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BLOCKS OF SYMMETRIC GROUPS, SEMICUSPIDAL KLR
ALGEBRAS AND ZIGZAG SCHUR-WEYL DUALITY

ANTON EVSEEV AND ALEXANDER KLESHCHEV

ABSTRACT. We prove Turner’s conjecture, which describes the blocks of the
Hecke algebras of the symmetric groups up to derived equivalence as certain
explicit Turner double algebras. Turner doubles are Schur-algebra-like ‘local’
objects, which replace wreath products of Brauer tree algebras in the context
of the Broué abelian defect group conjecture for blocks of symmetric groups
with non-abelian defect groups. The main tools used in the proof are general-
ized Schur algebras corresponding to wreath products of zigzag algebras and
imaginary semicuspidal quotients of affine KLR algebras.

1. INTRODUCTION

Let H,(q) be the Hecke algebra of the symmetric groups &,, over a field F
with parameter ¢ € F*. An important special case is ¢ = 1, when H,(q) = F&,,.
Let e be the quantum characteristic of ¢g. In this paper we assume that e > 0,
i.e. there exists k € Zwq such that 1 + ¢+ --- +¢*~! =0, and e is the smallest
such k.

Representations of H,(q) for all n > 0 categorify the basic module V(Ag) with

highest weight Ag of the affine Kac-Moody Lie algebra g = sl.(C), see for example
[A1,A2,Gro,K;]. In particular, each weight space V' (Ag)A,—q for « in the positive
part of the root lattice is identified with the complexified Grothendieck group of
the corresponding block H,(q) of some H,(q).

The Weyl group W of g acts on the weights of V(Ag), and the orbits are
precisely Oy := W(Ag — dd) = WAy — dd for all d € Z>g, where ¢ is the null-
root. Chuang and Rouquier [CRY] lift this action of W on the weights to derived
equivalences between the corresponding blocks. Therefore, all blocks H,(q) with
Ay — a € Oy for a fixed d are derived equivalent.

Moreover, for every d € Z>(, Rouquier [R;] and Chuang and Kessar [CK]
identify special representatives Ag — a € O, for which the corresponding blocks
H,(q) have a particularly nice structure. These blocks are known as RoCK blocks.
Thus for any n, every block of H,(q) is derived equivalent to a RoCK block.

Let H,(q) be a RoCK block. Turner [Tu;, Tug, Tus] developed a theory of
double algebras and conjectured that H,(q) is Morita equivalent to an appro-
priate double [Tuy, Conjecture 165]. The aim of this paper is to prove Turner’s
Conjecture. In fact, we prove a slightly more general result stated in terms of
cyclotomic KLR algebras over Z.
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To state the result precisely, we now recap Turner’s theory as developed in
[EK]. Let @ be a type A._; quiver, and let Py be the quotient of the path
algebra Z(@) by all paths of length 2. As a Z-module, Py has an obvious basis
whose elements are identified with the vertices and the edges of (). We view
Pg as a Z-superalgebra with P 5 being the span of the vertices and P 1 being
the span of the edges. We denote by Z € {0,1} the degree of a homogeneous
element z of any superalgebra. Let n € Z~(, and consider the matrix superalgebra
X = M, (Pg).

For every d € Z>( we have a superalgebra structure on X ®d induced by that
on X. So Py0 X ®d j5 a superalgebra, with the product on each summand X ®¢
being as above, and zy = 0 for z € X® and y € X®f with d # f. In fact,
D0 X ®d is even a superbialgebra with the coproduct

A X% B X% @ x®UD),
0<f<d

e ®&r Y (L8 ®)® (¢ e 0&).
0<f<d

The symmetric group &4 acts on X®? by signed place permutations with su-

peralgebra automorphisms, so the set of fixed points Inv¢ X := (X ®d)6d is a
subsuperalgebra of X®? and InvX := @dzo Inv? X is a subsuperbialgebra of
@dzo xed,

There is a superbialgebra structure on (Inv X)* := @5, (Inv? X)* which is

dual to that on InvX. We also have an Inv X-bimodule structure on (Inv X)*
defined by

(@& =), € -x)(n)=z0g)  (§neInvX, € (InvX)").

The Turner double is the superalgebra DX := Inv X ®(Inv X)*, with the product
defined, using Sweedler’s notation for the coproduct A, by

E@2)ney) =Y (1)@, 00 @ (2 12) (Eq) - )

for all homogeneous &,n € Inv X and z,y € (Inv X)*. We have a decomposition
DX =6 4>0 D?X as a direct sum of superalgebras, where

DiX = @ Inv/ X @ (Inv?/ X)*
0<f<d

is a direct sum of Z-supermodules. Each superalgebra DX is symmetric.

The superalgebra Fg is Z-graded with all vertices of ) being in degree 0 and all
edges in degree 1. This induces gradings on M, (Pg) and Inv X = InvM,(Py) in
the natural way. We view each (Inv? X)* as a graded Z-module, with the grading
induced from Inv?X shifted by 2d, i.e. for € (Inv?X)* we have degz =
m if and only if z is zero on all graded components of Inv? X other than the
(2d — m)th component. Then D?X is a Z-graded superalgebra concentrated in
degrees 0,1,...,2d. In fact, this grading is a refinement of the superstructure on
DX, in the sense that (D?X)g is the sum of even graded components of DX
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and (D?X); is the sum of odd graded components. From now on, we forget the
superstructure on D?X and view

Dg(n,d) := DX

simply as a graded Z-algebra.

As before, let H,(q) be a RoCK block, with Ag—a € O4. The precise conditions
that o must satisfy in order for this to be the case are stated in §5.4. Let RQO be
the corresponding cyclotomic KLR algebra, which has a natural grading, see §4.2.

Theorem A. Ifn > d, then the Z-algebras RA° and Dg(n,d) are graded Morita
equivalent.

For any graded Z-algebra A, define Ap := A ®z F. The F-algebra RQEF is
isomorphic to the RoCK block H,(q) of a Hecke algebra, see [BK1,Rz|. Applying
this result and the aforementioned theorem of Chuang-Rouquier, one deduces the
following from Theorem A:

Corollary B. Ifn > d, then:

(i) The RoCK block H,(q) is Morita equivalent to Dg(n,d)r.
(ii) For every B with Ag — B € Oq, the algebra Hg(q) is derived equivalent to
Dg(n,d)r.

Alperin’s Weight Conjecture [Al] predicts an equality between the number
of simple modules of an arbitrary block of a finite group and the number of
‘weights’ defined in terms of normalisers of local p-subgroups. In the case of
blocks with abelian defect group, the conjecture of Broué [Br]| lifts Alperin’s
Weight Conjecture to the categorical level, but no such categorical conjecture is
known for blocks of arbitrary finite groups with non-abelian defect groups.

An important step in the proof of Broué’s conjecture for symmetric groups is
the theorem [CK] asserting that, if ¢ = 1 and d < char F, then there is a Morita
equivalence between the RoCK block H, (1) and the wreath product algebra
H3(1)®¢ x F&S,4. Corollary B shows that, for an arbitrary block of a symmetric
group, the corresponding double Dg(n,d)r is a ‘local’ object that can replace
H3(1)®¢ 4 F&, in the context of Broué’s conjecture.

In fact, the wreath product Hs(q)®? x F&, has a Z-form (R5°)®4 x Z&, that
is closely related to Dg(n,d). Denote by Z the zigzag algebra of type A._; over
7, and consider the wreath product Wy := Z%% x Z&,, see §3.1. Then Z is
Morita equivalent to Rg\o, and more generally Wy is (graded) Morita equivalent
to (R([;O)@d X F&,, see the proof of Proposition 8.29. On the other hand, the
double Dg(n,d) can be identified with a subalgebra of a generalized Schur algebra
SZ(n,d), and there is a Schur-Weyl duality between S%(n,d) and Wy, see §3.2.
In particular, for a certain explicit idempotent &, € Dg(n,d), we have

£.Dg(n, d)&, = £,5%(n,d)&, = Wy,

Thus, the idempotent truncation &,Dq(n, d), is Morita equivalent to R?O xFGy.

If d < charF or charF = 0, the double Dg(n,d)r is Morita equivalent to
£wDg(n, d)p&, = (RQRF)QM x F&4 = Hs(q)®? x F&, see Proposition 8.29. When
d > charF > 0, the algebra Dg(n,d)r has more isomorphism classes of simple
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modules than &,Dqg(n,d)r,. As was predicted in [Tu;, Conjecture 82| and
proved in [Ev], a certain explicit idempotent truncation of the RoCK block H,(q)
is Morita equivalent to Hs(q)®? x F&, in all cases. Corollary B(i) strengthens
this result, replacing the idempotent truncation by the whole RoCK block H,(q).

We now outline the proof of Theorem A and the contents of the paper. Sec-
tion 2 contains some general definitions and notation. In Section 3, we review
necessary definitions and results from [EK]. In particular, we introduce the
zigzag algebra Z and the wreath product Wy;. An important role is played by the
(right) colored permutation Wq-modules M) ., which are parametrized by colored
compositions (A, ¢). Here, A is a composition of d and ¢ is a tuple consisting of
elements of {1,...,e — 1} that assigns a ‘color’ to each part of A\. In fact, the
proof of Theorem A uses only colored compositions with n(e — 1) parts of the
form (A, ¢%), where ¢ is given by (3.13), but it is more natural to work with more
general colored compositions. We define the generalized Schur algebra SZ(n, d)
as the endomorphism algebra of the direct sum of the appropriate Wy-modules
M) co and review results identifying the Turner double D?%(n,d) as an explicit
Z-subalgebra of S%(n,d).

Section 4 begins with the definition and standard properties of the KLR, alge-
bras Ry and their cyclotomic quotients Ré\o. In §4.5 we define the semicuspidal

algebra Cys as an explicit quotient of Rgs. In 4.6, we consider parabolic subalge-
bras of Cys.

In §5.4, we recall the definition of a RoCK block RA0 and construct a natural
homomorphism : Cus — R, The quotient Cha = Cus / ker  is isomorphic to
an idempotent truncation of RQO, which is later shown to be Morita equivalent to
Rgo. We note that C, 4 is finitely generated as a Z-module, but C'dg is not. The
arguments of §5.4 rely on results connecting cyclotomic KLR algebras with the
combinatorics of standard tableaux and abaci, which are reviewed and developed
in §85.1-5.3.

In §6.1 we define the Gelfand-Graev idempotent v»¢ € Rys for every colored
composition (A, ¢) of d and an ‘uncolored’ idempotent v € Rys. The latter may
be viewed as a KLR counterpart of &, € S#(n,d). The following two results are
key to the proof of Theorem A:

(i) There is an explicit algebra isomorphism Wy — v“C, 47 (see Theo-
rem 8.9).

(i) If v“C) qy* is identified with Wy via the isomorphism in (i), then there
is an explicit isomorphism M) = ’y’\’chd’y“ of right Wi-modules (see
Theorem 8.15).

The isomorphism (i) is a slight generalization of the main result of [Ev] and is
constructed in §§7.1,8.1 using a homomorphism [KMs3s] from Wy to ¥ édg’}/w. In
order to prove (ii), we first show that 7)‘70C'p7d7w and M) . have the same rank
as free Z-modules, see Corollary 6.31. This relies on combinatorial results about
RoCK blocks proved in §§6.2-6.4. Secondly, in §§7.3,7.4, we prove several results
on the structure of VA’CCA'dmw . In particular, we find an explicit element that
generates V‘vcédmw as a right % C’dng-module, see Corollary 7.32. We use this
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element to construct a homomorphism from M) . to ’y’\’céd(;’y“ and ultimately to
prove (ii).

In §8.3, we define the algebra E(n,d) as the endomorphism algebra of the
direct sum of (graded shifts of) certain projective left C, s-modules Cmd’y)"c.
Using the right Wz-modules WA’CCWWW and the isomorphism (ii), we construct a
natural homomorphism ®: E(n,d) — S%(n,d). Finally, using the identification
of the Turner double Dg(n,d) as a subalgebra of S%(n,d) stated in Section 3
as well as results about the semicuspidal algebra proved in Section 7, we show
that @ is injective with image exactly Dg(n,d), so that E(n,d) = Dg(n,d) (see
Theorem 8.23).

A priori, it follows from our constructions that F(n,d) is Morita equivalent
to an idempotent truncation of the RoCK block RQO. In §8.4, we prove that
E(n,d) = Dg(n,d) is (graded) Morita equivalent to RA° by showing that the
scalar extensions of Dg(n,d) and RA® to any algebraically closed field have the
same number of simple modules.

2. PRELIMINARIES
For any m,n € Z, we define the (possibly empty) segment
[m,n] :={l€Z|m<1l<n}

Let I,m,n € Z>o and I be a set. For any i € I and tuples i = (i1,...,4) € I,
j = (]by]m) S Im, we set

. . . .. . .. . 1 . . . 1
i" =iy ,0) €1 35 = (i1, s 0051505 Jm) € I i i=g...4 € I
n n
We write i; ...4; instead of (i1,...,4;) when there is no possibility of confusion.

2.1. Partitions and compositions. Fix n € Z>g and d € Z>9. We denote
by A(n) the set of compositions A = (A1,...,A,) with A\1,..., A\, € Z>g. For
A € A(n) we write |A| ;== Ay + -+ A\, and set A(n,d) := {\ € A(n) | |\| = d}.
If m € Z>p, we define mA := (mAy,...,m\,) € A(n).

Let S be an arbitrary finite set. We define A®(n,d) to be the set of tuples
A = (AD);e5 of compositions in A(n) such that >_,c¢ |A?| = d.

We denote by & the set of all partitions. For A = (A1,..., A\y) € & we write
¢(X) == max{k | Ay > 0} and |\ := A; + -+ A\, Weset P(d) == {\ e & |
|A| = d}. We do not assume that the parts i of the partition A are positive, and
we identify a partition (A1,...,A,) with any partition (A1,..., Ap,0,...,0).

We define the set of S-multipartitions 25 as the set of tuples A = (A\®));cq
of partitions. For X € 229, we set |A| := 3, ¢ |\?| and 29(d) := {X € 27 |
|A| = d}. The only multipartition in #29(0) is denoted by @.

We set NS := Z<g x Zsg x S and refer to the elements of N as nodes. When
S has one element, we identify N¥ with N := Zwg x Zsq. If A = (\?);cg € 29
is an S-multipartition, its Young diagram, which we often identify with A, is

IA] :={(r,s,i) e N | s < AW}

If (r,s,i) € N, we say that (r,s 4+ 1,i) is the right neighbor of (r,s,i) and
(r 4 1,s,1) is the bottom neighbor of (r,s,i). Define a partial order < on N° as
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follows: (r,s,i) < (r,s',7') if and only if i = ¢/, r < 7’ and s < ¢'. Given a
multipartition A € 2%, a function T: [A] — Zw is said to be weakly increasing
if whenever u < v are in [A] we have T(u) < T(v). If u,v € N and neither u < v
nor v < u, then we say that « and v are independent. Two subsets U,V C N° are
said to be independent if every element of U is independent from every element
of V. We say that a subset U C NS is convez if whenever u < v < w are in N°
and u,w € U, we have v € U.

A skew partition is a pair (A, ) of partitions such that [u] C [A\]. We denote
it by A\ g and set |A\ p| := [A| — |p]. We identify A\ @ with A.

2.2. Symmetric groups and parabolic subgroups. Let d € Z>y. We denote
by &4 the symmetric group on {1,...,d} and set s, := (r,r +1) € &, for
r=1,...,d — 1 to be the elementary transpositions. For every n € Z-(y and
A= (A,..., ) € A(n,d), we have the standard parabolic subgroup

Gr\=E6), X X6, <6

Moreover, for an ordered set S = {1,...,I} and A = A\, ..., AD) € A%(n,d),
we define the parabolic subgroup

Gr=E6,0) X xG,n <Gy

Ifge &gand g = s, ... sy, is a reduced decomposition of g, i.e. a decomposition
as a product of elementary transpositions with [ smallest possible, then we define
¢(g) := 1 and refer to [ as the length of g. For any A\, u € A(n,d), we denote by
9* the set of the minimal length coset representatives for §,/&y, by *2 the set
of the minimal length coset representatives for &,\&4 and by L P the set of the
minimal length coset representatives for 6,\&4/6,.

2.3. Algebras and modules. In this paper we mostly work over the ground
ring Z. Occasionally, we use the prime fields F,, and their algebraic closures F,,.

All gradings in this paper are Z-gradings. Let ¢ be an indeterminate. Given a
graded free Z-module V = @ﬁzl Zvy, with homogeneous generators vy, we write
dim, V for the graded rank of V, ie. dim,V := Zflzl qi8(n) ¢ Z[q, ¢~ '] and
dimV := k. Throughout, V™ denotes the nth graded component of V for any
n € Z. Given m € Z, let ¢V denote the module obtained by shifting the grading
on V up by m, ie. (¢"V)" := V" We use the notation V=" :=p, ., V"
For any m € Z, we set [m] := (¢™ — ¢~ ™) /(¢ — ¢ ') € Z[g,q"]. If m € Z>g, we
define [m]' := [[1,[k].

