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AFFINE ZIGZAG ALGEBRAS AND IMAGINARY STRATA FOR KLR
ALGEBRAS

ALEXANDER KLESHCHEV AND ROBERT MUTH

ABSTRACT. KLR algebras of affine ADE types are known to be properly stratified if the characteristic
of the ground field is greater than some explicit bound. Understanding the strata of this stratification
reduces to semicuspidal cases, which split into real and imaginary subcases. Real semicuspidal strata
are well-understood. We show that the smallest imaginary stratum is Morita equivalent to Huerfano-
Khovanov’s zigzag algebra tensored with a polynomial algebra in one variable. We introduce affine
zigzag algebras and prove that these are Morita equivalent to arbitrary imaginary strata if the
characteristic of the ground field is greater than the bound mentioned above.

1. INTRODUCTION

In this paper we work with the KLR algebras Ry of Lie type I', which is assumed to be of untwisted
affine ADE type, over an arbitrary field k of characteristic p > 0. Here § =}, _; n;c; is an arbitrary
element of the positive part Q4 of the root lattice. McNamara [22] shows that these algebras are
explicitly properly stratified if p = 0. McNamara’s result is generalized in [20] to the case where
p>min{n; | i € I}.

Informally, a proper stratification of Ry yields a stratification of the category Rg-mod of finitely
generated graded Rp-modules by the categories Be-mod for much simpler algebras Bg, see [17] for
details. Description of the algebras B is easily reduced to the semicuspidal cases, which split into real
and imaginary subcases. In the real case we have B, = k[z1,...,2,]%", the algebra of symmetric
polynomials in n variables, but the imaginary case B,s is not so easy to understand.

The algebras Ry actually have many proper stratifications. These are determined by a choice of a
convex preorder on the set & of the positive roots of the corresponding affine root system. In this
paper we always work with a balanced convex preorder as in [19]. We first prove that Bs = k[z] ® Z,
where Z is the zigzag algebra of [12] corresponding to the underlying finite Dynkin diagram I" obtained
by deleting the affine node from I', and k[z] is the polynomial algebra. McNamara and Tingley [23]
show that this description of Bs can be obtained for all convex preorders as an application of their
technique of face functors.

In order to describe the higher imaginary strata, we introduce the main object of study of this
paper—the rank n affine zigzag algebra Zf”ff, which is defined for any connected graph without loops.
We show that B, is (graded) Morita equivalent to the affine zigzag algebra Z?ff corresponding to I"
if p> min{n; |i € I} (or p=0).

To state the results more explicitly, we fix some notation. The simple roots of our affine root
system of untwisted ADE type are denoted «; for i € I = {0,1,...,1}. We assume that 0 is the affine
vertex, so that ai,...,q; are the simple roots of the underlying finite root system. Let § be the
null-root. Let n € Z~o. The semicuspidal algebra Cs is a quotient of R, s defined in such a way that
the category of finitely generated semicuspidal R,s-modules is equivalent to the category C),s-mod of
finitely generated graded C,s-modules.

We denote by &, the set of I-multipartitions of n. To every A € &2, one associates an irreducible
R,s-module L()) and a standard R,s-module A()), see [20]. While L()) is finite dimensional, A())
is always infinite dimensional. We have that {L(A) | A € £,} is a complete irredundant system of
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irreducible C),s-modules up to isomorphism and degree shift, and A()) is the projective cover of L(\)
in the category C,s-mod.
We denote
Nys = @ A(A) and Byps :=Endpg,;(Ans)°P.
AEP,

Thus, B,s is the basic algebra Morita equivalent to C)s. It turns out that the parabolically induced
module A§", which can be considered as a Cy,5-module, is always projective in the category C,s-mod.
However, it is a projective generator in Cjs-mod if and only if p > n or p = 0. So under these
assumptions, the endomorphism algebra of A§™ is Morita equivalent to Cy,s and B,,5. Otherwise, it is
Morita equivalent to their idempotent truncations. The following result is proved under no restrictions
on p. In fact, it holds over an arbitrary commutative unital ground ring k.

Theorem A. Assume that the convex preorder on ®, is balanced. Then we have an isomorphism of
graded algebras

Enan& (Agn)op = zsz’
where Z*% is the affine zigzag algebra of type I'. In particular, Bs = k[z] ® Z.

Theorem A appears in the body of the paper as Theorem 6.16 and Corollary 6.17. We note that
Theorem A has been used in a crucial way in the recent proof of Turners conjecture on RoCK blocks
of symmetric groups [8], [7].

The affine zigzag algebra is actually a special case of a more general affinization construction which
we present in §3.2. For any graded symmetric algebra A, free of finite rank over k, we construct an
associated rank n affinization H,(A) (see Definition 3.2) and prove some fundamental results about
this algebra.

Theorem B. Let A be a graded symmetric k-algebra, free of finite rank over k. Let n € Z~g. Let
k[z1,...,2,] be a polynomial algebra in n generators, and &,, be the symmetric group of rank n. Then
(i) Hn(A) is isomorphic to k[z1,...,2,] @ A®" @ kG,, as a k-module.
(ii) Hn(A) is free as a left/right k[z1, ..., z,]-module, free as a left/right A®™-module, and free
as a left/right k&,,-module.
(iii) The center of Hn(A) is Z(Hn(A)) = (klz1,. .., 2] @ Z(A)2™)Sn | the subalgebra of invariants
under the diagonal action of G,,.
(iv) The wreath product A&, is a homomorphic image of Hy(A).

Parts (i)—(iv) of Theorem B appear in the body of the paper as Theorem 3.8, Corollary 3.10, and
Proposition 3.17. Our affinized symmetric algebras are related to the generalized degenerate affine
Hecke algebras constructed by Costello and Grojnowski [5], and the affine zigzag algebra is closely
related to certain endomorphism algebras associated with the categorification of Heisenberg algebras
by Cautis and Licata [4], see Remarks 3.6 and 4.13.

Acknowledgements. We are grateful to Shunsuke Tsuchioka for alerting us to the connection be-
tween affine zigzag algebras and other algebras which have previously appeared in the mathematical
literature.

2. PRELIMINARIES

2.1. Basic notation. We will often work over a ground ring k which is assumed to be a Noetherian
commutative unital ring. When we assume that k is a field, we write p := chark. If V is a free
k-module with basis {v1,...,v,} we denote by {vf,...,v:} the dual basis of V* = Homy(V, k).
Our basic notation is as in [20], in particular, all algebras, modules, ideals, etc., are assumed to be
(Z-)graded. The category of finitely generated graded left modules over a k-algebra H we denote
H-mod.

We will write [1,¢] := {1,2,...,t} for t € Z~o. The quantum integers [n] = (¢" — ¢ ")/(¢ — ¢ ')
as well as expressions like [n]! := [1][2]...[n] and 1/(1 — ¢?) are always interpreted as Laurent series
in Z((¢)). The morphisms in this category are all homogeneous degree zero H-homomorphisms,
which we denote homg(—,—). For V € H-mod, let ¢V denote its grading shift by d, so if V;, is
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the degree m component of V, then (¢?V),, = V,,_4. For U,V € H-mod, we set Homy(U,V) :=
@D,z Hompy (U, V)a, where Homp (U, V)4 := homp (¢?U, V). If all graded components V, of a k-
module V' are free of finite rank, we denote by dimg V := >, (tkV;,,)¢™ € Z((q)) the graded rank
of V.

If 41 is a usual partition of n, we write n = |u|. An l-multipartition of n is a tuple p = (u, ..., p®)
of partitions such that |u| := |p™|+- -+ |u®)| = n. The set of the all [-multipartitions of n is denoted
by £, and & = I_Inzo_gn.

2.2. Symmetric group actions. Let G,, be the symmetric group of rank n, generated by the simple
transpositions si,...,5,—1. For a k-module V, we define a left action of &, on V®" via place
permutation:

1R+ RUp) 1= V11 R+ @ Ug—1y,
foralv=v1® - Qu, € V®¥ and 0 € &,,.

We define a left action of &,, on the polynomial algebra k[z1, .. ., z,], via permutation of generators:
72 = 24
for all ¢ € [1,n] and o € &, and extend this action to all f = f(z1,...,2n) € Kk[z1,..., 2]
For i € [1,n — 1], define the divided difference operator V; on k[z1, ..., z,] by
f-of
Vi(f) = -
Zi = Zit1

The following facts about divided differences are well-known and easily checked:
Lemma 2.1. Leti € [1,n—1], j € [L,n], and f € klz1,...,2,]. Then:
(1) Vi(f) = Si(Vi(f)) = —Vi(*f)
(ii) Vi(f)=04df*f=f
(iti) Vi(zif) = 25,5 Vi(f) = (0ij = div1,5) [
2.3. Affine root system. Let C = (c;;); jer be a Cartan matriz of untwisted affine ADE type, see [13,
84, Table Aff 1]. So C corresponds to one of the following Dynkin diagrams:

1 ¢))
A D
¢ g ¢ g\ %! 1
YT TS
*—eo—o— —0—0@ [ ()
1 2 3 L —1 Y4 1 £
]
(1) ze (1) 2@
Eg ‘ E;
" ——0—0—0—0 " ——0—0—0—0—0—0
1 3 4 5 6 0] 1 3 4 5 6 7

Ey”

We have I = {0,1,...,1}, where 0 is the affine vertex, and set I’ := {1,...,i} = I'\ {0}. Let C’ be the
finite type Cartan matrix corresponding to the subset I’ C I.

