WHITTAKER COINVARIANTS FOR GL(m|n)
JONATHAN BRUNDAN AND SIMON M. GOODWIN

ABSTRACT. Let W,,,, be the (finite) W-algebra attached to the principal
nilpotent orbit in the general linear Lie superalgebra g, ,,(C). In this paper
we study the Whittaker coinvariants functor, which is an exact functor from
category O for g[mln((C) to a certain category of finite-dimensional modules
over Wy, ,. We show that this functor has properties similar to Soergel’s
functor V in the setting of category O for a semisimple Lie algebra. We also
use it to compute the center of W,,,, explicitly, and deduce consequences
for the classification of blocks of O up to Morita/derived equivalence.

1. INTRODUCTION

This article is a sequel to [BBG], in which we began a study of the principal
W-algebra W = W, ,, associated to the general linear Lie superalgebra g =
9l (C). This associative superalgebra is a quantization of the Slodowy slice
to the principal nilpotent orbit in g; see e.g. [P, GG, L1] for more about (finite)
W-algebras in the purely even case.

There are several different approaches to the construction of W. We begin
by briefly recalling one of these in more detail. Since gl,,,,,(C) = gl,},,(C), there
is no loss in generality in assuming throughout the article that m < n. Pick a
nilpotent element e € gg with just two Jordan blocks (necessarily of sizes m and
n), and let g = @ 7 8(d) be a good grading for e € g(1). Let p := @ - 9(d)
and m := @,_,09(d). We get a generic character x : m — C by taking the
supertrace form with e. Setting m, := {z — x(x) |z € m} € U(m), we then have
by definition that

W= {ue U(p) [um, < mU(g)}.

In [BBG], we obtained a presentation for W by generators and relations, show-
ing that it is a certain truncated shifted version of the Yangian Y(g[m). In
particular, it is quite close to being supercommutative. We also classified its
irreducible representations via highest weight theory. Every irreducible repre-
sentation arises as a quotient of an appropriately defined Verma module, all
of which have dimension 2. Then there is another more explicit construction
of the irreducible representations, implying that they have dimension 2™t for
some atypicality 0 <t < m.

By a Whittaker vector, we mean a vector v in some right g-module such that
ve = x(x)v for each x € m; equivalently, vm, = 0. This is the appropriate
analog for g of the notion of a Whittaker vector for a semisimple Lie algebra
as studied in Kostant’s classic paper [Ko]. From the definition of W, we see
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that the space of Whittaker vectors, which we denote by HY(M), is a right
W-module. We refer to H? as the Whittaker invariants functor. On the other
hand, for a left g-module M, it is clear from the definition of W that the
space Ho(M) := M /m, M of Whittaker coinvariants is a left W-module. The
restriction of this functor to the BGG category O for g (defined with respect to
the standard Borel subalgebra b of g such that bg = pj) gives an exact functor
from O to the category of finite-dimensional left W-modules.

The main goal in the first part of this article is to describe the effect of Hy
on various natural families of modules in O. In particular, in Theorem 3.14, we
show that it sends Verma modules in O (induced from the standard Borel b)
to the Verma modules for W. Our proof of this is elementary but surprisingly
technical, and it turns out to be the key ingredient needed for many things after
that. We use it to show that Hy sends irreducible modules in O of maximal
Gelfand—Kirillov dimension to irreducible W-modules, and it sends all other
irreducibles in O to zero. Moreover, every irreducible W-module arises in this
way. We also compute the composition multiplicities of Verma modules for W.
They always have composition length 2! where ¢ is the atypicality mentioned
earlier, but are not necessarily multiplicity-free. As another more surprising
application, we deduce that the center of W is canonically isomorphic to the
center of U(g); see Theorem 3.21. Thus central characters for g and W are
identified.

After that, we restrict attention just to the subcategory Oz of O that is
the sum of all of its blocks with integral central character. Let Oz be the full
subcategory of W-mod consisting of the W-modules isomorphic to Hy(M) for
M € Oz. We show that Oz is Abelian, and the Whittaker coinvariants functor
restricts to an exact functor

HQ:OZ—>62

which satisfies the universal property of the quotient of Oz by the Serre sub-
category 7Tz consisting of all the modules of less than maximal Gelfand—Kirillov
dimension; see Theorem 4.8. Thus, Oy is an explicit realization of the Serre
quotient Oz/Tz. By [BLW, Theorem 4.10], the quotient functor Oz — Oz /Ty is
fully faithful on projectives, hence, so too is Hy. This is reminiscent of a result
of Backelin [Ba] in the setting of category O for a semisimple Lie algebra. Back-
elin’s result was based ultimately on the Struktursatz from [S]. In that case,
Soergel’s Endomorphismensatz shows moreover that the blocks of the quotient
category can be realized explicitly in terms of the cohomology algebras of some
underlying partial flag varieties.

It would be very interesting to establish some sort of analog of Soergel’s
Endomorphismensatz in the super case. Ideally, this would give an explicit
combinatorial description (e.g. by quiver and relations) of the basic algebras By
that are Morita equivalent to the various blocks 65 of our category Oz. Note
these algebras are not commutative in general; e.g. see [B5, Example 4.7 and
Remark 4.8] for some baby examples. In Soergel’s proof of the Endomorphis-
mensatz, the cohomology algebras of partial flag varieties arise as quotients of
Z(g), which is also the principal W-algebra in that setting according to [Ko].
Paralleling this in the super case, we show that all the maximally atypical B¢’s
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can be realized as quotients of a certain idempotented form W of W see The-
orems 4.22 and 4.25. We also compute explicitly the Cartan matrix of Bg;
see Theorem 4.14 for an elementary proof based on properties of the Whittaker
coinvariants functor, and Theorem 4.27 for a proof based on the super Kazhdan-
Lusztig conjecture of [CLW, BLW] (which has the advantage of incorporating
the natural grading).

We end the article by discussing some applications to the classification of
blocks of Oy, both up to Morita equivalence and up to gradable derived equiv-
alence in the sense of [CM, Definition 4.2]; see Theorems 4.33 and 4.35 and
Conjectures 4.34 and 4.37.

Finally in the introduction, we draw attention to the work of Losev in [L2].
This paper includes a study of Whittaker coinvariants functors associated to
arbitrary nilpotent orbits in semisimple Lie algebras. Lie superalgebras are not
considered in detail, though some remarks are made about how the theory may
apply in this situation in [L2, §6.3.2]. His theory includes many of the features
discussed above. In particular, he also views these functors as some generalized
Soergel functors. The approach in this paper is quite different and leads to
more explicit results, which we require for the subsequent applications.

Acknowledgements. This article was written in part during the programme “Lo-
cal Representation Theory and Simple Groups” held at the Bernoulli Center,
EPFL, Lausanne, Switzerland in Autumn 2016. We also thank Kevin Coulem-
bier for pointing out the counterexample mentioned after Conjecture 4.37.

Notation. We fix once and for all some choice of parity function par : C — Z/2
such that par(0) = 0 and par(z + 1) = par(z) + 1 for all z € C. Also, < denotes
the partial order on C defined by z < w if w — z € N.

2. CATEGORY O FOR THE GENERAL LINEAR LIE SUPERALGEBRA

In this section, we set up our general combinatorial notation, then review
various standard facts about category O for gl,,(C). We assume from the
outset that m < n as this will be essential when we introduce the W-algebra in
the next section, but note that the general results in this section do not depend
on this hypothesis.

2.1. Combinatorics. We fix integers 0 < m < n and a two-rowed pyramid m
with m boxes in the first (top) row and n boxes in the second (bottom) row. We
require that the top row does not jut out past the bottom row. For example,
here are the possible pyramids for m = 2 and n = 5:

1]2 1]2 1]2 1]2
3l4[5]6[7]> [3l4[5]6]7]> [3]4]5l6[7]> [3]4]5]6]7
As in these examples, we number the boxes of w by 1,...,m + n, so that the
boxes in the first (resp. second) row are indexed 1,...m (resp. m+1,...,m+n)
from left to right. Then we write row(i) and col(i) for the row and column
numbers of the ith box of 7, numbering columns by 1,...,n in order from left

to right. Also we denote the number of columns of height 1 on the left (resp.
right) side of m by s_ (resp. s.); in the degenerate case m = 0, one should
instead pick any s_,s+ = 0 with s_ + s; =n.
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A m-tableau is a filling of the boxes of the pyramid 7 by complex numbers. Let
Tab denote the set of all such w-tableaux. Sometimes we will represent A € Tab
as an array A = 975" of complex numbers. Here are a few combinatorial
notions about tableaux.

o For A =957, welet a(A) := aj + -+ 4 ap, and b(A) := by +--- + b,
be the sum of the entries on its top and bottom rows, respectively.
o We say that A = 975" is dominant if a1 > -+ > ap, and by < --- < by,.
o We say that A = 373" is anti-dominant if a; 3 a; for each 1 < i < j <
m and b; € b; for each 1 <@ < j < n.
e A matched pair in A is a pair of equal entries from the same column.
e The defect def(A) is the number of matched pairs in A.
e Two m-tableaux A,B are row equivalent, denoted A ~ B, if B can be
obtained from A by rearranging entries within each row.
e The degree of atypicality atyp(A) is the maximal defect of any B ~ A.
e We write B (J A if B can be obtained from A by picking several of the
matched pairs in A and subtracting 1 from each of them. There are
2def(A) guch tableaux B.
e The Bruhat order < on Tab is the smallest partial order such that B < A
whenever one of the following holds:
— Bis obtained from A = 33" by interchanging a; and a;, assuming
a; > aj; for some 1 <@ < j < my
— B is obtained from A = 4}"3™ by interchanging b; and b;, assuming
b; < b; for some 1 <i < j < n;
— B is obtained from A = 43" by subtracting one from both a; and
b;, assuming a; = bj for some 1 <i<mand 1 <j < n.
e Let =~ be the equivalence relation generated by the Bruhat order <. We
refer to the ~-equivalence classes as linkage classes. All w-tableaux in
a given linkage class £ have the same atypicality.

The representation theoretic significance of these definitions will be made clear
later in the article.

2.2. Modules and supermodules. In the introduction we have ignored the
distinction between modules and supermodules. We will be more careful in
the remainder of the article. For an associative algebra A, we write A-mod
or A-modg for the categories of left A-modules or finite-dimensional left A-
modules, respectively.

Superalgebras and supermodules are objects in the symmetric monoidal cat-
egory of vector superspaces. We denote the parity of a homogeneous vector v in
a vector superspace by |v| € Z/2, and recall that the tensor flip VW = WV
is given on homogeneous vectors by v @w > (—1)"l*lyy®v. The notation [.,.]
always denotes the supercommutator [z,y] = zy — (—1)1*I¥y2 of homogeneous
elements of a superalgebra.

Let A be an associative superalgebra. A left A-supermodule is a superspace
M = Mgy @ Mj equipped with a linear left action of A such that A;M; <
M; ;. A supermodule homomorphism is a parity-preserving linear map that is
a homomorphism in the usual sense. We write A-smod for the Abelian category
of all left A-supermodules and supermodule homomorphisms, and A-smod¢y for
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the subcategory of finite-dimensional ones. We denote the usual parity switching
functor on all of these categories by II.

2.3. Super category O. Let g be the Lie superalgebra gl,,,(C). We write
e;,j for the ij-matrix unit in g, which is of parity |i| + |j| where

i 0 forl1<i<m,
il =<_
1 form+1<i<m+n.

Let t be the Cartan subalgebra of g consisting of all diagonal matrices and
{0i}1<i<m+n be the basis for t* dual to the basis {e;;}1<i<m+n of t. The usual
supertrace form (.,.) on g induces a non-degenerate super-symmetric bilinear
form (.,.) on t* such that (5;,d;) = (—1)/4; ;.

Now suppose that < is a total order on the set {1,...,m + n}. Let b< be
the Borel subalgebra of g spanned by {e; j}ia;j. Then define O< to be the full
category of U(g)-smod consisting of all g-supermodules M such that

M is finitely generated over g;

M is locally finite-dimensional over b<;

M is semisimple over t;

the A\-weight space M, of M is concentrated in parity'

par(A) := par((X, 0pmt1 + -+ Oman)) + [(n —m) /2] + ms_ e Z/2. (2.1)

The parity assumption means that one can simply forget the Z/2-grading on
objects of O, since it can be recovered uniquely from the weights. The reader
should not be concerned about the dependence on the choice of the function
par : C — Z/2 (which was made at the end of the introduction): the categories
O arising from two different choices are obviously equivalent. We note that
all objects of O are of finite length.

Introduce the weight p< € t* so that

(0.6 = #{i <5 |lil =T} —#{i <5 |lil = 0) (2.2)
for j =1,...,m+n. For A € Tab, let Ay € t* be the unique weight such that

(AX + p<,0;) is the entry in the jth box of A. Then we let M <(A) denote the
Verma supermodule of b<-highest weight A3, i.e.

M=(A) := U(g) ®u(p=) CA (2.3)

where C3 is a one-dimensional b<-supermodule of weight A7 concentrated in
parity par(Ay). Note the parity choice here is forced upon us since we want
M<(A) to belong to O<. The Verma supermodule M <(A) has a unique ir-
reducible quotient L<(A), and the supermodules {L<(A) | A € Tab} give a
complete set of inequivalent irreducible objects in O<.

By a normal order we mean a total order < such that 1 < --- < m and
m+1<---<dm+n. For any normal order <, the underlying even subalgebra bg‘
is equal simply to the usual standard Borel subalgebra of g5 = gl,,(C) ®gl,,(C)
consisting of upper triangular matrices. Observing that a g-supermodule is
locally finite over b< if and only if it is locally finite over bY, it is clear for

IWe have made this particular choice so that (2.4) holds; it is important also in the proof
of Lemma 3.8.
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any two normal orders <1 and <« that OY = O*. Henceforth, we denote this
category coming from a normal order simply by O.

Let us explain how to translate between the various labellings of the irre-
ducible objects of O arising from different choices of normal order. The basic
technique to pass from < to <« is to apply a sequence of odd reflections connect-
ing < to «. A single odd reflection connects normal orders <1 and <« which agree
except at i € {1,...,m} and j € {m+1,...,m+n}, with 7, j being consecutive
in both orders. Assuming that ¢ < j, we have that L9(A) = L*(A’) where A/
is obtained from A by adding 1 to its ith and jth entries if these entries are
equal, or A’ := A if these entries are different. This was observed originally by
Serganova in her PhD thesis.

The following fundamental lemma is well known, e.g. see [CLW, Lemma 6.1].
The proof involves noting that it suffices to consider the case when <1 and « are
connected by a single odd reflection, and then it can be observed from explicit
formulas for the characters.

Lemma 2.1. For any two normal orders < and <« and A € Tab, the formal
characters of M<(A) and M*(A) are equal. Thus the symbols [M<(A)] and
[M=(A)] are equal in the Grothendieck group of O.

We will mostly work just with the natural order < on {1,...,m+n}, meaning
of course that 1 <2 < --- < m + n; for this order we denote b=, X3, p~, M=(A)
and L=(A) simply by b, Aa, p, M(A) and L(A). In particular b is the standard
Borel subalgebra of upper triangular matrices in g. The resulting labelling of
the irreducible objects of O is the best choice for several other purposes. For
example, the irreducible object L(A) is finite-dimensional if and only if A is
dominant; hence, the irreducible objects L(A) for all dominant tableaux A give
a complete set of inequivalent finite-dimensional irreducible g-supermodules.
This was established originally by Kac in [K] by an argument involving parabolic
induction from gg. In a similar way, one sees that L(A) is of mazimal Gelfand-
Kirillov dimension amongst all supermodules in O if and only if A is anti-
dominant.

The natural order on {1,...,m + n} corresponds to the ordering of the
boxes of the pyramid 7 induced by the lexicographic order of coordinates
(row(i),col(7)), i.e. i < j if and only if row(i) < row(j), or row(i) = row(j)
and col(i) < col(j). There is another normal order which plays a significant
role for us, namely, the order <’ arising from the reverse lexicographic order
on coordinates, i.e. i <’ j if and only if col(i) < col(j), or col(i) = col(j) and
row(i) < row(j). For this order, we denote b< )\Z',p<,, M=<'(A) and L<'(A) by
b', XNy, p, M'(A) and L'(A). Note that in [BBG] the weight p’ was denoted p.

Whereas the Borel subalgebra b arising from the natural ordering has a
unique odd simple root, the Borel subalgebra b’ has a maximal number of odd
simple roots. This leads to some significant differences when working with the
ordering <’ compared to the natural ordering. For instance, it is not so easy
to describe the tableaux A such that L'(A) is either finite-dimensional or of
maximal Gelfand—Kirillov dimension in purely combinatorial terms.

Using the description of p’ given by (2.2) a direct calculation gives

(0 0ms1+ -+ Omin) =[(n—=m)/2] + ms_  (mod 2). (2.4)



WHITTAKER COINVARIANTS 7

Hence, recalling (2.1), we have that par(\,) = par(b(A)) for A € Tab.

2.4. The Harish-Chandra homomorphism. Let Z(g) denote the center of
U(g). This can be understood via the Harish-Chandra homomorphism, which
gives an isomorphism between Z(g) and a certain subalgebra I(t) of S(t). Let
x; = ey for i = 1,...,m and y; := —enijmy; for j = 1,...,n, so that
S(t) = Clz1,...,Zm,Y1,---,Yn]- The Weyl group of g with respect to t is the
product of symmetric groups S,, x S,, which acts naturally on S(t) so that S,
permutes 1, ..., T, and S, permutes yi,...,¥y,. Then

I(t) := {f € S(t)Sm*Sn oo+ 5y, =0 (modzi—y;) } . (25)

forany 1<i<m,1<j<n

A distinguished set of generators for I(t) is given by the elementary supersym-
metric polynomials

er(T1y oy Tm/Yly oy Yn) 1= Z (—Dles(z1, ..., xm)he(y1, .- yn)  (2.6)
s+t=r
for all » > 1, where eg(x1, ..., 2, ) is the sth elementary symmetric polynomial
and h¢(y1, - - ., Yn) is the tth complete symmetric polynomial; see e.g. [Se, §0.6.1].
To define the Harish-Chandra homomorphism itself we fix a total order <
on {1,...,m+n}. Recall that b™ is the Borel subalgebra spanned by {e; ;}ij;
let n¥ be its nilradical. Writing U(g)o for the centralizer of t in U(g), let
¢ 1 U(g)g — S(t) be the algebra homomorphism defined by the projection
along the direct sum decomposition U(g)o = S(t) ® (U(g)o N U(g)n~). Let

HC :=S_ <09~ : Z(g) — S(t), (2.7)

where the shift automorphism S_,< is the automorphism of S(t) defined by
x +— x — pJ(z) for each z € t. Now we can state the key theorem here; see [M,
§13.2] for a recent exposition of the proof.

Theorem 2.2 (Kac, Sergeev). The homomorphism HC is an isomorphism
between Z(g) and I(t).

Our definition of the Harish-Chandra homomorphism involves the choice of
the total order <1. But in fact one obtains the same isomorphism Z(g) — I(t)
no matter which order is chosen:

Theorem 2.3. The map HC : Z(g) — S(t) does not depend on the particular
choice of the total order < used in its definition.