Let A be a (Z-)graded algebra. All A-modules are assumed to be graded. Let
A-mod denote the category of all finitely generated (graded) A-modules, with
morphisms being degree-preserving module homomorphisms. Given A-modules V
and W, we denote by hom 4 (V, W) the space of morphisms in A-mod. For any m €
Z, define Hom 4 (V, W)™ := hompg (¢"™V, W). This is the space of homomorphisms
that are homogeneous of degree m. Set

Hom 4(V, W) := @5 Homa(V, W)™,
meZ
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In particular, End4 (V) := Hom4(V, V) is a graded algebra. All homomorphisms
between graded algebras are assumed to be degree-preserving. We have the grad-
ing shift functor ¢: A-mod — A-mod, V — ¢V.

Given an A-module V' and a commutative ring k, we denote by Ay := A ®z k
the (graded) algebra obtained by scalar extension, and by Vi := V ®z k the
corresponding Agx-module. If B = A/K is the quotient of A by an ideal B and
x € A, we denote an element x + K of B simply by 2 when there is no possibility
of confusion.

If k is a field and A is a finite-dimensional graded k-algebra, we denote by ¢(A)
the number of irreducible graded A-modules up to isomorphism and degree shift.

3. ZIGZAG ALGEBRAS, WREATH PRODUCTS AND TURNER DOUBLES

Throughout the paper, we fix e € Z>s.

3.1. Zigzag algebras and wreath products. Let @ be a type A._1 quiver
with vertex set

J:={1,...,e—1} (3.1)
We will use the zigzag algebm Z of type A6 1, defined in [HK] as follows. First

assume that e > 2. Let Q be the quiver with vertex set J and an arrow a¥7 from
j to k for all ordered pairs (k,j) € J? such that |k — j| = 1:

22,1 €—3,e—2 je—l,e—2

m/ﬂ/_\ TN

.672 @®@c—1

636236261

Then Z is the path algebra ZQ, generated by length 0 paths e; for j € J and
length 1 paths a*7, subject to the following relations:

(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All cycles of length 2 based at the same vertex are equal.

The algebra Z inherits the path length grading from ZQ. If e = 2, we define
Z := 7]c]/(c?), where c is an indeterminate in degree 2.

If k,j € J, we say that k and j are neighbors if |k — j| = 1. If e > 2, for every
vertex j € J pick its neighbor k and denote cU) := al*aki. The relations in Z
imply that c¢\) is independent of choice of k. Define ¢ := > jed cU). Then in all
cases Z has a basis

7:=1{a" | k € J, j is a neighbor of k} U {c™e; |j € J, m € {0,1}}, (3.2)
and
dim, Z = (e — 1)(1 + ¢°) + 2(e — 2)q. (3.3)
Moreover, using (3.2), we see that for any j € J
4 ifl<j<e—1,
dime;Z =<3 ifje{l,e—1} and e > 2, (3.4)
2 ifj=1and e=2.
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We will also consider the graded wreath products
Wy = 2% 1 76, (3.5)
with Z&, concentrated in degree 0. (Note that, unlike [EK], we do not consider
any superstructures here.) As usual, we identify Z®? and Z&4 with the subalge-
bras 294 ® 1g , and 1§)d ® 764 of Wy, respectively. The multiplication in Wy is
then uniquely determined by the additional requirement that
g (1@ ®T)g =71 @ @ Tgq (3.6)
for g € 64 and z1,...,24 € Z. Given z € Z and 1 < a < d, we denote
2o =10 - ®10z1®---®1 7%,
with z in the ath position. We have the idempotents
eji=ej, @ --®e, cZ%CW; (jeJ9.
Fix n € Z~y. We define the set of colored compositions
A, d) == A(n,d) x J". (3.7)
Let (A, ¢) € A (n,d) with A\ = (A\1,...,\,) and ¢ = (c1,...,¢,). We define the
idempotent
ere = e?f‘l ®--® e?ﬁf‘" AL (3.8)
and the parabolic subalgebra
Wie=exec®4ZE\ C Wy.

Note that ey . is the identity element of Wy ¢, so W) . is a (usually non-unital)
subalgebra of Wy, isomorphic to the group algebra Z&,.
We assign signs (; to the elements j € J according to the following rule:

| +1 if jis odd,
G = { —1 if j is even. (3.9)
Consider the function € .: &y — {£1} C Z defined by

Exelgl, - gn) = Cfl(gl) .. fr(lgn) (3.10)
for all (g1,...,9n) € G5, X -+ X Gy, = 6. We define the c-alternating right
module alty . = Z-1) . over W) . with the action on the basis element 1) . given
by

e (exe®g) =ercl@)lre (9 €6),).
We have identified Z®¢ and Z&, as subalgebras of Wy, so we can also view e A
as an element of W;. Then Wy . = ey o(ZG6))ey . and ey Wy is naturally a left
W e-module. We now define the colored permutation module

M)\7c =alt) . ®W)\,c e)\7ch. (3.11)

This is a right Wy-module with generator my ¢ 1= 1), ® ey c.
Lemma 3.12. For each j € J, set d; := Zléfﬁm erej Ar. Then the module M)
is Z-free, with
Gy : Gy|3hHde14X5500 ife s 9,

dim M) . =
e {\Gd:6>\|2d1 if e = 2.
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Proof. This follows from (3.4) and [EK, Lemma 5.21]. O

3.2. Turner doubles and generalized Schur algebras. Let n € Z-( and
de ZZO. Set

Ai=01,...,e=1)"=(1,...,e—1,1,...,e—1,...,1,...,e—1) € J"e7D (3.13)
We have a bijection
AJ(n, d) = A(n(e —1),d),
A=W Ay AT AW A,

In this subsection, we use this bijection to translate the results of [EK, §7.2] into
the present notation.
For any A € A(n(e — 1),d), we define
M := M, .

Let

M(n,d)= @ M (3.14)

AeA(n(e—1),d)

Following [EK], we consider the generalized Schur algebra

S%(n,d) := Endy, (M (n,d)).

Since the algebra W, is non-negatively graded, so are the modules M*. Since
M? has the degree zero generator

m>‘ = m)\’co
as a Wy-module, it follows that the algebra S%(n,d) is non-negatively graded.
For A € A(n(e — 1),d), let £, € S%(n,d) be the projection onto the direct
summand M?* of M(n,d) along the decomposition (3.14). We always identify
£,5%(n, d)€éy with Homyy,(M?*, M*) in the obvious way.
Let A € A((n—1)(e —1),d —1). For j € J, we define
N = (0,...,0,1,0,...,0,A1, ..., Au_1)(e—1)) € A(n(e — 1),d),

e—1 entries

where 1 is in the jth position. Let z € e;Ze;, for some j,k € J. By [EK, Lemma
7.5], there exists a unique endomorphism i*(z) € $%(n,d) with

mj‘jz[l] if = Ak,
0 otherwise.

i)‘(z): mt — {

Moreover, by [EK, Lemma 7.6], we have a (non-unital) injective algebra homo-
morphism

it Z = S%(n,d),z — Z i*(ejzep). (3.15)
J.keJ
Define T4(n, d) to be the subalgebra of S%(n,d) generated by the set
S%(n,d)° U U i*2).
AEA((n—1)(e—1),d—1)
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Theorem 3.16. [EK, Theorem 7.7] Suppose that n > d. There is a graded
algebra isomorphism Dg(n,d) — T%(n,d).

Theorem 3.17. [EK, Theorem 6.6], Suppose that n > d. If A is a subalgebra
of S%(n,d) such that T*(n,d) C A C S%(n,d) and Ar, is a symmetric F,-algebra
for every prime p, then A =T%(n,d).

4. KLR ALGEBRAS

4.1. Lie-theoretic notation. Let
I:=7Z/eZ=H0,...,e—1}.

We consider the quiver of type Agl_)l with vertex set I and a directed edge i — j

whenever j =i+ 1. The corresponding Cartan matriz (ci;); jer is defined by
2 ifi=j,
0 ifj#idi+1,

—1 iféi—jori<j,

-2 ifizj.

Cij =

Following [Ka|, we fix a realization of the Cartan matrix (c;;); jer with the
simple roots {cy; | i € I}, the fundamental dominant weights {A; | i € I}, the
normalized invariant form (-,-) such that

(ai7aj) = Cij, (Alvaj) :51 (Z7] 61)7
the root system ®, the set of positive roots @, and the null-root
d:=ap+a1+ -+ Q-1 €Dy (4.1)

Let Q4 := @,c; Z>ocy. For 6 € Q4 let ht(0) be the height of 0, i.e. ht(#) is the
sum of the coefficients when 6 is expanded in terms of the simple roots «;. For
any m € Zx>q, the symmetric group &,,, acts from the left on the set I by place
permutations. If 4 =4y ...y, € I" then its weight is |¢| := oy + -+ + a;,, € Q4.
Then the &,,-orbits on I™ are the sets I? := {i € I"™ | |i| = §} parametrized by
all § € Q4 of height m.

We always identify J = {1,...,e — 1} with the subset I \ {0} of I, cf. (3.1).
Let C’ be the type A._; Cartan matrix corresponding to J, and let ®’ C &, be
the corresponding positive part of the finite root system. We define
0 ={-B+nd| BV, n€Zlsg}and &30 :={B+nd|B €D, ncls}

Set ®5° := ®F° LI {6} and $3° := @7° U {5}. Note that , = $' L &', where
M = {nd | n € Zxo} and P = &30 L 70
4.2. Basics on KLR algebras. Let 6 € Q4 be of height m. Following [KL,Rs],

the KLR algebra (of type Agl_)l) is the unital Z-algebra Ry generated by the

elements {1;] € IYU{y1, ..., ym}U{W1, ..., %m_1}, subject only to the following
relations:

Lily = d; 414 Dieroli =1 (4.2)
yrli = 1iy7“; 7/}7’11 = 1Sr’lﬂ/}7’; (43)
YrYs = YslYr;
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Urys = Ystr if s#r,r+1; (4.5)
Urihs = sty if |T‘ — 8| > 1; (4.6)
wryr+11i = (yr¢7‘ + 5ir7ir'+1)1i; (47)
Yrt1r Ly = (ryr + 64y ) i (4.8)
0 if 4, = 4pq1,
1; if 4pyq # Qi £ 1,
wf 1; = (Yre1 —yr) s if 4y = iy, (4'9)
(yr — yr—i-l)l if 4y < iy,
(yr+1 )(yr yr—l—l)li if i, 2 tp41;
(¢r+1¢r¢r+1 + 1)1i if b2 = Uy = U1,
(¢r+1¢r¢r+1 - 1)1i if Iyt = Uy < U1,
Urhr1r 1y = (¢r+1¢r¢r+1 =2y (410)
+Yyr + yr+2) 1; if iT’+2 =i = iT’+l7
Yrr1rPrialy otherwise.

The cyclotomic KLR algebra Ré\ Y is the quotient of Ry by the two-sided ideal

&i . . .
Ié\o generated by the elements y, 101, for all i = (iy,...,iq) € I?. We have the
natural projection map

To: Rg—~R5® = Ry /I)". (4.11)

The algebras Ry and Ré\o have Z-gradings determined by setting 1; to be of
degree 0, y, of degree 2, and 1,.1; of degree —c;,_;, ., for all admissible r and z.

For k € [ = Z/eZ and i = (i1, ...,i,) € I", we set i7" 1= (i1 +K,...,in +K) €
I™. Then for any d € Z~q, there is an automorphism

roty: Rgs — Ras, Li = Livn, Yr > Yp, s > 1)y (4.12)

for all admissible 2,7, s.

Fixing a preferred reduced decomposition w = s, ...s,, for each element w €
S, we define the elements v, := ¥, ..., € Ry. In general, 1, depends on
the choice of a preferred reduced decomposition of w.

Theorem 4.13. [KL, Theorem 2.5], [R2, Theorem 3.7] Let § € Q4+ and m =
ht(#). Then

(bt . yFm 1 | w € Sy Fry .o Ko € T, 3 € T}
is a Z-basis of Ry.
As a special case of [KK, Remark 4.20], we have
Theorem 4.14. Let 0 € Q4. Then the Z-module Ré‘o 1s free of finite rank.
By [SVV, Proposition 3.10] (see also [We, Remark 3.19]), we have

Theorem 4.15. Let 0 € Q1. Then for any field k, the algebra RQ% s symmetric.
More precisely, Réxi)( admits a symmetrizing form of degree (Ag — 6, Ay — 0).
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4.3. Parabolic subalgebras. For 61,...,0, € Q; and 0§ =601 +---+0,, we have
a non-unital embedding

toy,...0, Ro, @--- ® Rg, — Ry (4.16)

whose image is the parabolic subalgebra Ry, .. o, € Rg. Denoting by 14 the identity
element in Ry, we set

Loy,...0, = tor,...0,(1g, @ ®1p,). (4.17)
We have

lo,,...0. = Z Liw ;0.
iMerdr,.. i eror

Note that we always identify Ry, ® --- ® Ry, with Ry, 6, Via tg,, . 0,
We have the corresponding induction and restriction functors

Ind91,---,9r: R@l,m,gr-mod — Rg-mod, W — Rglgl,m,gr ®R91 W,

,,,,, O
RGSQLM’QT: Rg—mod — Rgl’m’gr—mod, U+ 1917.“79TU.

Let W € Rg,-mod, ..., W, € Ry -mod. We define
Wio---oW, = Indgl,...79TW1®”‘®Wr'

We refer to the elements of I? as words. Given W € Rp-mod and i € I?, we say
that ¢ is a word of W if 1;W # 0. If every W; is free of finite rank as a Z-module,
we define the formal character of W as chy W = 3", 1o (dimy W;)i € Zlg, ¢ '] I9.

Given a composition A € A(r,m) and words i € 1M ... i) € [™ a word
i e I™is called a shuffle of sV, ... i™ if ¢ = g- 3V ... 4") for some g € 27
By [KL, Lemma 2.20], an element ¢ € I" is a word of Wy o --- o W, if and only
if ¢ is a shuffle of words sV, ..., 4(") where ¢(®) is a word of W, for s =1,...,r.

We will need the following weak version of the Mackey Theorem for KLR
algebras, see [Ev, Proposition 3.7] or the proof of [KL, Proposition 2.18]:

Lemma 4.18. Let 0y,...,60,,01,...,0; € Q4 satisfy 61 +---+6, =0, +--- +
0, =: 6. Define m = ht(f), A := (ht(01),...,ht(0,)) € A(r,m), and N :=
(ht(0)),...,ht(6)) € A(t,m). Then

lo,,..0.Role; o1 = Z Ry,....0.0wRy; a1

t
wer N
With the notation as in the beginning of the subsection, we have the parabolic
subalgebra
Ao R A0
R617---767' = 7T9(R91,”,79T) C Ry°.
Let 6,17 € Q4. We have a natural embedding (p,: Rg — Rop, @ — tgn(z @ 1;).

The map 7o, o (g, factors through the quotient Rg ° to give the natural unital
algebra homomorphism

Com: Ry® — RpS. (4.19)
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4.4. Divided power idempotents. Fix ¢ € I. Let m € Z>o and denote by
wo the longest element of &,,. The algebra R,,,, is known to be the nil-Hecke
algebra and has an idempotent 1,m) := ¥y [[1e; y5~ 1, cf. [KL]. The fact that
1,(m) is an idempotent follows immediately from the equality

Liom) Yuwo = Yy (4.20)
noted in [KL, §2.2].
Lemma 4.21. For any x € Ry, there existsy € Zlyi, . .., Ym| such that 1,onyz =
Puny-
Proof. By Theorem 4.13, we can write ([T/2; ")z =Y, cq. Ywy(w) for some

s

y(w) € Zlyr, .- yml- So Limz = tu,(IT52y ys Nz = Zweem Yuo Ywy(w) =

Yugy(1)- O
Let 6 € Q+. We define Igiv to be the set of all expressions of the form
(igml), . ,z's«mr)) with mq,...,m, € Z>, i1,...,% € I and myoy, +---+mpa;, =

0. We refer to such expressions as divided power words. Analogously to the words,
for k € I = Z/eZ and a divided power word 7 = (z'gml), .. ,z’&m")), we define the
divided power word 7% := ((iy +x)™), ..., (i, +)")). We identify I with the
subset of I giv which consists of all expressions as above with all my = 1. We use
the same notation for concatenation of divided power words as for concatenation
of words.

Fix 4 = (i(m), ... i(m)) € 1% . We have the divided power idempotent

1; = by ay yeesmrai, (1i§m1) QK- ® 12.5.1117‘)) € Ry.

Define ! := [m4]'--- [m,]' and

(@) ==Y mp(mg —1)/2. (4.22)
k=1

Set
2= (i1t yipy .. yip) € 19, (4.23)
with i repeated my times. Note that 1,1, =1:1, =1..

Lemma 4.24. [KL, §2.5] Let U (resp. W) be a left (resp. right) Rg-module, free
of finite rank as a Z-module. For i € Igiv, we have

dimg (1;U) = i!q<i>dimq (1;U) and dimg (W1;) = i!q_<i>dimq (W1;).