Let (b, II,IIV) be a realization of C, with simple roots {«; | i € I'} standard bilinear form (-, -) on h*,
and Q4 := P,c; Z>o - . For 0 € Q, we write ht(f) for the sum of its coefficients when expanded
in terms of the «;’s. Let ® and ®' be the root systems corresponding to C and C’ respectively, with
¢, and @/, being the corresponding sets of positive roots. Let § € ®, be the null root. We have
o, = o U P, where @' = {nd | n € Zso} and

P ={B+nd|Bed , neltU{-L+nd|BeP,, nelso}

A convex preorder on ®4 is a total preorder < such that for all 8,y € ®, we have:
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e Iff<vand B+~y€ Py, then B X B+v=7;
e 3 <~ andy =< g if and only if 5 and 7 are imaginary or 8 = ~.
A convex preorder is called balanced if all finite simple roots a; with ¢ € I’ satisfy a; = 0.

2.4. KLR algebras. Define the polynomials {Q;;(u,v) € klu,v] | 4,5 € I} as follows. If C # Agl),

choose signs €;; for all 7, j € I with c;; < 0 so that €;;6;; = —1 and set
0 if i =7;
Qij(u, ’U) = 1 if Cij = 0;

Eij(ufcij — ’Ufcji) if Cij < 0.

) we set

For type Agl
0 ifi=7;
@i, v) = { (u—v)(v—u) ifi#j.
We point out that we have just made a so-called generic or geometric choice of parameters for KLR
algebras. The main results of the paper do not hold for non-generic choices of parameters, and the
imaginary semicuspidal algebra is not isomorphic to the affine zigzag algebra in the non-generic setting.
Fix 6 € Q4 of height n. Let I’ = {i = (i1,...,in) € " | iy + -+ ;, = 0}. For i € I and
4 € I, we denote by ij € I?*" the concatenation of 4 and j. The symmetric group &,, acts on I? by
place permutations.
The KLR-algebra Ry is an associative graded unital k-algebra, given by the generators {1; | ¢ €
I%YU{y1,...,yn} U{¥1,...,¥,_1} and the following relations for all 4,5 € I and all admissible r, ¢:

1,‘1]‘ = 5,’)3'1,', Zie]"li =1;

)

2.3) Yrls = Liyrs  Yrte = Yeyr;
)
)

2.4 Urls = 1g,5tr;
2.5 (Yetbr — Vrys, )i = 0i iy (Otr 41 — 0rr) 1a;
(2.6) V2= Qi iy (Yrs Yrg1)1is
(2.7) Yethe = PP (Ir —t[ > 1);
Qu,iwl (yr+27 yr+1) - Qimrﬂ (yT7 yr+1)

1;.

(28) (wT-l-lewT-l-l - wrwr-l-lwr)li = 6i7‘,iT+2
Yr4+2 — Yr

The grading on Ry is defined by setting deg(1;) = 0, deg(y,1;) = 2, and deg (¥, 15) = —ci, 4., -

For any V' € Rg-mod, its formal character is chy V := 3" ;o (dim, 1V) -4 € @, 10 Z((q)) - 2. We
refer to 1;V as the 2-word space of V and to its vectors as vectors of word 4.

For 61,...,0,, € Q" and 0 = 61 + - - + 6,,,, we have a parabolic subalgebra Ry, . ¢
the corresponding (exact) induction functor

. € Ry, and

”

‘‘‘‘‘ o, — : Igy,. 0,,-mod — Rg-mod.
..... 0, V1 - - KV,
Given also W, € Rg,-mod and f, € Hompg, (V.,W,) for r =1,...,m, we denote
fio-rofmi=Indg, 0, (f1® Q@ fn):Vio--oVy, = Wio--0W,,.
We also have the restriction functors:

ReSghmygm = 191),”7ng9 QRy — - Ryp-mod — R917,,,79m—m0d.
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2.5. Diagrammatics for KLR algebras. It is often useful in computations to work with the dia-
grammatic presentation of the KLR algebra as provided in [15]; see that paper for a fuller explanation
of the diagrammatic presentation. We will make extensive use of KLR diagrammatics in §5 and §7.
The diagrammatic treatment for types C # Agl) is given below; in this paper we will always treat the

idiosyncratic type Agl) calculations symbolically, so we do not provide those diagrammatics here.
We depict the (idempotented) generators of Ry as the following diagrams:

i1 12, .. in LS T P 2 1. .. dp T4l i

L I v X

Note that ‘right-to-left’ in the symbolic presentation is to be read as ‘top-to-bottom’ in the diagram-
matic presentation. Then Ry is spanned by planar diagrams that look locally like these generators,
equivalent up to the usual isotopies (described in [15]). In particular, dots can be freely isotoped along
strands, provided they don’t pass through crossings. Multiplication of diagrams is given by stacking
vertically, and products are zero unless labels for strands match. The defining local relations for Ry
are drawn as follows:

i J i J

i J i J ok i J ok €ij

X - o XK

Ji
| | i:k,ciﬁj:—l;

0 otherwise,

otherwise,

— .
—

i i

XX ol XX

2.6. Semicuspidal modules. We fix a convex preorder < on ®; and n € Z~q. In this paper we will
only deal with imaginary semicuspidal modules. An R,,s-module V is called (imaginary) semicuspidal
if0,n € Q4+, 8 +n=nd, and Resg,V # 0 imply that 6 is a sum of positive roots < J and 7 is a sum
of positive roots = §.

Words 4 € I"™ which appear in some semicuspidal R, ;-module are called semicuspidal words. We
denote by I7. the set of non-semicuspidal words, and let 1nge := Y, s 1;. Following [22], define the
semicuspidal algebra o

(29) Cn6 = Cnts,lk = Rna/RnalnscRna-

Then the category of finitely generated semicuspidal R,,-modules is equivalent to the category
Cho-mod.

From now on until the end of this subsection we assume that k is a field. The irreducible C,s-
modules are parametrized canonically by the l-multipartitions A € &2, see [19, 20, 22, 26]. The
irreducible corresponding to A is denoted by L()), and its projective cover in C,s-mod is denoted
A().

For the case n = 1, we use a special notation. To every i € I’ we associate the multipartition
w(i) € Py with the only non-trivial partition in the ith component. This gives a bijection I’ — 7.
We denote

L= L(p(i), Asi:=A(u(@) (el
Then As := @, As,i is a projective generator in Cs-mod. In §5 we give more information on these
modules and construct their forms over k which is not necessarily a field.
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3. AFFINIZATIONS OF SYMMETRIC ALGEBRAS

3.1. Symmetric algebras. Let k be a commutative Noetherian ring, and let A be a Z-graded, unital,
associative k-algebra, free of finite rank over k. We consider A ® A as an (A4, A)-bimodule via the
action aq - (by ® ba) - as = a1b1 ® baay. Note then that the multiplication map m: A A — Ais a
homogeneous degree zero (A, A)-bimodule homomorphism. We consider A* = @, ,(A;)* as a graded
(A, A)-bimodule via the action (a; - f - a2)(b) = f(agbay), where the grading is given by considering
elements of (A;)* to have degree —t.

We say that A is graded symmetric if it is equipped with an (A, A)-bimodule isomomorphism
¢ : A = A* which is homogeneous of degree —d, for some d € Z. For the rest of this section we
assume that A is graded symmetric; the trivial grading A = Ay is of course permitted.

We may then define an (A, A)-bimodule homomorphism

A=(p'@p Hom*op: A= AR A,

which is homogeneous of degree d. We call A(1) the distinguished element of A® A. The distinguished
element is homogeneous of degree d, and is symmetric and intertwines elements of A® A in the following
sense:

Lemma 3.1. For a k-module V, let Ty v : V®V = V ®V be the transposition map given by
vy(v@w) =w .
(1) 74,4(A()) = A(1), and
(i) aA(l) = A(1)7a,4(a), for alla € A® A.
Proof. For x,y € A we have
(m™ o)) (z@y) = e()(zy) = (y - »(1)(z) = e(y)(z) = (p(1) - y)(x)
=e(L)(yz) = (m" o p(1))(y @ x) = (m" 0 (1))(Ta,4(x @ y))
= (taaom op(1))(z®y) = (Ta- a- om™ o p(1))(z @ y),
Thus m* o (1) = 74« a4~ om* o p(1), and, since T4 40 (¢ 1@ ¢™1) = (¢ 1@ ¢~ 1) o Tax ax, result (i)
follows.

Now assume A(1) =3, xgi) ®x§i), and let a € A. Then, using (i) and the fact that A: A - A® A
is a bimodule homomorphism, we have

(a@DAQ)=a-A(1)=A(a) = A1) -a=A1)(1®a),

and
(1®a)A( fo ®azy) =144 ( az) @ 2\ (a-Ta.a(A(1)))
ZTAyA( A(Aa)) =7a,a (A1) -
_TAA<Z!E1 ®:E ) Zx a®:c <sz)®wz)> 1)
=74,4(A1))(a®1) =A(1)(a® 1),
completing the proof of (ii). O

3.2. Affinization. Let n € Zsg. The grading on A induces a grading on the algebra A®". For
1<t<u<n,let i, : A®? — A®" be the algebra homomorphism given by

tu@1 ®az) =1 1061010 ®1Qa®1®- - ®1,

where a1 appears in the tth slot, and az appears in the uth slot. Then we define Ay, := 11,0 A(1) €
A®m,

Let k[z1, . .., z5] be the graded polynomial algebra with generators z1, . . ., z,, in degree d = deg(A(1)).
Let k&,, be the symmetric group algebra over k, concentrated in degree zero.