Proof. Suppose first that < and <« are two orders that are conjugate under
S X Sy, i.e. there exists a permutation o € S, x S, such that

i) < o(i) <o(f),

where S, permutes {1,...,m} and S,, permutes {m+1,...,m+n}. Let HC and
HC’ be the Harish-Chandra homomorphisms defined via < and <, respectively.
Take any z € Z(g) and write it as z = zg+ 21 for 29 € S(t), 21 € U(g)o nU(g)n=.
Identifying the Weyl group S,, x S, with permutation matrices in the group
GL,,(C) x GL,(C) in the obvious way, we get an action of S,, x S, on g
by conjugation. Since this is an action by inner automorphisms it fixes z,
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so we have that z = o(z) = 0(20) + 0(z1) with o(29) € S(t) and o(z1) €
U(g)o n U(g)n™. Now compute:

HC'(2) = S_pe(0(20)) = S_o(pm) (0(20)) = 0(S_pa(20)) = o(HC(2)) = HC(2),

where the last equality follows because HC(z) is symmetric by Theorem 2.2.
Since any order is S, x Sp,-conjugate to a normal order, we have thus reduced
the problem to showing that the Harish-Chandra homomorphisms arising from
any two normal orders <1 and <« are equal. Again, let HC and HC' be the
Harish-Chandra homomorphisms defined from the orders < and <, respectively,
assuming now that both orders are normal. For any z € Z(g) and A € Tab, the
element z acts on the Verma supermodule M <(A) (resp. M *(A)) by the scalar
HC(2)(Aa) (resp. HC'(2)(Aa)). So to prove that HC(z) = HC'(2) it suffices to
show that M <(A) and M <(A) have the same central character, which follows
from Lemma 2.1. O

There is an explicit formula for the elements z, € Z(g) lifting the elementary
supersymmetric polynomials e, (x1, ..., Zm/y1,...,Yn). To formulate this, recall
from [GKLLRT] that the kk-quasideterminant of a k x k-matrix M is

|M|px :=d — ca D,

a

. . . . b .
assuming M is decomposed into block matrices as M = < ) so that a is

d
an invertible (k — 1) x (k — 1) matrix and d is a scalar. Working in the algebra
U(g)[[u"!]] where u is an indeterminate, let

Cr(w) = u|Tk(u) |k k>

where Ty (u) is the k x k matrix with ij-entry &; j+(—1)/lu="e; ;. The coefficients
of these formal Laurent series for £ = 1,...,m + n generate a commutative
subalgebra of U(g). Then set

z(u) = eruﬂ" = Hgk(u—l-l—k)/HCerk(u—i—k—m). (2.8)
=0 k=1 k=1

This defines elements 21, 22, 23,... € U(g). For example for gly;(C) one gets

z1 =e1,1 +€e22.

Theorem 2.4. The elements {z,},>1 generate the center Z(g). Moreover,
HC(zr) = er(x1, ..o, Zm/Y1y - Yn)-

Proof. Let Y (g) be the Yangian of g and b,,,(u) € Y (g)[[u']] be Nazarov’s
quantum Berezinian from [N]; see also [Gw, Definition 3.1]. In [Gw, Theorem
1], Gow establishes a remarkable factorization of this quantum Berezinian, from
which we see that z(u) is the image of (u+1)"(u+2) "1+ (u+n—m) by, (u)
under the usual evaluation homomorphism Y (g) — U(g). The coefficients of
bmjn(u) are central in Y (g) by [N] (or [Gw, Theorem 2]). Hence, the coefficients
21, 22, ... of our z(u) are central in U(g).

It remains to compute HC(z,). For this we use the definition of HC coming
from the natural order <, since for this order it is clear how to apply the
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projection ¢ = ¢= to each of the power series (;(u). One gets that

HC(2(u)) = 1+u :Uk/l_[l—i-u Yk)-
kl

The u ™ "-coefficient of this expression is equal to e, (1, ..., Zm/y1,...,Yn). O

Remark 2.5. In fact there exist other factorizations of z(u) analogous to (2.8)
which are adapted to more general total orders <. To explain, let <t be an
arbitrary total order on {1,...,m +n}. Let o € Sp,+p, be the permutation such
that o(1) <o(2) <---<o(m+n). Let

o () 1= T2 (W)
where 77 (u) is the k x k matrix with ij-entry d; ; + (—1)‘”(i)|u_1eg(i)’g(j). Then

we have that

m n

H (u+ (p™, 6x)) /Hc,f(u + (p, 0%)).

k=1 k=1
This (and some analogous factorizations of the quantum Berezinian in Y'(g))
may be derived from [Gw, Theorem 1] by some explicit commutations in the
super Yangian; we omit the details.

2.5. Projectives, prinjectives and blocks. The following linkage principle
gives some rough information about the composition multiplicities of the Verma
supermodules M (A). This involves the Bruhat order < from §2.1.

Lemma 2.6. [M(A): L(B)] #0=B < A.

Proof. This is a consequence of the superalgebra analog of the Jantzen sum
formula from [M, §10.3] or [Gk]; see [B5, Lemma 2.5] for details. O

For A € Tab we denote the projective cover of L(A) in O by P(A). The
supermodule P(A) has a Verma flag, that is, a finite filtration with sections of
the form M (B) for B € Tab. Moreover, by BGG reciprocity, the multiplicity
(P(A) : M(B)) of M(B) in a Verma flag of P(A) is equal to the composition mul-
tiplicity [M(B) : L(A)]; see e.g. [B2]. Combined with Lemma 2.6, this implies
that the category O is a highest weight category with weight poset (Tab, <). Of
course its standard objects are the Verma supermodules {M (A)}aeTab-

Remark 2.7. In fact each choice of normal order <t on {1,...,m + n} gives rise
to a different structure of highest weight category on O, with standard objects
being the corresponding Verma supermodules M <(A). In this article we only
need the highest weight structure that comes from the natural order.

By a prinjective object we mean one that is both projective and injective.
The following lemma classifies the prinjective objects in O, showing that they
are the projective covers of the irreducible objects of maximal Gelfand—Kirillov
dimension.

Lemma 2.8. Let A € Tab. Then P(A) is prinjective if and only if A is anti-
dominant. In that case P(A) is both the projective cover and the injective hull

of L(A).
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Proof. This is a consequence of [BLW, Theorem 2.22] (bearing in mind also
[BLW, Theorem 3.10]); see also [B5, Lemma 4.3, Remark 4.4] and [CS, Corollary
6.2(ii)). O

Recall finally that ~ is the equivalence relation on Tab generated by the
Bruhat order. For a linkage class { € Tab /~, we let O¢ be the Serre subcategory
of O generated by {L(A)}ace. Lemma 2.6 implies immediately that this is a
sum of blocks of O. In fact each O is an indecomposable block, thanks to
[CMW, Theorem 3.12]. Thus the blocks of O are in bijection with the linkage
classes.

Lemma 2.9. Let S,, xS, act on Tab by permuting entries within rows. Suppose
we are given a linkage class & € Tab /=~ and simple transposition o € Sy, x Sy,
such that o(§) := {o(A) | A€ &} is a different linkage class to §. Then, there is
an equivalence of categories Ty : O¢ — Ogg) such that T,(M(A)) = M(o(A))
and T,(L(A)) = L(c(A)) for each A € €.

Proof. This is a reformulation of [CMW, Proposition 3.9], where the equivalence
T, is constructed explicitly as a certain twisting functor. O

3. PRINCIPAL W-ALGEBRAS AND WHITTAKER FUNCTORS

After reviewing some basic definitions and results from [BBG], we proceed to
introduce the Whittaker coinvariants functor Hg, which takes representations
of g to representations of its principal W-algebra, i.e. the (finite) W-algebra
associated to a principal nilpotent orbit e € g. We will mainly be concerned
with the restriction of this functor to the category O. The main result of the
section shows that Hy sends M(A) to the corresponding Verma supermodule
M(A) for W; up to a parity shift, the latter was already introduced in [BBG].
This has several important consequences: we use it to determine the compo-
sition multiplicities of each M (A), to show that Hp sends irreducibles in O to
irreducibles or zero, and to describe the center of W explicitly.

3.1. The principal W-superalgebra. We continue with g = gl,,,,(C) as in
the previous section. Consider the principal nilpotent element

e=e2tez+ - t+em_1mtemrim+2 T emi2m+3 T+ €min—1m+n € 6.
Define a good grading g = @, g(r) for e € g(1) by declaring that each matrix
unit e; ; is of degree

deg(e; ;) := col(j) — col(7). (3.1)

p:=@g(r), b:=g0), wm:=Par).

r=0 r<0
Let x € g* be defined by x(x) := (z,e). The restriction of y to m is a character
of m. Then define m, := {x — x(z) | z € m}, which a shifted copy of m inside
U(m). The principal W -superalgebra may then be defined as

W= {ue Up) |umy, < mU(g)}, (3.2)

which is a subalgebra of U(p). Although this definition depends implicitly on
the choice of pyramid 7, the isomorphism type of W depends only on m and

Set
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n not w, see [BBG, Remark 4.8]. The following theorem shows that W is
isomorphic to a truncated shifted version of the Yangian Y (gly,).
Theorem 3.1 ([BBG, Theorem 4.5]). The superalgebra W contains distin-

guished even elements {dgr), dgr)}r>0 and odd elements {e(r)}r>5+ U {f(”)}r>s_.
These elements generate W subject only to the following relations:

dz(o) =1, dgr) =0 forr > m,
r+s—1
[dET)7d§S)] =0, [6(T), f(s)] _ Z C’l‘ga)dgursflfa)’
a=0
r—1
[G(T),e(s)] =0, [dET)’e(S)] _ Z d’ga)e(wrsflfa)’
a=0
r—1
[ £ =0, [d7, jo] = = 3 plrretagl®),
a=0

where d") is defined recursively from >." Vg = 0r0-

7 a=0 """ 7
We will occasionally need to appeal to the explicit formulae? for the genera-
tors dz(r), e(®) and f(s) from [BBG, §4]. In particular, these formulae show that
dgl) and dgl) are the unique elements of S(t) = C[t*] such that

AP = (A4 061+ 4 B, (3.3)
dgl) ()‘) = ()‘ + pla Omg1 + -+ 5m+n) (34)

It is also often useful to work with the generating functions

diu) = Y dDuT e W], diw) = Y du e W],
r=0 r=0
so that d;(u) = d;(u)~!. Using these, we can define more elements {¢("), &}~
by setting

cw) = du = dy(u)da(u),  Eu) = D & = dy(u)da(u). (3.5)

rz0 r=0

In particular, by the defining relations, we have that ¢("+s=1) = [e(") f{)] for
r > sy,5 > s_. The elements {¢("},>; are known to belong to the center
Z(W); see [BBG, Remark 2.3]. Hence, so too do the elements {&},~;. We
will show in Corollary 3.22 below that either of these families of elements give
generators for Z(W).

Recall finally by [BBG, Theorem 6.1] that W has a triangular decomposition:

let WO W and W~ be the subalgebras generated by {dgr), dgs)}lgr,‘gmjlgsgn,
{e(r)}5+<r<5++m and {f(’”)}sf<,<sf+m, respectively; then the multiplication
map W~ @ WY ®@ W+ — W is a vector space isomorphism. Moreover, by
the PBW theorem for W, the subalgebra W is a free polynomial algebra of

rank m + n, while W+ and W~ are Grassmann algebras of dimension 2.

2There is a typo in [BBG, (4.12)—(4.13)]; both of these formulae need an extra minus sign.
Similarly the formulae for d\" in [BBG, (4.19)—(4.20)] need to be changed by a sign.
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3.2. Highest weight theory for W. Next, we review some results about the
representation theory of W established in [BBG]. The triangular decomposition
allows us to define Verma supermodules for W as follows. Let W# := WOW+,
This is a subalgebra of W, and there is a surjective homomorphism W# — W°
which is the identity on W° and zero on each e(™ € W+.

Given A = 9. %™ € Tab, let Ca be the one-dimensional W-supermodule
spanned by a vector 15 of parity par(b(A)), such that

dVTp = er(ar,. .. am)Ta,  dSVTa = es(by, ... bn)IA (3.6)

for 1 <7 <m,1 <s<mn. View Cp as a Whsupermodule via the surjection
W — WO Then induce to form the Verma supermodule

M(A) =W Qu Ca, (37)

setting ma := 1 ® 1a. Of course, M(A) only depends on the row equivalence
class of A. The PBW theorem for W implies that dim M (A) = 2™.

We say that M € W-smod is a highest weight supermodule of highest weight
A = 35 € Tab if there exists a homogeneous vector v € M that generates

M as a W-supermodule with ey = 0 for r > s, dgr)v =er(ay,...,am)v for

1<r<m,and dgs)v =ep(b1,...,by)v for 1 < s < n. The Verma supermodule
M(A) is the universal highest weight supermodule of highest weight A: given
any highest weight supermodule M of highest weight A as above, there exists
a unique surjective homomorphism from either M (A) or IIM(A) onto M such
that ma +— v; the homomorphism is from M (A) if and only if |v| = par(b(A)).
By [BBG, Lemma 7.1], each M (A) has a unique irreducible quotient L(A).

Theorem 3.2 ([BBG, Theorem 7.2]). The supermodules {L(A)}aeTab give all of
the irreducible W -supermodules (up to isomorphism and parity switch). More-
over, L(A) = L(B) if and only if A ~ B.

In particular, the theorem shows that all irreducible W-supermodules are
finite-dimensional. Henceforth, we will restrict our attention to the full subcat-
egory W-smodgq of W-smod consisting of finite-dimensional supermodules.

There is actually a very simple way to realize L(A) explicitly. Recall that

b = gl,(C)®*~ @ gy, (C)*" @ g1, (C)F*+. (3.8)
a1 am

For any A = |7 € Tab, let K(A) be the h-supermodule induced from a one-
dimensional b’ N h-supermodule of weight X, and parity par(\,) = par(b(A)),
cf. (2.4); we use the letter K here because it is a Kac supermodule for b (as
well as being a Verma supermodule). Note that dim K(A) = 2™. We denote
the highest weight vector in K (A) by ka. Observe that

M/(A) = U(g) @y K (A). (3.9)
Also let V' (A) be the unique irreducible quotient of K (A). Thus V' (A) is an irre-
ducible h-supermodule of b’ N h-highest weight Ny, and dim V (A) = 2m—def(A),
Finally, using the (injective!) homomorphism W < U(p) — U(h) derived from

the natural inclusion and projection maps, we restrict these supermodules to
W to obtain

K(A) = K(A) 150 7)== va) 15O (3.10)
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We sometimes denote ka € K (A) instead by ka.
Theorem 3.3. If def(A) = atyp(A) then L(A) = V(A).

Proof. This is essentially [BBG, Theorem 8.4], but we should note also that the
isomorphism constructed is necessarily even since it sends ma to ka, which are
both of the same parity par(b(A)). O

Lemma 3.4. For any A € Tab, we have that [K(A)] = XgsalV(B)], equality
written in the Grothendieck group Ko(W-smodyq).

Proof. By the representation theory of gl;|;(C), we have that
[KE(A)] = > [V(B)].
BUA
The lemma follows from this on restricting to W. ]

3.3. Invariants and coinvariants. Given a right g-supermodule M, it is easy
to check from (3.2) that the subspace

HO(M) := H(m,, M) = {ve M |vm, =0} (3.11)
is stable under right multiplication by elements of W. Hence, we obtain the
Whittaker invariants functor

HY : smod-U(g) — smod-W. (3.12)
Let smod,-U(g) be the full subcategory of smod-U(g) consisting of all the su-
permodules on which m, acts locally nilpotently. The super analog of Skryabin’s

theorem asserts that the restriction of H? defines an equivalence of categories
from smod,-U(g) to smod-W. Let @ denote the (W, U(g))-superbimodule

Q:=U(g)/mU(g), (3.13)
denoting the canonical image of 1 € U(g) in @ by 1,. Then the functor
— Qw(Q : smod-W — smod,-U(g) (3.14)

is the inverse functor to H? in Skrabin’s theorem. As observed already in [Z,
Remarks 3.9-3.10], Skryabin’s proof of this result in the purely even setting
from [Sk] extends routinely to the super case. Along the way, one sees that @
is a free left W-supermodule with an explicitly constructed basis, from which
we see that there exists a W-supermodule homomorphism

p:Q—W (3.15)
such that p(1,) = 1. We fix such a choice for later use.
Instead, suppose that M is a left g-supermodule. Then again it is clear from

(3.2) that the left action of W leaves the subspace m, M invariant, hence, we
get induced a well-defined left action of W on

Ho(M) := Ho(my, M) = M /m, M. (3.16)
This gives us the Whittaker coinvariants functor
Hy : U(g)-smod — W-smod . (3.17)

Equivalently, this is the functor QQ ®w —.
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The first lemma below connects Whittaker invariants and coinvariants. To
formulate it we need some duals: if M is a left supermodule over some super-
algebra then we write M* for the full linear dual of M considered as a right
supermodule with the obvious action (fv)(a) = f(va) (no signs!). Similarly,
we write *M for the dual of a right supermodule, which is a left supermodule.
There are natural supermodule homomorphisms M — (*M)* and M — *(M*)
(which involve a sign!). Note also that if V' is a finite-dimensional superspace
and M is arbitrary then the canonical maps

M*QV* S (Ve M)*, MV S (VM) (3.18)
are isomorphisms.

Lemma 3.5. Let M be a left g-supermodule. Then there is a functorial iso-
morphism Ho(M)* = HO(M*). In particular, if Ho(M) is finite-dimensional,
then Ho(M) = *HO(M*).

Proof. The natural inclusion Hyo(M)* < M™* induced by M — Hy(M) has
image contained in H°(M*). This gives a W-supermodule homomorphism
Ho(M)* — HO(M*). To see that it is surjective, we observe that any ele-
ment of H°(M*) € M* annihilates m, M, hence, comes from an element of

Hy(M)*. O
The next lemma is an analog of another well-known result in the even setting.

Lemma 3.6. The functor Hy sends short exact sequences of left g-supermodules
that are finitely generated over m to short exact sequences of finite-dimensional
left W -supermodules.

Proof. For any left m-supermodule M, we introduce its x-restricted dual
M# = {fe M*| f(mi M) =0 for r » 0}.

This defines a functor (—)# : U(m)-smod — smod-U(m). We claim that this
functor is exact. To see this, we note as in the proof of [B4, Lemma 3.10] that
the functor (—)# is isomorphic to Homy(—, Ey ), where E, := U(m)# viewed
as an (m, m)-superbimodule in the obvious way. The proof of [Sk, Assertion 2]
shows that E is injective as a left m-supermodule; this follows ultimately from
the non-commutative Artin-Rees lemma. The desired exactness follows.

If M is a left g-supermodule then M# is actually a g-submodule of M*,
and this submodule belongs to smod,-U(g). Hence, (—)# can also be viewed
as an exact functor U(g)-smod — smod,-U(g). As in [B4, Lemma 3.11], we
have quite obviously for any left g-supermodule that HO(M*) = H°(M¥) as
subspaces of M*. Since HY is exact on smod,-U(g) by Skryabin’s theorem,
we have now proved that the functor U(g)-smod — smod-W given by M
HO(M*) is exact. Finally, if M is a left g-supermodule that is finitely generated
over m, then it is clear that Ho(M) is finite-dimensional, so that Ho(M) =
*H°(M*) by Lemma 3.5. The lemma follows. O

Corollary 3.7. The restriction of the functor Hy to the category O from §2.3
is exact and has image contained in W-smodgy.

Proof. In view of the lemma, it just remains to observe that all supermodules in
O are finitely generated over m. This follows because the Verma supermodules
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M(A) are finitely generated over m, which is easily seen from the definition
since g = b ® mg. U

We also need the following lemma which takes care of all the necessary book-
keeping regarding parities.

Lemma 3.8. For M € O, the elements dgl),dgl) e WO act semisimply on
)

Hy(M). Moreover, the z-eigenspace of dgl is concentrated in parity par(z) for

each z € C.