4.5. Semicuspidal modules. Let d, f € Z>o. A word ¢ € I is called separated
if whenever ¢ = jk for j € I and k € I, it follows that @ is a sum of positive
roots in @fé and 7 is a sum of positive roots in @E(S. We denote by Igfp the set
of all separated words in I%. An Rgs-module is (imaginary) semicuspidal if all
of its words are separated. Note that a shuffle of separated words is separated,

SO:

Lemma 4.25. If U € Rgs-mod and W € Rjys-mod are semicuspidal modules,
then U o W € R4 ps-mod is semicuspidal.
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Set 1ngep 1= Zielda\jda 1;. The (imaginary) semicuspidal algebra is defined as
sep

éd& = Rdé/Rdé 1nsede5- (426)

The category of finitely generated semicuspidal Rgs-modules is equivalent to the
category Cus-mod. A word i € I¥ is called semicuspidal if the idempotent 1; is
non-zero in Cys. Denote by I% the set of all semicuspidal words. Then, setting
Insc = D 4 ras\ a5 1, we have Cys = Rys /Rgs1nsc Ras. By definition, we always
have I C Igfp, but this containment may be strict, see Example 4.30 below.

Everything in this subsection so far makes sense over any ground ring. In
particular the notion of a semicuspidal module over Rgsp is defined for any field
[F. We now explain the classification of the semicuspidal irreducible Rs5 p-modules
for an arbitrary field F.

We begin with the case d = 1, in which case the semicuspidal irreducible Rgs r-
modules are parametrized by the elements of J = {1,...,e — 1} =TI\ {0}. More
precisely, let j € J. We denote by I%7 the set of all words in I° of the form
Okj where k is an arbitrary shuffle of the words (1,2,...,7 — 1) and (e — 1,e —
2,...,j+1). Let Ls; be the graded Z-module with basis {v; | i € I/} where all
basis elements have degree 0. By [KR, Theorem 3.4], there is a unique structure
of a graded Rs-module on Ls; such that

Ve if $p0 € 109,
1jv; = 6i5vs, Yrvs = 0, vy = { 0 ifedd I (4.27)
T

for all admissible 4,7, 7. All the words in I/ are separated, so the module Ls;
is semicuspidal, which implies that %7 C Igc.
For example,
It ={(0,e—1,e—2,...,1)} and I%*'={(0,1,...,e—1)},
so Ls1 and Ls.—1 have Z-rank 1. On the other hand, for e > 3, the module
Lo has Z-rank e — 2, since

72 ={0,1,...,re—1,r+1,r+2,...,e—2) |0<r<e—2}.

For a composition d = (dy,...,de—1) € A(e — 1,d), consider the semicuspidal
Rgs-module V¢ := Lgdll o---0 L;‘ie_’ll.

Theorem 4.28. Let F be an arbitrary field. There is an assignment X — L(X)

which maps every element A € 27 (d) to a semicuspidal irreducible R 5 w-module
L(X) such that

(1) {L) | A € 27(d)} is a complete and irredundant set of irreducible
semicuspidal Rgsr-modules;
(11) Let d = (dl, . 7de—1) S A(e - 1,d) and
2(d)y={x= (Y, Ay e 2T(d) | |\D| = d; for all j € J}.
Then {L(X) | X € 27(d)} is the set of composition factors of V2.
Proof. This is essentially contained in [Ks] and [KM;], but we provide some de-

tails for the reader’s convenience. In this proof, we drop the subscript F from our
notation. Fix n € Z>q. Let j € J, m € Z>p, and v € A(n,m). In [KMy, §1.4],
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certain submodules Z}’ C ng? are constructed. Let Z; := @VEA(n,m) Z}’ and
Fm,j = Ras/Anng;(Z;). In [KM;, Theorems 4 and 6] a complete and irredun-
dant family {L;(\) | A € Z(m)} of irreducible .}, j-modules is constructed and
it is proved that Z; is a projective generator for .7, ;, hence every L;(\) appears
as a composition factor of Z;. But Z; is a direct sum of submodules of ng? and
one of the summands is Lg? itself. So every L;(\) appears as a composition
factor of Lgfj’?.

Now, for A € 27(d), we consider the Rgs-module L(X) := Li(AM)o ... 0
Le_1(A\¢=D). By [Ky, Theorem 5.10], this module is semicuspidal and irreducible,
and {L(A\) | A € 27(d)} is a complete and irredundant set of irreducible semi-
cuspidal Rgsr-modules, proving (i). Now (ii) follows from the description of the

composition factors of each L;i.j in the previous paragraph. O

Corollary 4.29. The set Isdc‘s 1s exactly the set of all shuffles of words i(l), . ,i(d)
such that each i@ Ujes 1%,

Proof. If i is a shuffle of words iV, ..., 4? such that 4% € [%4e fora =1,...,d,
then ¢ is a word of the semicuspidal module Ls ;, 0---0Ls ., 507 € Isdc‘s. Conversely,
let ¢ € Isdc‘s. By definition, 1; is non-zero in Cys. Since 1; is an idempotent, it
follows that 1; r := 1; ® 1y is non-zero in Cd(m for some field F. Hence there is an
irreducible semicuspidal R4sr-module L such that 1; L # 0. By Theorem 4.28,
the word % is a shuffle of words i(l), . ,i(d) such that each i(® € |—|jeJ %, 0O

Example 4.30. Let e = 5 and d = 2. Then the word 0012342341 is in Ige5p, but
is not in I% by Corollary 4.29.

4.6. Induction and restriction of semicuspidal modules. Throughout the
subsection we fix d € Z>g, n € Z>p and A = (A1,...,A,) € A(n,d). Denote

Rys := Ry5,... 206 € Ras.

Let 155 denote the identity element of Ry5. Define the semicuspidal parabolic
subalgebra

Cxs € Cys

to be the image of Rys under the natural projection Rd(;—»éd(;. Whereas the
parabolic subalgebra R); has been identified with Ry, ® --- ® Ry, s via the
embedding ¢y,5...1,5, it is not clear a priori that CM = (%\15 R ® (A?An(;. This
will be proved in Lemma 4.33.

We call an Ry 5®- - -® Ry, s-module W semicuspidal if (1,0)®---®1,t,) )W =0
whenever i(l), ... ,i(") are not all separated. This is equivalent to the property
that W factors through the natural quotient é,\15®- . -®é>\n5 of Ry\s®---®@Ry,5s.

Lemma 4.31. We have:
(i) If W is a semicuspidal Rgs-module, then Resy, s, x,sW is a semicuspidal
Ry5 ® -+ ® Ry, 5-module.
(ii) If i e Mo i) e A0 gnd 4D i) e I% | then we have that
i e o i) e Ml
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Proof. This is known and can be proved combinatorially using Corollary 4.29. We
sketch a representation-theoretic proof for the reader’s convenience. Clearly (i)
and (ii) are equivalent, and hence it suffices to prove (i) with scalars extended to C
in the case where W is irreducible. This follows for example from [McN, Theorem
14.6]. O

Lemma 4.32. If i) ¢ IS’\Cl‘S,...,i(") € IX9, then there is an isomorphism of
Rgs-modules
Casl;0 ;) - Crisl;0 0000y 61,0,
Lo ;o = 1. 2@ @ - @ 1m.

Proof. Since Cy;61;01) 0 -+ 0 Cy, 51, is semicuspidal, we can consider it as a
Cys-module. So there exists a homomorphism as in the lemma. To construct

the inverse homomorphism, use adjointness of induction and restriction together
with Lemma 4.31(3). O

Lemma 4.33. The natural map Ry ® -+ ® RAng‘—>Rd5—»C'd5 factors through
C>\15® ®C’)\n5 and induces an zsomorphzsm C’,\15® ®C’>\ 5 — C)\g Moreover,
Cuslas is a free right Chg-module with basis {2y | w € D).

Proof. That the map factors through C)\l(; R & C’)\n(; follows from Lemma 4.31.
For the remaining claims, let us consider the Rgs-module W := C'A15 0---0 é;wg.
By Lemma 4.25, the module W factors through Cys. On the other hand by the
Basis Theorem 4.13 for Rys, we can decompose W = @, cger Yuwlis ® éAlg ®

- ® CA s as a Z-module, with each summand being naturally isomorphic to
C’>\15 ®--xC o as a Z-module. The lemma follows. O

In view of the lemma we identify C N R ® é,\ng with CM. Then:

Corollary 4.34. Suppose that for each r =1,...,n we have a C’Ar,g—module Wi
Then there is a natural isomorphism of semicuspidal Rg5-modules

Wio---oWy, L>CA'd<51,\5<X>cMs (WX KW,),
Ulys QWL R Quw, — Ul QW ® -+ Q wy,
where u € éd(; is the image of u € Rys under the natural projection Rd(;—»éd(;.

From now on we identify the induced modules as in the corollary.

5. ABACI, TABLEAUX AND ROCK BLOCKS

5.1. Abaci. We will use the abacus notation for partitions, see [JK, Section 2.7].
Recall that we have fixed a number e € Z>5 and I = Z/eZ. When convenient
we identify I with the subset {0,1,...,e — 1} C Z. We define the abacus A® :=
Z>o x I. For i € I, the subset R; := Z>o x {i} C A® is referred to as the (ith)
runner of A°.

Let A be a partition, and fix an integer N > ¢()), so that we can write A\ =
(M, An). Let

AN()\)::{)\k—I—N—k’|k‘Zl,...,N}CZZo. (5.1)
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The abacus display of A is

AS(N) = {(t,0) € A | et +i € Ax(N)}.
The elements of A% ()\) are called the beads of A%()), and the elements of
A®\ AS () are called the non-beads of AY ().

We have the total order < on A® defined by the condition that (¢,7) < (g, j) if
and only if et + i < eq + j. If (¢,7) < (q,J), we say that (t,4) precedes (q,j ) and
(q,j) succeeds (t,i). For any r € Z~o, we say that a bead (¢,7) of A% (\) is the
bead with number r in A% (N) if exactly » — 1 beads of A% () succeed (¢,1), and
we say that a non-bead (t, i) of A5 () is the non-bead with number r in A% (N) if
exactly 7 — 1 non-beads of A%(\) precede (t,1).

It is easy to see that the bead (t,7) with number r of A% (\) satisfies et +i =
N + A\, — r. Moreover, if (A, \,,...) is the conjugate partition to A, then the
non-bead (¢,7) with number s Of A% (N) satisfies et +i = N — X, + s — 1. Using
these observations, it is easy to prove the following well-known fact:

Lemma 5.2. Let A € & and (r,s) € N. Then (r,s) € [A] if and only if the bead
with number r succeeds the non-bead with number s in A% (N).

For A € &, we write b;j(\) := |AS(A) NR;| for i € I. The e-core of A is the

partition core(\) defined by
A% (core(N)) = {(t,i) e A°liel, 0<t<b(N)}

Recall the notation (5.1). The e-quotient of X is defined as the multipartition
quot iy (A) = (AD);e; € 2! such that for every i € I, the partition A®) is deter-
mined from Abi()\)()\(i)) =AY (A) NR;, where we have identified R; with Z>o. The
e-quotient of A depends on the residue of N modulo e and changes by a ‘cyclic
permutation’ of the components A} when this residue changes. So the e-weight
of A, defined as wt(A) := | quot ()], does not depend on N.

Note that A = core() if and only quot ;(A) = @, in which case A is said to be
an e-core. For any e-core p and d € Z>(, we set

P, ={ e P |core(N) =p}, Ppa:={r€ P, |wt(\) =d}.
The following is easy to check and well known:
Lemma 5.3. The map A — quot()) is a bijection from 2,4 to 21(d).

The (e-)residue of a node (r,s) € N is res(r,s) := s —r +eZ € I = Z/eZ. For
i € I, we say that (r,s) is an i-node if its residue is i. For A € &, we define

cont(A) := Z Qres(u) € Q+-

u€A]

Lemma 5.4. [JK, Theorem 2.7.41] Let p be an e-core, d € Z>p, and \ € 2.
Then cont(\) = cont(p) + dd if and only if X € P, 4.

5.2. Tableaux. Let v be a partition. A node u € N is called an addable node for
vifu ¢ [v] and [v] U{u} is the Young diagram of a partition, and w is called a
removable node of v if u € [v] and [v] \ {u} is the Young diagram of a partition.
For ¢ € I, we denote by Add(v,i) (resp. Rem(v,)) the set of all addable (resp.
removable) i-nodes for v. We say that a node (r,s) is above a node (r’,s) if
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r < r’. Given a node v € N and a finite subset U C N, denote by a(v,U) the
number of elements of U which are above v.
Let ¢ € I and U be a set of removable i-nodes of v. Define

dy(w)= > a@U)— > aU).

veAdd(v,7) vERem(v,i)\U
Let A\ p be a skew partition, and 6 = cont(\ \ ) := Zue[[A]]\[[u}] Ores(u) € Q+-

Fix ¢ = (i m - m )) € 1% . An i-standard tableau of shape A\ y is a map
t: [A]\ [[u]] — {1 .,r} such that

(i) t(u) < t(u ) whenever u, v’ € [A]\ [1] and u < u';
(ii) forall k=1,...,r and u € t~1(k), we have resu = i;
(iii) for all k = 1,...,7, we have [t ~(k)| = mx.
We denote the set of all ¢-standard tableaux of shape A\ u by Std(\\ u, ). If
t € Std(A\ p, %), we define

des(t Zdt sy (671 (L K]) U D)

Note that deg(t) depends on A and y, not just on the set [A]\ [u]. If i € I and
1 = &, then the notion of an ¢-standard tableau is the same as the usual notion
of a standard tableau with residue sequence ¢ as in [BKW, §3.2], and the notion
of the degree agrees with the one from [BKW, §3.5]. If 4 € I, for some 1 # 0,
then we set Std(A\ p, 1) := @. We denote Std(A\ 1) := | |;¢ jeontavm Std(A\ p, ).

Let 1 = (igml), e £mr)) € Ig and ¢ € I? be as in (4.23). Given t € Std(\\
11,), a tableau s € Std(\\ g, %) is called a refinement of t if

t7 (k) = s ([m1 + -+ mgor + 1my 4+ )
forall k=1,...,7. Let £ C Std(\\ %) denote the set of all refinements of t.
Lemma 5.5. For any t € Std(\\ p, 1), we have ) ¢ gdes(s) — lgdes(t),

Proof. The lemma is easily reduced to the case r = 1. In that case, let s € ¢
be the tableau such that for u,v € [A] \ [¢] the node u is above v if and only if
s(u) < s(v), in other words we assign the numbers 1,...,m := m; to the nodes
of A\ p from top to bottom. Then deg(s) = deg(t) + m(m — 1)/2. We have
t = {ws | w € &,,}, where ws is the tableaux defined by (ws)(u) = w(s(u)).
In view of [BKW, Proposition 3.13], we have deg(ws) = deg(s) — 2¢(w), where
¢(w) is the length of w € &4. So

queg(s) — qdeg(t)+m(m—1)/2 Z q—2é(w) — [m]!qdeg(t)7
SG{', 'LUEGm
where the last equality comes from the well-known formula for the Poincaré poly-

nomial of the symmetric group [Hu, §3.15]. O

5.3. Dimensions and core algebras. Recall the notation (4.22). The following
is a variation of a known result:
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Theorem 5.6. For any 0 € Q4+ and i,j € Igiv, the Z-module 1,-Rg° 1; is free of
graded rank

dim (LRY1;) = g0 3 gleste)este),
P
segted(u,i)
teStd(u,j)

In particular, the idempotent 1; is non-zero in Ré\o if and only if Std(u,t) # @
for some p € 2.

Proof. The freeness statement follows from Theorem 4.14. Extending scalars to
C and using [BKj, Theorem 4.20] yields the graded rank formula in the case
when 4,7 € I?, and the general case then follows from Lemmas 4.24 and 5.5. [

Recall the notation ¢(A) for an algebra A from §2.3.
Theorem 5.7. Let k be a field, p be an e-core and d € Z>o. Then

K(Ré\(;)nt( )+d51k) = ‘L@J(d)’

Proof. By [KK, Theorem 6.2] or [LV, Theorem 7.5], the number B(Rcont(p) Ldsi) 18

equal to the dimension of the weight space V' (Ag)a,—cont(p)—as for the integrable
highest weight module V' (Ag) over the Kac-Moody algebra g of type Agl_)l. It
is well known that this dimension is equal to |27 (d)|, see e.g. [Ka, (13.11.5)]
or [LLT, Sections 4,5]. O

Let p be an e-core. We pick an extremal word (i, ...,i%) € I°"¢) for the
left regular module RAO nt(p)? S€€ (K2, §2.8]. In particular, iy # ig4q for 1 < k <r.

Let i = (i\"), ... i™ >) e 12,

Lemma 5.8. Let p be an e-core and © € Ig?ft(p) be chosen as above. Then
there is an isomorphism of graded Z-algebras R?OO +(0) = EndZ(R nt(p) Vi 1;), where
T € Ré\(fnt( ) gets mapped to the left multiplication by x.

Proof. We clearly have a homomorphism ¢: Rcont(p) — EndZ(RCOHt(p) i) as in

the statement. In view of Theorem 4.14, to prove that ¢ is an isomorphism, it
suffices to prove its scalar extension gy is an 1somorphism for any algebraically
closed field k. By Theorem 5.7, the algebra Rcont( )k has only one irreducible
module L up to isomorphism and degree shift. Considering the composition

series of the left regular module over Rcont(p)]k, we see that ¢ is an extremal

weight for L, hence by [Ks, Lemma 2.8], the space 1;L is 1-dimensional. It

follows that Hom R, k(Ré\OOnt( yilis L) = 1L is 1-dimensional, so Rcoont( kL

is the projective cover of L. We claim that in fact Rcont(p)k i = L. This

is known for k = C since Rcom(p) is a simple algebra: indeed, by [BKj]

it is a defect zero block of an Iwahori-Hecke algebra at an eth root of unity.