AFFINE ZIGZAG ALGEBRAS 7

Definition 3.2. We define #,,(4), the rank n affinization of A, to be the free product of k-algebras
k[z1,. .., 2n] * A" x kG,

subject to the following commutation relations:

(3.3) azj = zja for all for all j € [1,n], a € A®"™;
(3.4) sia = %as; for alli € [1,n — 1], a € A®™;
(35) SiZj — Zs;5Si = (510' — 5i+1,j)Ai,i+1 for all i € [l,n — 1], je [1,71]

Note that the relations are homogeneous, so H,,(A) inherits a graded structure from the algebras A®™,
k[z1,...,2,] and kG,,.

There are algebra homomorphisms
(W K[z, 2] = Ha(A), 12 AR 5, (A), 13 kS, — H,(A).

Abusing notation, we use the same labels for elements of the domain of these maps as for their images
in H,,(A); however, Proposition 3.8 will assert that this abuse should result in no significant confusion,
as 1,2 1) are in fact embeddings.

Remark 3.6. If one takes A = k, then H,,(A) yields the degenerate affine Hecke algebra, so Definition
3.2 can be viewed as a generalization of this construction; see [18]. Relatedly, Costello and Grojnowski
[5] construct a Cherednik algebra (or degenerate double affine Hecke algebra) H, associated to a
commutative Frobenius algebra H. Here we have extended their construction to the case of non-
commutative symmetric algebras by making a few simplifying modifications to the last two paragraphs
of [5, §4.2]. Explicitly, we take Hr = A, u = 1, and replace [5, Definition 4.2.1] with the trivial action
y1(©) = 0. Related generalizations of degenerate affine Hecke algebras in the noncommutative case
have also been studied by Tsuchioka [27].

3.3. Bases for affinized symmetric algebras. In this section we prove freeness properties of
Hn(A).
Lemma 3.7. Let V be the graded k-module V := k|21, ..., 2,] @ A®" @ k&,,. Defining an action of
Hn(A) on V via

zi- (fobw)=2zfbw,

a- (fRbwWw)=f®abw,

;- (fRbRW) =%fR%b® s;w+ V;(f) ®Ajj+1b®w,

forallie[1,n],j€[l,n—1], f € klz1,...,2,], a,b € A®", and w € k&,,, gives V the structure of
a graded Hy,(A)-module.

Proof. First note that the defining relations of A®™ and k|z1, ..., 2,] are clearly satisfied in this action,
as is the relation (3.3).
For any i € [1,n — 1], a € A®™, we have
si-(a- (fRbw))=s(f®abw)
=" ®%(ab) ® siw + Vi(f) ® Aji11ab @ w,
and
Sia- (s (fobow)="a *f @b sw)+*a- (Vi(f) ®A;i+1b®w)
=%f ® (*a)(®b) ® s;w+ Vi(f) ® “al; i1b@w
=" ®*(ab) ® siw + V;(f) ® Aji11ab® w,

applying Lemma 3.1(ii) in the last step. Thus s;a = *as; as operators on V, so the action satisfies
relation (3.4).
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For i € [1,n — 1] and j € [1,n] we have
si(zj- (febRW) =8 (2f @b W)
=2,; (") @Tb @ siw + Vi(z f) © Aji1b @ w,
and
Zs,j (8 (f@bRW)) = 255 - (Ff @b @ s;w) + 25,5 - (Vi(f) © Agi11b @ w)
=25,;(5f) @ bR s;w + z5,; Vi(f) @ Ay iv1b @ w.
Then by Lemma 2.1(iii), (s;2; — 2s,58i) = (0;,j — di+1,5) Qi i+1 as operators on V, so the action satisfies
relation (3.5).
It remains to prove that the action satisfies the defining Coxeter relations of k&,,. For i,j € [1,n—1]
with |¢ — j| > 1, we have
si-(sj- (febw))=s;(f®%b®sjw)+si (V;(f)®A;;11b@w)
=9 fR5Vb® sisjw + Vi(Uf) @ A ip1(7d) @ sjw
+ (Vi () ©@°(Aj54+1b) @ siw
+ Vi(V;(f) @ Aiiv18,j41b @ w,
and similarly
s5j-(si- (fObRW)) ="f@%"b®sjsiw+ V;(*f) ® Ajj1(7b) @ s;w
+%9(Vi(f) ® *(Aii11b) ® sjw
+ vj(vi(f)) ® Aji+104i+1b @ w.
But, since V;(%f) = *(V,;(f)), V,;(*f) = *(V,;(f)), and V;(V;(f)) = V,;(Vi(f)), it follows that the

relation s;s; = s;s;, for all i,j € [1,n — 1] such that |[i — j| > 1, holds as operators on V.
Next, for i € [1,n — 1], we have

si-(si- (fOb@wW) =5 (f @°b@s;w) +si - (Vi(f) @ Aii1b @ w)
=fRbew+ V;(°f) ® A;i+1(°b) @ s;w
+5(Vil(f) ® *(Aii41b) @ siw + V() @ Al b w
=fRb®w,
applying Lemma 2.1(i),(ii), and Lemma 3.1(i) in the last step. Thus the relation s? = 1, for all i €
[1,n — 1], holds as operators on V.

Now fix ¢ € [1,n—2], and j € [1,n]. By the previously proved properties, we have that, as operators
on V:

8i+15i8i+1%j = Si415i(Zs14155i+1 + (0ir1,5 — Oit2,5)Dit1,i+2)

= Si+15i%s;415Si+1 + (5i+1,j - 5i+2,j)Ai,i+15i+15i

= 5i+1(zsisi+1j5i + (51',51-“;' - 5i+1,si+1j)Ai,i+l)5i+l
+ (0it1,5 = Oiv2,j) A iv18i415i

= Sit1%si8i4155iSi41 T (005 — it2,5)Adite
+ (8ig1,5 — Git2,5) i it15i418i

= (ZSi+1SiSi+1jSi+1 + (5i+115i5i+1j - 5i+2,5i5i+1j)Ai+1,i+2>5i5i+l
+ (8,5 = Git2,5) Aijita + (i1, — Git2,5)Aii18i418i

= ZsiprsisiprjSit18iSit1 + (0ij — Git1,5) Dit1,i428iSi+1
+ (03 = Gi2,) Aijiv2 + (Gi1,5 — it2,5)Aiit18i+18

and similarly
8i8i415i%) = Zsysiy15:55i5i415i + (0ig1,j — Oig2,5) i iy15i415

+ (05 — 0ig2,5)Diit2 + (035 — 6ig1,5)DNig1,i425iSi41-
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Thus (8i8i4+18i —Si+15iSi41)%j = Zs;si415:5(SiSi+15i—Si+15i8i+1) as operators on V. Now we prove that
SiSi+15; = Si+1SiSi+1 as operators on V', via induction on the degree of f in the term fR@b@w € V.
The base case deg(f) = 0 is obvious. If the claim holds for f, then
(8i8i+18i — Si418iSi+1) - (7 f @ D@ w) = (881118 — Si+18i8i+1) - (25 - (f @ bR w))
= ((sisir15: — 8i118i8i41)%5) - (f @ bR w)
= (Zs;51019:5 (8154181 — Six15i8i41)) - (f @ bR w)
= Zsisit1sij ((siSit15i — Sit18i8i+1) - (f @ b w))
= Zs;sit18i] ° 0=0,
proving the claim. Thus the Coxeter relations hold as operators on V, and V is an H,,(A)-module. O
Theorem 3.8.
(i) The map V =Kk[z1,...,2,] @ A" @ &,, — Hn(A) defined by
fea®@w— faw
is an an isomorphism of graded H, (A)-modules.
(i) Hn(A) is free as a k-module, with graded dimension
dim, A) "
1—q¢
Proof. Let By be a basis for k[z1,...,2,], Ba be a basis for A" and let B3 be a basis for kG,,.
Define the sets

dimy H, (A) = n! <

B={f®a®w|fe€B,a€By,we B3} CV,
B={faw| f € B1,a € By,w € B3} C H,(A).
Then B is a k-basis for V. It is straightforward to see that inductive application of the commutation
relations (3.3)—(3.5) allows one to write any element in #,,(A) as a k-linear combination of elements
of B, so B is a spanning set for H,,(A). Moreover, for every faw € B, faw-(1®1®1)=f®a® w,
so the elements of B are linearly independent as operators on V', and thus B constitutes a k-basis for
Hn(A).
Since V is a cyclic H, (A)-module, generated by 1@ 1®1, we have an #,,(A)-module homomorphism
H,(A) — V given by 1 —» 1 ® 1 ® 1, which sends faw € B to f ® a ® w € B. Since the map is a
bijection on k-bases, it is an isomorphism, proving (i). Part (ii) follows from (i). O

Corollary 3.9. Let f € k[z1,...,2,], and a € A®™.
(i) For alli € [1,n — 1], we have
sifa = (*f)("a)si + Vi(f)Aiir10.
(ii) For all w € &, we have
wfa = (“f)(*a)w + (x),
where (%) is a k-linear combination of terms of the form f'a’w’, where f' € k[z1,..., 2],
a' € A®" and w' € &, with {(w') < l(w).