Proof. For M € O and any vector v € M of t-weight A\, we know from (3.3)—(3.4)

that dgl) and dgl) act on v (hence, v+m, M) by the scalars (A\+p’, 61+ - +6y,)
and (A + o', 0me1 + -+ + dman), respectively. Hence, they both act semisimply
on all of Ho(M). For the last part, let z := (A + p',0ps1 + -+ + Omin). Then,
by (2.1) and (2.4), the vector v is of parity par(\) = par(z). O

3.4. On tensoring with finite-dimensional representations. Let Rep(g)

be the symmetric monoidal category of rational representations of g, that is,

finite-dimensional left g-supermodules which are semisimple over t with weights
m-+n

lying in ¢, := @;2" Zd;. Tensoring with V' € Rep(g) defines a projective functor
V®—:U(g)-smod — U(g)-smod.

This is a rigid object of the strict monoidal category End(U(g)-smod) of C-
linear endofunctors of U(g)-smod: it has a biadjoint defined by tensoring with
the usual dual V'V of V' in the category Rep(g). In this subsection, we introduce
an analogous biadjoint pair of endofunctors V @ — and V'V ® — of W-smodgy.
We will use the language of module categories over monoidal categories, see e.g.
[EGNO, Chapter 7].

It is convenient to start by working with right supermodules. From the previ-
ous subsection, we recall the notation M* and *M for duals of left (resp. right)
supermodules, which are right (resp. left) supermodules. In particular, for V'
as in the previous paragraph, V* is a right U(g)-supermodule. Tensoring with
it gives us an exact functor —® V* : smod-U(g) — smod-U(g). In fact, writing
End(smod-U(g)) for the strict monoidal category of all C-linear endofunctors
of smod-U(g), this defines a monoidal functor

Rep(g)°® — End(smod-U(g)), Vm—> -—QV™

In other words, smod-U(g) is a right module category over the monoidal cate-
gory Rep(g). The main coherence map that is needed for this comes from the
natural isomorphisms (—@W*)o (—®@V*) = —@(V*QW™*) =~ —((W®V)*).

It is clear that —®@V™* takes objects of smod,-U(g) to objects of smod,-U(g).
Hence, we can consider — ® V* also as an endofunctor of smod,-U(g). Trans-
porting this through Skryabin’s equivalence from (3.14), we obtain an exact
functor

~—®V* = H((— ®w Q) ® V*) : smod-W — smod-W
Like in the previous paragraph, this actually defines a monoidal functor
Rep(g)°? — End(smod-W),

making smod-W into a right module category over Rep(g). To construct the
coherence map (—@W*)o(—®@V*) =@ —@(W®V)*) for this, one needs to use



16 JONATHAN BRUNDAN AND SIMON M. GOODWIN

the canonical adjunction between —®yy @ and HY. Perhaps the most important
fact about this functor is that there is a isomorphism of vector superspaces

MeV*SMeV* (3.19)

which is natural in both M and V. In particular, —@V* takes finite-dimensional
W -supermodules to finite-dimensional W-supermodules. By definition, the iso-
morphism (3.19) is defined by the restriction of the map

(MRw Q)RV* > MRV*,
(m@1yu) ® f = mp(u) ® f
where p is the map from (3.15). The proof of this assertion goes back to the

PhD thesis of Lynch. For this and other details about this construction, we
refer to [BK1, §8.2]; the super case is essentially the same.

Lemma 3.9. There is an isomorphism H(M)® V* ~ H*(M ® V*) which is
natural in M and V. It makes H° : smod-U(g) — smod-W into a morphism
of right Rep(g)-module categories.

Proof. We start from the canonical isomorphism M =~ H°(M)®y Q defined by
the canonical adjunction from Skryabin’s theorem. Then apply H° o (— ® V*)
to both sides. O

We are ready to switch the discussion to left supermodules. For V' € Rep(g)
as before and M € W-smodgq, we define

VOM:=*M"®V*), (3.20)

noting that M*@V™* is also finite-dimensional thanks to (3.19). Again, we have
that (W®—)o (V@ —) =~ (W®V)® —, so that we obtain a monoidal functor

Rep(g) — End(W-smoda), Ve—V®- (3.21)

making W-smodgq into a (left) module category over Rep(g). Also, applying
*(—) to (3.19) with M replaced by M* then using (3.18), we get a canonical
isomorphism

VOM=*(VQ*(M*) =*(M*®@V*) S*(M*®@V*) =VeM (3.22)
as vector superspaces.

In general, due to the parity condition prescribed by (2.1), the endofunctor
V ® — does not leave O invariant. However, it does providing the A-weight
space of V' is concentrated in parity par((X,0m41 + -+ + dmn)) for all A e t.
Let Repg(g) be the full monoidal subcategory of Rep(g) consisting of all such
V. Then, for V € Repy(g), we do get a monoidal functor

Repy(g) — End(O), Ve V- (3.23)
So O is a module category over Repg(g).

Theorem 3.10. There is a natural isomorphism Ho(V @ M) = V ® Ho(M)
making Hy : O — W-smodyq into a morphism of Repy(g)-module categories.
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Proof. Take M € W-smodgq. Since Ho(V ® M) and V are finite-dimensional,
we have from Lemmas 3.5 and 3.9 that

Ho(VeOM) ~*H'(V®M)*) = *H'(M*®@V*)
~*(H (M*)®V*) =V @& Ho(M).
Everything else is purely formal; see [BK1, §8.4] for further discussion. O

12

Since V'V is both a left dual and right dual to V' € Repy(g), it is automatic
that V¥ ® — is both left and right adjoint to V & —. Moreover, the monoidal
isomorphism described in Theorem 3.10 intertwines the canonical adjunctions
between V ® — and V'V ® — with the ones between V® — and VV ® —.

3.5. Whittaker coinvariants of M’(A). The following theorem will allow us
to determine the effect of the Whittaker coinvariants functor on the Verma
supermodule M'(A).

Theorem 3.11. The map U(p) — Q,u +— 1yu is an isomorphism of (W,U(p))-
superbimodules. Hence, for any left p-supermodule M, there is an isomorphism
Ulp) ~
M 3" S Ho(U(g) @ugy M), 0= 1@ 0 +my(U() Qupy M)

Proof. The first assertion is immediate from the PBW theorem and the defini-
tion of Q). Hence,

Ho(U(9) ®upy M) = Q®uq) U9) Quipy M = Q®upy M = U(p) Qupy M = M,

which translates into the given isomorphism. O
Recall the definition of the W-supermodule K (A) from §3.2.

Corollary 3.12. For any A € Tab, we have that Hy(M'(A)) = K(A).

Proof. Apply Theorem 3.11 to the p-supermodule obtained by inflating K (A)
through p — b and use (3.9). O

Corollary 3.13. For any A € Tab, there exists a supermodule M € O such
that Ho(M) = L(A).

Proof. Since L(A) only depends on the row equivalence class of A, we may
assume that atyp(A) = def(A). Then apply Theorem 3.11 to the p-supermodule
obtained by inflating V' (A) through p — h and use Theorem 3.3. O

3.6. Whittaker coinvariants of M (A). We regard the following theorem as
one of the central results of this article.

Theorem 3.14. For any A € Tab, we have that Ho(M(A)) = M(A).
Proof. See Appendix A. d

Corollary 3.15. For any A € Tab, we have that [M(A)] = [K(A)] in the
Grothendieck group Ko(W-smodyq).

Proof. By Lemmas 2.1 and 3.6 we have that [Ho(M(A))] = [Ho(M'(A))]. Now
apply Theorem 3.14 and Corollary 3.12. g

Corollary 3.16. Suppose A € Tab is chosen so that def(A) = atyp(A). Then

[M(A)] = ) [L(B)].

B(JA
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Proof. This is immediate from Corollary 3.15, Lemma 3.4 and Theorem 3.3. [J

3.7. Whittaker coinvariants of L(A). Next we describe the effect of Hy on
the irreducible objects of O.

Theorem 3.17. Let A € Tab. Then

Ho(L(A)) {L(A) if A is anti-dominant,

12

0 otherwise.

Proof. We first show that Ho(L(A)) = 0 if A is not anti-dominant. Let p’ be
the parabolic subalgebra of g spanned by {€; j}row(i)<row(j)> i-¢- P’ = g +b. Let
Mey(A) := U(gp) ®usy) Can be the Verma module for gy of bg-highest weight
Aa. We view it also as a p’-supermodule concentrated in parity par(Aa) via the
natural projection p’ — gg. Then we have obviously that
M(A) = U(g) Qu(py Mev(A).
Assume that A is not anti-dominant, and let B be the unique anti-dominant
tableau such that A ~ B ~ A. By classical theory, the Verma module M,,(B)
embeds into M,,(A). Hence, applying U(g) ®(y) —, We see that M(B) embeds
into M (A) too. Now apply the exact functor Hp to the resulting short exact
sequence 0 — M(B) — M(A) — C — 0 using Theorem 3.14, to obtain an
exact sequence 0 — M(B) — M(A) — Hy(C) — 0. But M(B) =~ M(A) as
B ~ A, hence, we must have that Hy(C) = 0. Since C' — L(A), this implies
that Ho(L(A)) = 0.
We next show for anti-dominant A that

[Ho(L(A))] = [L(A)] + (a sum of [L(B)] for B € Tab with a(B) < a(A)).
(3.24)
To see this, note since L(A) is a quotient of M (A) that Ho(L(A)) is a quotient
of Hy(M(A)) = M(A). Applying Corollary 3.16, we deduce either that (3.24)
holds or that Ho(L(A)) = 0. Also by Lemma 2.6 we know (as A is anti-
dominant) that

[M(A)] = [L(A)] + (a sum of [L(B)] for B € Tab with a(B) < a(A)).
Applying Hp and using (3.24) whenever Hy(L(B)) # 0, we deduce that

[M(A))] = [Ho(L(A))] + (a sum of [L(B)] for B € Tab with a(B) < a(A)).

Since this definitely involves [L(A)], we must have that Ho(L(A)) # 0, and we
have established (3.24).

Now we claim for any A € Tab that there exists some anti-dominant B ~ A
such that Ho(L(B)) =~ L(A). To see this, we know by Corollary 3.13 that
there exists some M € O with Ho(M) =~ L(A). Say we have that [M] =
[L(B1)] + -+ + [L(Bg)] in the Grothendieck group for some By,...,B; € Tab.
In view of (3.24), only one of By, ..., B can be anti-dominant, and this B; must
satisfy Ho(L(B;)) = L(B;) = L(A). This proves the claim.

We have now shown in any row equivalence class of m-tableaux that there
exists at least one anti-dominant A with Hy(L(A)) =~ L(A). Suppose that B is
a different anti-dominant tableau in the same row equivalence class as A. We
need to show that Ho(L(B)) =~ L(B) too. To prove this we may assume that
B = o(A) for some simple transposition o € S, x S,,. Let & be the linkage class
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containing A, so that o(£) is the linkage class containing B. By Lemma 2.9, there
is an equivalence T : O¢ — Oy(¢y such that T,(L(A)) = L(B) and T,,(M(C)) =

M(o(C)) for each C ~ A. The Z-linear maps [Hy| : Ko(O¢) — Ko(O) and

[Ho o T5] : Ko(O¢) — Ko(O) are equal; this follows because they are equal on
[M(C)] for each C ~ A as M(C) =~ M(c(C)). Hence, we get that

[Ho]([L(B)]) = [Ho o T5I([L(A)]) = [Hol([L(A)]) = [L(A)] = [L(B)].
This implies that Ho(L(B)) = L(B) as required. O

Corollary 3.18. The full subcategory of O consisting of all objects annihi-
lated by Hg consists of all the supermodules in O of strictly less than maximal
Gelfand—Kirillov dimension.

Proof. This follows from Theorem 3.17 on recalling that A is anti-dominant if
and only if L(A) is of maximal Gelfand—Kirillov dimension. O

3.8. The center of W. In this subsection we determine the center of W. The
argument here is similar in spirit to the proof of an analogous result in the
purely even setting from [BK1, §6.4]; it depends crucially on Corollary 3.15.
Let pr : U(g) — U(p) be the projection along the direct sum decomposition
U(g) = U(p) ®m, U(g). It is easy to see from (3.2) that the restriction of pr
defines an algebra homomorphism

pr: Z(g) » Z(W). (3.25)

The goal is to show that this map is actually an isomorphism.

Consider the Harish-Chandra homomorphism HC : Z(g) = I(t) from Theo-
rem 2.2. Recalling Theorem 2.3, we adopt the definition of HC that is adapted
to the Borel subalgebra b’, i.e. we view HC as the restriction of the map

S_po ¢ :U(g)o — S(t), (3.26)
where ¢’ : U(g)o — S(t) is projection along U(g)o = S(t) ® (U(g)o » U(g)n’)
and n’ is the nilradical of b’. The restriction of (3.26) to Z(h) also gives a con-
veniently normalized Harish-Chandra homomorphism for the Lie superalgebra
b, that is, an isomorphism hc : Z(h) = J(t) where

J(t) = {feS(t)‘ §£+§7’§: (mod z; — yj) }

: . (3.27)
forl<i<mandj=i+s_

Also let 7 : U(p) — U(h) be the usual projection, so that ker # = U(p)r where

t is the nilradical of p. We have now set up all of the notation to make sense of

the following diagram:

/

S_r0¢
U(glo —— S(t)
pr S_ ot (3.28)

Up)o —— U(h)o

Moreover, this diagram commutes. The final important point is that the re-
striction of 7 to W is injective; this is equivalent to the injectivity of the Miura
transform in [BBG, Theorem 4.5].
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Lemma 3.19. The images of dgr) and dg’“) under the map S_y o ¢’ om are equal
to er(x1, ..., xm) and (=1)"h.(y1,...,yn), respectively.

Proof. This depends on the explicit formulae for these elements of W from

[BBG, Section 4]. For example, for czg) remembering the typo pointed out in
the footnote on p. 11, we have that

(dy)) = S, (Z(—l)”“l'+"'+|ir|€i1,j1 e”) :

summing over all 1 <41,...,%,71,...,Jr <M + n such that

e row(i1) = row(j,) = 2;

e col(is) = col(js) for each s;

e row(is1) = row(js) and col(isy1) < col(js) for s =1,...,7r — 1.
To apply ¢’ to this, note for one of the monomials e;, j, - - - €;, j. that ¢’ gives
zero if row(i,) = 1, hence, we may assume that i, = j,; then we get zero if
row(ir—1) = 1, hence, i,_1 = j,_1; and so on. We deduce S,p/(qﬁ'(ﬂ(dg)))) =
(=1)"hy(y1,--.,yn) as claimed. O

Lemma 3.20. We have that n(Z(W)) € Z(h).

Proof. We must show for z € Z(W) and uw € U(h) that [n(z),u] = 0. If
A € Tab is any typical tableau, i.e. atyp(A) = 0, then K(A) is an irreducible
h-supermodule which remains irreducible (with one-dimensional endomorphism
algebra) on restriction to W, as follows from Corollaries 3.15 and 3.16. Hence,
m(2) acts as a scalar on K(A), implying that [7(2),u] € Anngygy K(A). It
remains to observe that

A€Tab
atyp(A)=0

This follows because {A € Tab | atyp(A) = 0} is Zariski dense in Tab (identified
with A™*™ in the obvious way). Now we can apply the standard fact that the

annihilator of any dense set of Verma supermodules is zero, see for example the
proof of [M, Lemma 13.1.4]3. O

Theorem 3.21. The homomorphism pr : Z(g) — Z(W) from (5.25) is an
algebra isomorphism. Moreover, we have that pr(z.) = &7, where z, € Z(g)

and &) € Z(W) are defined by (2.8) and (3.5), respectively.

Proof. We observe to start with that Z(W) € U(h)o @ U (p)r. To see this, note
that U(p) = U(h) @ U(p)r. Hence, we can write z € Z(W) as zp + z1 with
z0 € U(h) and z; € U(p)r. Applying 7 and using Lemma 3.20, we get that
20 = m(z) € Z(h) < U(h)o, as required. Hence, it makes sense to restrict all
the maps in the commutative diagram (3.28) to obtain another commutative

3t is easy to supply a direct proof of this statement in the present situation since b is a
direct sum of copies of g, (C) and gl;;(C).
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diagram
Z(g) 2 S(t)

pr he (3.29)

ZW) —— Z(b)

Since HC is injective, so too is the map pr. Since &) = Dstimr dgs)dg), we get
from Lemma 3.19 and Theorem 2.4 that

he(m (@) = ep(x1, .. ., Tm/y1s - - yn) = HO(2,).

Hence, pr(z,) = &7,

To complete the proof of the theorem, we must show that pr is surjective.
As hcor is injective and HC(Z(g)) = I(t), this follows if we can show that
he(m(Z(W))) € I(t). Since M(A) = M(B) for A ~ B, Corollary 3.15 implies
that the generalized central character of the W-supermodule K(A) depends
only on the row equivalence class of A. Hence, for z € Z(W) we deduce that
m(z) acts by the same scalar on the h-supermodules K (A) for all A in the same
row equivalence class. In other words, he(m(Z(W))) € S(t)5=*5». We also have
that he(m(Z(W))) < he(Z(h)) = J(t). It remains to observe by the definitions
(2.5) and (3.27) that I(t) = S(t)*5» A J(t). O

Corollary 3.22. The center Z(W) is generated by the elements {&)},>1;
equivalently, it is generated by the elements {¢(")},~1.

Proof. This follows from Theorems 3.21 and 2.4. ]

4. THE QUOTIENT CATEGORY Oz

For the remainder of the article, we restrict attention to integral central
characters, denoting the corresponding subcategory of O by Oz. We introduce
an Abelian subcategory Oz of W-smodgq such that the Whittaker coinvariants
functor restricts to a quotient functor

Hy: Oy — Og.

We show that this functor satisfies the double centralizer property, i.e. it is fully
faithful on projectives. Then we discuss the locally unital (“idempotented”)
algebras that are Morita equivalent to the blocks of Oz, and give some appli-
cations to the classification of blocks of Oy.

4.1. Categorical actions. Let Taby be the subset of Tab consisting of the
tableaux all of whose entries are integers. Let Oz be the Serre subcategory of

O generated by the g-supermodules {L(A)}aeTan,- It is a sum of blocks of O:
Oy = 6—) O¢. (4.1)

EeTaby /~

In particular, Oy is itself a highest weight category with weight poset (Tabyz, <).
Adopting some standard Lie theoretic notation, let sl be the Kac-Moody al-
gebra of type Ay (over C), with Chevalley generators { E;, F; }iez, weight lattice
P := @, Ze;, simple roots o; = €; — €41, etc.. We denote its natural module



22 JONATHAN BRUNDAN AND SIMON M. GOODWIN

by VT and the dual by V. These have standard bases {U;r }jez and {v} }jez,

respectively. The vector U;L is of weight +¢;, and the Chevalley generators act
by

+ . . . + . . .
o _ v if j =1 o v ifj=i+1
Fiv; { 0 otherwise, Eiv, { 0 otherwise, (4.2)
(v, =it (e, ifj=i
0T = Jj—1 T = J+1
Fiv; { 0 otherwise, Eiv; { 0 otherwise. (4.3)

As goes back to [B1] (or [CR, §7.4] in the purely even case), there is a categorical
action of sl on O in the sense of Rouquier [R1, Definition 5.32]; see also [BLW,
Definition 2.6] for our precise conventions. We just give a brief summary of the
construction, referring to the proof of [BLW, Theorem 3.10] for details.

e The required biadjoint endofunctors F' and E are the functors
F=U®-—, E=U"®—, (4.4)
where U is the natural g-supermodule of column vectors and UV is its
dual.

e The natural transformations  : F = F and s : F? = F? are defined so

that zp; : U® M — U ® M is left multiplication by the Casimir tensor
m+n )
Q.= 2 (—1)|J|€Z’7j®6jﬂ'€g®g, (45)
Gj=1
and spy : UQ®U®M — U®U ® M is induced by the tensor flip
UQU - UQU,u®@uv— (—1)'“””‘v®u.

e Let F; be the summand of F defined by taking the generalized i-
eigenspace of z, and F; be the unique summand of E that is biadjoint
to it. Let (’)% be the exact subcategory of Oz consisting of all su-
permodules admitting a Verma flag, and KO(OZA)C be its complexified
Grothendieck group. Let T™" := (VH)®" @ (V~)®" and set

UA:zvcfl@---v;m@vb*l@---vl;eTm|" (4.6)
for each A = 3,3 € Taby. Then, there is a vector space isomorphism
Ko(0F)c > T, [M(A)] — va. (4.7)

Moreover, this map intertwines the operators induced by the endofunc-
tors F; and F; on the left hand space with the actions of the Chevalley
generators of sl on the right.

e Under the isomorphism from (4.7), the Grothendieck groups KO(OEA)C

of the blocks correspond to the weight spaces of 7™/,

In fact, Oz is a tensor product categorification of T™™ in the general sense of
[BLW, Definition 2.10].