A Ao ~ Ao . . .
Hence HomRi\fm(p)c(RCé)nt() 1; Rcont( )(Cli) = 1, Rcont(p) 1; is 1-dimensional.

This proves that 1; RA

~

Cont(p)l has rank 1 as a Z-module, whence 1; R(/}O(’nt(p) wli &
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Hom Ri\c?m(p)k(Rcoom( )k Rc(fnt(p) i 1i) has dimension 1. Hence, R_° . (ki = L.
We deduce that RAO t(0) K is a simple algebra and ¢y is an isomorphism. O

Recall the map (p, from (4.19).

Lemma 5.9. If p is an e-core and d € Z>q, then the map

A
Ccont(p),dé: Rcoont( ) - 1cont(p) déRcont( )+d5100nt(p),d5
18 injective.
Proof. By Theorem 4.14, it suffices to prove that the scalar extension of the map

to C is injective. By Lemma 5.8, Rcont(p) is a simple algebra, so it is enough

to show that 1eong(p), d5Rcont( )+ a5 Leont(p),as 7 0. The last fact follows easily from
Theorem 5.6. O

5.4. RoCK blocks. Let p be an e-core and d € Z>. Following [Tu;, Definition
52|, we say that p is a d-Rouquier core if there exists an integer N > ¢(p) such
that for all ¢ = 0,...,e — 2, the abacus display A% (p) has at least d — 1 more
beads on runner ¢ + 1 than on runner ¢. In this case,

k:=—N+eZ € ZL/el

is well-defined and is called the residue of p.
If p is a d-Rouquier core, we refer to the cyclotomic KLR algebra R0
as a RoCK block.

cont(p)+dd

Remark 5.10. The term RoCK comes from the names of Rouquier [R;], Chuang
and Kessar [CK]. We refer to the algebra Rcont(p) +d
notation as in Section 1, the block Hcont(p)+d5( ) of an Iwahori-Hecke algebra is
cont(p)+d6.F> S€€ [BK1,Rs]. Note however that the
analogous isomorphism in general does not make sense over Z. Moreover, if k is a
field such that e = m char k for some m € Z~1, the algebra Ré" i is not in general
isomorphic to a block of a Hecke algebra.

s as a block since, with

isomorphic to the F-algebra RMo

We now review and develop some results from [Ev, Section 4]. Throughout
the subsection, we fix d € Z~( and a d-Rouquier core p of residue k. We then set

a :=cont(p) + dd € Q.
Let
Q2 Rgs — Ré\oont(p),dé’ T = Ty (Lcont(p),dé(lcont(p) ® rOtﬁ(:E)))y
cf. (4.11), (4.12) and (4.16). Note that € is in general a non-unital algebra
homomorphism with (1) = Teout(p),ds-
Lemma 5.11. Let i € I%, and j € I? be such that Std(p,j) # @. If Lj(+ny is

non-zero in R then i € Isdf. In particular, Q0 factors through Cus.

cont(p)+ds’

Proof. This follows from [Ev, Lemma 4.6] thanks to Theorem 5.6 and Corol-
lary 4.29. O
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In view of the lemma, from now on, we will consider €2 as a homomorphism

Q: Cas = Ry () as° (5.12)

Lemma 5.13. Let o be a partition such that [o] € [p]. Then the number of
nodes of residue k in [p] \ [o] is less than (|p| — |o])/e.

Proof. In this proof we use abacus displays with N beads, where N is greater
than the number of parts in all the partitions involved and N + eZ = —k. Recall
from §5.1 that for 7 € &, we denote b;(7) := |AY(7) NR;|. For 0 <1 < e, we
denote b>(1) = Zf:_ll bi(7). Recall also the fundamental dominant weights A;
from §4.1. Let 0 < m < e be the integer such that m 4+ eZ = —k.

For any 7 € &, we claim that

(A, cont(r)) — || = L= DN 3 (e=mm _ 3 bsi(). (5.14)

Indeed, it is straightforward to check that both sides are 0 when 7 = &, since
bo(@) ="+ =bp-1(8) =bp(F)+1="--=b._1(2) + 1. Furthermore, adding a
box of residue ¢ € I to 7 changes both sides by e — 1 if i = x and by —1if ¢ # &
(for the right-hand side, consult [Ev, Lemma 4.2]). The claim is proved.

Let 1 € {0,...,e—1} and b = b;(p). Suppose for a contradiction that b>;(c) >
b>1(p). As p is a Rouquier core, A§;(p) contains the rectangle [0,b—1] x [l,e —1],
whence

| AN (o) N (Zzp x [l,e = 1)) > [AR(p) N (Zzp x [l,e = 1])],
and it follows that |Anx(0) N Zspe| > |An(p) N Zspe|. This is a contradiction
to the hypothesis [o] C [p]. Hence, b>i(0) < b>i(p) for all [ € {0,...,e —1}.
Moreover, the inequality must be strict for at least one [ € {1,...,e — 1}, for
otherwise we have b;(0) = b;(p) for all i € I, and so p = core(o), contradicting the

hypothesis [o] € [p]. Hence, using (5.14), we deduce that e(A, cont(c)) — |o| >
e(Ay,cont(p)) — |p|, which implies the lemma. O

Recall that throughout the subsection oo = p + dd is a RoCK block.

Ao

Lemma 5.15. We have 1cont(p)7d5RQ01cont(p),d5 = ant(p)’dé.

Proof. By Lemma 4.18, 1cont(p)7d5RQ01cont(p),d5 is generated by R?{fnt(m a5 to-

gether with the elements 1, for w € (Phde) @lel.de) \ 11 Thus, it will suffice
to show that 1cong(p),ds¥wleont(p),ds = 0 in R20 for each such w. If not, then
1j’((i’)+"€)¢w1j(i+”) #£ 0 for some j,j’ € I1°°™*(®) such that Std(p,7),Std(p,j’) are

non-empty, and some %, € Isdf , see Theorem 5.6 and Lemma 5.11. In this case

w(F(a™F)) = 5'((')™F). Moreover, w = [T}, (|p| — m+¢,|p| +¢) for some m > 0,

and therefore the last m entries of j' are i1 +#, ..., i, +k. Since % is semicuspidal,
the number of entries « in the tuple (i; + &, ..., i, + k) is at least m/e. But by
Lemma 5.13, this means that Std(p, j') = @, a contradiction. O

By Lemmas 5.9 and 5.15, there is a natural unital algebra embedding

. A A _ A
gcont(p),dé ’ Rcoont(p) - Rcoont(p),dé - 1cont(p),d5Ra0 1COHt(P),d5'
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We always identify Ré\(fnt( ) with a subalgebra of Rho 45 Via this embedding.

cont(p),
We consider the centralizer of RC(;) £(0) in Rcont( ),do
- A
vad T ZR?(?nt(p),dé (Rcoont(p))
Lemma 5.16. We have an algebra isomorphism R?é’nt( ) ® Z,4 AN Rcont(p)

given by a ® b +— ab.
Proof. This follows from Lemma 5.8 using [Ev, Proposition 4.10] (whose proof

goes through over Z). O
Recalling (5.12), we denote
C,a:= Cas/ ker Q. (5.17)
We have the induced embedding Q: Cha— Rcomt (0),d6 y Theorem 4.14, R?(fnt (p)+d6

is Z-free, so
Lemma 5.18. The Z-module C,, 4 is free of finite rank.
Lemma 5.19. We have Z, 4 = Q(C, 4).

Proof. Tt is clear from the definitions that Q(C,, 4) = Q(Cus) € Z,.4. Conversely,

let z € Z,45. We can write v = Z?; a;b; for some aq,...,a,, € Rcom(p) and
bi,..., by € Q(édg) = Q(Cmd), and we may assume that ay,...,an are linearly
independent with a; = 1. By Lemma 5.16, = = by, so x € (C, q). O

In view of Lemma 5.16, we deduce:

Corollary 5.20. We have:
(i) The map Q: Cpq— 2,4 is an algebm isomorphism.
(ii) There is an algebra isomorphism R ) @ Cha = R(/}é)nt(p)w given by

a® b aQ(b).

cont(p

Remark 5.21. By Lemma 5.8, the algebra R o nt(p) is isomorphic to a graded ma-

Ao
Rcont( ),dd*

By Corollary 5.20, we have C, 4 = E; 1Rcont( )d5E171. So by Lemma 5.15, we

trix algebra. Consider the homogeneous matrlx unit Fq 1 in Rcont (0 S

have Cp,d = El,llcont(p),déRa El,llcont(p),ch' Note that e := El,llcont(p),dé is an
idempotent in RA°, so Cha = eRAoe is an idempotent truncation of RA0.

The definition of C, 4, Lemma 5.8 and Corollary 5.20 make sense and can be
proved over an arbitrary unital commutative ring k, so the algebra C, 4 defined
over k is isomorphic to the idempotent truncation

(e® )R (e @ 1) = (eR)’e) @ k = C) g

Corollary 5.22. For any fieldk, the algebra C, 4\ is symmetric. More precisely,
it admits a symmetrizing form of degree —2d.

Proof. By Remark 5.21, C), 4 is an idempotent truncation of R20. By [SY, Theo-
rem IV.4.1], an idempotent truncation of a symmetric algebra is symmetric, with
a symmetrizing form obtained by restriction. So it suffices to prove that RAk is
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symmetric with a symmetrizing form of degree —2d. But this follows from The-
orem 4.15 and an easy Lie-theoretic computation, see [Ki, Lemma 11.1.4]. O

6. DIMENSIONS

Throughout the section we fix d € Z~, a d-Rouquier core p of residue x, and
n € Zso. We also fix an integer N > |p| 4 de such that N +eZ = —x and assume
in this section that all abaci have N beads, cf. §5.1.

The main goal of this section is to compute dimensions of certain idempotent
truncations of the algebras C, 4. The idempotents we use here are the so-called
Gelfand-Graev idempotents first considered in [KM;].

6.1. Gelfand-Graev idempotents. Recall from §4.5 that for all j € J, we have
defined special Rs-modules Ls; with chq Ls; = > .55 4. From now on, for every
j € J, we fix an arbitrary word

V= (lj71, - ,ljﬁ) S Ié’j. (61)
Consider the divided power words

; d d .
V(d) =01, .1\ e1d, (je) (6.2)
Recall the notation (3.7) and let (), ¢) € A% (n,d). We set

I\ €)= 19(\) .. 17 (\,) € T

Now, we define the Gelfand-Graev idempotent v and the integer ay as follows:

YV =1y e) € Ras, (6.3)
ay=—(A(\e) =—e> N(A—1)/2, (6.4)
t=1
cf. §4.4. In the special case n = 1, A = (d), ¢ = (j), we also use the notation
We set
w:=(1,...,1) € A(d,d), (6.6)
7 =Y 4" € Ras. (6.7)
beJd
Lemma 6.8. For any (), c), (N, c') € AY(n,d), we have
dimq(’}/)\’ccmd’}’)\l’d) = g Z qdog(t)—l—dog(t’). (69)
Me'@p,d

£eStd(\p, L(Ae) ")
t/€Std(1\p, (X' ,¢) )

Proof. 1t follows from Lemma 5.4, Theorem 5.6 and Corollary 5.20 that
. A . ’
dlmq(Rcoont(P)) dlmq(fy)\7ccﬁvd’y>\ o ) =
— qu—a)\/ Z qdeg(t)—i-deg(t’). (610)
HED )4, .5 TN P)

t€Std (1, § (L(A\,e) 7))
t/eStd(u, jAN &) HF))
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For each € &, 4 and j € 1°7(0) in view of Lemma 5.4, we have a bijection
Std(u, 3 (L(X, €)™)) = Std(p, 5) x Std(u\ p, LA, €)™%), £+ (to, t1)

where tg = t|f,) and t1(u) = t(u) — |p| for all u € [u] \ [p]. Moreover, by
definition, deg(t) = deg(tp) + deg(t1). Hence, the right-hand side of (6.10) is
equal to the right-hand side of (6.9) multiplied by

Z deg(to)+deg(t6) — dimq(Ré\(fnt( ))

to,t(EStd(p)

and the result follows after dividing both sides of (6.10) by dimq(RCé’]Ht (p)) O

The main aim of the rest of this section is to determine the rank of the free
Z-module Y»¢C, 4% for any (A, ¢) € A (n,d), see Corollaries 6.30 and 6.31.

6.2. Colored tableaux. A horizontal strip is a convex subset U of N such that
whenever (r,s) # (k,l) are in U we have s # [. A vertical strip is a convex subset
U of N such that whenever (r,s) # (k,l) are in U we have r # k.

Recalling the notation of §2.1, for any i € I, we set N/ = ZgxZwox{i} C NI,
Identifying N’ with N, we have a notion of what it means for a subset of N to
be a horizontal or vertical strip. Given j € J, we say that a subset U of N! is a
j-bend if the following conditions are satisfied:

(i) U ¢ NlJ=1 NI,
(i) U NNHI~1 s a horizontal strip in N?/~! and U N N%7 is a vertical strip
in NZJ.

Now let € 21(d). Given (A, ¢) € A (n,d), we denote by CT(; A, ¢) the set
of all weakly increasing maps T: [u] — {1,...,n} such that for all r =1,...,n
the set T~!(r) is a c¢,-bend and |T~'(r)] = A,. We refer to the elements of
CT(u; A, ¢) as the colored tableaux of shape p and type (X, c).

Colored tableaux will play the role of a combinatorial intermediary connecting
the standard tableaux appearing in Lemma 6.8 and the explicit expression for
dim WA’CCp,de appearing on the right hand side of the formula in Corollary 6.30.

6.3. Counting standard tableaux in terms of colored tableaux. Given
0 <i<eand u € Z x Z, we call the image of [(i + 1,1°7"1)] under the
translation of Z x Z sending (1,1) to u the e-hook with vertex u and arm length
i, or simply an e-hook.

Recall the abacus notation from §5.1. For any i € I, let b; = b;i(p), b>; =
ZJ “ip by and be; = Z;_:%] b;. Since p is d-Rouquier, we have bj11 > b; +d — 1

fori=0,...,e—2, and hence, for all ¢ < j in I,
bsi —bs; > (bi +d—1)(j — 1), (6.11)
bej —bei < (bj —d+1)(j —1). (6.12)

Given (r,s,i) € N!, define the integers
x(r,s,i) :=r—(e—i—1)(b; —r + 8) + bsy,
y(rys,i) :=s+i(bi —r+s) — bey.

Define
H(r,s,i) CZ X Z
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be the e-hook with arm length i and vertex (x(r,s,i),y(r,s,i)). The following
lemma is a refinement of [CK, Lemma 4] and [Ev, Lemma 4.3].

Lemma 6.13. Let p € &, 4 and p = quot(p). Then
[l = [lu | ] Hw).

u€[u]

Moreover, every H(u) with u € [u] has vertex of residue k.

Proof. Tt is easy to check that y(r,s,i) — x(r,s,i) = —N (mod e), so the second
statement holds.

For the first statement, there is nothing to prove when |p| = 0, so we assume
that |p| > 1 and choose (r,s,i) € [u] such that [u] \ {(r,s,9)} = [v] for some
v e 21(d—1). Arguing by induction on d, we may assume that the lemma holds
for the partition v € &, 41 determined from quot(r) = v, so it is enough to
show that [u] \ [v] = H(r, s, 7).

Let p = (u©,...,ple=) and v = (v©,..., v D). Then [p@]\ [vV] =
{(r,s)} and [uW] = [vU)] for all j € I\ {i}. We have

A () = (AY () \ {(a — 1,9)}) U{(a,4)} (6.14)
for some a € Z~g. In view of Lemma 5.2, A§;(¢) has b; —r beads and s non-beads
belonging to the runner R; and preceding (a, ), so a = b;—r+s. By [CK, Lemma
4(1)], we have

AN () 2 10,0 —1] x [i +1,e — 1], (6.15)
AN (1) N (Zsq x 0,1 —1]) = @. (6.16)

In particular, each of (a—1,i+1),...,(a—1,e—1) is a bead of A% (1), and each of
(a,0),...,(a,i —1) is a non-bead of A% (p). By (6.14) and Lemma 5.2, it follows
that [u] \ [v] is an e-hook with arm length ¢ and vertex (z,y) where z is the
number of the bead (a,7) and y is the number of the non-bead (a—1,17) of A% (1),
cf. the proof of [CK, Lemma 4(2)]. Using (6.15), (6.16) and the fact that there are
r—1 beads of A% () on R; succeeding (a, ), we obtain z = r+bs;,—a(e—i—1) =
x(r,s,1). Similarly, y = s +ia — b<; = y(r, s,1). O

Corollary 6.17. Let 0 < f < d, and p € P, 4, v € P, ¢ be partitions with the
e-quotients p, v respectively. Then [v] C [u] if and only if [v] C [p].