Proof. Part (i) follows from Theorem 3.8(i) and the action of s; on V defined in Lemma 3.7. Part (ii)
follows from inductive application of (i). O

Corollary 3.10. Let By be a k-basis of k[z1,...,2,] and By be a basis for A®™. Then:
(i) The sets {faw | f € B1,a € By,w € 6,} and {wfa | f € B1,a € Bs,w € 6,,} are k-bases
of Hn(A).
(ii) The set {aw | @ € Bay,w € &,} is a basis for H,(A) as a left k[z1, ..., z,]-module, and
{wa | a € Ba,w € &,} is a basis for H,(A) as a right k[z1, ..., zp]-module.
(iii) The set {fw | f € Bi,w € &,} is a basis for H,(A) as a left A®"-module, and {wf | f €
Bi,w € &,} is a basis for Hp(A) as a right A®™-module.
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(iv) The set {fa | f € B1,a € By} is a basis for Hy(A) as both a left and right k&, -module.

Proof. By Theorem 3.8(i), the first set in (i) is a basis for H,(A). Applying Corollary 3.9(ii), one
may use induction on the length of w € &,, to see that the second set in (i) is also a basis for H,,(A),
completing the proof of part (i). Parts (ii)-(iv) follow from part (i) and the fact that af = fa for all
f €klz1,...,2,] and a € A®"™. O

3.4. Antiautomorphisms of affinized symmetric algebras. In this section we show that an
antiautomorphism of the symmetric algebra A extends to an antiautomorphism of the affinization

Ho(A).

Lemma 3.11. Suppose that v : A — A°P is an isomorphism of graded k-algebras. Then the map
U Hy(A) = Hy(A)°P defined by

)=z @) =@e-en@,  Bls)=s,
for alli € [1,n], j €[1,n—1] and a € A®™, is an isomorphism of graded k-algebras.

Proof. Tt is clear that the 7 is a homomorphism upon restriction to the subalgebras k|21, . .., 2,], A®™,
and k&,,. It is likewise straightforward to check that ¥ preserves the commutation relations (3.3) and
(3.4).

It remains to verify that ¥ preserves relation (3.5). We have, for all 2,y € A,
mo(v@v)otyalr®y) =v(yv(z) =v(izy) =vom(z®y).
Thus mo (v ®v) oT4,4 =vom, so
Tas a0 (V@v) om™ =714 4o(v@V) om® =m"ov".
Therefore
Aov=(p'@¢p om opor=(p"'®p om oviop
=@ @ oTa a0 (v@V) omtop=Taa0(pT @ HoW@r) omogp
=1aa0v@v)o(p @ Hom*op=w@v)oTaso(p t@p Hom oy
=(vQ®v)oTa a0A.
Thus by Lemma 3.1(i) we have
A(l)=Aov(l)=(rv®@v)oTasoA(l) = (r@v)oA(l).
Thus for all ¢ € [1,n — 1] we have
V(Aiix1) = ®---®@v)otiit10A(1) =t 410 @V) o A(1) = tii+1 0 A(L) = Ay iq1.
Therefore, for all ¢ € [1,n — 1] and j € [1,n], we have
D(Sizj - Zsijsi) = ZjSi = Si%s;j = _(Sizsij - ZjSi) = —(51',51»;' - 5i+1,sij)Ai,i+1
= (0ij — 0it1,5)Diiv1 = V((0ij — Git1,5)Diit1)-

Thus 7 preserves relation (3.5), so 7 is a graded homomorphism of k-algebras. Now by Corol-
lary 3.10(i), 7 is an isomorphism. O

3.5. Centers of affinized symmetric algebras. Let
Xn = Ik[Zl, ey Zn] & Z(A)®n

considered as a subalgebra of k[z1,. .., 2,] ® A®™ which in turn is a subalgebra of H,,(A) in a natural
way. The symmetric group &,, acts on X,, with algebra automorphisms as follows:
w-(f®a)="f®"a (f €k[z1,...,2a), @ € Z(A)®™).

Proposition 3.12. The center of H,(A) is the subalgebra of invariants XS



AFFINE ZIGZAG ALGEBRAS 11

Proof. Let x € XS». Write z = >, fia; for some f € k[z1,...,2,] and a; € Z(A)®". Clearly z

commutes with elements of the subalgebras A®™ and k|21, ..., 2,] of H,(A). Now
S;iL — IS; = 8; Z fjaj —x8; = Z(Sifj)(siaj)si + Z Vi(fj)AMHaj —xS;
J J J

=ws; + Y Vi(fj)Aiina; —xsi = Y Vi(fi)Aiip1a;,
J J
applying Corollary 3.9(i) for the second equality. Since k[z1,...,2,] acts freely on the left of H,(A)
by Corollary 3.10, we may show that the last term is zero by instead showing that z; — z;;1 acts on
this term as zero:
(zi = 2i41) D Vilf))Asinia; = > (i = [7)Asia;
J J

= fiaiDiip1— Y () (Fay) A i

J J
= (I — SiI)Ai7i+1 =0.
In the second equality we have applied centrality of a; in A®™ for the first sum, and Lemma 3.1(ii)
for the second sum. Therefore s;x = xs;, and XS» C Z(H,(A)).

Now we show that Z(H,(A)) C XS». Let 0 # # € Z(Hn(A)). By Theorem 3.8 we may write
T =73, ce, Yuw for some y, € k[z1,...,2,] ® A®™. Let | be maximal such that y, # 0 and £(u) = I
for some u € &,,. Then, using centrality of x and Corollary 3.9(ii), we have

(e yew = > yuw(z123 ) = Y (Zn12ma 2wt + (%),

weS, weS, weS,
L(w)=l
where () is a linear combination of basis elements of the form y/,,w’, where y, € k[z1, ..., z,] @ A®™

and £(w’) < l. Then, again by Theorem 3.8,

(2125 -+ 2 = zurzin + Zyn )Y = 0,
but since k[z1,...,2,] acts freely on the left of H,(A) and y, # 0, we have that z125---2"" =
21122, 2" and hence u = 1. Thus z € k[z1,...,2,] ® A®",

un?

For t € Z>o, let B} be a basis for the homogeneous degree-t polynomials in k[z1,...,z,]. Let
Bi =2y Bi. Thenz = 3", p fay for some ay € A®™. For all b € A®™, we have

> fasb=3" bfa;= > fbay,

feB; feB1 febB

so by Theorem 3.8, ayb = bay for all f, and thus ay € Z(A®") = Z(A)®" for all f, so x € X,.

We write deg, (z) = m if m is maximal such that a; # 0 for some f € B}*. We argue by induction
on deg, (r) that z € XS~. If deg,(x) = 0, we have = a for some a € Z(A)®". Let i € [1,n — 1].
Then we have

as; = s;a = *'as;,

so Theorem 3.8 implies that @ = *a, and thus z € XS». Now for the induction step, assume

deg,(z) = m, and 2’ € XS for all 2’ € Z(Hn,(A)) with deg,(z') < m. Let i € [1,n — 1], and note
that if f € BY, then V;(f) is in the span of Ui;% Bj. Then, applying Corollary 3.9(i) for the second

equality, we have

Y fapsi= Y sifag =Y ("Hap)si+ Y Vilf)Aiiay

feB1 feB1 JeB1 feB1

— s Z fays | si + (%),

feBy



12 ALEXANDER KLESHCHEV AND ROBERT MUTH

where (*) is a linear combination of terms of the form fy, where f € B! for t < m, and y € A®"®kS,,.
Thus, writing 2, = ZfEBIn fay, it follows from Theorem 3.8(i) that (x,, — iam,)s; = 0, and thus
Ty = STy, for all i € [1,n — 1] by Corollary 3.10. Then z,, € XS, 50 z,, € Z(Hn(A)). Thus
T — 2m € Z(Hn(A4)) and deg, (z — xm) < m, s0 T — x,, € XS by the induction assumption.
Therefore © = xp, + (r — T,,,) € X7, as desired. O

We have the immediate corollary:
Corollary 3.13. (Z(A)®")S» = Z(H,(A)) N A®",

3.6. Cyclotomic quotients. By Theorem 3.8 and relation (3.4), the subalgebra of H,,(A) generated
by A®" and k&, may be identified with the wreath product A &,. For r € [1,n], define the
Jucys-Murphy elements of A1 S, as follows:

r—1
- — Z At,r(ta T)a
t=1

where (t,7) € &,, is the transposition of ¢ and r.
Lemma 3.14. The Jucys-Murphy elements centralize the subalgebra A®™ of H, (A).
Proof. Let t <7 € [1,n]. Let a=a; ® - @ a, € A®™, and set
=01 Q® QR4 1010a11Q Qa1 01Rar11 R ay.
Then a = @ ,(a; ® a,), and
Avr(t,r)a = Ao (BDa)(t, 1) = Ay pivg e (ar @ ar)(t,7) = GA pip 0 (ar @ ag)(t,7)
=au, (A1) (ar @ ar))(t,1) = @t r((ar @ ar)AD))(E, ) = @l (t,7),

using Lemma 3.1(ii) for the fifth equality. Thus the Jucys-Murphy elements are linear combinations
of elements which centralize the subalgebra A®". O

Lemma 3.15. Forr € [1,n], the Jucys-Murphy element . centralizes the subalgebra k&, @ A®T1
of Hn(A) generated by s1,...,5.—2 and A®"=1 @ 19"="+1  In particular, ly,...,l, commute.

Proof. Let i € [1,r —2]. Then

sil, = ZSA”tT ZASZHS t,r) ZAslthztr i =185,

as required. O
Corollary 3.16. The Jucys-Murphy elements 11, ..., 1, commute.