In the rest of the subsection, we are going to formulate an analogous categori-
fication theorem at the level of W. Observe that a 7-tableau A = 4/ 3™ € Taby,
is anti-dominant if and only if a1 < --- < a,, and by = --- > b,. Let Tab; de-
note the set of all such tableaux. It gives a distinguished set of representatives
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for Tabyz /~. For a linkage class £ € Taby /=, we let £° denote the set £ N Taby,
of anti-dominant tableaux that it contains.
Recall for A € Tabyz that P(A) is the projective cover of L(A) in Oyz. Let

P(A) := Ho(P(A)). (4.8)

Then we define Oz to be the full subcategory of W-smodgy consisting of all
W -supermodules that are isomorphic to subquotients of finite direct sums of
the supermodules {P(A)} AeTabg- This is obviously an Abelian subcategory of
W-smodgq. Similarly, given a linkage class £ € Taby /&, we let @5 be the full
subcategory consisting of subquotients of finite direct sums of the supermodules

{P(A)} e
Lemma 4.1. The Whittaker coinvariants functor restricts to an exact functor
Hy : Oz — Oy sending each block O¢ to O¢. Each O¢ is itself a block (i.e. it is
indecomposable), and Oz decomposes as

O,= @ 0.

&eTaby, [~

Moreover, the supermodules {L(A)}aeeo give a complete set of inequivalent ir-
reducible objects in each 55.

Proof. We first show that the essential image of Hy is contained in Oz. Any
object M € Oy is a quotient of a direct sum of the projective objects P(A)
for A € Taby. Since Hy is exact, we deduce that Hy(M) is a quotient of a
direct sum of the objects P(A) for A € Taby. Since, by definition, Oy is closed
under taking quotients and direct sums, we are thus reduced to showing that
each P(A) for A € Taby belongs to Oz. This is immediate by the definition
of Oz if A is anti-dominant. So suppose that A is not anti-dominant. Then
P(A) has a Verma flag, and the socle of any Verma is anti-dominant, hence, the
injective hull of P(A) is a direct sum of P(B) for B € Taby; see [BLW, Theorem
2.24]. Applying Hy we deduce that P(A) embeds into a direct sum of P(B) for
B € Tab$,. Since Oy is closed under taking submodules, this implies that P(A)
belongs to 0.

Thus, Hy restricts to a well-defined exact functor @7 — Oz. The same
argument at the level of blocks shows that Hy maps O¢ to @5, and clearly Oy
decomposes as the direct sum of the @5’8. The irreducible objects in @5 are
just the irreducible objects of W-smod that it contains, so they are represented
by {L(A) | A € £°} thanks to Theorem 3.17.

It remains to show that each @5 is indecomposable. Corollary 3.16 implies
for any tableaux A, B with B () A that the irreducible supermodules L(A) and
L(B) are both composition factors of the indecomposable object M (A). Hence,
L(A) and L(B) belong to the same block of O. Now observe that the equivalence
relation = on Taby is generated by the relations ~ and (. U

Remark 4.2. By Lemma 3.8 and the definition of Oy, the elements dgl) and
dgl) act semisimply on any object M € Oz. Lemma 3.8 shows moreover that
(1)

the z-eigenspace of d;’ is concentrated in parity par(z), i.e. the Z/2-grading is

determined by the eigenspace decomposition of dgl). This is a similar situation
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to category O itself, where the Z/2-grading was determined by the weight space
decomposition.

Next we introduce endofunctors F and E of Oz. Consider the biadjoint
endofunctors F := U ® — and FE := UY ® — of W-smodgq from §3.4 (where
U is still the natural g-supermodule). By Theorem 3.10, we have canonical
isomorphisms of functors

FoHy= HyoF, EoHy= HyoE, (4.9)

going from O to W-smodyq. It follows immediately that F(P(A)) =~ Ho(FP(A)),
hence, it is in the subcategory Q. Since F is exact, it follows that F leaves
the subcategory Oz of W-smodgy invariant. Similarly, so does E. Hence, we
can restrict these endofunctors to obtain a biadjoint pair of endofunctors

F:0y5 — Oy, E:0y5 — Og. (4.10)

Theorem 4.3. There are natural transformations T : F = F and 5 : =T
making Oz into an integrable sly-categorification. Moreover, the Whittaker
coinvariants functor Hy : Oz — Oy is strongly equivariant in the usual sense
of categorical actions (e.g. see [BLW, Definition 2.7] ).

Proof. First, we go through the construction of Z. For a left U(g)-supermodule
M, we already have zpy : U ® M — U ® M defined by left multiplication
by the tensor Q from (4.5). Under the isomorphism (3.18), the dual map
(xan)* : (URM)* —» (URQM)* is the map zp+ : M*QU* — M*®U™* defined by
right multiplication by €. Now suppose that M € W-smodg. Applying H to
Tarr@y o gives us an endomorphism Z s+ of M*@U* = HO((M* @w Q) @U*).
Finally, taking the left dual gives us an endomorphism Z s := *(Zpsx) of U@ M.

The definition of 5§ can be obtained in a very similar way, but it is easier
to define this using the coherence isomorphism U® (U® M) = (U®U) ® M
coming from the monoidal functor (3.21), starting from the endomorphism of
(U®U)® M obtained by applying — ®idy; to the tensor flip UQU — URU.

The fact that T and s satisfy the appropriate degenerate affine Hecke algebra
relations is just a formal consequence of the fact that z and s do on U(g)-smod.
Also, we’ve already constructed F' and E so that they are canonically biadjoint.

Next we show that Hy is a strongly equivariant functor. We have already
constructed the required data of an isomorphism ¢ : F o Hy = Hy o F on the
left hand side of (4.9). We next have to check that x and s are intertwined
with Z and 5 in the appropriate sense (we need the F-version of [CR, 5.2.1(5)]
as recorded in [BLW, Definition 2.7(E2)—(E3)]). This is a formal exercise from
the definitions (which were set up exactly for this purpose). Finally, we must
check the F-version of [CR, 5.1.2(4)] (which is [BLW, Definition 2.7(E1)]). This
asserts that a certain natural transformations Hy o E = FE o Hy constructed
from ( using the adjunction is an isomorphism. In fact, one shows that it is the
inverse of the right hand side of (4.9). We omit the details here.

Then we decompose F into its Z-generalized eigenspaces F; as before, and let
FE; be the adjoint summands of E. Finally, we need to show that the induced
actions of [F;] and [E;] make K((Oz)c into an integrable representation of sl.
This follows from the equivariance of Hy: we already know that Ko(Ogz)c is
integrable upstairs, and the slo-equivariant map [Hy] : Ko(Oz)c — Ko(Oz)c is
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surjective according to Theorem 3.17 and the description of irreducible objects
in Lemma 4.1. ]

The Grothendieck group Ko(Oz)c may be understood from the point of view
of this categorification theorem as follows.

Lemma 4.4. Let S™" := SMV+@S™V~ (tensor product of symmetric powers).
Then, there is a unique injective linear map j making the following into a
commutative diagram of sly-module homomorphisms:

Tm\n _can o Sm|n
[Ho]

Ko(Oz)c — Ko(Oz)c

Here, the top map is the canonical map from tensor powers to symmetric pow-
ers, and i is the composition of the inverse of (4.7) with the natural inclusion

Ko(02)c = Ko(Oz)c.

Proof. To see this, one just has to observe that Hy(M(A)) =~ Ho(M(B)) for all
A ~ B thanks to Theorem 3.14. Moreover, the classes of the Verma supermod-
ules {[M(A)]}aetabe are linearly independent in Ko(Oz)c by the classification
of irreducible objects. O

4.2. Serre quotients and the double centralizer property. Throughout
the subsection, we often appeal to Theorem 3.17 and the exactness of Hy from
Lemma 3.6. Although it is immediate from the definition that Oy is an Abelian
category, we do not yet know that it has enough projectives or injectives. We
proceed to establish this, essentially mimicking the proof of [BK2, Lemma 5.7].

Lemma 4.5. For each A € Tab$, the supermodule P(A) is both the projective
cover and the injective hull of L(A) in Op.

Proof. We need the following fact established in [BLW, Theorem 2.24]: for any
A € Tabj, the prinjective supermodule P(A) is a direct summand of F9¢P(B)
for some d > 0 and some B € Taby, of the special form B = §.:# with a # b.
Define d(A) to be the smallest d such that this is the case.

We’ll prove the lemma by induction on d(A). For the base case d(A) =
0, we have that A is the only m-tableau in its linkage class, so that P(A) =
L(A). Hence, P(A) = Ho(P(A)) = Ho(L(A)) = L(A). We deduce immediately
from its definition that @g is simple (i.e. equivalent to the category of finite-
dimensional vector spaces). Now the conclusion is trivial in this case.

For the induction step, take A € Taby with d(A) > 0. The functors F' and
F both have biadjoints, hence, they send prinjectives to prinjectives. Using
Lemma 2.8 and the definition of d(A), we can find some C € Taby with d(C) =
d(A) — 1 such that P(A) is a summand of FP(C). By induction, P(C) is both
the projective cover and the injective hull of L(C). So we have that

FP(C)= P P(B)®"s, FP(O = @ P[B)*"s,
BeTabj BeTabs,
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for some multiplicities mg with ma > 0, and deduce that P(A) is prinjective in
Oy.

Let B € Tabj,. Since L(B) appears in the head of P(B), we see that L(B) ap-
pears in the head of P(B). So for D € Tabj;, we have dim Homy, (P(B), L(D)) >
5B,D and

dimHomw(Fﬁ(C),Z(D)) = Z mgog,p = Mp.
BeTabj
Moreover, the equality holds here if and only if dim Homy (P(B), L(D)) = dgp
for all B with mg > 0. This is indeed the case thanks to the following calcula-
tion:

dim Homyy, (F P(C), L(D)) = dim Homy (P(C), E L(D))

= [E L(D) : L(C)]

= [EL(D) : L(Q)]

= dim Homg(P(C), EL(D))

= dim Homg(FP(C), L(D)) = mp.

The previous paragraph establishes that dim Homy (P(A), L(B)) = dap for
all B, so P(A) has irreducible head L(A). Thus we have shown that P(A) is the

projective cover of . L(A) in Oy, as required. A similar calculation shows that
dim Homy (L(B), P(A)) = da g, and P(A) is the injective hull of L(A) too. O

Lemma 4.6. For any A € Tab® and M € Oy, the functor Hy induces an
1somorphism
Homgy(P(A), M) S Homyy (P(A), Ho(M)).

Proof. We are trying to show that the natural transformation Homg(P(A), —) =
Homyy (P(A), Ho(—)) induced by the functor Hy is an isomorphism. Since H
is exact, it suffices to check this gives an isomorphism as in the statement for
M an irreducible supermodule in Oz. If M = L(B) for B € Tabgz, then both
sides are zero unless B = A, thanks to Theorem 3.17 and Lemma 4.5. If B = A
then, by Lemma 4.5, both sides are one-dimensional. The left hand side is
spanned by an epimorphism P(A) — L(A), so remains non-zero when we apply
Hy. Hence, Hy does indeed give an isomorphism. O

Lemma 4.7. The functor Hy is essentially surjective.
Proof. Let M € Oz. Applying Lemma 4.5, we can construct a two-step projec-
tive resolution B
Pl i) FO - M -0

in Oy. This means that M = coker f for projectives P, Py € Oy and fe
HomW(PlLPO). Let Py, Py € Oz be prinjectives such that Hy(P;) =~ P; and
Hy(Py) = Py. By Lemma 4.6, the functor Hy defines an isomorphism

Homg(Pl, P[)) 5 HOmw(Pl, Po)

Hence, there exists f € Homg(Py, Py) so that Ho(f) identifies with f. Then,
using exactness, we get that Ho(coker f) = coker f = M. O
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Theorem 4.8. The functor Hy : Oz — Oy satisfies the universal property of
the Serre quotient of Oy, by the Serre subcategory Ty consisting of all supermod-
ules of less than mazimal Gelfand-Kirillov dimension.

Proof. Recalling Lemma 2.8, Tz is generated by {L(A)}aeTab,\ Tabg- By Theo-
rem 3.17, the exact functor Hy annihilates all of these objects. Hence, by the
universal property of the Serre quotient functor @ : Oz — Oz/Tz, we get an
induced functor G : Oz/Tz — Oy such that Hy = G o Q. By Lemma 4.7, G is
essentially surjective. It just remains to show that it is fully faithful, i.e. for all
M, N € Oz we have that G : Homp, 7, (QM, QN) = Homyy (Ho(M), Ho(N)).
This is clear from Lemma 4.6 in case M is prinjective, since () satisfies an anal-
ogous property by the general theory of quotient functors. Take any M’ := QM
and N’ := QN and a two-step projective resolution P| — Pj — M’ — 0 in
Oz/Tz. We get a commuting diagram

0— Hom@Z/TZ(M’,N') — HomOZ/TZ(P('),N') —_ Hom@Z/TZ(P{,N’)

0 —» Homy (GM',GN') —— Homy (GP}, GN') ——— Homy (GP],GN’)

with exact rows. We’ve already established that the last two vertical maps are
isomorphisms, hence, so is the first one. ]

Corollary 4.9. The functor Hy : Oz — Oy is fully faithful on projectives.
Proof. Given the above theorem, this follows from [BLW, Theorem 4.10]. O

We stress that, although Oy is a quotient of a highest weight category, it is
not highest weight itself (except in the trivial case m +n = 1).

4.3. Parametrization of blocks by core and atypicality. At this point, it
is convenient to switch from using anti-dominant m-tableaux as our preferred
index set for the irreducible objects of Oz to some equivalent but more sugges-
tive formalism. By a composition X = n, we mean an infinite tuple A = (\;);ez
of non-negative integers whose sum is n. The sum of two compositions is
obtained simply by adding their corresponding parts. The strictification \*
of A is the strict composition (A],...,A;) of n obtained from X by discard-
ing all of its parts that equal zero. The transpose AT of X is the partition
(M AT, ) of n defined from AT := #{j € Z | 0 < \; < i}. For example, if
A=(..,0,2,40,0,1,0,...) then AT = (2,4,1) and AT = (3,2,1,1,0,0,...).
Also, we say that two compositions u,v = n are equal up to translation and
duality if there exists s € Z such that either p; = vso; for allie Z or p; = v
for all ¢ € Z.

Compositions A = n may be identified with special elements of the weight
lattice P of sl via the dictionary A = n < >, \ie; € P. For example,
te; is the composition whose ith part is equal to ¢, with all other parts being
zero. Then the usual dominance order < on P determined by the simple roots
a; = €; — €;41 corresponds to the partial order on compositions given by A < u
if XA < Xjcipy foralli. If A= n then A +a; € P is a well-defined
composition of n if and only if A\;.1 > 0, in which case it is the composition
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with \; + 1 as its ith part, \;;1 — 1 as its (i + 1)th part, and all other parts the
same as A.
The point of this is that the set

_ O<t<muEm-—tveEn—t
=Ztnl) i~ { (i) . }

such that p;v; =0 for all i € Z
is in bijection with the set of linkage classes £ € Tabz / ~. To understand
how this goes, given (u,v;t) € E(m|n) and X & ¢, we define A(u,v;\) to be
the unique anti-dominant tableau that has A\; + u; entries equal to ¢ in its
top row, and \; + v; entries equal to ¢ in its bottom row. For example, if
m=3n=3¢t=1and g = 2,v = 2 and A E 1 are the compositions with
ps = 2,v3 =14 = 1 and A\; = 1 for some j € Z, then

(4.11)

M ifj=s,
A\ =3 435 ifj =4, (4.12)

a0 ifj<3.
In general, the set {A(u,v; A\)}aet is equal to £° for a unique £ € Taby / ~ of
atypicality ¢, and all linkage classes arise in this way.

Henceforth, we identify elements (u,v;t) of Z(m|n) with linkage classes ¢ €
Taby / ~ via the bijection described in the previous paragraph, denoting the
block decompositions of Oz and Oz instead by

Oz= @ O, Oz= @ O
£eE(min) £eE(m|n)
respectively. Thus, blocks are parameterized by an atypicality t and a core
(1, v). As usual, the indecomposable projective, standard and irreducible ob-
jects of O are represented by the supermodules P(A), M (A) and L(A) for A e &.
For ¢ = (u,v;t) € E(m|n) and A = t, we will usually write Pg¢(X), M¢(A) and
L¢(N) in place of P(A), M(A) and L(A) for A := A(p,v; A). In this way, these
families of objects in @5 are now parameterized by compositions \ = ¢ rather
than by anti-dominant tableaux. For example, the block & associated to the
anti-dominant tableau A = 1133 has atypicality 2 and core (u, ) where p, v = 2

have p3 = 2 and vy = v4 = 1. Moreover, L(A) = L¢(\) where A = 2 has A\ = 2.

4.4. Formal characters. Let {x;}icz be indeterminates. Set x* := x;x;, +11
and X" := [[,ez xi* for n = m. Let e, (n) be the rth elementary symmetric
function e, (aq,. .., a;) where ay, ..., a,, are chosen so that 7; of them are equal

to ¢ for each ¢ € Z. Then, for any finite-dimensional W-module M, we define
its n-weight space

M, :={ve M| (dgr) —e,(n)Nv=0for N » 0}. (4.13)
The formal character of M is
ch M := > (dim M,)x" € Z[x; | i € Z]. (4.14)

nEm
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Theorem 4.10. For £ = (u,v;t) € E(mln) and X = t, we have that

chMe(A) = XM (14 x) et (4.15)
€L

chLe(A) = XM (1 4 x)rst. (4.16)
€7

Moreover, for any M € (95, we have that M = (—Bm:m

Proof. We first prove (4.15). Let A := A(u,v;\) and aq, ..., an be the entries
along the top row of A. By Corollary 3.15, we have that ch M¢(A\) = ch K(A),
and will compute the latter. The advantage of this is that K (A) is the restriction
of the h-supermodule K (A). Recalling (3.8), K (A) possesses a basis of t-weight
vectors {vglo—(g,,...0,.)ef0,13m Such that Sy (xi)ve = (a; — 0;)vy for each i =
1,...,m (where z; = e;; as in §2.4). Hence,
Syler(x,. ., xm))ve = er(ar — 01, ..., am — On)vg.

For two tuples 6,6 € {0, 1}, we write 0’ >1ex 010 > 0;,05, 1 = 0;11,...,0,, =
O, for some 1 < 7 < m. Then we observe that

dgr)vg = e;(a1—01,. .., am—0m)ve+(a linear combination of vg’s for @' >., 0).

This follows from the explicit formula for W(dgr)) recorded in the proof of [BBG,

Lemma 8.3]; see also Lemma 3.19. Hence, we see that vy contributes the mono-
mial Xa,—6, ** * Xa,,—6,, t0 the formal character of K(A). We have now shown

that
ch Me(A) = Xar *** Xanm Z [ H Xaai—1:|?