Proof. The if-part follows from Lemma 6.13. For the only-if-part, we apply in-
duction on d— f, the case d = f being obvious. Let d— f > 0. If [v] € [p], then
there is a node (r,s,4) € [u] \ [v] such that [v]U{(r,s,7)} = [quot(A)] for some
A€ P, pr1. Then [A] = [v] UH(r,s,4) C [p] by Lemma 6.13. By induction,
[quot(A)] C [p], which is a contradiction. O

Lemma 6.18. For any j € J, the set of standard U -tableauz whose shape is a
partition consists of exactly two elements, t and s, where

(a) t has shape (§,1¢77), with t(e —j +1,1) = e, and deg(t) = 0.

(b) s has shape (j +1,1¢7771), with s(1,5 4+ 1) = e, and deg(s) = 1.

Proof. By Lemma 5.4, the shape of any standard tableau in question must be an
element of &5 1, and the rest is easy to see. O
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The graded dimension of C, 4 for d = 1 can be easily computed:

Lemma 6.19. For any k,j € J, we have:

1+q* ifk=j,
dimg (1,xCp11) =< ¢ if k and j are neighbors,
0 otherwise.
Proof. By Lemma 6.8, we have
dimq (1lk0p71 1”) — Z qdeg(t)—l—dcg(t/).
HEPp 1

teStd(u\p,(1¥) ™)

t'eStd(u\p, (1))
Let p € #,1. By Lemma 6.13, the set [u] \ [p] is an e-hook with a vertex
v of residue x. Let i be the arm length of this e-hook and v = (i + 1,1¢7¢71).
Denoting by 7 the translation of Z x Z which maps (1, 1) to v, we have a bijection
Std( \ p, (I¥)T%) =5 Std(v,1¥) given by t — s where s(u) = t(r(u)) for all
u € [v] (and similarly for 7). Moreover, we have deg(s) = deg(t) by [Ev, (4.6)].
Hence,

dimq (1lkcpvlllj) _ Z qdeg(s)-i-deg(s/)’

where the sum is over all u € P51 and all pairs (s,s’) € Std(u, 1) x Std(u, 1),
The result now follows by Lemma 6.18. O

Let H be an e-hook with arm length i and vertex (x,y) € Z x Z, and let

G be another e-hook. We refer to the node (z,y + i) as the hand of H and to
(r+e—i—1,y) as the foot of H. We call G a right extension of H if the foot of
G is the right neighbor of the hand of H. We call G a bottom extension of H if
the hand of G is the bottom neighbor of the foot of H. The following is deduced
from the definition of H(r,s,4) by an easy calculation:
Lemma 6.20. Let (r,s,i) € N.

(i) The hook H(r,s + 1,i) is a right extension of H(r,s,1).

(ii) The hook H(r 4+ 1,s,7) is a bottom extension of H(r,s,1).
Lemma 6.21. Let pu € 21(d). If nodes (r,s,i),(k,l,5) € [u] are independent,
then H(r,s,i) and H(k,l,7) are independent.

Proof. First, suppose that ¢ # j. Without loss of generality, i < j. Since |u| = d,
we have k + s < d. Also, bj —b; > d — 1 as p is d-Rouquier. We have
y(k,1,j) —y(r,s,i) =l —s)+ilbj—k+1—bij+r—35)+(j—19)(b; —k+1)
— (b<j — b<i)

>1—s+ibj—bi+2—k—s)+(G—i)(-k+1+d—1)
>1+i4+d—k—s
>1+1,

where we have used (6.12) for the second step. Hence, the vertex of H(k,l, )

has a greater second coordinate than the hand of H(r,s,7). A similar calculation
using (6.11) shows that x(r,s,i) — z(k,l,j) > e — j, hence the vertex of H(r, s, 1)
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has first coordinate greater than that of the foot of H(k, 1, j). Thus, H(r, s,4) and
H(k,l, j) are independent.
Now let i = j. Without loss of generality, k¥ < r and [ > s. We have

y(k,Li) —y(rys,i) =(l—s)+i(l—k+r—s)>14+2i > 141,
x(r,s,i) —x(k,l,i))=(r—k)+(e—i—1)(r—s+1l—k)>e—1,
and it follows again that H(r, s,i) and H(k,, j) are independent. O

Recall from (6.1) that for every j € J, we have fixed a word I/ = (i, le) €
I%3. Define the map q: J x I — {1,...,e} by the condition that Liq(iy = @ for
alljeJandie€l. Let p€ #,5and 0 < f < d. Suppose that v € &, 4_r is a
partition with [v] C [u]. Note that cont(p \ v) = fd. For any j € J, define the
function

tuwg: I\ V] — {1,... e}, ur q(f res(u) — k).

For the notation I’(f) = (l;fl), . ,l](-f;)) € Igfv in the following lemma see (6.2).

Lemma 6.22. Let j € J and p € &, q with e-quotient pu. Let 0 < f < d and
v e P, 4y with e-quotient v satisfy [v] C [u]. Then

; . %) if [1] \ [v] is not a j-bend;
Std(p \ v, (f)™") = { {tu\vvj} if [[Z]] \ [v] is a j—befzd.

Proof. Since l;1,...,l;. € I are all distinct, any element of Std(u \ v, (f)*")
must assign ¢(j,7 — k) to every node of residue 4, i.e. such an element must be

£\, - S0 it suffices to prove the following:

Claim. We have t,, ; € Std(u \ v, U(f)**) if and only if [u] \ [v] is a j-bend.

For the claim, by Lemma 6.13 and Corollary 6.17, we have v C p and [u] \
[¥] = Uyegup pg H(w)- Suppose that t,,,,; € Std(x\ v, 1(f)**). Then, for every
u € [p] \ [v], the restriction t,\, ;lH(w) is (I)**-standard. By Lemmas 6.18
and 6.13, we deduce that [u] \ [~] € N/9=1UN?J. Suppose for contradiction
that ([u] \ [~]) "N’ is not a vertical strip. Then (, s, ), (1,5 +1,5) € [u] \ [V]
for some r, s. Let u be the hand of H(r, s, j) and v be the foot of H(r, s+ 1, 7). By
Lemma 6.20(i), the node v is the right neighbor of u. By Lemma 6.18(b), we have
tupi(u) = e > t u\w,j(v), which contradicts the standardness of t,, ;. Hence,
([1] \ [¥]) N N% is a vertical strip. A similar argument, using Lemmas 6.20(ii)
and 6.18(a), shows that ([u] \ [v]) " N/~1 is a horizontal strip.

Conversely, suppose that [u] \ [v] is a j-bend. By Lemmas 6.21 and 6.20,
[1]\[v] is a disjoint union of independent sets of two types: (1) consecutive right
extensions of hooks with arm length j — 1; (2) consecutive bottom extensions of
hooks with arm length j. In fact, we may assume that either [u] \ [¢] is of type
(1) or [u] \ [¢] is of type (2). If [u] \ [¢] is of type (1), i.e. [u]\ [¥] is a union
HiU---UH,, of hooks with arm length j—1, then by Lemma 6.18(a), t,\,,;(v) = e
for any v which is a foot of H, for a =1,...,m. So t,, ; is standard if tM\V,j|Ha,
is standard for all a. Hence we may assume that m = 1. But in this case t,,,; is
easily seen to be standard using Lemma 6.18(a) one more time. The case where
[u] \ [v] is of type (2) is similar. O
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Recall the set A®!(n,d) of colored compositions defined by (3.7) and the set
CT(u; A, ¢) of colored tableaux of shape p and type (A, ¢) from §6.2.

Corollary 6.23. Let y € P,q, p = quot(u) and (\,¢) € A®(n,d). Then
Std(p\ p, LA, €)T)| = [CT (13 A, ©)].

Proof. Recall that I(A\,¢) =1 (A1) ... 1 (A1)l (N,). We have
(). 1Y (Nm) = LV, )
for N'=(\1,...,\p—1) and ¢ = (¢1,...,¢4—1). Then
Std(\ p k(N )P = D [Std( \ p, (N, &) T)1Std (v, 1 (An)) -
[PICIVICk]

If |Std(v \ p, L(N,c)™")| # 0, then cont(v) = cont(p) + (d — \,)d, whence by
Lemma 5.4, we have v € &, ;_»,. Arguing by induction on n, for such v we
have [Std(v \ p,L(N, ' ))| = |CT(v; N, c')|, where v = quot(v). Moreover, by
Lemma 6.22, we have

Std(p\ .1 (An))] = {

The result follows. O

1 if [pu] \ [v] is a ¢,-bend,
0 otherwise.

6.4. Counting colored tableaux. In view of Lemma 6.8 and Corollary 6.23,
we can understand the dimensions of 7>\700p7d7A’70’ for (X, ¢), (N, ) € A (n,d)
by counting appropriate colored tableaux. The first main goal of this subsection
is a formula for |CT(p; A, €)|.

Recall that J ={1,...,e — 1} =1\ {0}. For j € J, we define

Inc(j) == {j, s -1} € I.

Remark 6.24. The notation Inc(j) is motivated by the following considera-
tions. The irreducible semicuspidal Rsr-modules are exactly the irreducible R p-
modules which factor through RQ%, see [Kg, Lemma 5.1]. The algebra Ré\’% is a
Brauer tree algebra of type A, with vertices I and edges in natural bijection with
J, so that Inc(j) is just the set of vertices incident to the edge j.

Let Char := P, ZIrr(&;) be the Z-module of all formal Z-linear combina-

tions of irreducible characters of &; for ¢ = 0,1,.... We have the inner product
(,+) on Char such that on each summand it is the standard inner product on
(generalized) characters and ZIrr(&;) is orthogonal to ZIrr(&,,) for t # u. Let

Char! := ® Char,

el
with the induced inner product. For every p = (u(0, ... ple=1) € 2!, we define
= X”(O) R ® X”(eil) € Char!,

where x* denotes the irreducible character of &; corresponding to the partition

we 2(t).
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Let S,T be finite sets and m,l € Z~o. We denote by M(S,T) the set of all
matrices A = (ast)sester With non-negative integer entries. Given A € M(S,T),

we set
=> ay; (s€9),

teT

A)=>ag  (teT).

s€S
We write M(m,T) := M([1,m],T), M(S,m) := M(S,[1,m]), etc. Given p €
A(m) and X € A(l), we define

yM(m,T) :={A e M(m,T) | a,(A) = p, for all r € [1,m]},
M(S,m), = {A € M(S,m) | B-(A) = p, for all r € [1,m]},
AM(m, 1), == aM(m, 1) " M(m,l),.
Let (A, ¢) € A (n,d). We define
oM, I) :=={A = (ar;) € \M(n,I) | ar; = 01if i & Inc(c;)} (6.25)
Let A = (ar;) € (\eyM(n,I). For each i € I, define the parabolic subgroup
Ga, = GQLZ. XX G, , < 66( A)
and the induced character

) . Sga. 5‘: [3 é, i
x4t = mdeii(f) (sgnay; X --- Ksgna'),

where, for a € Z>¢ and j € J, we interpret sgngj’i as the trivial character of &,
when j # ¢ and as the sign character of &, when j = i. Then set

= xM e @bt e Charl,

A= ST A

AE(A,C)M(TL,I)
Lemma 6.26. Let p € 21(d) and (), ¢) € A (n,d). Then
CT (s A e)l = (XM ).

Proof. We apply induction on n = 1,2,..., the induction base being immediate
from the definitions. Let n > 1. Set X = (A1,..., \p—1) € A(n — 1) and ¢ =
(c1,--+,cn—1). We denote () (c,))M(1,I) by (n,.e,)M(1,1). For a matrix A" €

!/
yM(1, 1) we denote by <A> €

,eyM(n—1,1) and a one-row matrix B € () B

n,Cn

(ne)M(n, I) the vertical concatenation of A’ and B. Then

A/
()\’,c’)M(n - 17[) X (An,cn)M(LI) — (A,C)M(nal)a (AlvB) = <B>

is a bijection. Denoting the entries of B € (5, ) M(1,I) by b;, we have by
transitivity of induction

(Ae) — Sp,(4) < AR s nécn,i>
X Z ® Gﬁz(A,) b; g bl N
A€\ ey M(n—1,1) i€l
Be(Anycn)M(LI)
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The proof is concluded by the following computation:

po ey p@® . 16s,a) Al Sen i
<X X > - Z H <X ’lndeﬁi(A’),bi X X S&Mh;
AIEO\/,C/)M(TL—LI) el

B€(xny, ,en)yM(1,1)

(l) A/7’i 6'7 N
= Z H551'(‘4)"“(”'<reSGBi(A’),bi X“ ;X X Sgnb:L 1>
AIEO\/,C/)M(TL—LI) 1€l
BE(An,cn)M(l,I)

(i) /5
=2 > 6
AIE()\lyc/)M(n—l,I) vCpu el

BE(n, emyM(LI) 11D |=[vD|=b;, Viel
p\v is a cn-bend

= > > (x” XNy

Be(n,enyM(LD) - VER
| | =@ |=b;, Viel
p\v is a cn-bend

> S TN, <)

BG(An’cn)M(l,I) ) V_QIL
D= |=b;, Viel
p\v is a cn-bend

= > ICT(v; X, )|

vCp
p\v is a cp-bend

= |CT(; A, ¢)|,

where the second equality holds by Frobenius reciprocity, the third equality comes
from the Littlewood-Richardson rule, the fifth equality holds by the inductive
assumption and the remaining equalities are clear. O

Let b € J% so that (w,b) € A®!(d,d), cf. (6.6). Recalling (6.25), we set
M(Iv d)(w,b) = {B S M(I7 d) | BY ¢ (w,b)M(d7 I)}
Define the set
(A,C)M(nylv d)(w,b) = {(AvB) € ()\,C)M(nvl)xM(Iv d)(w,b) | ﬁZ(A) = aZ(B) Vi e I}

Lemma 6.27. For any (), c) € A (n,d), we have

<X()\7c)’ X(w7b)> - Z H |GBZ-(A) : 6A7i|.
(A,B)e(n,0)M(n,1,d) (w,6) €1
Proof. Denoting by regg, the regular character of &;, we have

(X(A’c),x(“’"’)>=< >ooooxth > XB>

AE()\yc)M(n,I) BE(Wyb)M(d,I)

= Z H<XA’i7reg65i(B)>7

AG(A,C)M(TL,I) iel
Be€(,,pyM(d,I)
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which implies the lemma since
Aji :
X)) = 165,04y : Gagl if Bi(A) = Bi(B),

’regeﬂi(3)> N { 0 otherwise
for any i € I. (]

For (\,¢) € A®(n,d) and (w,b) € A®!(d,d) as above, we define the set
ey M(n,d) ) of tuples (T°,...,T°1) such that (1) T" = (t.,) € M(n,d) for
allie I; (2) TO+-- -+ T € \M(n,d),; (3) tfw = 0 unless i € Inc(c,) NInc(b).

<XA,i

Lemma 6.28. For any (), c) € A (n,d) and (w,b) € A®°(d,d), we have

|0y M (1, d) .0y = > [1185.4) : Sail-
(A,B)G(A’C)M(n,l,d)(wyb) el

Proof. Consider the map 0: (y o)M(n,d)p) — M(n,I) x M(I,d) defined as
follows. Given T = (TY,...,T¢7!) € ( g M(n,d)p), we set 6(T) = (A, B)
where A = (a,;) € M(n,I) and B = (b;5) € M(I,d) are given by a,; := a,.(T")
and b; ¢ == Bs(T?). Clearly, the image of @ is contained in (Avc)./\/l(n, I, d)(w,b)-

Let (A,B) € (reM(n,1,d)p). Then the preimage 6~'(A, B) consists of
all tuples (7°,...,7°7!) of matrices in M(n,d) such that a,.(T%) = a,; and
Bs(T") = b; s for all i € I, r € [1,n] and s € [1,d]. So, denoting

Si={T € M(n,d) | ar(T) = ar;, Bs(T) =b;s for all r € [1,n], s € [1,d]}
for any i € I, we have |07 (A4, B)| = [T;c; |15i-

To compute |S;| for a fixed i € I, let X = {s € [1,d] | bjs = 1}, so that
|X| = a;(B) = Bi(A). Then the set of partitions of X into a disjoint union of
subsets X, r € [1,n], with |X,| = a,; for each r, is in bijection with the set S;:
a bijection is given by assigning to each such partition X = | |'_; X, the matrix
T = (ts) given by

1 ifse X,
" 10 otherwise.
Therefore, |Si| = [©3,(4) : €4, proving the lemma. O

Theorem 6.29. For any (\,c¢) € A®(n,d) and b € J?, we have
dim(vCpar®) = [(neM(n, d) wp)|-
Proof. We have
dim(Cp =) = 37 [Std(u\ p, LN, €7 Std (e \ p, (e, b))

Uef@p,d

= 3 [T\ )l [CT (i, b)
ne2!(d)

= > M) (P xH)
preZ1(d)

— <X(A,c)7 X(w,b)>

= ey M (1, d) 1),
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where the first equality comes from Lemma 6.8, the second equality uses Corol-
lary 6.23 and Lemma 5.3, the third equality uses Lemma 6.26, the fourth equality
holds since the elements x* form an orthonormal basis of Char!, and the final
equality comes from Lemmas 6.27 and 6.28. O

Corollary 6.30. Let (\,c) € A (n,d). For all j € J, set dj = Y 1<r<n Ar
cr=j
Then

) ditde_1 g3 —5dj
it - { 18419 Y e
|6q : 6|27 if e = 2.