Proof. Let t < r. Since I; lies in the subalgebra generated by A®™ and s1,...,s;_1, the result follows
from Lemmas 3.14 and 3.15. O

The next proposition involves a choice of a degree d element ¢ € (Z(A)®™)S». Though we work
with this general choice of ¢, we note that there is at least one natural choice of such an element; we
may take ¢ = m(A(1)) € A, and define

c=cR1I®---®¥1+13c®1®--- @1+ +1®---®1Qc¢,
noting that ¢ € Z(A) since

em(A(1) =m(z- A1) = m(A(z)) = m(A(1) - ) = m(A(1)) z,
for all z € A.
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Proposition 3.17. Let ¢ € (Z(A)®")$". Let fe: Ho(A) — AV, be the map which is the identity
on the subalgebra A1 &, of H,(A), and sends

zZr—= .+ e

for all v € [1,...,n]. Then B¢ is a surjective homomorphism of graded k-algebras. The kernel of Be
is the 2-sided ideal generated by z1 — c.

Proof. 1t is clear that f. is surjective. By Corollaries 3.13 and 3.16, we have ¢(2;)Bc(2;) = Be(25)Be(z:)
for all 4,5 € [1,n]. By Corollary 3.13 and Lemma 3.14, we have S(z;)Bc(a) = Be(a)Be(z;) for all
i € [1,n] and @ € A®™. So to see that . is a homomorphism, it suffices to verify that (. preserves
relation (3.5) of Definition 3.2.

Note that, for all ¢ € [1,n — 1] and j € [1,n] we have

j—1 j—1
Be(sizj) = si(l; + ¢) ZSZAW (t,j) + sic=— ZAS“& 517 (8it, 8i7)8: + €s;
= t=1
and
sij—1
Be(2s,58:) = Z Ay s,5(t,8ij)si + csi.
t=1

If j ¢ {i,i+ 1}, these terms are equal. If j = ¢, then s;t = ¢ for all ¢ € [1,j — 1], thus

Be(sizi — zig18i) = Diiv1 (4,0 +1)s; = A ip1 = Pe(Dijit1),
as desired. If j =i+ 1, then s;t =t for all ¢t € [1,5 — 2], thus
Be(sizigr — zisi) = —Dip1,i(t+1,0)8; = =Dy ip1 = Be(—Diiv1)s

as desired. Thus . is a homomorphism.

Since I; = 0, we have z; — ¢ € kerf8.. Let H,(A) = H,(A)/Hn(A)(z1 — c)Hn(A), and let
7 Hn(A) = H,(A) be the natural projection. Then B, factors through to a surjection 3, : H,(A) —
A1G,,. Let v: A1 S,, — H,(A) be the inclusion map. We have the commuting diagram:

Hn(A)
S\
Hn(A) <B:>CA G

Note that BC omot=Lfc0t=1idgye,. Then

(3.18) morofB,omor=moroidys, = id o7 O L.

Hin(A)
From the defining relations of H,(A), we have that z;41 = $;2;8; — A i418; for all i € [1,...,n]. Thus
H,(A) is generated by z; — ¢ together with the subalgebra A &,,. Therefore o ¢ is a surjection, so
(3.18) implies that m ot o 3, = idm. Thus 7 o+ and B, are mutual inverses, proving the second
statement of the lemma. g

Let | € Zso, and let C = (cM,...,c®) be a sequence of elements of (Z(A)®")J". We define
the corresponding level | cyclotomic quotient algebra HS(A) to be H,,(A) modulo the two-sided ideal
generated by the element

!

H(zl _ c(j))_

By Proposition 3.17, HS(A) 2 A1 &,, when [ =
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Proposition 3.19. Let B be a k-basis of A®™. The level | cyclotomic quotient HS(A) is spanned by
the elements

{20 2hraw | 0< ty, ..ty <1, a € B, w € &,}.
In particular, HS (A) is finitely generated as a k-module.
Proof. For any u = (u1,...,un) € Z%, and i € [0,n], we define the sets
Xpo= {22t | 0<ty, .ot < 1,0 <ty <y for k> i} Cklz,..., 2],
Y :=span{fy | f € X* ye A" @ k&, } CHE(A).
Note that Y,»* is the span of the elements in the statement. Moreover, by Theorem 3.8, every element
of HE(A) belongs to some Y. So the result follows from the following
Claim. Y* C Y, for all u € Z% and i € [0,n — 1].
We prove the claim by induction on ¢. For the base case i = 0, let f = zfl coezln € X3 and
y € A®" ® k&,,. Note that, by the definition of the cyclotomic quotient and Corollary 3.13, we have
2 = 22;10 2Fby, in HE(A), for some by, ..., b, € A®™. Thus we have
-1
fym ey = Y el sty € Vi
k=0
so Yy C Y, as desired.
For the inductive step, let ¢ € [1,n — 1] and suppose that Y* C --- C Y for all u € Z%,. Let

f =2zt € X for some (t1,...,t,) =t € 7%y, a € A®" and w € &,,. In order to show that
Y C Y%, it suffices to show that faw € Y. By Lemma 3.9(i), we have
(320) Si(si f) (Si a)SﬂU = faw +V; (Si f)Ai)iJrl(Si a)sl-w.

Note that * f € X%. So V,(* f) is in the k-span of X% Therefore
Vil* A1 (a)siw € V2T C Y C VY,
where the first containment holds by the induction assumption, and the second containment follows
since (s;t)i+1 =t; <!, and (s;t); =t < uy for k > i+ 1. Similarly
(“F)(Fa)siw €V CY OV,
So, to complete the proof that faw € Y%, it suffices to show that s;Y%, C Y%;. For this, let

g € X¥, and z € A®" ® k&,,. By Lemma 3.9(i), we have s;gz = *ga’ 4+ V;(*g)z” for some
o' 2" € A®" @ kG,. But *ig e X* |, and V;(®g) is in the k-span of X |, so s;,gz € Y;¥,. O

We complete this section with three conjectures.
Conjecture 3.21. The spanning set of Proposition 3.19 constitutes a k-basis for HS(A).
Conjecture 3.22. The algebra HC(A) is graded symmetric.
Conjecture 3.23. If A is cyclic cellular, then so is HS(A).

Note that in level 1 the conjectures hold. Indeed, Conjecture 3.21 in level 1 follows from Propo-
sition 3.17. For Conjecture 3.22 we can use a bimodule isomorphism A &,, — (A1 6,,)* given by
a1 @ Ray D0 = P(ar1) @ @ P(agn) ® (071)*. Conjecture 3.23 in level 1 is the main result
of [9]. The conjectures are also known to hold for any level when A = k. Indeed, HS (k) is a de-
generate cyclotomic Hecke algebra. Now, for Conjecture 3.21 see for example [18, Theorem 7.5.6],
Conjecture 3.22 can be deduced for example from [11, Corollary 6.18] and [2], and Conjecture 3.23
can be seen from [10], [6], [1].
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4. ZIGZAG ALGEBRAS

Let T' = (T'g,I'1) be a connected graph without loops or multiple edges. Eventually, we will need
only the case where I' is of finite ADE type, but we do not need to assume that in this section.
We maintain our assumption that k is a commutative Noetherian ring. If ¢,j € I'y are such that
{i,j} € T'1, we say that ¢ and j are neighbors.

4.1. Huerfano-Khovanov zigzag algebras. The zigzag algebra Z := Z(I') of type I' is defined
in [12] as follows:

Definition 4.1. First assume that |[Tg| > 1. Let T be the quiver obtained by doubling all edges
between connected vertices and then orienting the edges so that if ¢ and j are neighboring vertices in
T, then there is an arrow a*’ fromj to i and an arrow a’' from i to j. For example, &, is the quiver

’\_/\/\/ [ S/

Jb=2,0—1 -1,
Then Z(T) is the path algebra kI, generated by length-0 paths e; for i € I'g, and length-1 paths a®7,
modulo the following relations:
(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All length-two cycles based at the same vertex are equal.
The algebra Z(T') is graded by path length. If [T'g| = 1, i.e. T' = A;, we merely decree that Z(T") :=

k[c]/(c?), where c is in degree 2. So that we may consider this algebra among the wider family of
zigzag algebras, we will write e; := 1.

For type I' # Aq, for every vertex i, let j be any neighbor of i, and write ¢’ for the cycle a®7a’*’.
The relations in Z imply that ¢* is independent of choice of j. Define ¢ := Y c*. Note that
¢; = ce; = e;c;. The following results are easily verified:

1€l

Lemma 4.2.
(i) The zigzag algebra Z(T') is free of finite rank over k, with k-basis:
{a" [ {i,5} € T} U{c™e; | € Ty, m € {0,1}}.
(ii) The graded dimension of Z is dimy Z = |To|(1 + ¢%) + 2|T'1q.
(iii) The center of Z is the k-span of the elements {1} U {ce; | i € To}.
(iv) There is a k-algebra isomorphism v : Z — Z°P such that v(e;) = e;, v(a™?) = a¥*, for all
i,j €Ty, and v(c) = c.
(v) The linear function tr: Z — k given on basis elements by
tr(e;) =0, tr(a™7) = 0, tr(ce;) =1,
for alli,j € Tg, satisfies tr(xy) = tr(yx) for all x,y € Z.
(vi) The bilinear form (-,-) : Z® Z — k given by (z,y) := tr(xy) is nondegenerate, symmetric
and associative.
(vil) The map ¢ : Z — Z* given by p(a) = (a,—) is a (Z,Z)-bimodule isomorphism of degree —2,
with p(e;) = (cei)*, p(a®7) = (a7)", p(ce;) = €.
Lemma 4.2 implies that Z is a graded symmetric algebra. Following §3.1, we have a (Z, Z)-bimodule
homomorphism A : Z — Z ® Z, with distinguished degree 2 element

(4.3) A(l) = Z (ei ® ce; +ce; ®e; + Z a’’ @ ai’j) €ElR®L
i€lg j with {i,j}€l';
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4.2. Affine zigzag algebras. The major focus of this paper will be the affine zigzag algebra, con-
structed via the affinization process presented in Definition 3.2 for A =7 = Z(T").