0e{0,1}™ 1<z<m

which simplifies to give (4.15) since Xa, - ** Xa,, = X TH.

The proof of (4.16) is very similar, using instead that ch L¢(\) = ch V(B)
according to Theorem 3.3, where B ~ A(u,v;\) is chosen so that the entries
along its top row are by,...,bm_¢,c1,...,c and the entry immediately below
each of the ¢;’s is another ¢;. Then V(B) possesses a basis of t-weight vectors
{va}o—(o,,..0,m_1)efo,1ym—t such that Sy (z;)vg = (b — O;i)vg for i =1,....m —t¢
and Sy (x;)ve = cjvg for i =m —t +1,...,m. So the same argument as in the
previous paragraph gives that

ChZE(A) = Xb1 " Xbom—t Xer """ Xer Z |: H Xabz'—1:|’

befo.1jm=t Fl<ism—t

i=1
which simplifies to give (4.16).
Finally, to get the last sentence, we just exhibited a basis showing that it is
true for M = L¢(\), which is enough to establish it in general. O

Corollary 4.11. The map Ko(O¢) — Z[xi | i € Z] given by [M] — ch(M) is
mjective.

Proof. By Theorem 4.10, ch L¢()) is equal to X plus a sum of terms of the
form x* for v > A + u. Hence, the formal characters of the irreducible objects
in O¢ are linearly independent, which implies the corollary. O
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The following lemma describes what the e(")’s and f(")’s do to weight spaces.

Lemma 4.12. For any finite-dimensional W-module M and n = m, we have
that

f(s,+r1) . f(s,-&-?“k)Mn C @ MTH‘Zi 000 (4.17)
0=k

0i<nit1

e(s++r1) L. 6(S++7'k)Mn C @ Mn—Zi 0;0; (4.18)
0=k
0;<n;

orallk >0 andry,...,r > 0.
f Y )

Proof. We will prove (4.17). Then (4.18) follows by twisting with the involution
t: W =S W given by dgr) — (—1)" Er), ets++7) s (=1)7 fG-+47) and f-+7)
(=1)7e(*+*7); note for this that *(M,) = *(M),y where 1 = n_;.

To establish (4.17), let WP (resp. W?) be the subalgebra of W generated
by d\V, ... d™ (resp. by d\",... d"™ f—+D _ f—+m) For p = m,
we define the weight spaces M,, of a finite-dimensional Wlb—module M by the
same formula (4.13) as before. Let C, be a one-dimensional W{-module with
basis 1, such that dgr)fn = e,(n)1, for each r. Then form the induced module
M(n) :=W? Qo Cy, setting My := 1 ® 1. We claim that

f(5—+7"1) . f(s—"‘”"k)mn e (—D M(n)m_zi 000 (4'19)

=k
0;<ni+1

To deduce (4.17) from this claim, it suffices to show for any v € M, that is a
simultaneous eigenvector for all dgl), e ,dgm) that f(s—+m) ... fls-+7)y belongs
to the subspace on the right hand side of (4.17). This follows from (4.19) because
there is a unique Wlb—module homomorphism w : M(n) — M such that m, — v,

and w (M(Tl)ﬂ-‘rzl 92'041'> = M’V]-‘rzi 0;c+
Finally, to prove (4.19), we pick any block £ = (0,v;m) € Z(m|n) of maximal
atypicality. Applying the PBW theorem for W, we see that I/Vlb -module M(n)

may be identified with the restriction of the Verma supermodule M¢(n), so

)

that m,, is the highest weight vector in Mg (n). Asmy, is a dgl -eigenvector of

eigenvalue Y., in;, the relations imply that fls-+m)... fs—+m)m is a dgl)—
eigenvector of eigenvalue )., in; — k. Hence, this vector lies in the sum of
the weight spaces M¢(n),y for o = m with Y, in} = ¥, in; — k. Finally, we
apply (4.15) to see that M¢(n),y is zero unless ' = n+ >, 6, for § = k with
0; < My for all <. O

4.5. Cartan matrix of 65. The next goal is to calculate the Cartan matrix
of the block O¢. We will deduce this from the following lemma describing
the composition multiplicities in the Verma supermodules M¢()\). This is a
reformulation of Corollary 3.16, but we will give an alternative proof here using
the formal characters computed in Theorem 4.10.

Lemma 4.13. For any A\, k & t, the Verma multiplicity [M¢(X\) : Le(k)] is
non-zero if and only if Kk = A+ Y, 0;c; for 0 = (0;)icz satisfying 0 < 0; < Ay

[ary
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for all i; equivalently, N = k — Y, Oi; for 6 with 0 < 6; < K; for all i. When
this holds, we have that

(LN : Ze(w)] = [T (7).
€L
Proof. In view of Corollary 4.11, this follows from the following calculation:

ChMg()\) = XM_“ H(l + XOCi)Ai+1+/M+1

€L
= (XA H(l + Xoci))\wrl) (X“ H(l + Xai)#i+1>
€L €L

( oM (X“i)el) (X“ [Ja+ x“i)“m)
0=(0:)iez 1€Z i€z
0<0; <41

0:(92')2'62 i€Z €7
0<0; <A i41

Here we have used both of the formulae from Theorem 4.10. O

Theorem 4.14. For § = (u,v;t) € E(m|n) and any A,k & t, the multiplicity
[Pe(N): Le(k)] is non-zero if and only if & = A3, (Aiv1—piv1)ai for p = (pi)iez
satisfying 0 < pir1 < Niy1 + min(N;, p;) for all i, in which case
(>\i+1+7'i_7'i+1)()\i+1+7'i*7'i+1)

[Pe(A\):Le(r)] =mint > ] Ti=Ai Ti—pi

T=(1i)iez €L (Nit1+7i = Tip 1) (N1 + 7= Tip1 +7)!
—\71)ie

max(A;4+1,0i4+1)<Ti+1 <X 1+min( g, p;)

where v := p + v. Moreover, [Pe(X): Le(rk)] = [Pe(k): Le(N)].

Proof. Let A := A(u,v; k) and C := A(u,v; A). Since these are anti-dominant,
Theorem 3.17 and the exactness of Hy imply that the multiplicity we are trying
to compute is equal to [P(C) : L(A)]. This can be computed by the usual BGG
reciprocity formula in the highest weight category Oz:
[P(C) : L(A)] = Y [M(B) : L(A[M(B) : L(C)]. (4.20)
Beg

In particular, this already establishes the symmetry property at the end of the
statement of the theorem.

For any B € &, Theorem 3.14 shows that Ho(M (B)) is isomorphic to M¢(3)
for 8 = t determined uniquely from A(u,v;3) ~ B. Also, for a given 3, the
number of different B satisfying B ~ A(u, v; 3) is

mint / TT(8: + ) (8 + ) = mint / T 81(8: + )t
We deduce from (4.20) that
[Pe() = Zelw)] = mint 3 (T] 5 55) [Fe9) : LeOIT(3) - T

BEt )
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By Lemma 4.13, [M¢(5) : Le(AN)][Me(B) : Le(k)] # 0 only if =k — 3, by =
A — 2 dia for 0, ¢ satisfying 0 < 0; < k;,0 < ¢; < \; for all i. Equivalently,
replacing ¢; by 741 — A1 and 6; by 7,41 — pig1, it is non-zero only if there
exist p = (pi)icz and 7 = (7);ez such that 8 = A+ >, (Niy1 — i), K =
A+ Zz‘()‘iJrl - p”l)ozi and 0 < 7301 — pit1 < Ki, 0 < 71 — A1 < A for all 4.
Moreover, when this holds, Lemma 4.13 gives that
[Me(B) : LeWMe(8) : Le(w)] = [ T (7)) (7))

K3
In this situation, k; = A\j4r1+p; — pie1 and B; = A\; +7; — 741, so the inequalities
just recorded may be rewritten as max(Ai+1, pi+1) < Ti+1 < Ait1 + min(A;, pi),
and we deduce for K = X — Y. (Xit1 — pi+1); that

(Az+1+Tz—Tz+1) ()‘i+1+7'i*7i+1)

Pe(N) : Le(k)] = min! Al Tipi
[Pe() + Le(s DI B Fo s e

s —Tir ) Nip1 +Ti=Tip1 +7)!

max()\'LJrl 7P'L+1)<T'L+1 g)\z+l erll’l()\l 7P'L)

Finally, we observe that for this to be non-zero, at least one such 7 must exist,
which exactly requires that 0 < p;1 < \j+1 + min()\;, p;) for all i. O

Remark 4.15. The multiplicity in Theorem 4.14 depends on A, x and v = p+v,
but not directly on u, v

The formula in Theorem 4.14 is undoubtedly rather cumbersome. Let us
give a small example right away. Let (u,v;t) be as in (4.12). Since t = 1 the
Cartan matrix naturally has its rows and columns indexed by Z. For A = ¢j,
there are only three possibilities for the composition p in Theorem 4.14, namely,
p=0,¢jore; +ej+1. These correspond to composition factors L¢ (k) of Pe(\)
with K = €j 1,k = ¢ and K = €1, respectively. Thus, the Cartan matrix is
a tri-diagonal matrix. Computing further from the formula in the theorem one
deduces that the Cartan matrix is

36 18
18 27 9
9 18 9
9 15 6
6 24 18
18 36

where we have only displayed rows and columns indexed 1,...,6; the tri-
diagonals are constant above and below these entries.

In the remainder of the subsection, we assume that ¢ > 0, and will deduce
several more palatable consequences of the theorem; these will be needed in
the proof of Theorem 4.35 below. For A & t, define h(\) to be the number of

compositions p = (p;)iez satisfying the inequalities
0< pit1 < AfH_l + min()\i,pi) (4.21)

for all i € Z. For example, h(e;) = 3. Since p; = \; = 0 for i < 0, this should be
thought of as a recursive system of inequalities describing some polytope; we
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are counting its lattice points. Theorem 4.14 tells us that hL)\) is the number
of k = t such that L¢(k) appears as a composition factor of Pg(X\).
If \j = 0 for some j, then we have by the definition that

h(A) = h(AS) h(NZ7) (4.22)

where AS7 (resp. A\*7) is the composition obtained from A by setting all parts
in positions > j (resp. < j) to zero. Also it is clear that h(\) = h(p) if p is
obtained from A by a translation. This reduces the problem of computing h(\)
to the case that A is comnected, i.e. it is of the form

h(A1y .oy Ar) i=h((...,0,A1,..., A, 0,...))
for some r and Aq,..., A, > 0.

Lemma 4.16. For any X\ = t, we have that h(\) > (t§2), with equality if and
only if X\ = te; for some i € Z.

Proof. Tt is easy to check that h(te;) = (tJQFQ). Conversely, we must show that

h(A) > (t—i2-2) whenever it has at least two non-zero parts. If A is not connected,
the proof is easily computed by induction on ¢, using the elementary inequality
(tl;2) (tﬂ;g) > (t+2) if t/,t" > 1 satisfy t' +t” = t. If X is connected, let A\g, A\po1
be its rightmost two non-zero parts, so A = (..., A\k—1, Ak, \k+1). Then the

conclusion follows easily from the claim that
B(owo Ake15 Ay At) > B, A1, Ak + Agyn)-

This can be proved by showing for each choice of the entries of p up to pp_1
that there are more ways of extending this to a sequence satisfying (4.21) for
A= ( ..,)\k,1,>\k,)\k+1,...) than for X = ( Gy AE_1, Ak T+ )\k+17-'-)' ]

Remark 4.17. We also expect for X E t that h()\) < 3!, with equality if and only
if X is generic in the sense that it consists of isolated 1’s. We won’t need this
observation here, but note that h(\) = 3" for generic A follows from h(g;) = 3

and (4.22).
Lemma 4.18. The space Homg, (Pe(tej), Pe(te;)) is mon-zero if and only if
i —jl<1
Proof. This is the multiplicity computed in Theorem 4.14 for A = te; and

= tej. Since the Cartan matrix is symmetric, we may assume that i < j.
From the equation A — x = >, (pi — Ai)oi—1, we deduce that we must have

pi = piy1 = -+ = pj = t and all other parts zero. But this contradicts the
system of inequalities pr+1 < Agy1 + min(\g, px) unless we actually have that
j=i+1. O

Lemma 4.19. Let v := u+v. For each t € Z we have that

_ min! & ( ) Yilyit!
dim Endz (Pg(te .
Os( eltei) = 1, 7]‘2 (vi +t =) (yie1 +7)!
mlin!

This is equal to m(t) whenever v; = v;41 = 0.

Proof. The first formula is easily derived from Theorem 4.14; in the summation
over T there, one just has 7’s with 7; = ¢,7,.1 = 7 for 0 < r < ¢, and all other

parts equal to zero. To deduce the second formula, use an:o (fn)2 = (2;) ]
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4.6. An idempotented form for W. In general, the blocks 65 of the category
Oy have infinitely isomorphism classes of irreducible objects. In such situations,
it is often appropriate to consider locally unital rather than unital algebras.
Here, by a locally unital algebra, we mean an associative algebra A equipped
with a distinguished system of mutually orthogonal idempotents {1;};c; such
that A = @, je; LiAl;. By a (left) module M over a locally unital algebra
A, we always mean a module as usual which is locally unital in the sense
that M = @,.; 1iM. Let A-modg be the category of all such modules with
dimM < oco. In this subsection, we construct a locally unital algebra W¢
whose module category is equivalent to 55. In the next subsection, we will
show for maximally atypical blocks that W is isomorphic to the locally unital
endomorphism algebra of a minimal projective generating family in @g. For
further discussion of our motivation, see [B5, §4].

To define We, we must first pass from W to an idempotented form w.
By definition, this is the locally unital algebra with distinguished idempotents
{1,}n=m, generators

c(r)ln c 1nW177 foryEmand r > 0,

d(?‘)ln c 1711/1/177 for n =m and r > 0,

fi(’")ln € 1T]+0%I/i/177 for n = m, r > s_ and i € Z such that n;,1 > 0,
egr)ln c 1,],%.W1n for n = m, r > s, and i € Z such that n; > 0,

and certain relations. In order to write these down, we need a couple of con-
ventions. We interpret the following currently undefined expressions as zero:
1y, c(r)ln and al(’")l77 if n ¥ m; egr)lq7 if either n ¥ m or n — a; ¥ m; fi(r)l77
if either n £ m or n + a; ¥ m. This means that for given n = m, we have

r) n = fl-(r) 1, = 0 for all but finitely many ¢. Also we will omit idempotents
from the middles of monomials when they are clear from the context. Then,
the relations are as follows:

01, =d91, =1,, dV1, = sz g dTD1, =0forr>m, (4.23)
M1, is central, dMd), = d(s)d(r)ln, (4.24)
r—1
dDel1, — a1, = S a@el T, (4.25)
r—1 L
A0 1, — (g, = — 2 flrrsTimaglayy, (4.26)

(7‘) (8)1 +e( 7) g )1 _|_e(5) ( )1 i e(s) Z(,7“)177 — 0, ( )
f’”>f<5>1 + 17,4 ] S)f 1, + £ 101, =0, (4.28)
()f( 1, —i—fs) T)l = 0 for i # j, (4.29)
Z( (T)f( 1 +f(5) (T ) C(H_s_l)ln. ( )

i
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We leave it as an exercise for the reader to check in the degenerate case

m =0 that W = Cle™,...,c™], i.e. it is a polynomial algebra in n variables.
The case m = 1 is also particularly easy to understand; in this case, we let
1 :=1,,el; := egs++1)15i, fl; = i(fiﬂ)lsi and z1; := ™1, for short.

Lemma 4.20. In the case m = 1, the algebra W is Cle®M, ..., V]QT where
T is the path algebra of the infinite quiver

1S 2 S (3 _° 4
”'.&_/.N/.&_/.
OrOrUrU
z 4 z z

subject to the relations €21; = f?1; = 0 and ef1; + fel; = z1; for all i € Z.
Proof. 1t is easy to check from the defining relations for W that there is a
locally unital algebra homomorphism f : C[¢), ..., D] ® T — W sending
1;, c(r)li, el;, f1; and z1; to the cqrresponding elements of W. To show this is
an isomorphism, we define f~1: W — C[e¢), ..., D] @ T by sending
161' = 1i7
("1, if
(r) C i uwr<n,
e { (=) + 1)t —rnt D21 i r >,
A1, v 6,015,

e§s++r)1€i — 51,’],(_1- _ 1)7’—161%

f](S_H)lai > 6io1(—0)" " f1i,

for each r > 1 and 4,5 € Z. This is well defined by another (longer) relation
check. Finally, it is obvious that f~'o f = id. To see that f o f~' = id, note
from the relations that the elements 1;, el;, f1; and c(l)li, ... ,c(”) 1, forallie Z
already suffice to generate w. O

Lemma 4.21. The following two categories may be identified:
(1) The full subcategory of W-modgq consisting of all modules M such that
M is equal to the direct sum @ M, of its weight spaces from (4.13)
and the endomorphism defined by the action of dgl) is diagonalizable;

(2) The full subcategory of W-modsq consisting of all modules M such that
d(r)L7 —er(n)1y acts nilpotently for all n = m and r > 1.

nem

Proof. Take M belonging to the category (1). We make it into a W-module by
declaring that

e 1, acts as the projection pr, along the weight space decomposition;

)

o (M1, acts as () o pr, and d™1, acts as dgr

. el(-r)ln acts as pr

o pr,; and

— oel™ o pr, and fi(T)L7 acts as pr, ., of(M o pr,.
To see that this makes sense, we need to verify that the defining relations of
W are satisfied. This follows from the relations for W in Theorem 3.1. For

example, to check (4.29)-(4.30), we have by the definition of the action of the
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generators of Wonwve M, that
Z](egr)f](s)l77 + f;s)ey) Ly)v
.3

= Z Pryta;—a; © ) ©PTyta; Of + PLy—a;+a; Of( 9o PTy—_q, oe(r))’u

_ (e(r)f + f(s)e(r )U _ 5i7jC(T+S_1)v _ C(H_S_l)lnv,
using Lemma 4.12 with k = 1 for the second equality. Applying pr
both sides, this establishes (4.29) when ¢ # j and (4.30) when i = j.
Conversely, take M belonging to the category (2). Then we make it into a

W-module by declaring that

o (M) dgr), e and £ act on 1,M as c(r)ln, d(r)ln,zi ez(.r)ln and fi(T)ln;

. dgr) acts via the formula dgr) =30 dgs)c(r_s) from (3.5).
Then one needs to verify that the relations for W from Theorem 3.1 are satisfied.
Moreover, we have that M, = 1, M.

Finally, the two constructions just explained are inverses of each other.
Again, this uses the k = 1 case of Lemma 4.12. O

n+o;—o; to

Theorem 4.22. For { = (u,v;t) € E(m|n), the category O¢ is isomorphic to
the category We-modgq, where

We = W/ (M) Ay, (Pe(2).
A=t
This is a locally unital algebra with distinguished idempotents {1,}p—p, that are
the images of the ones in W. Moreover:
(1) All of the left ideals W¢l,, and right ideals 1,W¢ are finite-dimensional.
(2) We have that D1, =3 i(v; — )1, in We.