Proof. In this paragraph we fix b € J%. Let Y3 be the set of all maps ¢: [1,d] —
[1,n] x I such that (1) [~ *({r} x I)| = A, for all r € [1,n]; (2) for all s € [1,d],
if p(s) = (r,i), then i € Inc(c,) N Inc(bs). Observe that there is a bijection
[ oo M(n,d),p) — Y such that f(T)(s) is the unique (r,4) € [1,n] x I such
that ¢, = 1, if we write T = (T°,...,T° ") with T" = (¢, ,).

Now, let Y := {(¢,b) | b€ J?¢, ¢ € Y3}. By Theorem 6.29 and (6.7), we have
dim(y»¢C, 4v*) = [Y]. Let W be the set of all set partitions [1,d] = Urern S
such that |Q2,.| = A, for all 7. Note that [W| =[G, : &,|.

We define the map £: Y — W by setting £(p, b) to be the partition [1,d] =
Urern o '({r} x I). To complete the proof, we fix a set partition Q: [1,d] =

Urepr,n - in W and compute £~ 1(Q)|. Given j € J, set Inc®(j) := {(4,1) €

IxJ|ié€lInc(j )ﬂlnc( )} Note that
Inc2(') _ {(1, ) ( 2), (0, 1)} ifj=1ande> 2,
J {(e — 1),(e—=2,e—1),(e—2,e—2)} ifj=e—1ande> 2,
{(0, ) (1 1)} ifj=1and e=2.

Note that £€~1(Q) consists of all pairs (p,b) where ¢: [1,d] — [1,n] x I and
b € J? are such that for any r € J x [1,n] and any s € Q, we have ¢(s) = (r,1)
with (4,bs) € Inc?(c,.). So

€ @)= I II Inc®(enl =TT Iinc()

r€[l,n] s€Qr jeJ
) gditdes 4X52d i e > 2,
] 2% ife=2,
and the corollary follows. O

Recall the algebra W, and the right Wg-modules M) . defined in §3.1. Com-
bining Lemma 3.12 and Corollary 6.30, we obtain:

Corollary 6.31. For all (A, ¢) € A (n,d), we have dim(y»¢C,, ;7*) = dim M, ..
Corollary 6.32. We have dim(yC, 47*) = d!(4e — 6)¢ = dim W,,.

Proof. This can be derived from the algebra isomorphism in [Ev, Theorem 3.4].
We give a more direct proof for the reader’s convenience. By (3.3), we have
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dimZ = 4e — 6, and the second equality follows. For any ¢ € J% and j € J, set
dij(c) .= |{r € [1,d] | ¢, = j}|. For e > 2, we compute:
dim(y“C, 4v*) = Z dim(y*°C) a7")
ceJd
=d! Z gd1(e)+de-1(¢) gd2(€)++de—2(c)
ceJd

=d!I(3+44(e — 3) + 3)% = d!(4e — 6)¢,
where the second equality is due to Corollary 6.30. For e = 2, the same compu-
tation yields dim(y2C, 47*) = d!2¢ = d!(4e — 6)<. O

7. THE SEMICUSPIDAL ALGEBRA

As usual, d € Z> is fixed. Recall the semicuspidal algebra Cys from §4.5. In
this section we prove some results on the structure of Cys. These results are used
in Section 8 to study the quotient C, 4 of Cys in the context of a RoCK block,
cf. (5.17).

7.1. Preliminary results on the semicuspidal algebra. We have the para-
bolic subalgebra

Cos =Cs5@---®C5 C Cys
with the identity element 1.5, cf. Lemma 4.33.
Lemma 7.1. We have:

(i) The algebra 1wgéd51w5 18 non-negatively graded.
(i) 1wsC 70 lws = LusCasCoY = 14,5 CuslusCY.

Proof. (i) follows from [Ev, Lemma 6.9(iii)]. The second equality in (ii) is obvious
and the first one follows from [Ev, Lemma 6.9(i)(ii)]. O

For j = (j1,...,J4) € J¢, we define
ej = ].ljlwljd € Rys. (7.2)
In particular, for j € J, we interpret e; as 1;;. In fact, the idempotent e; is also
known as v, cf. (6.6), (6.7). So we have v* =3 . jae; € Rys.
Following [KM3], we consider the Rs-modules As; := C’gej for every j € J.

Note that Rs; and hence C’g is non-negatively graded. Recalling the modules
Lsj with basis {v; | i € I%} from §4.5, the following is immediate from [KMs3,
Proposition 4.13]:

Lemma 7.3. Let j € J. Then As; is non-negatively graded and there is an
isomorphism of Rg-modules

>0 >0 .
Lemma 7.4. For any j € J%, we have an isomorphism of Rgs-modules
Casej — Asjp 00055, €5 los@ej @ @ej,.

Proof. This follows from Lemma 4.32. O
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Let j € J 4. We consider the following submodule of the édg—module éd5ej:
Nj = C'd5(é>50)€j. (75)

W
Lemma 7.6. For any j € J%, we have an isomorphism of Rgs-modules
édgej/Nj AN L57j1 0---0 L5,jd’ ej + Nj = 1y ® Vg @ -+ @ Uy
Proof. By Lemmas 4.25, 7.3 and 7.4, there is a surjective Rgs-module homomor-

phism as in the statement of the lemma. That the homomorphism is injective
follows from Lemmas 4.33 and 7.3 again. O

Lemma 7.7. If j € J¢, then ejégéej = Zej.

Proof. Clearly, it suffices to prove the lemma in the case d = 1. For any word
in 4 € I°, the entries iy,...,i. are distinct. Hence, by Theorem 4.13, we have
ejRse; = Zlyi,. .. ,yelej, and the lemma follows. O

7.2. Some explicit elements of ’ywéd(;’y“’. Let As := P
Lemma 7.4, we have an isomorphism

At = Cysn® (7.8)

of left Cys-modules. More precisely, we can explicitly identity Agd with C’d57“ SO
that the element 1,5®e;, ®- - -®e;, of the natural direct summand As ;, 0---0As ;.

jeJ Asj. In view of

of Agd corresponds to e; = ey € C’dgyw for all j = (ji,...,4q) € J% So
79 Cys7* is naturally identified with End (AOd)Op The algebra End (AOd) is
descrlbed in [KM3] as an affine zigzag algebm of rank d, so we can remterpret this
as a description of 7*Cys7*. We now define some explicit elements of v Cysy®
which correspond (up to an antiautomorphism and signs) to the elements of
Endédé(Agd) with the same names introduced in [KMg, §5.1].
For neighbors k, j € J, we define wy, ; € &, to be the unique permutation such
that wk,jlj =1*. Set ok := Yu, ;€5 € Cs. Further, define
ey = Zej S ég, (7.9)
Jje€J
and set ¢ := (y1—vye)ey € é’g, z: =165 € Cs. Recall that, in view of Lemma 4.33,

we have identified thg parabolic subalgebra Cos C Cys with C5 @ --- @ C5. For
t=1,...,d and x € (s, we define

Ty = e?t ! ®x®e(§)d_t S Cw5 - Cdé'

In particular we have the elements ¢, 2, a{’k € v Aw(;’y“’.
Recall the algebra W, and the signs (1,...,(.—1 defined by (3.5) and (3.9).
Let 1 <t < d. Consider the product of transpositions
te

wy 1= H (a,a+e€) € Gge, (7.10)
a=(t—1)e+1
and let w := w; € 626 We set
Z e®t I 5kng)(ek ® 6]) & €®d =1 e ’ywédg’}/w. (7.11)

j,ked
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Note that the sign here is opposite to the one in [KMj3], which is technically more
convenient for us, but does not affect the result below.

Theorem 7.12. We have:
(i) There is an injective algebra homomorphism ©: Wy — ’y“’éd(g’y“’ with

ej e, sy iy, D] (cey),  at] > +ald

foralljeJé 1<u<d, 1<t<d, and all admissible k,j € J, where
the signs depend on k and j.
(ii) For each a € {0,1}, the map © restricts to a Z-module isomorphism of
graded components W AN ’y“é%’y“.
(iii) The algebra v Cysy” is generated by ©(Wy) together with y1v*.
Proof. Part (i) follows from [KMs, Theorem 5.9] together with the fact that
alkaki = +ce; for all neighbors k,j € J, as observed in the proof of [KMs,
Theorem 4.17]. Parts (ii) and (iii) follow from [KMj3, Theorem 5.9] and the easy
facts that the affine zigzag algebra is non-negatively graded and is generated
by the finite zigzag algebra isomorphic to W,; and a homogeneous element z; of
degree 2, see [KM3, Section 3. O

Considering scalar extensions to a field k, we also have the following result.
Here and in the sequel, we denote 7% := 7 ® 1 € Cys,

Lemma 7.13. Let k be a field with chark = 0 or chark > d. The left CA’d(;,k—
module Cys v s a projective generator for the algebra Cgys .

Proof. By [KMs, Lemma 6.22], the CA'd&k-module Agd Rz k =2 (As @z k)° is a
projective generator. By (7.8), we have Agd ®z k = Cgsiy”, and the lemma
follows. O

7.3. Imaginary tensor spaces. Let j € J. Following [KM, |, we refer to Ty ; :=
Lgflj as the imaginary tensor space of color j. In [KMy, (4.2.9)], an action of the
symmetric group &4 on Ty ; with Rgs-endomorphisms is defined as follows:

(ls @ V5D - 50 = (Gtbw, + 1as)lws @057 (1<t < d).
Comparing with (7.11), we see that
(lws @ Uf?d) st =—(iTt ® Uf?d. (7.14)
As in [KM], §5.2], we define
Zaji={vely;lv-g= (=) 9y for all g € &4}.
Recall the Gelfand-Graev idempotent 7%/ from (6.5).
Lemma 7.15. [KM;, Lemma 6.4.1(ii)] We have Z;; = Rd(;’yd’de,j.

More generally, fix (), ¢) € A®!(n,d) for some n € Z~q. Define the semicuspi-
dal Rgs-module

The: =T\, 0 0Ty

n,Cn*
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By the n = 1 case considered above, we have the right action of Gy, x--- X&), =
S onTy, M- KTy, .. with Rys-endomorphisms. By functoriality of induction,
this induces a right action of & on T) . with Rgjs-endomorphisms. Define

Zye ={veTe|v-g=(~1) 9y for all g € &,}.
Recall the idempotent ¢ from (6.3), and note that M€ = 4M¢1 5.
Lemma 7.16. We have Zy ¢ = Ras(Y"¢ @ (T, 0y X+ KTy, ¢.))-
Proof. By Lemma 7.15, we have

(veTy BB, o |v-g=(—1)"9 for all g € Gy}
= Ry, 07" Dy ey B B Ry 67 T -
Moreover, for each w € 2°*, we have an isomorphism of Z-modules
Tayer B BT, o = by @ Ty oy B BTy e, vy @0,

which is equivariant with respect to the right action of &,. Therefore,

A1, AnsCn
Zye = Z Yy @ Ry, 57 My o B B Ry 57Ty, n
wEPN

- Rd(s’Y)\’c ® (T)\l,cl ‘ZI e g T)\n,cn)7

as required. O

Define the idempotent

Exc =€x A, € édg (7.17)
Cl ...Cn
and the C’dg-module
Tyc = Cysenc- (7.18)
Recalling the notation (7.5), define the left Cys-module
N)\’c = NCA1 C)\n = C'd(;é;(goe)\p g T)\7C. (719)
Moo

By Lemma 7.6, we have an isomorphism of left Rgs-modules
T)\’c = T)\7C/N)\7C, 1,5 ® U;%l)\l R R ’U?éi\" = exe t+ N)\L. (720)

Let ©: Wy — ’ywéd(g’y“ be the algebra homomorphism of Theorem 7.12. Re-
calling the element ey . € W defined by (3.8), note that by Theorem 7.12(i) we
have

O(ere) = exre- (7.21)
Recall the function ey . from (3.10). Define the left Cs-submodule
Zye ={vEThe | vO(9) —ere(g)v € Ny forall g € Gy} CThe  (7.22)
Lemma 7.23. For every g € 6y, we have ey .0(g) = O(g)ex.c.

Proof. Since we have e) g = gey ¢ in Wy, the lemma follows from (7.21). O

Lemma 7.24. We have ZA,c = CA’d(w)‘chA’A(seA,c + Nye-
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Proof. Throughout the proof, we identify T . with TA,C /N ¢ via the isomorphism
(7.20), so

Ixs @Toyo B BTy, o, = (Crsere + Nae)/Nae

and we have a right action of & on T \ec/Nxe. The space Z, . of signed invariants
under this action becomes a Cgs-submodule of Ty /Ny ., and by Lemma 7.16,
we have Z) . = (Cas7VChserc + Nae)/Nac.

Let 1 <t < d satisfy s; € &), and moreover, let g € [1,n] be defined by the
condition that s; lies in the &) -component of &y. By (7.14), we have

(eA,c + N)\,c) © St = _chfte)\,c + N)\,c'
Let v =wvey . € T,\,c. Then

(U + N)\,C) c St = _chvfte)\,c + N)\,c = _chU@(St)e)\,c + N)\,c
= _chve)\,c@(st) + N)\,C = _ch'U@(St) + NA,c:

using Lemma 7.23 for the third equality. So for any g € G, we have
(=)D (v+ Nae) - g = exe(9)vO(9) + Ny

In particular, Ny .0O(g) € Ny, for all ¢ € &,. It follows that Z)\,c is the
preimage of Z) . under the canonical projection T . — T\ c¢/Nye. S0 Zye =
C’dw)‘ch’A(ge)\,c + Ny ¢ by the first paragraph of the proof. O

7.4. The structure of 7»¢Cys7*. In view of (4.23) to i € If  we associate
iel’ Througl&ut this subsection we drop the hats and usually write ¢ for .
For example, I/(d) is written simply as 1/(d).

Let hq € G4 be defined by hy((t —1)e+¢q) = (g—1)d+tforallt =1,...,d
and ¢ = 1,...,e. In other words, hy is the shortest element of &4, such that
ha((17)4) = 17(d) for all j € J. Let wpq € Seq be the longest element of S(ge)s
ie. wyg((¢g—1d+1t)=(¢—1)d+d+1—tforallg=1,...,eand t =1,...,d.
Let j € J and note that eja = 1(lj)d. We set,

Ug j = ¢w0’d¢hd€jd € édg.
More generally, fix n € Zq and (A, ¢) € A (n,d). Recalling (7.17), we define

hy = (hA1="'7h>\n) € Gepy X - X B¢y, = 6 < Gy,
wox i= (Wors -+ WoN,) € Gery X - X Gy, = Gep < Geq,
U),c = ¢w0,k¢h,\€)\,c
= Urje; @ - O Un, e, € éA16 & ® éAné = C\s C Cus,

where we have used the identification from Lemma 4.33.

Example 7.25. If e = 3, then J = {1,2} and the only choice of the words (6.1)
is ' =021 € I° and 1> = 012 € I 1In this case, if d = 4, n = 5, \ =
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(3,0,1,0,0) € A(5,4) and ¢ = (2,1,1,1,2) € J° then in terms of Khovanov-
Lauda diagrams [KL, §2.1] we have

o o o 1 1 1 2 2 2 0 2 1

UN,c =

In view of (4.20) we get:
Lemma 7.26. We have uy . € V‘vcé’d(ge%c.

Recall the integer a) defined by (6.4). The following is easily deduced from
the definitions:

Lemma 7.27. The element uy . € C’dg is homogeneous of degree ay.

Lemma 7.28. Let j € J and i = iV ... i D for some s, ... i@ e 9. If
g€ @) (e is such that gi = 1(d), then g = hyq and i = =D =y,

Proof. If 4 € I°, the letters of 4 are distinct. The result follows from this obser-
vation together with the definition of (@) gle?), O

Given A € A(n,d), define the composition
Aeb = (X, 008) € Ane, de).

Define the block permutation group By = &4 as the subgroup of &4, generated
by the involutions ws, ..., wy_1 defined by (7.10).

Lemma 7.29. Let iV,... i e I and i = iV ...i9. Ifg e AT e g
such that gt = (A, ¢) for some ¢ € J", then g = h)b for some b € By such that
(g) = €(hx) + £(b).

Proof. We apply the induction on n, the case n = 1 being Lemma 7.28. Let
n > 1. By the inductive hypothesis, we may assume that A\, > 0. Note that
I\ e) =1\, (\,), where N = (A\1,...,\p—1) and ¢ = (c1,...,¢p—1). Let
1 = (Iy,...,l) so that I°*(\,) = (I3",...,I>"). We know that [; = 0 and
z'gt) =0fort=1,...,d, see Corollary 4.29. Note that the positions (d — A\, )e + ¢
forg=1,..., A, in I(\, ¢) correspond to the first A, positions in I°*()\,,), and so
they are occupied with 0s. So there exist 1 < ay,...,ay, < dsuch that g sends the
first position of the word 4(%) to the gth position of 1 (\,), i.e. g((ag—1)e+1) =
(d—Ap)e+qforg=1,...,\,. Since g € )‘{e}.@, we have a; < --- < ay,. Since
g € .@(ed), it sends the remaining positions in the words i(‘“), e ,i(“*n) to the
remaining positions of 1“*(\,), i.e. to the last A\,(e — 1) positions of (A, ¢). It
follows that (™) = ... = §(@n) = o

Let b € By be the block permutation which moves the blocks i(‘“), . ,'i(‘”n)
to the end in the same order and preserves the order of the remaining blocks.
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Let ¢ = g(t')~'. We claim that £(g') = £(g) — £(V'). To prove this, it suffices to
show that g(r) > g(s) for all 1 < r < s < ed such that V/(r) > ¥'(s), which is
clear since for any such r, s, the element r is in one of the blocks corresponding
to i(‘“), e 7@'(%”), whereas s is not.