Definition 4.4. For n € Z-, we refer to the affinization Z*" (') := H,,(Z(T")) of the zigzag algebra
Z(T') as the affine zigzag algebra of rank n and type T.

The algebra Z®" is generated by the elements

eii=e;, Ve, Q- Qe for 4 = (i1,42,...,1in) € '],
a? =1® - ®d?®1®---®1 (rth slot) for r € [1,n], {i,5} € Ty,
G=1® - ®c®l®---®1 (rth slot) for r € [1,n],
subject only to the relations
(4.5) Ziel‘g €e; = 1, €iej = 5,'7]‘61', Cr€i = €4Cp,
4.6 i, kil ki (2 P— i,J _
(4.6) alay = a7 ay?, ayl ey = cral?, CrCt = CiCp (for t #r)
(4.7) a7 €5 = 0j,i, €irngiv 1 yir st seenyin O €3y = 0ii, 0y €iy i vt seensin
. L L
(4.8) aylayte; = 0104104, 1Cr€4, =0, cray?) =aile, =0

for all admissible r,t € [1,n], ¢,5 € Ty, and i, 5, k,1 € T.
Taking into account Definitions 3.2 and 4.1 and the description of A(1) in (4.3), we may provide a
more direct presentation of ZT(I'):

Lemma 4.9. The algebra ZZH'(F) is the graded k-algebra generated by the elements
{e; | 1€y} U {er,2m, a7 |7 €[1,n], 0,5 € T with {i,5} € T1} U {s¢ |t €[l,n—1]},

with deg(e;) = deg(s;) = 0, deg(c,) = deg(z,) = 2, deg(a?) = 1, subject only to the relations (4.5),
(4.6), (4.7), (4.8) together with

Sp€5 = €s,§Sr, sray’ = al’,s,, 87Ct = Cs,t5r,
ZrZt = ZtZr, zrai’j = ai’jzr, ZrCt = CtZyp, Zr€i = €42r,
sr8¢ = 8¢5y (for |t —r| > 1), sf =1, Sr8r4+18r = Sr41SrSra1,
(5r,t - 5T+1,t)(cr + C’I"Jrl)ei ir - irJrl;
(Srzt - ZsTtSr)e'i = (5r,t - 5T+1,t)azj+lylra:«iﬁf+lei {ir; Z.rJrl} € Fl;
0 otherwise,

for all admissible r,t € [1,n], ¢ € T¢, and i,j € Ty.

We finish this subsection with three properties of affine zigzag algebras which follows easily from
the general theory of affinization developed in section 3.

Lemma 4.10. The affine zigzag algebra ZZH(I‘) 1s free as a k-module, with graded dimension

1+ ¢*)[To| + 2411\ "
1—¢q? '
Proof. This follows from Theorem 3.8 and Lemma 4.2(ii). O

dim, Z*T(T) = n! ((

Lemma 4.11. There is an isomorphism of graded k-algebras v : 72Ty = z2%(0)°r, given on
generators by U(z:) = 2, V(e;) = e;, v(ay?) = al”, U(sy) = Su.

Proof. This follows from Lemmas 3.11 and 4.2(iv). O
Lemma 4.12. If the ground ring k is indecomposable, so is the affine zigzag algebra ZZH(I‘).

Proof. Note that Z*™(T") is non-negatively graded, and by Proposition 3.12 and Lemma 4.2(iii), the
center of Z*T(T") has rank one in degree zero. Thus the only primitive central idempotent in Z*%(I")
is 1, so the result follows. O
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4.3. Diagrammatics for the affine zigzag algebra. We provide a diagrammatic description of
the algebra ZZH(I‘), which renders the relations described in Lemma 4.9 with more clarity. We depict
the (idempotented) generators as the following diagrams:

i1 12...1ip i1 in i1, i .. in
1. i trdl. g 1. .. i

Spe; = | >< | al'me; = | + | for {i,,j} € T1.
i1 g1 dirin it g in

The red color is just intended to highlight that the label for the rth strand has changed. Then Z*%(I")
is spanned by planar diagrams that look locally like these generators, equivalent up to the usual
isotopies (cf. [15]). In particular, dots, arrows, and x’s can be freely moved along strands, provided
they don’t pass through crossings. Multiplication of diagrams is given by stacking vertically, and
products are zero unless labels for strands match.
Then the defining local relations can be drawn as follows:
(i) Z®™ relations:

g¥ =0 (4,4, k distinct) g¢ = + (V4) ¢ = I = i =0

k k3 k3

(i) k&, relations:

i J i J i J ok i J ok
gl XK v
(iii) (Z%"™ Kk[z1,...,2,]) commutation relations:
i g i

(iv) (k&,,Z%") commutation relations:
i J i J i J i J
X XX
J k J k k i k i
X=Xk X=X W

(v) (k[z1,...,2,], k6,,) commutation relations:

el g
><_><:><_><: + + if {i,j} €l

0 otherwise.
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Remark 4.13. In their work on the categorification of the Heisenberg algebra hr for I' of affine ADE
type, Cautis and Licata [4] introduce a certain 2-category H'. The l-morphisms in this category
are generated by objects P; and @Q;, for each ¢ € I'g. Comparing the local relations between 2-
morphisms [4, §6.1, §10.3] with the diagrammatic above, it can be seen that Endyr (P™) satisfies the
defining relations of Z*™(I"), up to some signs. More generally, Rosso and Savage [24] introduce a
monoidal category Hp associated to any Frobenius superalgebra B, recover the above category as a
special case, and study in particular the endomorphism algebra of P™ [24, §8.4].

5. THE MINUSCULE IMAGINARY STRATUM CATEGORY

For the remainder of the paper we assume < is a balanced order on @, and denote d := ht(d), see
§2.3. We also assume that the graph I' is the Dynkin diagram corresponding to the finite type Cartan
matrix ¢/, and write Z for Z(T), Z*T for Z*™(T'). We do not assume that k is a field unless otherwise
stated.

5.1. Irreducible semicuspidal modules. Recall from §2.6 that, when k is a field, the irreducible
semicuspidal Rs-modules may be canonically labeled Ls;, for ¢ € I'. The following theorem, proved
in [16, Lemma 5.1, Corollary 5.3], gives a characterization of the these important modules via their
words.

Lemma 5.1. Let k be a field. For each i € I', Ls; can be characterized up to isomorphism and
grading shift as the unique irreducible Rs-module such that i, = 0 and iq =% for all words © of Ls;.

In this section we will use this lemma to recognize the irreducible semicuspidal Rs-modules as
certain homogeneous modules which are concentrated in degree zero.

Following [21], for 1 < r < d and i € I°, we say s, € &, is i-admissible if c;_,; ., = 0. More
generally, if s, ---s,, is a reduced expression for w € &4 and each s, is (s, ,, - - - sr,1)-admissible,
then we say w is ¢-admissible. This property is independent of reduced expression for w. In addition,
admissibility is preserved by products in the sense that if w is ¢-admissible and w’ is (wé)-admissible,
then w'w is 4-admissible. The connected component of 1 is

Con(¢) := {wi | i--admissible w € S4}.
Clearly Con(z) = Con(j) if and only if ¢ € Con(j). We say that ¢ is homogeneous provided that
i, = i, for some r < s implies there exist ¢,u with » <t < u < s such that ¢;, ;, = ¢;,;, = —1.

Lemma 5.2. If0 € Q, and i € 19 is a homogeneous word, then there exists an Rg-module M with
character ZjGCOn(i)j. If k is a field, this module is irreducible.

Proof. If k is a field, this is [21, Theorem 3.4]. The part of the proof verifying the relations of Ry on
the k-module @jeccm(i) k - v; works for an arbitrary commutative ground ring k. O

~ With the intention of applying this lemma, we associate to each i € I" a special homogeneous word
b eI’

Type AY © b7 =012+ (i — 1)L — 1) (£ — 2)--- (i + 1)i

0234--- (L —2)(( —=3)---(1+1)123--47 if1<i</L—2;

Type DS : b :={ 0234 (0 —2)0123 - (£ — 1) ifi=0-1;
0234---(( —1)123---(¢( — 2)¢ ifi=1¢
024354265431 if i = 1;
024354136542 if i = 2;
Type Eél) b 024354126543 1fz =3;

024354123654 if i = 4;

024354123465 if i = 5;
024354123456 if i =6
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013425463542765431 if i = 1;
013425463541376542 i i = 2;
013425463541276543  if i = 3;
Type EY : b = { 013425463541237654 if i = 4;
013425463541234765 if i = 5;
013425463541234576  if i = 6;
013425463541234567 if i =7
087654231435642576435428765431  if i = 1;
087654231435642576435413876542  if i = 2;
087654231435642576435412876543  if i = 3;
087654231435642576435412387654  if i = 4;
087654231435642576435412348765 if i = 5;
087654231435642576435412345876  if i = 6:;
087654231435642576435412345687 if i = 7;
087654231435642576435412345678  if i = 8.

We will write G* := Con(b") and
¢ =Jan

i€l
We need one more combinatorial notion for words:

Type Eél) . b=

Definition 5.3. Let i € I°. For ¢t € {1,...,d}, define the t-neighbor sequence of i to be nbr. (i) :=
(n1,...,n:) € {0, N, S}, where
S, if i, =i
Ny = N, if Cipig < 0;
0, otherwise.