Proof. Set V := @,_; P¢()). For each n = m, there are only finitely many
K k= t such that 1,L¢(k) # 0. This follows from Theorem 4.10: we must have
that K =1 —p — >, 00y for § = (0;)iez with 0 < 6; < 1541, and there are only
finitely many such 6’s. Moreover, for each x k= t, there are only finitely many
A & t such that [P¢(\) : Le(k)] # 0, as is clear from Theorem 4.14. Hence,
there are only finitely many A = ¢ such that 1, P¢(A) # 0. Thus, we have shown
that all of the weight spaces 1,V of the W-module V are finite-dimensional.
Consider the locally unital algebra
6—) Homce(1,V,1,V)
n,vEmM
with multiplication coming from the usual composition. This is a simple locally
unital matrix algebra with unique (up to isomorphism) irreducible module V.
The representation of W on V defines a locally unital algebra homomorphism
p: W — FE sending a € 1, Wl to the linear map 1,V — 1,V defined by
left multiplication by a. We have that kerp = ﬂ)\bt AnnW Pg()\) hence, p
induces an embedding W¢ — E. Since each 1,E1,, = Hom¢(1,V,1,V) is finite-
dimensional, we deduce that each 1,W¢l, is finite-dimensional. Also 1,W¢l,,
is non-zero only if there exists A = ¢ such that 1,P¢(A) # 0 # 1,P¢()\). For
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fixed n, there are only finitely many such A, hence, only finitely many such v.
This shows that W¢l,, is finite-dimensional. Similarly, so is 1, W¢, and we have
established (1).

Now we explain how to identify @5 with We-modg. Given any M € @5,
we can forget the Z/2-grading then apply Lemma 4.21 to view it as a W-
module, using also Lemma 3.8 and the last part of Theorem 4.10. This defines
a functor from @5 to the full subcategory of W-modgg consisting of subquotients
of finite direct sums of the modules {P¢(\)}r=t. Each P¢()) factors through the
quotient We, so the latter category may also be described as the full subcategory
of We-modgy consisting of subquotients of finite direct sums of the modules
{P¢(N)}aee. In fact, this defines an isomorphism of categories, since the Z/2-
grading on M can be recovered uniquely thanks to Remark 4.2.

It just remains to observe that every finite-dimensional W¢-module belongs
to the full subcategory of We-modgg consisting of subquotients of finite direct
sums of the modules {P¢(A\)}=¢. To see this, note that any M € We-modgg
is a quotient of a finite direct sum of the projective modules W¢l, for n = m.
Moreover, Wel, < E1,, which is a direct sum of copies of V', so that W1,
embeds into a (possibly infinite) direct sum of the modules P¢()). In fact, it
embeds into a finite direct sum of these modules since it is finite-dimensional,
as is each Pg(\).

To establish (2), note that (1) = dgl) - dgl), so it acts diagonalizably on
any object of @5 thanks to Lemma 3.8. Moreover, dgl) — dgl) acts on L(A) as
b(A) —a(A) = X, i(v; — ;) for any A € £°. Thus, V) — 37 i(v; — p;) annihilates
all P¢()), and (2) follows. O

Remark 4.23. Here is a slightly different construction of the locally unital al-
gebra We. Given any finite subset X < &, the W-module @,y P¢()) is finite-
dimensional. Hence,

Wy = W/ (M) Annw (Pe(2))
AeX

is a finite-dimensional algebra. Each Wx possesses a distinguished family of
idempotents {1,},m such that Wy = C'Du,m:m 1,Wx1,, namely, 1, is the
primitive idempotent in the finite-dimensional commutative subalgebra of Wx
generated by dgl), . ,d&i) that projects any module onto its n-weight space.
Then We is the inverse limit lim, Wx over all finite subsets X of &, taking the
inverse limit in the category of locally unital algebras with idempotents indexed
by compositions of m.

Remark 4.24. The special case m = n = 1 is particularly trivial. If m = n =
t = 1 then W¢ is the algebra T' from Lemma 4.20 subject to the additional
relations z1; =0 for allt € Z. If m = n =1 and t = 0, then we have that y = ¢;
and v = ¢ for ¢« # j, and W is the algebra 1" with the additional relations
z1; = (j—i)l,21,01 = (j —9)1;-1, and 1 = 0 for k # 4,7 — 1. (In this case,
We = M>(C).)
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4.7. Graded lifts and the Soergel algebra of a block. Throughout the
subsection, we fix £ = (u,v;t) € Z(m|n) and set v := p + v for short. Let
A = (—D Homgy(P(A), P(B)), (4.31)
A,Beg

viewed as an algebra with multiplication that is the opposite of composition.
Note A¢ is a locally unital in the sense introduced at the start of §4.6, with
distinguished idempotents {1a}ac¢ coming from the identity endomorphisms of
each P(A). By standard theory, the functor

@ Homgy(P(A), —) : O = Ag-modgq (4.32)

Aeg
is an equivalence of categories. Since we have that 1oA¢1g = Homgy(P(A), P(B)),
this functor sends P(B) to the left ideal A¢lg.

By [BLW, Theorem 5.26] (plus [BLW, Theorem 3.10]), the basic algebra A¢
admits a positive grading A¢ = @ ;- (A¢)q making it into a Koszul algebra. In
view of (4.32), this means that we can introduce a graded lift of the block Ok,
namely, the category A¢-grmodgy of finite-dimensional graded A¢-modules. This
is entirely analogous to the situation in [S]|, where Soergel introduced a graded
lift of the category O for a semisimple Lie algebra. For further discussion, see
[BLW, §85.2-5.5]. In particular, [BLW, Theorem 5.11] shows that categorical
action on Oy discussed in §4.1 also lifts to the graded setting. Note finally by
[BGS, Corollary 2.5.2] (which extends obviously to the present locally unital
setting) that the Koszul grading on A¢ is unique up to automorphism. This
means that the grading is canonical, so it can be used to refine the invariants
of blocks computed already in Theorem 4.14; see Theorem 4.27 below.

Recalling next that the indecomposable projective objects in the quotient
category @5 are the W-supermodules {Fg()\)} \op We can also consider the
locally unital algebra

Bf = @ Homw(ﬁg(/ﬁ),Fg()\)), (433)

again with multiplication that is opposite of composition. Its distinguished
idempotents are denoted {1)}xr¢, so that 1,Bely = Homyy (Pe(k), Pe())). In
view of the double centralizer property of Corollary 4.9, we can identify By
with the subalgebra (—D&M:t La(uim)AeLa(upsn) of A¢. In particular, B inherits
a positive grading Bg = @ -0(B¢)q from the Koszul grading on A¢. We call
the graded algebra Bg the Soergel algebra of the block O¢. Just like in (4.32),
there is an equivalence of categories

@ HOHIW (Fg(li), —) . 6& g Bg—modfd, (4.34)

K=t
so that the category B¢-grmodyy is a graded lift of 65. The algebra B is Morita
equivalent to the algebra W; from Theorem 4.22. The following theorem shows
that these two algebras coincide for maximally atypical blocks. It gives us hope
that the algebra B can be described in these cases as the path algebra of an
infinite quiver with explicit relations.

Theorem 4.25. For any block £ = (0,v;m) € E(m|n) of mazimal atypicality,
there is an isomorphism Wy S Be such that 1y — 1y for each X E m.
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Proof. Maximal atypicality implies that all of the irreducible W-modules in O¢
are one-dimensional. By Theorem 4.22, these are the irreducible We-modules.
Hence, W is a locally unital basic algebra such that W¢-modgy is isomorphic
to O¢. Since the idempotent 1) € W acts as the identity on L¢(A) and as
zero on all other L¢(k)’s, it is a primitive idempotent, and the left ideal Wely
is isomorphic to the projective cover Pg¢(A) of L¢(A). Then comparing with
(4.33), we get that

@ Homy, (Wele, Wely) = @ 1,Wely = We.
K,AEM K,AEM

This isomorphism sends 1) — 1, for each A E m. O

Remark 4.26. Let £ be as in Theorem 4.25, so that Be = We. If m = n = 1,
we described this algebra already in Remark 4.24. If m = 1 < n, using also
Theorem 4.22, we see that B¢ is a quotient of C[C(Q), .. .,c(”_l)] ® T, where
T is as in Lemma 4.20. Setting z; := efl; and y; := fel;, we have that
1,T1; = Clxz;,y;]. It follows that 1., B¢l., is a quotient of the polynomial
algebra C[¢®, ..., =D 2 ui].

Our next theorem computes the graded dimensions of the spaces 1,B¢1y. It
is a graded analog of Theorem 4.14. To formulate it, for a positively graded
vector space V. = @5 Va, we let dim, V' := >, _(dim V},)¢" where ¢ is an
indeterminate. Let [n] be the quantum integer (¢" — ¢~")/(¢ — ¢~ 1), let [n]!
be the corresponding quantum factorial, and let [ ] be the quantum binomial
coeflicient.

Theorem 4.27. For any A\, k E t, the space 1,B¢1y is non-zero if and only if
k= A+ (Nig1—pit1)ey for a composition p with 0 < piy1 < X1 +min(A;, p;)
for all i, in which case

dimg 1, Be1y = [m]![n]! )] ¢ H 5
r=(ri)iez i
max(Xi+1,0i4+1)<Ti+1<Ni+1 +m1n(>\z Pi)

[>\z+174;i>\—iﬂ'+1] [M+1:;¢p—in+1]

+ 7 — T¢+1]![)\i+1 + TP — Tit1 —i—’)/z‘]! ’

where

m n
s(7) = (2> + (2) +Z(27z' —Xi = pi)(Nip1 + T — Tig1 + %)
ir1 + 7_1 — Tit1 Nit1 +Ti — Tig1 + %
5( )= )

Proof. See Appendix B. O

Corollary 4.28. For all compositions A = t which are generic in the sense that
Ai #0= XN+ Xip1 + 7 +vir1 = 1, we have that

dimq 1)\B£1)\ = q(gz)-i_(g)_Z ( )(1 + q '/H '71

Proof. We apply Theorem 4.27 with k = A, hence, pi; = 0 for all i. Letting
I:={ieZ] )\Z 1 = 1}, the summation is over the compositions 77/ for J < I
defined from 7' = XN+ 1if i € J, and 7‘ := )\; otherwise. We have that
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n

s(r7) = (5)+(3) =X, (§) +21J], hence, 33, ¢ = g+ )L () (14421,
while the big product is always equal to 1/ T,[v]!. O

By Lemma 4.5, the basic algebra B is a Frobenius algebra. It is also graded
and indecomposable. It is a general fact about such algebras that the top
degrees of the endomorphism algebras of the indecomposable projective objects
are all the same (and these endomorphism algebras are one-dimensional in this
degree); see e.g. [R3, Proposition 5.18]. The following describes this top degree
explicitly.

Corollary 4.29. Let d := m? +n® — D y2. For every \ & t, we have that
dim(1xBely)g = 1 and (1Bely)g =0 for all d' > d.

Proof. In view of the remarks just made, it suffices to compute the top degree
of 1yB¢ly for generic A, which is easily done using Corollary 4.28. (One can
also check this directly for arbitrary X; in general, the monomial of top degree
in the polynomial dim, 1yB¢1) as computed by Theorem 4.27 comes from the
summand with 711 = A\; 11 + A; for each i.) O

Conjecture 4.30. The algebra B is a graded symmetric Frobenius algebra.

The last important algebra that we associate to the block O is its center
Ck, i.e. the endomorphism algebra of the identity functor Id : O — O¢. The
double centralizer property implies that C¢ is also the center of the quotient
category @5. It can be recovered from the Soergel algebra B¢. To explain this,
we view elements of B¢ as infinite matrices of the form z = (2, )). =t for
Ty € 14 Bely, all but finitely many of which are zero. If we drop this finiteness
condition, we obtain a completion ég of this algebra. In fact, we have simply
that

Be = Endyy <@ Pg(A)) : (4.35)

A=t
Moreover, finite-dimensional B¢-modules are the same as finite-dimensional
modules over the completion. This all depends on the fact that B is bounded
in the sense that all of the ideals 1, B¢ and B¢1) are finite-dimensional. Finally,
we may identify
Ce = Z(B). (4.36)
The grading on B induces a positive grading C¢ = @y-((Ce¢)a-

Lemma 4.31. The top graded component of C¢ is @y_,(11Ce1x)a where d :=
m? +n? — D ’y?, with each summand (1)\C§1A)d being one-dimensional. Also,
the Jacobson radical of C¢ is nilpotent of codimension 1.

Proof. The first assertion follows from Corollary 4.29. The second assertion
then follows because O¢, hence, O, is indecomposable. O

For the following conjecture, we observe that B¢ n Cg¢ is an ideal of Ck.

Conjecture 4.32. The image of the canonical map Z (W) — Cg¢ is isomorphic
to Cg/Bg N Ce.
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4.8. Morita and derived equivalences between blocks. In the final sub-
section, we make some remarks about the problem of classifying blocks of O
up to Morita and/or derived equivalence. Actually, we just look at the in-
tegral blocks, which is justified thanks to [CMW, Theorem 3.10]. Recall the
definitions of A* and AT from the beginning of §4.3.

We begin by discussing derived equivalences. Following [CM, Definition 4.2],
we say that O¢ and Og are gradable derived equivalent if there is a C-linear
equivalence F : D°(O¢) — D(O) of triangulated categories with inverse G,
such that both F and G admit graded lifts.

The following theorem gives many examples of gradable derived equivalences.
It comes for free from the theory of braid group actions from [CR].

Theorem 4.33. Suppose that £ = (u,v;t) € Z(m|n) and i € Z. Let s;(€) :=
(si(u), si(v);t), where s;(p) (resp. si(v)) is obtained by interchanging the ith
and (i + 1)th parts of i (resp. v). Then, there is a gradable derived equivalence

8, : D"(Og) = D*(O4e))

inducing a map of the form [M(A)] — £[M((si(A))] at the level of Grothendieck
groups, where s;(A) is obtained by replacing all entries i of A€ & by (i+ 1) and
vice versa. If t = pipir1 = vivip1 = 0, this functor is induced by a C-linear
equivalence ©; : O¢ — Oy, ¢y such that ©;M(A) = M(s;(A)) for all A€ €.

Proof. Since we have a categorical action of sly, on Oz as described in §4.1,
and this categorical action admits a graded lift by [BLW, Theorem 5.26], the
existence of ©; follows from [CR, Theorem 6.4]. The functor ©; is defined there
by tensoring with the “Rickard complex”, which admits a graded lift by [R1,
§5.3.2]. When t = p;pui1 = vivie1 = 0, the Rickard complex collapses to a
single term, hence, it is a “Scopes equivalence”. U

Theorem 4.33 motivates the following conjecture.

Conjecture 4.34. Take blocks & = (p,v;t) € E(m|n) for 0 < m < n and
¢ = (p,v;t') e E(m!|n’) for 0 < m' < n/, such that Of and Oy are non-trivial,
i.e. they have more than one isomorphism class of irreducible object. Then O¢
and Og are gradably derived equivalent if and only if ¢ = t/, m = m/, n =n’
and (i + )7 = (i + /).

Part of the “if” implication of this conjecture is implied by Theorem 4.33: O¢
and Oy are gradably derived equivalent if t = ¢/, m = m/, n = n/, ¥ = /7 and
v = /T, Our hope is that there should be some additional gradable derived
equivalences allowing these existing ones to be upgraded to include the case
that (u+v)T = (u/ +v)7T.

The graded algebra C¢ from (4.36) is an invariant of gradable derived equiv-
alence thanks to [CM, Lemma 4.6]. So, to prove the “only if” direction of
Conjecture 4.34, one should look for more information about the structure of
C¢ along the lines of Lemma 4.31. At present, we do not even know how to
show that gradably derived equivalent blocks have the same atypicality. We
expect that the atypicality of a block should be related to the dimension of its
derived category in the sense of [R2].
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The remainder of the subsection is concerned with Morita equivalences be-
tween blocks. We first point out some obvious ones which arise by twisting with
automorphisms of U(g). For £ = (u,v;t) and & = (¢, /;t), the blocks O¢ and
O¢ are equivalent as C-linear categories if any of the following hold:

e (“Translation”) There exists s € Z such that p; = p;, , and v; = v
for all 4; use the automorphism e; j +> ¢; ; + (—1)lls4; ;.

o (“Duality”) We have that p; = ¢/, and v; = v/, for all 4; use the auto-
morphism e; j — —(—1)Il7le
of Sy, x Sp,.

e We have that m = n, p = v/ and v = /; use the automorphism that
switches the top left and bottom right blocks and the top right and

bottom left blocks in the standard matrix realization of g.

wo(j),wo(i) Where wo is the longest element

We also get some more interesting Morita equivalences between typical blocks
from the last part of Theorem 4.33: if t =¢ =0, pt = (1) and v™ = (V)7
then O¢ and Og are equivalent.

The following theorem shows that there are very few equivalences between
atypical blocks. This was pointed out already in low rank by Coulembier and
Serganova in [CS, §6.3]; see also [CS, Remark 6.6] which predicts the importance
of the invariants used in the proof of Theorem 4.35.

Theorem 4.35. Let & = (u,v;t) € E(m|n) for 0 <m < n, and & = (p,v;t') €
E(m/|n’) for 0 < m’ < n'. Suppose that O¢ and Oy are equivalent as C-linear
categories. Then:

(1) t=1t.
Suppose in addition that there is more than one isomorphism class of irreducible
object in the blocks O¢ and Og. Then:

(2) m=m' andn =n'.
Finally, assume that there are infinitely many isomorphism classes of irreducible
objects, so that t,t' > 0. Then:

(3) p+v and p' + V' are equal up to translation and duality.

Proof. In view of Theorem 4.8, the assumption that O is equivalent to Og
implies that @g is equivalent to @5/. If either of the blocks 65 or @5/ has a
unique irreducible object up to isomorphism, then so does the other, and we
must have that t = ¢/ = 0. Otherwise, we have that ¢,# > 0 and these blocks
have infinitely many classes of irreducible objects. To prove (1) and (3) in
these cases, we will show that ¢ and v := p+ v can be recovered uniquely (up to
translation and duality) from the category @5 without using any information
about its structure that is external to the abstract C-linear category.

Starting from @5, we can choose a complete set of pairwise inequivalent ir-
reducible objects {L(x) | x € X} indexed by some set X. Since we assumed
t > 0, the set X is infinite. Let P(z) be a projective cover of L(z) and
h(z) :=#{ye X |[P(x) : L(y)] # 0}. By Lemma 4.16, we know that the min-
imal possible value for h(x) as x ranges over all of X is equal to (t;2) for some
t > 1. Thus, we have recovered the atypicality ¢ of the block @5 from the
underlying abstract category.



WHITTAKER COINVARIANTS 43

Now that we know ¢, we can define X, = {a: e X ‘ h(zx) = (thQ)} By
Lemma 4.16 again, we know that X, is in bijection with Z. To fix a choice
of such a bijection, we arbitrarily pick some zg € X. Now we appeal to
Lemma 4.18. It tells us that the set {z € Xo\{zo} | [P(z0) : L(z)] # 0} con-
tains exactly two elements. We arbitrarily call one of these elements z; and
the other #_1. Then the set {z € Xo\{zo, 1} | [P(z1) : L(z)] # 0} is a single-
ton {z2}, the set {z € Xo\{x1, 2} | [P(x2) : L(x)] # 0} is a singleton {3}, and
so on. Similarly, {z € Xo\{zo,z_1} | [P(z—1) : L(z)] # 0} is a singleton {z_},
and so on. In this way, we have enumerated the elements of X,y as {z;|i € Z}.
We have done this in a way that ensures that it agrees with the canonical la-
belling {L¢(te;) | i € Z}, at least up to some duality and translation which we
can simply ignore due to the symmetry of the invariants that we are about to
use.

Next, we explain how to recover the composition v from the dimensions
dim Endp, (P(z:)). By the formula in Lemma 4.19, these all take the same value

N .= ﬁ (Qtt) for all but finitely many i € Z. Thus, we have recovered the
! 575!

number N. Rescaling, we get the numbers

. 2t . ! t t!'}/i!'}/i+1!

d@i) := <t> dim Endo, (P(2;))/N = ZO <7~> T oIk (4.37)
for each 7 € Z, and will explain how to recover the ;’s uniquely from this
sequence. We have that d(i) = (Qtt) with equality if and only if v; = 0 = ;41.
This already determines all but finitely many of the ~;’s. Observe moreover
that the expression on the right hand side of (4.37) is monotonic in v;: it gets
strictly smaller if we make the non-negative integer ~y; bigger. So we can use
this equation to compute each 7; uniquely, assuming ~;+1 has already been
determined inductively (starting from the biggest i such that ~; # 0).

