and how sensitive the error rates are to changes
in the threshold. Therefore, we introduce the FCS as an
augmentation to the ROC curve. We believe reporting the ROC
and FCS together provides a robust metric for evaluating the
performance of authentication systems.

13

The commonly used authentication performance metrics,
such as EER, AUROC, GC and ACC, are inherently flawed.
EER only focuses on the overlap between the score ranges
and does not consider the proportion of the score range that
lies outside of the overlapping region. Since the scores inside
the overlapping region are the reason errors are made in
the authentication system, there always needs to be balance
between the two types of errors.

The two types of error rates of the system depend heavily
on the thresholds in the overlapping region of scores. If the
proportion of scores inside the overlap is large, one will likely
encounter a score that is difficult to classify. We show in
Figure 8 that with a similar EER, system (A) is much better
than system (F) because system (A) is able to completely
separate some of the measurements from different user types.
Therefore, EER, AUROC, and ACC hide important informa-
tion that could be used for comparison between authentication
systems. Even the ROC by itself provides a limited analysis.
While the differences between (A) and (F) visually manifest in
the ROC as a higher TPR at 0.0 FPR and a different slope, it is
not visually obvious why this happens or how the TPR changes
as the threshold changes. Reporting practices that focus on a
single metric limit the ability to compare systems by ignoring
these factors.

We introduce the FCS to augment the ROC in order
to evaluate and compare the performance of authentication
systems. The FCS is fundamentally different from the ROC
curve and the CM because it is not derived from either and
thus brings additional information into the analysis. We can use
FCS to detect the measurement population skew, asymmetries
in the scoring distribution and assess sensitivity to threshold
changes. Since the scores in FCS are not normalized, the
population skews are visually apparent. Usage of the FCS is
not limited to authentication systems. The ability to identify
distribution imbalance and threshold sensitivity is relevant to
any applications that use machine learning to decide where
their measurements come from.

We have illuminated the problems with current reporting
practices in authentication system research. Reporting these
single-number summaries alone is a barrier to comparison
between systems and can misrepresent a system’s potential.
For example, some metrics do not show the performance trade-
offs or whether performance degrades outside the conditions
for which the system was designed. We proposed a solution to
the limitations of current metrics: reporting a full set of metrics
that includes the FCS and the ROC. We argue that performance
reporting should be as comprehensive as possible and that the
the FCS and ROC can help in this regard by provides additional
information to evaluate authentication systems. We believe it is
crucial for our community to adopt more transparent reporting
of metrics and performance.
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