Then nbr, (%), the reduced t-neighbor sequence of 1, is achieved by deleting all 0’s from nbr(%).
Example 5.4. Take C =A%) Then i = 01726354 € G4, nbrg (i) = 000N0S, and nbry(i) = NS.
The following lemma is clear:
Lemma 5.5. If s, is t-admissible, then nbr, )(sr%) = nbr,(2).
Now we prove numerous useful facts about the special words b':

Lemma 5.6. Leti,j € I’ such that c; ; = —1.
(i) Ifi € G?, then i is homogeneous.
(il) For alli € G*, we have i1 =0, iq =1, i1 is a neighbor of iz, and iq—1 is a neighbor of i4.
(i) If C # Agl) and i € G°, then

n_mt(i)_{(NSN) NS, ifl<t<d;

(NSN)sNNS, ift=d,

for some a > 0.

(iv) Ifi € G° and r < d — 1, then s,i € G° if and only if s, is i-admissible.

(v) For any i, € G', there exists a unique wy 5 € &g such that wy ;1 = i and Wy 5 18 -
admissible.

(vi) There exists a unique w;; € Sq such that wi7jbj = bi, and w; ; = w1S4—1w2, where wa s
b’ -admissible and wi 18 sd_lwgbj-admissible.

(vii) For any i € G* and j € G’ such that c; j = —1, there exists a unique w;; € Sq such that
w;i ;3 =1 and w; j = w1Sq—1W2, where wy is t-admissible and wy is sq_1wat-admissible.
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(viil) If C # Agl) and i € G?, then sq_1i € Gi-1.

Proof. (i) Tt is straightforward to check that b’ satisfies the homogeneity condition. Thus by [21,
Lemma 3.3], every 4 € G satisfies this condition.

(i) If 1 < 7 < d, then (b%), has a neighbor somewhere to the left and right in b’ so no b'-
admissible element w may send r to 1 or d, so iy = (b'); = 0, and ig = (b")q = i for every 4 € G7.
Moreover it cannot be that iq—1 = igq by (i), and if it were the case that c;,;, , = 0, then we would
have sy 1% € G?, but (sq_1%)q # i, a contradiction. Thus iy_; and ig4 are neighbors, and a similar
argument proves the same for ; and is.

(iii) We have by part (i) that s; and s4_; are never admissible transpositions for ¢ € G°. Therefore,
by Lemma 5.5, it is enough to check that that statement (iii) holds for the special words b’, which
may be readily done.

(iv) The statement holds for r = 1 by part (ii), since s; is never ¢-admissible, and i; = 0 for
every 1 € G°. Let 1 <r < d—1. If 5, is not 4-admissible, then c;_; ., = —1 by (i). By part (iii),
nbr, (%) = (NSN)*NS for some a > 0. Then nbr, (s,4) = (NSN)*S. But then again by part (iii),
501 ¢ GO.

(v) The existence of w; ; is guaranteed by the definition of G* = Con(z), and we note that -
admissible elements are in bijection with G? since i-admissible elements cannot transpose similar
letters. This proves uniqueness.

(vi) In types Agl) and Egl), it is straightforward to verify that if j < i € I’, then we have s4_1b’ € G,
Thus there exists sd_lbj-admissible u € &4 such that usd_lbj = bi7 so taking w; ; := usq—1 satisfies

the claim. On the other hand, if j > 4, then w;; := wjjil also satisfies the claim. In type Dy), if

i1 < jel' wehave sa—1b’ € G'. Thus there exists sq_1b’-admissible u € &4 such that usg_1b’ = b°,
so taking w; ;j := usq—1 satisfies the claim. On the other hand, if j < ¢, then w; ; := w;l-l must also
satisfy the claim. Uniqueness follows as in the proof of (v), from consideration of the fact that no
similar letters are transposed in this product.

(vii) We may take w; j = w; piw; jwys ; to show existence. Uniqueness follows as in the proof of
(v). _ .

(viii) Let ¢ € G*. Then j :=i4_1 is a neighbor of i = i4 by part (ii). By part (vii), ¢ = w; y;b’ =
w18q_1wab’, where wy is b’-admissible and wy is sq_jwob’-admissible. But (s4—1wabj)g—1 = j and
id—1 = J, so it follows from admissibility of w; that w; fixes the (d — 1)th and dth positions. Thus we
have that w;sg_1 = sq_1w1 and w; is web’-admissible. So s4_1%2 = wiwsb’ € GI. O

Lemma 5.7. Let k be a field. For each i € I', chy Ls; =Y ;cci -

Proof. By Lemmas 5.2 and 5.6(i), there exists a homogeneous irreducible Rs-module with character
> icqi b By Lemmas 5.1 and 5.6(ii), this module must be Ls ;. O

Corollary 5.8. We have that G° is a complete set of semicuspidal words in I°, and so C5 =
Ré/RélnscRé; where lyse = Zielé\cﬁ 1;.

5.2. A spanning set for Cs. For each w € &4, we choose a distinguished reduced expression w =
Spy -+ Sr,. Based on this set of choices, we define, for every w € &,,, an element ¢, = ¥, - - - ¥r, € Rs.
We warn the reader that 1, is dependent on the choice of distinguished reduced expression for w, as
1,’s do not in general satisfy braid relations in Rs, see (2.8). We will see however, that the images of
the elements 1, in Cs5 are well defined.
Recalling the elements of &, defined in Lemma 5.6(v)—(vii), we will write 5 j (resp. v ;) for ¢,

(resp. P, )
Lemma 5.9. The algebra Cs is non-negatively graded. Moreover, in Cs we have:

(i) The elements ., are independent of reduced expression for w for all w € Gg4.

(i) Yrys = s, #)¥r, for all admissible r,t.

Proof. All of these follow from Corollary 5.8 and Lemma 5.6(1). We have 1; = 0 in Cj if 4, = i,.41 for
some 1 <r < d. So there are no generators ¢,1; in negative degrees, hence (i). Part (iii) also follows
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from that observation, together with relation (2.5). Finally, semicuspidal words have no subwords of

the form 4ji, so, by relation (2.8), the images of v’s satisfy braid relations in Cs, hence (ii). O
Lemma 5.10. The following facts hold in Cs:
() y1 ==y

(i) (y1 —ya)* = 0.
(iii) y1 € Z(Cs).

Proof. Assume first that C = Agl). Then d = 2, and so claim (i) is trivial. We have G° = {01} and
110 =0in Cg, hence 0 = 1/)11101/)1 = U)%l()l = :l:(yl - y2)2101 = :l:(yl - y2)2, pI‘OViIlg claim (11) For
(iii), it follows from KLR relations that y; commutes with every generator of Rs except ¢1. However,
in Cs we have ¥1y1 = Y¥1y1101 = l1o¢1y1 = 0, and similarly y1¢7 = 0.

Now let C # Agl). We will use the diagrammatic presentation for Rj, see §2.5. We prove (i) first.
Let @ = Oigiz---iqg € G°. Let 1 < r < d. The following diagram is zero in Cs since, by Corollary 5.8
and Lemma 5.6(ii), all semicuspidal words start with 0, and i, # 0:

0 i2 i3..3r1 iy irgl..ig

We will simplify this diagram using relations. Note that we may ignore strands to the right of 7, and
strands whose colors do not neighbor 4,. Omitting such strands, and recalling from Lemma 5.6(iii)
that nbry () = (NSN)®NS for some a > 0, we have, using the relations in Rs:

N SNNSN---N S NN S N SNNSN---N S NN S N SNNSN---N S NN S
—

L+

1

N S NN SN---N S NN S N SNNSN---N S NN S

+

[\

[~

The first term in the last line involves an (.5, S)-crossing and hence is zero in C5. We may continue
on in this fashion, moving the S strand past N.SN-triples, until we arrive at

N SNNSN---N S NN S

+

The (N, S) crossing opens, giving +(ys — y,)1;, for some s < r. Recalling that the initial diagram
was zero, we have ys1; = y,-1;. Applying induction on r, for every semicuspidal word 4, it follows that
Y1 =" =y4—1 in Cs.

Now we prove (ii). Let @ = Oigiz---iq € G°. Again, this diagram is zero in Cj:

0 i2 ig..%d1 iq
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As in the proof of (i), we omit non-neighbors of 4, and use the fact that nbr,(¢) = (NSN)*NNS
from Lemma 5.6(iii) to write

0 i2 i3..%d1 iq N SNNSN---N S NNN S

HIT -

We then move the S-strand past (VSN)-strands as in the first part, to arrive at

N SNNSN---NSNNN S

Applying the quadratic relation twice yields £ (y: —ya)(ys —ya)1i, for some t < s < d. But yx = ys = 41
by (i), so we have (y1 — yaq)?1; = 0 for all semicuspidal words 4, which implies that (y; — y4)? = 0 in
Cs. O

Lemma 5.11. Letue &y and i =iy ---ig € I°. We have Pul; = 0 in Cs unless:
(i) i € G°, ui € G', and u = wy; 4, in which case deg(1,1;) =0, or;

(ii) i € G°, ui € G’ for some j € I' such that cj;, = —1, and u = wy; 4, in which case
deg(v,1;) = 1.