At this point, we have established (1) and (3). Our proof of (2) requires
considerably more force as we need to exploit the existence of the Koszul grading
on the basic algebra A, discussed in the previous section. If O¢ and Og are
Morita equivalent, then the algebras A¢ and A¢ are isomorphic as locally unital
graded algebras thanks to the unicity of Koszul gradings. Hence, so too are the
algebras B¢ and Bg. Since we already know that ¢ = ¢/, we can then invoke
Corollary 4.28 to deduce that

a2 D )t/ Tt = g3+ =2 GO p )t/ T 01
where 7/ := p/+1/ of course. When t,t' > 0, we already know that ()" = (7)™,
so get easily from this that m = m/ and n = n'. If t = ' = 0, we need to use

also that the blocks are not trivial (and deduce in addition that 47 = (7/)7);
one also finds this argument in the proof of [CM, Lemma 8.2]. O

Corollary 4.36. For £ = (0,v;m) € E(m|n) and & = (0,v';m') € E(m/|n’)
with m, m’ > 0, the blocks O¢ and Og are equivalent if and only if m = m’ and
v equals V' up to translation and duality.

Evidence for the following conjecture comes from Theorem 4.27: it shows
that the Soergel algebras B¢ and By in the statement have the same graded
Cartan matrices.
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Conjecture 4.37. Assume that & = (u,v;t) and & = (u/, V5 t) for p, ' E m—t
and v,V E n —t such that u + v equals i/ + v/ up to translation and duality.
Then Be = By as locally unital graded algebras, so that the blocks @5 and 65/
are equivalent.

Believing this conjecture, we also thought initially that the blocks O¢ and
Og themselves should also be equivalent (under the same hypotheses as in the
conjecture). However, this is too optimistic, due to the following counterex-
ample communicated to us by Coulembier: for g = gl34(C), t = 1, and ¢ L&
defined so that g = 2, ph =1, ph =1, 10 =1, 13 =1, vy =1, 1] = 2 and
vy = 1, the blocks O¢ and Og are not equivalent. To establish this, Coulembier
shows that they have different finitistic global dimensions by an application of

[CS, Theorem 6.4].

APPENDIX A. PROOF OF THEOREM 3.14

Let notation be as in the statement of the theorem. We note that the case
m = 0 follows from Corollary 3.12 along with the trivial observations that
M(A) = M'(A) and K(A) = M(A) when m = 0. So we assume henceforth that
m > 0. Set M := M(A) for short.

Lemma A.1. Hy(M) is spanned by a subset S of size 2™.
Proof. We define
I :={(,))|i>j,4,j=1,...,m+n},
I :={(i,j) € I" | col(z) < col(j)},
I_ :={(i,5) € I | col(i) > col(4)}.

Let n~ be the subalgebra of g of strictly lower triangular matrices, so that
{€ij}jyer- isabasisof n™. Also {em}(i jerz 1sabasisof n”np and {ei,j}(i Del=

€
€

is a basis of n” nm. We note that n~ np < g7, so the elements of {ei,j}(m)e[;
actually all supercommute.

Fix a total order on I~ in such a way that I precedes I5. The set of ordered
monomials of the form (]_[(m)e[_ e?ff) ma, where d; ; € Z if row(i) = row(j)
and d; ; € {0,1} if row(¢) > row(j), forms a basis of M. For (i, j) € IZ, we have
eij € m, so e;; — x(ej;) € my, and x(e;;) € {0, £1}. Hence, the following ordered
monomials span M /m, M:

{( I efgf)mAerxM‘ d; ;€ {0,1} }
(i)els

We are going to cut this spanning set down to one of the required size 2™.
For K < IZ, we use the notation

w(K):= [] e eU® np), (A.1)
(i,5)eK
and define wt(K) := >; s (0 — d;) € £, to be the t-weight of u(K). In this
paragraph, we are going to focus on the monomials
u(K)ekJu(L)mA +m, M e M/mXM,
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where K, L < IS and e,; € m or ex; € b. The goal is to describe a straighten-
ing process in order to prove that this monomial can be expressed as a linear
combination of monomials of the form

u(J)ma + m, M, (A.2)

for J € I such that one of the conditions (S1)-(S3) holds:

(S1) |J| = |K|+ |L| and wt(J) = wt(K) + wt(L) + 5 — dy;

(S2) |J| = |K| + |L| and wt(J) = wt(K) + wt(L), this is only possible if

k#m+landl=k—1,orifl =k; or

(S3) [J] < K|+ |L].
We proceed by induction on | K |+|L|. Our objective is clear when |K|+|L| = 0,
as e ma +my M = x(eg;) + mM if ep; € m, and e yma +m M = Aa(er,;) +
m, M if e;; € b, where A\p is viewed as an element of b*. Now assume that
|K|+ |L| > 0.

For the case e;; € m, we have

u(K)egu(L)ma +my M = teg u(K)u(L)ma + [u(K), exJu(L)ma + my M.
(A.3)
We do not need to know the sign in the equation above, so we won’t specify
these explicitly; this is also the case in some other equations below. The first
term in (A.3) is (up to sign)

ek,lu(K)u(L)mA +m, M = X(ek7l)u(K)u(L) +m, M,

which is zero or (up to sign) a monomial as in (A.2) satisfying (S2).
For the case ey ; € b, we have

w(K)egu(L)ma + m M = tu(K)u(L)eg ma + u(K)[eg, u(L)]ma + m M.
(A4)
The first term in (A.4) is (up to sign)

w(K)u(L)egma +myM = Aa(ex)u(K)u(L) + m, M,

where Aa is viewed as an element of b*. This is zero or (up to sign) a monomial
as in (A.2) satistfying (S2).

Now we consider the case ey ; € m further. Observe that the term [u(K), ey ]
occurring in (A.3) is a sum of terms of the form +u(K;;)[ei;, exu(K"7),
summed over (i,7) € K where K ; is the set of elements of K before (4, j) in
our fixed order of I~ and K%/ is the set of those after (4,7). Either [e;,ex,]
is zero, or an element of one of n~ N p, m or b; note that m n b # {0} in
general, so [e;j,ex;] can be an element of both m and b but this does not
matter. If [e; j,exs] € n™ A p, then u(K;;)[ei, exJu(K )u(L)yma + my M is
(up to sign) a monomial of the form (A.2) for which (S1) holds. Whereas if
[eij.eri] € m or [e;;,er ] € b, then we can apply induction to deduce that
u(K;j)[eij, exJu(K5)u(L)ma +my M is a sum of monomials as in (A.2) that
satisfy (S3).

For the case ey; € b we can argue entirely similarly, but working with the
term w(K)[ex,, w(L)], which occurs in (A.4).

We have now established that our straightening process works.
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Now we let H := {(i,7) € IZ |i > m + 1}, then define
H:={L<I |HCL}, S:={u(L) +m,M | LeH]}. (A.5)

Let <jex be the order on t defined by Z:”J[" 10 <lex D 0 if ri < Sj
where j is maximal such that r; # s;. Take K < IJ. Proceeding by induction
on |K| and reverse induction on wt(K') with respect to <jex, we are going to
prove that u(K) is in the space spanned by S. Before proceeding, we note that
the case m = 1 and 7 is left justified is trivial, because H = @. So we assume
that this is not the case.

For the base step we consider the case |K| = 0, so that u(K) = ma. In this
case we let k = 2m + s_. Our assumption above implies that k is maximal such
that the column of k in the pyramid 7 has two boxes, and that this is not the
leftmost column in 7. In particular, £ — 1 also lies in the second row of 7.

Now consider e, y—1€xmma + m, M. We have that e, 1 € m and that
X(emk—1) =0, so that ey, _1ex,mma +m M = 0+ m, M. Moreover,
em k—1€kmMA + MM = —ep mem k—1MmA + e —1ma + My M = —mp + m, M,
where we use that e, _1ma = 0, because e, -1 € n, and that ey _1ma +
myM = —ma +m, M because ey —1 + 1 € m,. It follows that ma € m, M, so
ma + m, M is certainly in the span of S.

Next let K < IZ and assume inductively that u(L)ma +m, M is in the span
of S whenever |L| < |K| or when |L| = |K| and wt(L) >x wt(K). If H € K,
then u(K) € S, so we may assume this is not the case. We choose (k,l) € H\K
such that k is maximal and [ minimal given k. Consider e;j_1eg u(K)ma.
Since € ;,—1 € m and x(e;x—1) = 0, we have e; e u(K) +mM =0+ m, M.
Moreover,

K
K

el’k_lekvlu(K)mA +m M = —ep e p—1u ma + e k— 1u(K)ma + m, M

ma — u(K) + m M,

—_— o~

)
)
where we use that ey, ,_1u(K)ma+m M = —u(K)ma+m, M, because ey 1+
1 € my. Thus we see that it suffices to show that ey e, 1u(K)ma + m, M is
in the span of S.

To see this, we note that the t-weight of e e p—1u(K) is wt(K) + 6 —
Ok—1 >1ex WH(K). Next we calculate

= —CLlCLE—1U

erer i 1u(K)ma = (—1) Kleg ju(K)ey g 1ma + exglerr—1, uw(E)]ma
= ep el p—1, u(K)]ma,

because e; ;1 € n so that e _1ma = 0. Then we see that [e; 1, u(K)] is
a sum of terms of the form (—1)uilu(K; ;)[ejr_1, i jJu(K?7) over (i,5) € K.
The nonzero possibilities for [e; 1, e; ;] are e;; + ex—1 k-1, €1 or €; 1 all of
which lie in either m or b. Moreover, we note that ey, 1 is not possible, because
ek, ¢ K, though e;;_1 can occur. Therefore, using the straightening process,
we obtain that ey u(K; ;)[eix—1,€ij]Ju(K*) + m M is a sum of monomials of
the form w(J)ma + m M for J < IZ. Moreover, in the present situation the
conditions (S1)—(S3) translate to saying that

(S1") |J| = | K| and wt(J) is either wt(K) + 0 — 01 or wt(K) + 0 — Op—1 +

(5[ - (5171; or
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(52) |J] < |K].
In the first case the possibilities for wt(M) satisfy wt(K) <jex wt(M). Hence,
we can apply induction to deduce that w(K)ma + m M is in the span of S.
Since |S| = 2™, this completes the proof of the lemma. O

Lemma A.2. Hy(M) is a highest weight supermodule for W'.

Proof. We recall that the grading on g determined by the pyramid 7w given by
deg(e;,) = col(j) — col(i) induces a grading on U(p). We refer to this is grading
as the Lie grading as in [BBG]. Also we require the explicit formulas for the
elements (W e W € U(p) for r =s_ +1,...,5_ +m given in [BBG, §4]. We
let ; j := (—1)I™"0le, ; and recall that

f = SP’(E(—DTS D) (mp#lestostiovta)=lg, 61])

s=1 i1 ooyl
e
where the sum is over all 1 < 1,...,%,J1,...,Js < m + n such that

(R1) row(i;) = 2 and row(js) = 1;
(R2) col(iq) < col(jq) (a=1,...,5);
(R3) row(ig+1) =row(ja) (a=1,...,s —1);
(R4) if row(js) = 2, then col(ig+1) > col(ja) (a=1,...,5s—1);
(R5) if row(js) = 1, then col(ig+1) < col(jy) (a=1,...,5s—1);

(R6) deg(ej, j,) + --- + deg(es, j,) =7 —s.

To spell out the key properties we need from this formula, write
m—r+1
0 == Z Cmtiitr—(s_+1) T g
i=1

where (") € U(p) is a linear combination of terms of the form e;, j, ---¢;, ;. €
U(p) which satisfy the following conditions.

(F1) The degree of e;, j, - - - €5, j, in the Lie grading is strictly less than r — 1.

(F2) There exists s’ such that row(i;), row(j;) = 1 for allt > s’ and row(iy) =

2, row(jy¢) = 1; moreover, if iy = m + 1, then s’ = 1.

Now let H and S be as in (A.5). Let K € H, so that u(K)ma + myM € S,
and let 7 € {s_ +1,...,s_ +m}. We will prove that ¢ u(K)ma + m, M is
a linear combination of terms of the form u(L)ma + m, M, where L € H such
that u(L) has Lie degree strictly less than u(K) +r — 1.

Let i,5 € {1,...,m 4+ n} such that row(i) = row(j) = 1, col(i) < col(j) and
let L € H. Consider e; ju(L)ma + m, M. We have that

e ju(L)yma +m M = [e; ;,u(L)|ma + u(L)Aa(e;j)ma + my M.

Now [e;;,u(L)] is a sum of terms of the form +u(Lg;)[e;, e Ju(LF!) over
(k,1) € L, where Ly is the set of elements of K before (k,[) in our fixed order
of I~ and L¥! is the set of those after (k,1). We have that [€i,j, €k,1] is either
zero or equal to —ey ; if i = [, and in this case we have (k, j) € IZ,. It follows
that w(L; ;)[ei;,exJu(L"7) is either zero or equal to +u(L') for some L' € H
with the same Lie degree as e; ju(L).

Next let 4,5 € {1,...,m+n} such that row(i) = 2, row(j) = 1, col(i) <

col(y)
and let L € H. We observe that e; ju(L) = 0 if col(i) > 1. Also if col(i) = 1



48 JONATHAN BRUNDAN AND SIMON M. GOODWIN

(so i = m+ 1), then we have that e; ju(L) is either zero or equal to tu(L’) for
some L' € H with the same Lie degree as e; ju(L).

Combining the discussion in the previous two paragraphs with the fact that
g u(K)ma +m, M is a sum of terms of the form e;, j, - - e;, j,u(K)ma +m M
subject to conditions (F1) and (F2) we deduce that ¢ u(K)ma +m, M is a
linear combination of terms of the form u(L)ma + m M, where L € H such
that u(L) has Lie degree strictly less than u(K) +r — 1.

Now suppose that (m+1,7—s_) ¢ K. Then we have that ep41,-s u(K) =
Tu(K v {(m + 1,7 — s-)}), and that e, i4r—(s_41)u(K) = 0 for all i > 1.
Therefore,

FO WK Yma + myM) = w(K O {(m+ 1,7 —s_}) + gMu(K) + m, M.
We deduce that
s_+m
{ [T GOy u(EH)ma +m M

r=s_+1

ar € {0, 1}}

spans Ho(M), because (f)%u(H)ma + m, M is equal to
w(Hu{(m+1,7—s_)|a, = 1})ma + (terms of lower Lie degree) + m, M.
Hence, Hyo(M) is a highest weight supermodule as required. U

Proof of Theorem 3.14. By Lemma A.2 and the universal property of Verma
supermodules, there is a surjective homomorphism 6 : IIPM(B) — Ho(M) for
some B € Tab and some parity p € Z/2. By Lemmas 2.1 and 3.6, we have
that [Ho(M)] = [Ho(M’(A))] in the Grothendieck group Ko(W-smods). By
Corollary 3.12, [Ho(M'(A))] = [K(A)]. These facts imply that dim Ho(M) =
dim K(A) = 2™, so that the spanning set from Lemma A.1 is actually a basis.
Since dim M(B) = 2™ too, this shows that 6 is in fact an isomorphism, and
moreover we have established that [TIPM(B)] = [K (A)].

It remains to show that p = 0 and B = A. By their definitions (3.10) and
(3.7), the W-supermodules K(A) and M(B) are both diagonalizable with re-
spect to dgl), the vectors ka and mg are eigenvectors of dgl)—eigenvalues b(A)
and b(B), and have parities par(b(A)) and par(b(B)), respectively. Moreover,
all other dgl)—eigenspaces in these supermodules correspond to strictly smaller
cigenvalues. As e(") raises dgl)-eigenvalues by one, ka must be a highest weight
vector. Hence, there is a non-zero (but not necessarily surjective) homomor-
phism M(A) — K(A),ma > ka. This discussion implies that

[K(A)] = [L(A)] + (Z(C)]'s and [ITL(C)]’s with b(C) < b(A))
[IPA(B)] = [IPL(B)] + ([T(C)]’s and [ITL(C)]'s with b(C) < b(A)).

In the previous paragraph, we established already that [[IPM (B)] = [K(A)].
So we must have that A = B and p = 0, and the proof is complete. 0

APPENDIX B. PROOF OF THEOREM 4.27

Fix N > 2 and let Usly be the usual quantized enveloping algebra over
the field Q(g) (¢ an indeterminate) that is associated to the simple Lie algebra
s[n(C). We denote its standard generators by {F,;,EZ-,K;L}KKN. Let P :=
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@f\[:l Ze; be its weight lattice, with simple roots {a; := €; — €;11}1<i<n and
symmetric form (—, —) defined from (e;,¢;) := 0; ;. We have the natural Uysy-
module V* on basis {v;f}1<i<ny and the dual natural module V'~ on basis
{v; hi<i<v. The actions of the generators on these bases are given by the
following formulae:
Fiv;f 0; ,]UH_l, E,~1)j+ = 0i41,0; Kiv; = q(o‘i’sj)v;-r,

Vi1
We'll work with the comultiplication A : Ugsly — Uysly ® Uysly defined from
AF)=10F+F®K, AE)=K'QFE+E®l, AK)=K®K,.
This is not quite the same as the comultiplication in Lusztig’s book [Lu, §3.1.3]:
our ¢ and K; are Lusztig’s v™! and K;l. All definitions from [Lu] cited below
should be modified accordingly.

Let © be the quasi- R-matrix from [Lu, §4.1.1] (with v replaced by ¢~!), and
R =Ryw : VW 5 W®YV be the R-matrix from [Lu, §32.1.4] for any
integrable modules V, W. Thus, for vectors v € V,w € W of weights A, u € P,
we have that R(v @ w) = ¢*O(w @ v). The following explicit formulae for
the action of the inverse of the R-matrix on V* are derived in [BSW, §5]:

F; = div15v;, Eiv; =9

v;?®vi+ if 1 > j,
Lo ®v;-”) = (1*11);r ®uv if i =7,
v @ut —(g—q "o @vf if i < j;
v, ®u; if i <y,
R oy @vy) =<4 ¢ 'v; ®v; if i = 7,
vy ®v; — (¢ —q vy ®vj if i > j;
( U; ®Uz+ if 4 75j,
_ — N—i
(v ®uv;) =< e
! J qu; v+ (qg—q Z ]_H,@’U;_T if v = 7;
\ r=1
( 'U;@’UZ-_ if 4 7é.77
R~ (v @v7) = 4 _ - B
(v @v7) gof ©v; +(a—q ") D (=) v, ®v,_, iti=j
\ r=1
For a sign sequence o = (o1,...,01) € {£}*, we have the tensor space

VO = VI @--- @V, with basis {v]! @+ ® v My, ipen Let (=, =)
be the symmetric bilinear form on V®7 defined by declaring that this basis is

orthonormal. There is an anti-linear algebra automorphism ¢ : Uysly — Ugsly
defined by

W) =F,  0(E) =B,  (K):=K .
The modules V* possess anti-linear bar-involutions ¢ compatible with this in
the sense that 1 (uv) = 1 (u)y(v) for all u € I,v € V*; these are defined simply
so that w(vii) = v;—r for all 1 < ¢ < N. Applying Lusztig’s general construction

from [Lu, §27.3.1], we get also a (highly non-trivial) compatible bar involution
Y 1 VO & VO Finally, let ¢* : V&7 — V&7 be the adjoint anti-linear
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involution to ¥ with respect to the form (—, —), i.e. (¥(v),w) = (v,9¥*(w)) for
all v,w e V&7,

Lemma B.1. Let wy be the longest element of the symmetric group Sk, so
that wo(o) = (0k,...,01). For s; = (i i+1) € Sk, let R; be the R-matrix
1®-1) RR® 1®¢k—=i=1) " Then let Ry, : y®wo(o) = ®0 pe the isomorphism
Rijjo---0 Rik(k—n/z obtained from any reduced expression wg = s;, " Sik 1))z
Define R;U()l  V®w(@) 5 & gimilarly using the inverse R-matrices through-
out. Then, we have that

w(rl)?il ® P ® 'Ula];k) = qiZl<7‘<s<k(ai7‘5¢r7UisEiS)Rw0 (rvf: ® e ® v%1)7 (Bl)
w*(vgl ® . ®v§7kk) = q21<r<s<k(0u6ir7Ui5€z‘5)R;; (,ngk ® . ® UZI)’ (B.Q)
forany 1 <ip,...,0, < N.