We have ¢’ € A gled), Indeed, it is obvious that ¢ € 2", and ¢ € M g
because g = ¢'t' € M 7 and U(g) = £(g") +£(b"). Moreover, g € &(4_»,)e,Aner SO
the result follows by the inductive assumption.

Lemma 7.30. For anyy € Z[y1, - . ., yae) there exists y' € Zly1, - .., Yae| such that
Line)¥¥ny = Line)¥ny'-
Proof. This follows from the observation that the Khovanov-Lauda diagram [KL,

§2.1] of 1) ¢)%¥n, does not have any crossings of two strings with the same label
and the relations (4.7), (4.8). O

Lemma 7.31. For any (), c) € A (n,d), we have:

(i) VA’CC:'délwé = UA,CC:'délwa = ux 7 Cas s
(i) YMChrsluws = up cCus-

Proof. By Lemma 7.26, uA,c’ywédglwg = u,\,céd(;lw(; - ’y)"céd(;lwg, so for (i) it
only remains to prove the inclusion ’y)"céd(;lw(; - u,\,c’ywéd(;lwg. Moreover, for
(ii) we may assume that n = 1 and prove only that %7 Cuslus C Ud,jém-

The word (), ¢) € I? is the concatenation of ne words of the form (i°) € 1%
for various ¢ € I and s € Z>g. We denote the corresponding integer multiples
sa; € Q4 of simple roots by 01, ..., 0, listed in the order of concatenation, i.e.
Oct—1)+q = Mau,, , forallt =1,... ., nand g=1,... ¢, cf. (6.1). By Lemma 4.18,
we have

11,00 Caslos = ) Roy 0, %9Cls
gek{e}@(ed)

as (Rg,.... 6n.> Cws)-bimodules, so

A7 A — )\7 A
Y ch5 1w5 - Z vy CR€1 seensOne wng(s .
ge)\{e}@(ed)

Consider an element g € M99 such that the summand U := ’VA’CRgh___,gneT[)géwg
on the right hand side is non-zero. Then there exists 4 € I such that gi = I(), ¢)
and 1;1,5 # 0 in éw(;, whence i = iV ... i@ for some i(l), ... ,i(d) € Igc. Hence,
by Lemma 7.29, we have g = h)b for some b € B;. Moreover, in the case when
n = 1, needed for part (ii), we have b = 1 by Lemma 7.28. We may assume that
preferred reduced decompositions for the elemengs of &4, are chosen in such a

way that g = 1n, 1y, s0 U = ¥Ry, 9, n, VsClus-
Let P C Rys be the subalgebra generated by y1,...,y4.. Then

U =7 Ry, 0,00, Cus
= VMY Py sClus
= VMY Uny PUsClus
= upe7 PyCls)
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where we have used Lemma 4.21 for the second equality, Lemma 7.30 for the third
equality, the definition of u) < and Lemma 7.26 for the fourth equality. Part (i)

now follows since )y ¢y P?,Z)bC' 5 C uy <Y C’d(;lw(;, whereas part (ii) follows since
1, = 1 in the case n = 1 and PC’W(; = Cw(; O

Multiplying the equality in Lemma 7.31(i) by 7* on the right, we obtain
MOy = ux, e Casy”. In particular:

Corollary 7.32. As a right ’y“’éd(;’y“’—module, ’y’\’céd(;’y“’ is generated by uy c.

Note that by Lemmas 7.1 and 7.27 and Corollary 7.32, we have ’y)"céd(;’y“ C
C>aA Recall the left Cys-modules Nj defined by (7.5).

Lemma 7.33. For any (\,c¢) € A (n,d) and j € J¢, we have Y»*N; C CA’;;’“.
Proof. Recall that uy . = uy 7. We have
’yA’CNj = ’yA’cCA'dg(éjéo)Ej = uA,cCA'd(;(CAO(;O)Bj = U)\,cek,cédé(é>60)€jy

w w
where the second equality comes from Lemma 7.31(i) since 1,5 is the identity
element of C,s, and the last equality holds by Lemma 7.26. Now ey Cgslys is
non-negatively graded by Lemma 7.1(i), and deg(uy) = a) by Lemma 7.27, so

the lemma follows. O

Recalling (7.18) and the homomorphism O from Theorem 7.12, define the Cs-
submodule

Zye={v € Tre|v0(g) = erclg)v for all g € Gy} C Ty .
Clearly, ZA)\7C C Z}\,C) cf. (7.22).
Lemma 7.34. We have uy . € ZA)HC.

Proof. By Lemma 7.26 and the definition of u) ., we have uy. € WA’CCA’)\(;e,\,C.
Hence, by Lemma 7.24, we get u) . € Z,\,c. So for any g € &), we have u) O(g) —
exe(g)ure € ’y)"CNAﬁ. By Lemma 7.27, uy c©(g) —€x,c(9)un ¢ is homogeneous of
degree ay. But WA’CNgfc = 0 by Lemma 7.33, 50 u) O(g9) — exrc(9)ure =0. O

Lemma 7.35. Let (A ¢),(u,b) € A(n,d). If v € y*PZ) . is a homagenecous
element of degree a, then v = zuy . for some v € ’y“’béd(;’y)"c

Proof. By Lemma 7.24, we have v € ’y“’béd(;’y)"cémeA,c—i—’y“’bN)\,c. By Lemma 7.33,
’y“’bNi“c =0,s00v € ’y“’béd(;’y)‘ céAgeAc Hence, by Lemma 7.31(ii), we have
v E ’y“’béd(;u)\ céw(;e)\c We know that Cw(; is non-negatively graded SO we
have v = vy 4+ v9 for some homogeneous elements vy € ’y“’de5u,\ chéeAc and
vy € ’YM’de(SUA,ch(; exe, With deg(vi) = deg(ve) = deg(v) = a,. By defini-
tion (7.19) of N) ., we have vy € y“l’NA,c, whence vy = 0 by Lemma 7.33. On the
other hand, by Lemma 7.7, we have uA,cé&;eA,c = L) e, SOV =V € ’y“’béd(;u,\,c,
and the result follows by Lemma 7.26. l

8. ROCK BLOCKS AND GENERALIZED SCHUR ALGEBRAS

As in §5.4, we fix d € Z~¢ and a d-Rouquier core p of residue .
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8.1. Identifying W, with 1“C, ;v“. Recall from (5.17) that we have the nat-
ural surjection

II: ép,d — éd(;/kerQ = Cp,d'
This yields the surjections

IL,: Y Cas7* — 1C,av”, Iye: AeCusy” — V"CC’p,dv“ (8.1)
for (A, ¢) € A®(n,d). For any z € Cy;, we often denote by z its image II(z) in
Ch.a-

We define the algebra homomorphism

E=10,00: Wg—=“C,av” (8.2)

where ©: W5 — ’y“ép,d’y“ is as in Theorem 7.12. Our aim is to prove that Z is
an isomorphism by generalizing the arguments of [Ev, Section 7], where a similar
statement is proved over a field containing an element of quantum characteristic
e. We begin with the case where d = 1, when Wy = Z.

Lemma 8.3. For d =1 and each a € {0,1}, the map Z restricts to a Z-module
isomorphism of graded components Z% — 7“0}‘,}7179

Proof. By Theorem 7.12(ii), © restricts to an isomorphism Z% ’y“’é;l’y“,
whence = restricts to a surjection Z* — ’y“’CZl’y“’. Moreover, by (3.3) and
Lemmas 5.18 and 6.19, we have that Z* and v*C7 7* are free Z-modules of the
same rank, which completes the proof. O

Lemma 8.4. Letd=1 and j € J. Then Cg’lej =7Z(y1 — Ye)ej-

Proof. By Lemmas 5.18 and 6.19, the Z-module C’g’lej = ejC’ilej is free of rank
1. It suffices to prove that y := (y1 — y.)e; ® 1 generates Cil’kej over any field k,
i.e. that y # 0 for any field k, c¢f. Remark 5.21. This is proved in [Ev, Proposition
7.2] for any field k containing an element of quantum characteristic e, in particular
for e = 2. So we may assume that e > 2. By Corollary 5.22, the algebra C), 1 x
has a symmetrizing form F of degree —2. Since e > 2, the element j has a
neighbor k € J. In the rest of the proof, we write x := x®1 € C, 1k for x € C) 1.

Recalling the elements of Cy introduced in §7.2, note that a7 # 0 in C; Lk by
Lemma 8.3. So there must exist an element = € Cpl,l,]k such that F(za®7) # 0.

Using Theorem 7.12 and Lemma 8.3 again, we may assume that z = Z(al*), and
hence (y1 — ye)e; = £=(cej) = £E(al*akd) = £al*akI #£ 0. O

Now we return to the case when d € Z-q is arbitrary. By Lemma 4.33, we
have an embedding

11 Cs = Casy 2 2@ 1(g_135 € Cs @ Cla_1ys = Cs.a—115 < Cas- (8.5)
In view of Theorem 7.12(i), for any j € J, we have
O(e;[1]) = t(e;)- (8.6)
Corollary 8.7. The element y17* € C, 4 belongs to the image of =.
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Proof. We have the (non-unital) algebra homomorphisms Q;: C5 — Ré\oont(p) 45
and Qg: C'dg — Rf}oont (p)-+do defined as in (5.12). Recall the algebra homomorphism

A A A
¢ = Ccont(p)-i—é, (d-1)6 " Rcoont(p)—l—5 - Rcoont(p)+5, (d—1)é < Rcoont(p)—l—dé

defined by (4.19). It follows easily from the definitions that (o Q; = Qgor: C5 —

R(It\oont(p)—i-d(s’ whence ¢(ker Q) C ker Q.

Let j € J. Identifying Cs ® C’(d_l)5 with CA’(;,(d_l)(; C Cys as usual, we have in
Cs:

y1€; @ Lig_1)s = t(yie;) € U(Z(y1 — ye)ej + ker )
= Z(y1 — Ye)ej @ L(g_1ys + t(ker 1)
C Z(yr — ye)ej & 1(d_1)5 + ker Qy,

where we have used Lemma 8.4 for the first inclusion. Multiplying by +*, we get

y17 =Y (15 @ La1)s)r” € D _(Z(y1 — ge)ej @ La1)s)7™ + ker Qg
JjEJ JjEJ
= +0(c[1]e[1]) + ker Qg (8.8)
JjeJ
where the last equality holds by Theorem 7.12(i) and (8.6). Now the lemma
follows on applying II. O

Theorem 8.9. The map Z: Wy — v“C, 47 is an isomorphism of graded alge-
bras.

Proof. By Theorem 7.12(iii), the algebra +~C, 4y is generated by Z(W,) to-
gether with the element y17*. But y17* € Z(Wy) by Corollary 8.7, so = is
surjective. By Corollary 6.32, the algebras Wy and y“C, 47 are Z-free of the
same rank, and the result follows. O

Lemma 8.10. Let k be a field with chark = 0 or chark > d. The left module
Crax” is a projective generator for the algebra C, 4.

Proof. As C,qx7* is projective, it is enough to show that for every simple
Cpdx-module L we have L = Homc, ,,(Cpaxy”, L) # 0. But L may also
be viewed as a simple CA’d57k—m0dule via the natural surjection CA’d(;,k - Cp dk-
By Lemma 7.13, the module C’dg,kyw is a projective generator for CA’d(;,k, whence
YL = Hom@d&k(édé,kW‘U’ L) #0. O

Corollary 8.11. The C,, g-module C, 4 is faithful.

Proof. By Lemma 5.18, the algebra C,, 4 is Z-free, so it is enough to show that the
C)a,0-module C) g 0v* is faithful. By Lemma 8.10, this module is a projective
generator for C), 4@, and the result follows. O
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8.2. Identifying 7M¢Cy57* with M) c. Let n € Zsg and (A, c) € Al(n,d). By
Theorem 7.12, the right vwé’dw“-module V‘vcé’dmw becomes a right W;-module
via the map ©. Moreover, by Theorem 8.9, the right v“C, 4v*-module 7’\’CC’p7d7w
becomes a right Ws-module via the map =. In other words:

vz = v0(2) (v e YMCusy™, 2z € Wy), (8.12)
vz = vE(2) (ve VA’CCP,CW“’, z € Wy). (8.13)

It is clear from the definitions that II, .: AMECysye — ’y)"CCp,d’y“ is a surjective
homomorphism of Wy-modules.

Recall the colored permutation Wy-module M) . with generator my . = 1) ®
e)c defined by (3.11) and the element uy . € AMeCysv* introduced in §7.4.

Lemma 8.14. There is a degree-preserving Wy-module homomorphism
Ore: Mre — ¢y CasV™, mae > Upe

Proof. By (7.21) and Lemma 7.26, we have uy (O(exc) = urc€re = Ure By
Lemma 7.34, for any g € 6 we have uy (O(g) =€) c(g)ux . Using Lemma 7.27,
we deduce that there is a degree-preserving W) .-module homomorphism alty . —

q_“A’y)"Céd(g’y“, 1) = uy. This map induces a Wy-module homomorphism 6 .
as in the statement of the lemma. O

From now on, we write 1y ¢ := I} c(uxrc) € Cpq.

Theorem 8.15. For any (A, ¢) € A (n,d), there is an isomorphism of graded
Wa-modules:
e M)\,c — q_aA’YA’cCp,d’wa My,e = U)c-

Proof. Let 8, . be as in Lemma 8.14. We have a homomorphism of Wg-modules
e ‘= H)\,c © 0)\703 M)\,c — q—a)\,y)\,ccmd,yw’ Myc > Unc

By Corollary 7.32, the right v*C), ;7*“-module q_“A’yA’chd’y“ is generated by
Uy,c. Using Theorem 8.9, we conclude that ) . is surjective. By Corollary 6.31,
the Z-modules M) . and q““v)"cC’p,dyw are free of the same (ungraded) rank,
and the theorem follows. O

8.3. The algebra E(n,d) and the double Dg(n,d). Fix n € Z. Recall the
tuple ¢® € J*¢=1 | the modules M* = M), o and the algebra S%(n,d) from §3.2.
Let A € A(n(e —1),d). Define the idempotent

f)\ — ,7)\,00‘
Recall the integer

n(e—1)
= —e 3 Ml —1)/2 = deg(uy o),

t=1
see (6.4) and Lemma 7.27. In the sequel, we abbreviate
U) 7= Uy e0, U = Uy 0, € I=€) 0, ©€)I=E€)s0, E)I=E)D,
A —ay AL A ™ —ay £A
Or =0y c0: M* = q [ Cas7, M=ot M™ — g~ fCp a7,
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where 0y oo is the homomorphism of Lemma 8.14 and 7, o is the isomorphism of
Theorem 8.15.
Define the left C), -module

Tnd)= P  ¢>Cpaf
AeA(n(e—1),d)
and the algebra
E(n,d) := Endg, ,(T'(n,d)). (8.16)
Let A\, u € A(n(e —1),d). We identify the (graded) Z-module ¢ =% f1C, ;f*
with the Z-submodule of E(n,d) consisting of the endomorphisms that send the
summand ¢ C, g f* to ¢**C, 4 f* and send the other summands to zero. Specif-
ically, an element x € ¢®>~% frC), 4 f* corresponds to the homomorphism given
by the right multiplication:
qCpaft — q‘”Cp,df’\, VUL,
Thus,
E(n,d)= @ ¢ " Cpaf. (8.17)
AueA(n(e—1))
Let z € q“k_““f”Cmdf)‘. Recalling the right Wy-module structure (8.13), we
have a Wi-module homomorphism
g fAC, 7 = ¢ fPCay”, v T
Identifying q_“*f)‘C'p,de with M* and q M frC, gy® with M* via the isomor-
phisms of Theorem 8.15, we obtain an element ®(x) € Homy,(M*, M#). In
other words,
®(z): M — M*, anljl(mnA(v)) (ve M?).

Recall from §3.2 that Homyy,(M*, M*) is identified with &,5%(n,d)¢. The as-
signments x — ®(z) for all A\, € A(n(e—1)) and all x € ¢ =% frC, ;f* extend
uniquely to a Z-linear map

®: E(n,d) — S%(n,d).

Lemma 8.18. The map ®: E(n,d) — S*(n,d) is a homomorphism of graded
algebras.

Proof. That ® is a homomorphism of ungraded algebras follows easily from the
definitions. Let x € ¢~ frC), 4 f* be a homogeneous element for some \, 1 €
A(n(e — 1),d). Then, by definitions, ®(x): m* — m*z for some homogeneous
z € Wy such that xty = 4,2(z) in ¢~ f*C), 4v*. Hence, ®(x) is homogeneous
of degree
deg(z) = deg(E(z2)) = deg(x) — (ax — a,,) + deg(tir) — deg(t,) = deg(),

where the last equality is due to Lemma 7.27. O
Corollary 8.19. The algebra homomorphism ®: E(n,d) — S%(n,d) is injective.