Proof. The formula for 1 follows immediately from Lusztig’s construction in
[Lu, §27.3.1], plus the formula expressing the R-matrix in terms of the quasi-
R-matrix from [Lu, §32.1.4]. To deduce the formula for the adjoint map *,
one reduces to the case that £ = 2, which may then be checked directly using
the formulae for R and R~! displayed above. O

Henceforth, we will be interested just in the spaces T™I" := (V )@@V —)®"

for m,n = 0. Set
T:= @ 17",
m,nz=0

with bar involutions ,1* : T — T obtained from the ones on each 7™,
Like in (4.6), we denote the monomial basis of ™ by {UA}AeTabm|n7 where
Tab,y,|, denotes the set of all tableaux A = 9'"j™ with entries satisfying 1 <
1y eeym,b1,...,0p < N. Also let Tabfn‘n be the set of all the anti-dominant
tableaux in Tab,,|,,, i.e. the tableaux A = Gy satisfying 1 < a; < -+ < ap <
Nzbpz---=2b, 21

As in [Lu, §27.3.1], the bar involutions ¢ and 1* have the properties

Y(va) = va + (a Z[g,q ']linear combination of vg’s for B > A),  (B.3)
¥*(va) = va + (a Z[q, ¢ ']-linear combination of vg’s for B < A).  (B.4)
So we can apply Lusztig’s Lemma as in the proof of [Lu, Theorem 27.3.2] to

introduce the canonical basis {ba}acTan,,,, and dual canonical basis {b } AcTab

of ™" which are the unique bases determined by the following properties:

P (ba) = ba, bacva+ @ qZ[qlve, (B.5)
BETabmm

»*(br) = ba, bA € va + (—D qZ|qlvs. (B.6)
BETame

Since 1 and ¥* are adjoint, the canonical and dual canonical bases are dual
bases with respect to the form (—, —).
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Let S be the Q(g)-algebra defined by generators {x;, y;}1<i<n subject to the
following relations:

TiT; = qTT; it i > j, (B.7)
YiYj = qY;Yi it <y,
yiﬂfj = -ijz' if 4 # j,
i—1
yiri = qriyi + (@ — a7 D (=) T ryi v (B.10)
r=1

The algebra S admits compatible gradings S = @.cp Sy and S = @, =0 5 min.
the first of which is defined by declaring that deg(x;) := ¢; and deg(y;) := —¢;
for each i, and the second by declaring that S™" is the span of the monomials

Up = mal o .wamybl o .ybn (B]‘l)

for all A = %\73™ € Tab,,),,. The following theorem shows that each SmIn hag
two distinguished bases: the monomial basis {ua} A€Tab, and the dual canoni-

cal basis {da} AETab?, > which is explicitly computed. The proof is analogous to
that of [B3, Theorem 20].

Theorem B.2. The vectors {UA}AETaban give a basis for S™". Moreover:

(1) The Q(q)-linear map m : T — S, va +— ua intertwines the dual bar
involution ¥* on T with the unique anti-linear involution ¥* : S — S
such that *(x;) = z;,v* (i) = yi and

W* (uu') = g0 ) g () (B.12)

for allue S™™ A S, and u' e S™I" A Sy

(2) For A € Tab,,,, we have that w(by) = 0 unless A is anti-dominant,
in which case the vector dp := mw(bx) is characterized uniquely by the
following properties: 1¥*(da) = da, da € ua + ZBET&bfmn qZ[qlus.

(3) Let 29 := 0 and z; := 29 —qwi 1yi 1+ +(—q) oy for1 <i< N.

Given A € Tabfnm of atypicality t, choose C;{:.%ﬁff.%;n:: ~ A such that
a1 << apm_t and by = --- = by_s. Then:

—t(t=1)/2=#{(0,3) | ai>c;}=#{(0.5) | bi>0j}xa1

dA :q '..‘,Bam—tzcl...zctybl.”ybn—t‘

The vectors {dA}AETabZT‘n give another basis for S™I™.

Proof. In this proof, we will cite some results from [B3]. The conventions
followed there are consistent with those of [Lu], so that one needs to replace g
by ¢! and K; by K, ! when translating from [B3] to the present setting. The
R-matrix Ry in [B3] is the same as our inverse R-matrix R(/lw = (Rw,y) ™!
(with ¢ replaced by ¢~1); hence, in view also of (B.2), the bar involution defined
in [B3, (3.2)] corresponds to our *.

We begin by recalling the standard definitions of the quantum symmetric
algebras S(V*) = @,,205™(VF) and S(V7) = @,5, 5" (V™). As discussed
in detail in [B3, §5], the former is the quotient of the tensor algebra T'(V ™) by
the two-sided ideal

It = (vf ®vj+ —qvj®0f|i>j>.
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It has a basis consisting of the images U; . e v;; of the tensors U; R ® U;

for m = 0 and iy < -+ < ip,. Similarly, S(V7) is the quotient of T'(V ™) by
I7 = vy @u; —quy ®u; |i<j),

and it has basis v;l v;n forn>=0and j1 = --- = ju.

Let pt : S(V*) ® S(Vt) — S(V*) be the multiplications on these two
algebras. Then define a multiplication g on the vector space S(V*1)® S(V ™)
by the composition (¢ ® p17) o (idgey+) ®R§(1V,) s+ ® idg(y—y). Since the
R-matrix is a braiding, this makes S(V ) ® S(V ™) into an associative algebra.
Using the formula for R (v; ® vj) displayed above, it is easy to check the
relations (B.7)—(B.10) to show that there is an algebra homomorphism

f:S—-8SVHeSV), xiHv;F@l,yjr—)l@vj_.

Also the relations easily give that the anti-dominant monomials {ua | A €
Tab;,,,} span SmIn . Moreover, their images under f are a basis for S™(V*) ®
S™(V~). This shows that f is an isomorphism, thereby establishing the first
statement of the theorem about the monomial basis.

To prove (1), we consider the diagram

T
S / SVHeSV).

!
It suffices to define an anti-linear map ¢* : S(VT)@S(V™) - S(VH)®@S(V™)
such that ¢* o’ = 7/ 0 ¢*, and then show that

P (z®@y) (' ®@y')) = gt +A)mmi—nn'yr (1 @y Y (x @y)  (B.13)

for z € S™(V*+)a,2' € S™(VH)y,y € SV )z and i € S (V™ )z. The
generators of the ideal It belong to the dual canonical basis of V™ ®V ', hence,
they are fixed by ¢*. This implies that I'" is ¢)*-invariant, hence, ¥* : T(V") —
T (V1) factors through the quotient S(V') to induce v* : S(V*) — S(V71).
The latter map may be defined directly: it is the unique anti-linear involution
that fixes all the monomials vi"'; ~-v; form =0 and i3 < -+ < iy, Similarly,

P*: T(V") - T(V") induces ¢* : S(V) — S(V7), which fixes v ---v; for

n>0and j; = -+ = j,. Then we let ¥* : S(VH@S(V™) > S(VTH)R®S(V")
be defined from

Pz ®y) = q(a’B)Rg(lv—),g(vﬂ(w* (y) @ ™ ()

for z € S(VT) of weight @ and y € S(V™) of weight S. It is immediate
from this definition and (B.2) that ¢* o 7’ = 7/ 0 ¢p*. It remains to estab-
lish (B.13). Let g™ : S(VT)® S(V*T) — S(VT) be the twisted multiplication
m* o R§(1V+),S(V+)' Define i~ : S(V7)® S(V™) —» S(V ) similarly. Then
let fi:= (" @ fi7) o (idgy+) ®R§(1V,)’S(V+) ® idg(y-y. This gives a twisted
multiplication on S(VT)® S(V ). Now let z,y, 2" and ' be as in (B.13). We
apply [B3, Lemma 2] to deduce immediately that

P*((z@y) (@' ®Yy)) = ¢ (2 @y) @Y™ (x @ y)).



WHITTAKER COINVARIANTS 53

We are thus reduced to checking that
A ©yY) @YU (z®@y)) = a " (ke ©y) @Y (z @),

which follows as it (z@z') = ¢ ™™ pt (z@2') and i~ (yQy') = ¢ ™ u~ (y®y'),
as is pointed out at the beginning of the proof of [B3, Theorem 16].
We turn our attention to (2). If A € Tab,,, is not anti-dominant, then

the defining relations for S imply that ua = 7(va) = ¢*ug for k > 0 and
A < Be Tab,,,. Combined with (B.4), we deduce for A € Taby, that

Y*(up) = ua + (a Z[q, ¢ ']-linear combination of ug’s for A < B € Tab?, ).

mn

Hence, we can apply Lusztig’s Lemma once again to deduce that S™" has
another basis {da | A € Tabfnln}, with da being determined uniquely by the

properties that ©¥*(da) = da and da € up + ZBeTabol qZ[qJug. This is the

basis appearing in the final statement of the theorem. In view of (1), for
A € Tab? the vector 7(b3) satisfies the defining properties of da, hence,

m|n’
m(ba) = da. To complete the proof of (2), we need to show that m(b3) =

0 for A € Tab,, \Tab;,,. This follows because in that case m(by) lies in

@PieTabe | qZ[q]ug, which contains no non-zero 1 *-invariant vectors.
Finally, we must establish (3). For this, we first prove the following commu-

tation formulae involving the z;’s:

o qzixj if j >4,
Tjz; = { ¢l i< (B.14)

-1 ep . .

L)y if j > 1,
Yizi { qziy; i j < (B-15)
iji = ZiZj. (B16)

Actually, we just prove (B.14); then the proof of (B.15) is similar, and together
they obviously imply (B.16). It is obvious that z;z; = gzx; for j > i. Also
from the definitions we have that

TiYi = % + qzi-1, (B.17)
Yiti = qz; + zi_1. (B.18)

Hence, z;z; = (v;y; — qzi—1)x; = 2i(yizr; — zi—1) = qx;2z;. Finally, to show that
zixj = qu;z; for i > j, we proceed by induction on i: z;x; = (z;y; — qzi—1)xj =
qrj(@iy; — qzi—1) = qxj2;.

Next we derive the formula for da under the assumption that m = n = t.
We need to show simply that da = ¢~ #*=1/2z, ... z,. Since the z’s commute,
we may assume that ¢; < --- < ¢;. We proceed by induction on ¢, leaving the
base case t = 1 to the reader as an exercise. For the induction step, we have by
induction that dx = g D22, ooz, where A := 297 and must show
that da = q_(t_l)zcldﬂ. Expanding the definition of z., then commuting ¥’s
past dg, we get that

)01—1

q_(t_l)chdK = $c1dﬂy61 - qwcl—ldecl—l +oeee+ (_q xldiyl'
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It follows easily that this vector lies in ua + > g5 ¢Z[q]ug, and it just remains to
show that it is ¢*-invariant. Using (B.12), we have that

w* (q—(t—1)201 dK) _ qt_lq_2(t_1)dK201 _ q—(t—1)261 dK

To complete the proof of (3), assume first that m =t < n. Let A be obtained
from A by removing the entry b,—; from its bottom row. By induction on n,
we may assume that

dK = q_t(t_l)/Q_#{(iJ) [bi>e; 77 bn_t>cj}zcl T ZeiYbr t  Ybyia

We need to show that da = q*#{“b”—pcﬂ‘}dxybn_t. It is easy to see that it
equals ua plus a ¢Z[g]-linear combination of other ug’s. Then one checks that
it is ¢ *-invariant by a calculation using the commutation formulae and (B.12).
Finally, one treats the case m > t in a very similar way: let A be A with the
entry a; removed from its top row; by induction we have a formula for dz; then
one deduces that da = ¢~ #U | “1>Cj}maldx. O

Now we switch to the combinatorial framework of §4.3, modified slightly since
we are working with sl rather than sly,. We re-use the notation A = n now to
indicate that A is an N-part composition of n, i.e. a sequence A\ = (A1,...,An)
of non-negative integers summing to n. Fix for the remainder of the appendix
integers m,n > 0 and a triple (i, v;t) such that 0 <t < min(m,n), u = m —t,
viEnn—t and p; = 0 for alli = 1,...,N. For each X\ & ¢, let A(u,v; )
be the unique anti-dominant tableau with \; + p; entries equal to ¢ on its top
row and \; + v; entries equal to ¢ on its bottom row, for all ¢ = 1,..., N. We
denote ba,va,bx, ua and da for A := A(u,v; ) simply by by, vy, b3, ux and dy,
respectively. Set v := u + v.

Lemma B.3. For A\ k = t, the ds-coefficient of uy when expanded in terms of
the dual canonical basis for S™" is non-zero if and only if X = k — ZZ]\LII 0; v
for (01,...,0n_1) with 0 < 0; < X\; for all i, in which case the coefficient equals

N-—1 A

H qei(Ai+1+’Yi+l)|: 73‘“}
0; |

i=1 v

Proof. We first observe by induction on r > 0 that
xzy: = Z q3r7r(r71)/2 |:Z:| Z;“fszisil' (Blg)
s=0

The base case is trivial, while the induction step follows using (B.14), (B.16),
(B.17) and the usual identity [Til] =¢*[1] + ¢ '[,",]- Combining (B.19)
with (B.15), we get also that
(@iyi)y; = a "y;(@iy;) (B.20)
whenever j < 1.
Now take any A k= t and set 2 := x%l ---av}\VN,yA = y])‘VNy
PAREE z]’th. By (B.7)—(B.8) then (B.20), we have that

uy =¢q i<j Ai(uﬁ’/j)x#:p%y/\y” - q*ZKj )‘i()‘jﬂj)x“(:ci‘lyi\l) ... ($}\VNy]){,N)y”.

i‘l and 2 =
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Expanding each x;\’yz)‘l here using (B.19), we obtain

N
Y
_ 7Zi<')\i()\.+ ) 6i_ )\if)\i()\ifl)/Q 1 ()\,9) 1
N =g s AT > <||q L [9' 1Dx“z Y

71—

(00,01,....0n 1) \i=1
0<0;<Ai41
where z(M0) .= zgo Mtoi—bo . z]/:,N_lle_l*eN_in,N*eN_l Since zg = 0 unless
0o =0,and >, _; \; )\ + > Ai(Ai —1)/2 = t(t — 1)/2, this simplifies to
\ = q*t(tfl)/%ZKj i 2 (H ¢ >\z+1|: ZH]) gtz MOy,
(00,01,.-.0N-1)
O<97,<)\7,+1
60=0
Now pick some (6p,61,...,0n_1) appearing in this summation, and set k :=

A+ 3V 0,04 = t. By the formula from Theorem B.2(3), we get that
dy = g D2 Eg; Rivs gty v

Moreover,

Z (Hi - AI)’Y] = Z (0 - 02 1 Z 97,71—&-1

1<i<j<N 1<i<j<N

The last three identities displayed combine to show that

_ = Oi(Nir1+vit1) Ait1
ux = 2 1—[ q 0 d/\+ZN Y000
i=1 ¢

01,-0N—1)
0<0;<Ai+1

and the lemma follows. O

Lemma B.4. For any \,k E t, the inner product (bs,by) is non-zero if and
only if Kk = X\ + Zf-vz_ll()\iﬂ — pir1)ag for p = (p1,...,pN) with p1 = A1 and
0 < pit1 < ANip1 +min(N;, p;) for alli=1,...,N — 1. In that case

HN [)\i+1 +Ti;7i+1] [>\i+1 +7i
i

—Ti+1]
i=2 Ti—

Ti—Pi
Y

T it + 75— mial [Aign + 75 — i ]!

where we interpret >\N+1 as zero, the summation is over T = (T1,...,TN+1)

with 71 = A1, 7nv+1 = 0 and max(Aiy1,pir1) < Tiv1 < Aip1 + min(Ag, p;) for
i=1,...,N —1, and

s(r) = (’;) + (Z) + i(zn A= )N 4T — i+ %)

1=2

N
_Z z+1+Tz_Tz+1 =S Ait1 +Ti = Tit1 + %
) :

i=1

(s b2) = [l S

Proof. We have that by = ZBeTabm‘n(b)\’ vg)vg. Hence,

(besbr) = . (bmvB)(bA,vB)=2[ > (bmvB)(b)\,vB)]. (B.21)

BETabm\n BEt BNA(/’I’7V;IB)
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To compute the number (bH,UB) appearing on the right hand side of this
formula, we have that vg = ZAeTab _(ba,vg)br. Hence, in view of Theo-
rem B.2(2), we can compute (bx,vg) by applying m: it is the d.-coefficient
of ug = m(vg) when expanded in terms of the dual canonical basis of S™".
For B = 92757, we let £(B) := #{i < j|ai > a;} + #{i < j|b; < bj} so
that ug = qf(B)u5. Then Lemma B.3 shows that (b, vg) is non-zero only if
8=k —Zf\sl 0;cv; for (61,... 9N—1) with 0 < 0; < k; for each 4, in which case

(bfm 'UB = q H q Bz+1+’h+1) |:/81+1:|

Similarly, (b, vg) is non-zero only if 5 = A —Zi]\i_ll ¢ia; for (¢, ..., ¢N—1) with
0 < ¢; < \; for each 7, in which case

N-1 -
by, vB) = £(B) | | ¢i(5i+1+%+1)[ﬁl+ }
( A B) q 11 q i

Observe also that

m

(2) | (2) |
2(B) _ q\2/[m]!q\2/[n]!
B~A<Zw;ﬁ>q 1Y, 8 + it ) [, + wa]!
_ ¢()[m]tg?) ]!
1Y, a8 )8 + 7]

Putting these observations together, we deduce that the Sth summand on the
right hand side of (B.21) is non-zero only if § = x— Z Y0,05 = N — ZZN iy
for (01,...,0n—1) and (¢1,...,oN_1) satisfying 0 < 6; < ki, 0 < ¢ < A for all
1=1,... 7N — 1, in which case it equals
N—1 _(¢i+0;)(Bi+1+vit1) [Bi+1][Bi+1
q(2)[m]!q(2)[n]!nz:1 1 5 e [ i ][ b: ] (B.22)
RPN EA |

Now we complete the proof by repeating the last part of the proof of Theo-
rem 4.14: in the formula (B.22), we replace ¢; by 7;+1—\i+1 and 0; by 71— piy1,
to deduce that the fth summand of (B.21) gives a non-zero contribution only if
there exist (po, ..., pn) and (72,...,7y) such that 8 = )\+Zf\;1()\i+1—n+1)ai,
K= A+ 207 Nig1 — pig1) i, and max(Nit1, pit1) < i1 < Aip1 +min(A;, p;)
forall i =1,..., N — 1, interpreting p; as A;. Then we simplify as before. [

Proof of Theorem 4.27. This follows from Lemma B.4 together with the dis-
cussion in [BLW, §5.9], on passing to the limit as N — oo. The main point is
that the canonical basis {ba | A € Tab,,,} corresponds to the indecomposable

graded projectives in the graded lift of Oy constructed in loc. cit. thanks to
[BLW, Corollary 5.30] (and [BLW, Theorem 3.10]). The bilinear form (—, —) is

n

the same as the pairing from [BLW, (5.30)]. O
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