Proof. If not, then there exist A\, u € A(n(e —1),d) and 0 # z € f”Cmde such
that x f)‘C’pdyw = 0, whence zC), 4v* = 0. But this is impossible by Corol-
lary 8.11. O
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Lemma 8.20. We have ®(E(n,d)) 2 S%(n,d)°.

Proof. Suppose that \,u € A(n(e — 1),d) and h € Homy,(M*, M*)?. Then
there exists z € W9 such that h(m?*) = mtz. Hence, m#zey = mtz and mtzg =
ex(g)mtz for all g € &5. By Lemma 8.14, (8.12) and (7.21), it follows that the
element
v = 0x(mhz) = u,0(z) € ¢~ fFCysy*
has degree zero and satisfies v = vey and vO(g) = ex(g)v for all ¢ € &,. By
Lemma 7.35, there exists z € f“CA’d(;fA such that v = zu). Applying the sur-
jection II to this equality and writing z := II(x) € q‘“_““f”C’p,de, we have
U,=(z) = Ty, cf. (8.2). But @y = ny(m?) and @,Z(z) = n,(m*z), so the map
®(z) sends m* to m#z. Thus, ®(Z) = h, so h € ®(E(n,d)). The lemma fol-
lows. O
Recall the algebra homomorphisms i*: Z — S%(n,d) from (3.15).

Lemma 8.21. For any A € A((n—1)(e—1),d—1), we have i’ (Z) C ®(E(n,d)).

Proof. Let z € ejZey, for some k,j € J. Recall the embedding ¢: ég — éd(;
from (8.5). It follows from Theorem 7.12(i) and (8.6) that there exists = € ejégek
such that ©(z[1]) = ¢(x). Note that

Usk = €k QU) € Cs® é(d—l)é = é&,(d—l)é C Cus,
and us; is described similarly. Hence, t(z)us, = us;t(z) = us,;©(2[1]). Writing
T = H(L(a:))f)‘k = fN1(u(x)) € f)‘ij,dek, we have

Tuse = ug, T = ugE(2(1]),

whence
(z) (") = i (@5, (M) = 5 (@ag,) = ) (@5, 2((1]) = m 2[1]
= i*(2)(m"").
So ®(7) = i*(2), and the lemma follows. O

Lemma 8.22. For every field k, the k-algebra E(n,d)y is symmetric.

Proof. By Corollary 5.22, the algebra C), 4 is symmetric. It follows from (8.16)
that E(n,d)x = Endc, ,, (I'(n, d)x)°P. Since I'(n, d)x is a projective C,, 4 x--module,
the lemma follows by [SY, Proposition IV.4.4]. O

Recall the subalgebra T4(n,d) C S%(n,d) from §3.2.
Theorem 8.23. Suppose that n > d. Then we have an isomorphism of graded
algebras ®: E(n,d) — T%(n,d).

Proof. By Lemma 8.18 and Corollary 8.19, the map ®: E(n,d) — S%(n,d) is
an injective homomorphism of graded algebras, so E(n,d) = ®(FE(n,d)). By
Lemmas 8.20 and 8.21, we have T%(n,d) C ®(FE(n,d)). By Lemma 8.22, for
every prime p, the algebra ®(E(n,d)) ®z F, is symmetric. An application of
Theorem 3.17 completes the proof. O

Corollary 8.24. Letn > d. Then E(n,d) = Dg(n,d).
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Proof. This follows from Theorems 3.16 and 8.23. O

Example 8.25. Recall the idempotents &, € S%(n,d) defined in §3.2 for any
A€ A(n(e—1),d). It follows from the definitions that for all A\, u € A(n(e—1),d),
the homomorphism ® maps the component ¢*~% frC, 4 f* of the decomposi-
tion (8.17) of E(n,d) into the component £,5%(n(e—1),d)é\ = Homyy, (M, MH)
of Sz(n, d). In this example, we consider the case when e = 2, d = 2, n = 2 and
A = (2,0), and we identify ®(fC, 4f?) as an explicit subalgebra of Endy, (M?).

Let z1,x2 € Endy, (M A) be the endomorphisms defined by the properties that
r1(m*) = m*(c[1] + c[2]) and xa(m?) = m*c[1]c[2]. Then {1 := &, z1, 72} is
a Z-basis of the commutative algebra Endy,(M?), and 23 = 21y, 2179 = 0.
Moreover, it is easy to see as in [EK, Example 4.27] that £,7%(n,d)¢y is the
Z-span of {1, 1,215}, so £xT%(n, d)€y is isomorphic to the truncated polynomial
algebra Z[z]/(2®), with z; corresponding to z. Thus, Theorem 8.23 asserts, in
particular, that @(f’\Cmdf)‘) = 71 ® Zx1 ® 2Zxo. This assertion can also be
verified by direct calculations using (1) the defining relations of the affine zigzag
algebra 19101 Cas1o101, see [KM3, Definition 3.3]; and (2) the fact that y17¥ =
y11lo101 = a(y1 — y2)10101 in C 2 for some a € 7, see (88)

8.4. Morita equivalences. Let A and B be graded Z-algebras. A graded functor
A-mod — B-mod is a functor F equipped with an equivalence between g o F and
Foq. A graded functor F is a graded equivalence if it is an equivalence of categories
(in the usual sense). The graded algebras A and B are graded Morita equivalent if
there is a graded equivalence between A-mod and B-mod. As noted for example
in [LVV, §11.5.3] the graded analogue of Morita theory holds. In particular, A is
graded Morita equivalent to B if and only if there exists a graded projective left
A-module P which is a projective generator and such that B = End4(P)°P.
For a graded algebra A, recall the notation ¢(A) from §2.3.

Lemma 8.26. Let A be a graded Z-algebra which is finitely generated as a Z-
module, and let ¢ € A be a homogeneous idempotent. Suppose that for every
prime p we have ((Ag ) = (((e®1)Af (e®1)). Then the algebras A and eAe are
graded Morita equivalent.

Proof. We write e :=e® 1 € AIFp for each prime p. It suffices to show that the
left A-module Ae is a projective generator for A or, equivalently, that AcA = A.
Assume that AeA # A. Then there exists a prime p such that Az eAgp # Ag, .
If L is a composition factor of Ag /Ag €Af , then eL = 0, which contradicts the
assumption that £(Ag ) = {(cAg ¢), for example by [G, Theorem 6.2(g)]. O

Let A € A(n(e — 1),d). It follows from the definitions in §6.1 that I(),c°)
is obtained from I(\, %) by replacing each subword of the form i that is not
preceded by or followed by i with i(™). Therefore, for any X\, u € A(n(e — 1),d),
we either have f» = f# or fAf* = f#f* = 0. We have an equivalence relation
on A(n(e — 1),d), with A being equivalent to p if and only if f» = f*. Let
X C A(n(e — 1),d) be a set of representatives of equivalence classes. Define
f =2 ex e C).a- Then f? = f is a homogeneous idempotent.

Lemma 8.27. The algebra E(n,d) is graded Morita equivalent to fC, qf .
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Proof. Consider the left fC, 4f-module
A
fTn,d)y= @ ¢ fCpaf™
AeA(n(e—1),d)

There is a surjective fC), 4f-module homomorphism fI'(n,d) — fC, q4f which is
the identity on the summands fC), 4 fA for A € X and zero on the other sum-

mands. Hence, fI'(n,d) is a projective generator for fC,4f. It is easy to see
that E(n,d) = Endyc, ,7(fT'(n,d))°P, since for all A\, u € A(n(e —1),d) we have

Homyce, ,1(a™ fCpaf*,q™ fCpaf*) = q™ "% f1fCpaf* = ¢~ f1Cpaf.
The lemma follows by graded Morita theory. O

Write a = cont(p) + d6, so that RA0 is the RoCK block of §5.4. For any
m, h € Z>q, we denote by S(m,h) the usual Schur algebra over Z, as in [G].

Theorem 8.28. Suppose that n > d. Then the Z-algebras RA° and Dg(n,d) are
graded Morita equivalent.

Proof. By Remark 5.21, there is a homogeneous idempotent e € R0 such that
Cha & eRMe. Hence, by Lemma 8.27, there exists a homogeneous idempotent
e € R2 such that E(n,d) is graded Morita equivalent to eR20s. By Corol-
lary 8.24, we have E(n,d) = Dg(n,d), so eR20¢ is graded Morita equivalent to
Dg(n,d). So it suffices to show that eRM0¢ is graded Morita equivalent to RA0.
Let p be a prime, and write ¢ := e ® 1 € Rg% . By the first paragraph,
»wp
the algebras ER;\OF € and DQ(n,d)Fp are graded Morita equivalent. In particu-
»wp
lar, f(ER;X%, g) = {(Dg(n,d)g,). By Lemma 8.26, it remains to show only that
=P
A
(R, ) = {(Dg(n.d)s,).
Since the algebra Dg(n, d)g, is non-negatively graded, we have ((Dg(n,d)z ) =
{(Dg(n,d)} ). By [EK, (7.2) and Lemma 7.3] together with Theorem 3.16,
P

Do(n,d)° = 4 S(n,dy) @+ @ S(n,de_r).
(d1,....de_1)EA(e—1,d)
By [G, Theorem 3.5(a)], for all h < n we have £(S(n, h)z,) = [#(h)|. 1t follows
that ((Dg(n,d)F,) = |227(d)|. On the other hand, by Theorem 5.7, we have
K(Rg%p) = |27(d)|, and the proof is complete. O

Thus, we have proved Theorem A. In conclusion, we consider the case where we
work over a field of sufficiently large characteristic, cf. the discussion in Section 1.

Proposition 8.29. Suppose that n > d and k is a field with chark = 0 or
chark > d. Then the RoCK block RQ’(’k, the Turner double Dg(n,d)x and the

wreath products Wy and (Rgxi)@d X k&S, are all graded Morita equivalent to each
other.

Proof. We write z := x®1 € Ay for any algebra A and any = € A. By (the proof
of) Theorem 8.28, the algebras Ré\?ﬂ(, C,qx and Dg(n,d)x are graded Morita
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equivalent. By Lemma 8.10, the module C, 47 is a projective generator for
Cha ks 80 Cp g is graded Morita equivalent to

w

Endc, ;. (Cpaxy”) = 1Cax7" = Wik

where the second isomorphism comes from Theorem 8.9. Recall the idempotent
ey from (7.9). By the d = 1 case of Lemma 8.10, the module Ré\’ﬂ‘ieJ is a projective
generator for Rf;ﬂo(. Hence, setting £ := e?d, we have that ((Rgﬁ)@’d x kGy)E is
a projective generator for (Rgﬁ)@d X kG4, So (Rgﬁ)@d X k&, is graded Morita
equivalent to

E(RID)®! X kGy)E =2 (esRjpes)® 1 kGy = (Z)®! % kSy =2 Wy,

where for the second isomorphism we use the fact that e JR?HO(G J = Zg, see [KMs3,
Theorem 4.17]. O

REFERENCES

[A]] J.L. Alperin, Weights for finite groups. Proc. Symp. Pure Math., 47, Part 1,
Amer. Math. Soc. (1987), 369-379.

[A4] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m,1,n), J. Math.
Kyoto Univ. 36 (1996), 789-808.

[Ag] S. Ariki, Representations of Quantum Algebras and Combinatorics of Young Tableaux,
University Lecture Series 26, American Mathematical Society, 2002.
[Br] M. Broué, Isométries parfaites, types des blocs, catégories dérivées. Astérisque 181-182

(1990), 61-92.

[BK;] J.Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda
algebras. Invent. Math. 178 (2009), 451-484.

[BK2] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke
algebras. Adv. Math. 222 (2009), 1883-1942.

[BKW] J. Brundan, A. Kleshchev and W. Wang, Graded Specht modules, J. reine angew. Math.,
655 (2011), 61-87.

[CK] J. Chuang and R. Kessar, Symmetric groups, wreath products, Morita equivalences, and
Broué’s abelian defect group conjecture. Bull. London Math. Soc. 34 (2002), 174-184.
[CR] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and sla-

categorification, Ann. Math. 167 (2008), 245-298.

[Ev] A. Evseev, Rock blocks, wreath products and KLR algebras, arXiv:1511.08004.

[EK] A. Evseev and A. Kleshchev, Turner doubles and generalized Schur algebras, preprint,
2016.

[G] J.A. Green, Polynomial representations of GLy, 2nd edition, Springer-Verlag, Berlin,
2007.

[Gro] 1. Grojnowski, Affine sl, controls the representation theory of the symmetric group and
related Hecke algebras, arXiv:math.RT/9907129.

[HK] R.S. Huerfano and M. Khovanov, A category for the adjoint representation, J. Algebra
246 (2001), 514-542.

[Hu] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press,
1990.

[JK] G.D. James and A. Kerber, The Representation Theory of the Symmetric Groups,
Addison-Wesley, 1981.

[Ka] V.G. Kagc, Infinite Dimensional Lie Algebras, Cambridge University Press, 1990.

[KK] S.-J. Kang and M. Kashiwara, Categorification of highest weight modules via Khovanov-
Lauda-Rouquier algebras, Invent. Math. 190 (2012), 699-742.

[KL] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum
groups I, Represent. Theory 13 (2009), 309-347.



[K4]
[Ko]
[KM]

[KM2]
[KMs5]

[KR]
[LLT]
[LV]
[LVV]
[McN]
[Ri]

[Re]
[SVV]

[SY]

[Tui)
[Tus]

[Tus)
[We]

BLOCKS OF SYMMETRIC GROUPS AND SEMICUSPIDAL KLR ALGEBRAS 49

A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge
University Press, 2005.

A. Kleshchev, Cuspidal systems for affine Khovanov-Lauda-Rouquier algebras, Math. Z.
276 (2014), 691-726.

A. Kleshchev and R. Muth, Imaginary Schur-Weyl duality, Mem. Amer. Math. Soc., to
appear; arXiv:1312.6104.

A. Kleshchev and R. Muth, Stratifying KLR algebras of affine type, arXiv:1511.05511.
A. Kleshchev and R. Muth, Affine zigzag algebras and imaginary strata for KLR alge-
bras, arXiv:1511.05905.

A. Kleshchev and A. Ram, Homogeneous representations of Khovanov-Lauda algebras,
J. Eur. Math. Soc. 12 (2010), 1293-1306.

A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal
bases of quantum affine algebras, Commun. Math. Phys. 181 (1996), 205-263.

A. Lauda and M. Vazirani, Crystals from categorified quantum groups, Adv. Math. 228
(2011), 803-861.

F. le Bruyn, M. Van den Bergh and F. Van Oystaeyen, Graded Orders, Birkhauser,
1988.

P. McNamara, Representations of Khovanov-Lauda-Rouquier algebras III: symmetric
affine type, arXiv:1407.7304v2.

R. Rouquier, Represéntations et catégories dérivées, Rapport d’habilitation, Université
de Paris VII, 1998.

R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023.

P. Shan, M. Varagnolo and E. Vasserot, On the center of quiver-Hecke algebras,
arXiv:1411.4392.

A. Skowroniski and K. Yamagata, Frobenius Algebras I: Basic Representation Theory,
European Mathematical Society, Ziirich, 2011.

W. Turner, Rock blocks, Mem. Amer. Math. Soc. 202 (2009), no. 947.

W. Turner, Tilting equivalences: from hereditary algebras to symmetric groups, J.
Algebra 319 (2008), 3975-4007.

W. Turner, Bialgebras and caterpillars, Q. J. Math. 59 (2008), 379-388.

B. Webster, Knot invariants and higher representation theory, arXiv:1309.3796.

SCHOOL OF MATHEMATICS, UNIVERSITY OF BIRMINGHAM, EDGBASTON, BIRMINGHAM B15
2TT, UK
E-mail address: a.evseev@bham.ac.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403, USA
E-mail address: klesh@uoregon.edu



	1. Introduction
	2. Preliminaries
	2.1. Partitions and compositions
	2.2. Symmetric groups and parabolic subgroups
	2.3. Algebras and modules

	3. Zigzag algebras, wreath products and Turner doubles
	3.1. Zigzag algebras and wreath products
	3.2. Turner doubles and generalized Schur algebras

	4. KLR algebras
	4.1. Lie-theoretic notation
	4.2. Basics on KLR algebras
	4.3. Parabolic subalgebras
	4.4. Divided power idempotents
	4.5. Semicuspidal modules
	4.6. Induction and restriction of semicuspidal modules

	5. Abaci, tableaux and RoCK blocks
	5.1. Abaci
	5.2. Tableaux
	5.3. Dimensions and core algebras
	5.4. RoCK blocks

	6. Dimensions
	6.1. Gelfand-Graev idempotents
	6.2. Colored tableaux
	6.3. Counting standard tableaux in terms of colored tableaux
	6.4. Counting colored tableaux

	7. The semicuspidal algebra
	7.1. Preliminary results on the semicuspidal algebra
	7.2. Some explicit elements of d
	7.3. Imaginary tensor spaces
	7.4. The structure of ,c d 

	8. RoCK blocks and generalized Schur algebras
	8.1. Identifying Wd with  C,d 
	8.2. Identifying ,c Cd  with M,c
	8.3. The algebra E(n,d) and the double DQ (n,d)
	8.4. Morita equivalences

	References