Proof. The lemma is easily checked in type Agl), since then G? = {01} and ;191 = 0. Suppose we
are not in type Agl) and that ¥, 1; = ey, 1; # 0. Then 4, ui € el by Corollary 5.8. We may write

u = w'w”, where w"” € &4_1 and w’ is a minimal length left coset representative of G4_; in &4. By

Lemma 5. 9() Yy, = Y. By Lemma 5.6(iv), w” must be i-admissible. If w’ = id, then uig = ig4,
deg(t,1;) = 0 and we are in case (i) by the umqueness of Lemma 5.6(v). Let w’ # id. Then for some
r, W = 88441+ 84—1 is a reduced expression for w’. By Lemma 5.9(1), ¥y, = ¥ptri1 - Yag—1wr
in C5. By Lemma 5.6(iv), $ySp41 -+ Sd—2 is Sq—1w”i-admissible. Further, ¢;, ,;, = —1 by Lemma
5.6(ii), so deg(e,1;) = 1, and we are in case (ii) by the uniqueness of Lemma 5.6(vii). O
Given a word i = iy - - -iqg € G°, define
W; = {wj; € 64| j € G for some j such that c;,, # 0}.

Note that by Lemma 5.6(vii) and (viii), W; is in bijection with Ujer e, 170 GI.
Lemma 5.12. Let u € Gy and i € I°. If deg(v,15) > 1, then (y1 — ya)Yuli =0 in Cs.

Proof. By Lemma 5.11, we only need consider the case where i € G® and u € W;. Since deg(t,1;) > 1,
it must be that uz € GJ, where c;;, = —1, s0 (ut)q = j # iq and (ué); =41 = 0. Thus u(1l) =1 and
u(d) < d. By Lemma 5.9(ii), we have (y1 — ya)Yuli = Yu(Y1 — Yuay)1li, but y1 — yy@y = 0 in Cs by
Lemma 5.10(1). O
Proposition 5.13. The following is a spanning set for Cs:

X o= {1 — ya)™Vwls |1 € G°, w € Wi, m+deg(thuwl;) < 1, b € Zxo}.
Proof. By the basis theorem [15, Theorem 2.5] or [25, Theorem 3.7], we have that

ba— .

{0 ya S (1 — )" ls | § € 1% w € Ga, bi € Zzo}
spans Rs. We get the spanning set X by throwing out elements of this set which are known to be
zero or redundant in Cs via Lemmas 5.10, 5.11 and 5.12. g
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5.3. A basis for Cs. To prove linear independence of X, we construct a graded Rs-module which
descends to a faithful Cs-module. For 4,5 € I?, set

k[z,2]/(z?) ifi,5 € G° and iq = jq

Vij =X qk[z,2]/(z) ifi,j€G?and e, , =1

k[z,2]/(1)  otherwise,
where z,x are generators in degree 2, and ¢ stands for a degree shift up by 1. Note that V;; =0
in the ‘otherwise’ cases above—it is presented as is for convenience in defining an action on V. Set
V= @MGIJ Vi j- We will label polynomials f € k[z, z] belonging to the %, j-th component of V' with
subscripts, a la f; j. Recall the signs ¢; ; from §2.4.

Lemma 5.14. The vector space V is a graded Rs-module, with the action of generators defined in
types C # Agl) as follows:

1k fij = Ok,ifij

Yr- fig = (2f = braxf)ij

fsri g if s, is 2-admissible;
fsa_1,g ifr=d—1and ig = jg;

Y- fig = ) ) )
€iq,5a (‘Tf)sd—lixj ifr=d-1andig1= Jd;
0 otherwise.

Ifc= Agl), the action of 1y, y, are as above, but ¥1v =0 for allv e V.

Proof. First we argue that the actions of the generators are well-defined. The only non-obvious case
is the action of .. Let 7,4,j be such that ¢y, ; # 0. We show that ¥,|v, ; : Vij — Vi4j is a
well-defined k-linear homomorphism. Assume first that r < d—1. Then ¥, |y, ; # 0 implies that s, is -
admissible. Since iy = (s,4)4, we either have V; j = Vs, j = k[z, z]/(2?) or V; j = V5,45 = k|2, 7]/ (),
so in either case |y, ; : f + f is well-defined. Assume next that » = d — 1 and iy = jq4. In this
case V; j = k[z,2]/(2?), and by Lemma 5.6(ii), ig—1 is a neighbor of i4, s0 (Sq—1%)q = ia—1 is a
neighbor of jg, and sq—1i € G° by Lemma 5.6(viii), so Vi, _,s; = k[2,2]/(z). Thus ¢¥g_1|v,, : f — f
is well-defined. Finally, assume that » = d — 1 and i4—1 = jq. In this case ¢;, ;, = —1 by Lemma
5.6(ii), so V;; = k[z,z]/(z). Since (sq—1%)q = ja, we have Vi, ,;; = k[z,2]/(2?). Thus the map
Ya-1lv, ;o [ €ig 4,0 f is well-defined.

Now we check that the action satisfies the defining relations of Rs. If C = Agl) then G° = {01}.
Since ’s act as zero on V, the only relation that is not clearly satisfied is (2.6). In this case, for
f € Vb1,01, we have as desired:

Qo1(y1,y2) : (101 : f01,01) = (yl - y2) : ((y2 - yl) : f01,01) = —($2f)01.,01 =0.

Let C # Agl). The relations (2.2), (2.3) and (2.7) are obvious. Since 1j acts as the projection
V- EBJ.615 Vi.j and v, restricts to a map V; ; — Vi 44 for all 4,5 € I%, relation (2.4) is satisfied as
well.

For relation (2.5), we have

0ij(2f — 6r.avf)s, 4.k if s, is j-admissible;
0ij(2f —d0taxf)sy 1jk ifr=d—1,j3 = ka;
8ijCuka (TS — 0tax® sy g fr=d—1,ja_1 = kg;
0 otherwise.

(5.15) Yo (- (Li- fik)) =
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and
5,’7‘7' (Zf — 5srt,dxf>sTj,k if Sy is j—admissible;
0ii(2f —6s,t.axf)sy 14 ifr=d—1,jq=kq;
(5.16) Ur (ot (Li - fim)) = 0§ (2 = 0s,0,a%f)sa_1d.k = ja hai
04,5€jaka(2f = 058,02 f)sy_rje i r=d—1,5a_1 = ka;
0 otherwise.

Since i, # i,41 for every r € [I,d—1] and 4 € G° by Lemma 5.6(i), in order to show that relation (2.5)
is satisfied, we simply must show that (5.15) and (5.16) are equal in every case. First, note that if s,
is j-admissible, then 7 < d — 1 by Lemma 5.6(ii), S0 ds,1,4 = d¢,¢ in this case, and we have equality.
Next, assume that r = d — 1, jg = kq and 0 # fjr € Vj k. Since (sq—14)d = ja—1 # ja by Lemma
5.6(ii), we have that «f =0 € V;, ,jx = k[z,2]/(x), so we have equality in the second case. In the
third case, note that 22 = 0 € Vj; y, for any j, k, so equality holds in this case as well.

For relation (2.6), note that s, is é-admissible if and only if s, is s,i-admissible, so

0i.5f5.5 if s, is gj-admissible;
0i.5€jq_1.ka(@f)je fr=d—1and jq = kq;
(5.17) U (- (L - fj0)) = { odGam () e e
5i,j5jd,kd($f)j,k ifr=d-—1and Jd—1 = kd,
0 otherwise,
and
5i7jfj1k lf thjTJrl = 0,
(5.18) Qivyivir * (Li - fik) = § 03 vga(@f)jpe r=d=1;
0 otherwise,

If s, is j-admissible (and hence c;,_ ; ., = 0), then (5.17) and (5.18) are equal. If » = d — 1 and
ja = ka, then the expressions clearly agree. Note that in every other case, (5.17) and (5.18) are both
zero, since (xf);j r = 0 whenever jq # kq.

Finally, we check relation (2.8). Fix r € [1,d — 2], and write ¢ = $,8,418+ = Sp418rSr+1. I
r < d—2, then

Vrg1 - (r - (rgr - (Li - fi)) = ¥r - (rgr - (¥ - (Li - fik)),
since both terms are equal to 0;;fsjk if ¢j 4.1 = Cj jro = Cjryijrse = 0, and both are zero
otherwise. Now assume r = d — 2, and assume that either ¢g—1 - (Ya—2 - (Ya—1 - (1; - fjk))) or
Ya—2 - (Ya—1 - (Ya—2 - (1; - fjk))) is nonzero. Then we must have Vg, Vyjr # 0. Then, since
j,0j € G, by Lemma 5.6(i), we have that jq_o,54_1,jq are all distinct, and by Lemma 5.6(ii),
Ciyrda = Cja_1jas = —L. Thus ¢¥g_2 - (Ya—1 - (Ya—2- (1;- fjk))) =0, since sq_2 is not j-admissible.
Thus ¥g—1 - (Ya—2 - (Ya—1 - (1; - fjk))) must be nonzero. If j; = kg, then jg_1 # kq, which implies
Jd—2 = (S4—28d—1J)d—1 = ka = ja, a contradiction. Then we must have jq_1 = kg and ¢, ,j, =0, in
which case g1 (Ya—2- (Va—1-(Li- fi k) = 0ij€ju1.ja(@f)oj k- But, since (65)a = ja—2 # ja = ka,
we have that zf = 0 in V,; x, another contradiction. Thus (¢r419¥r¥r41 — YrPrp19r)1; = 0 as an
operator on V. Moreover, j, # j,io for every j € G° by Lemma 5.6(i), so the right side of relation
(2.8) also acts identically as zero on V. O

Theorem 5.19. The set X of Proposition 5.13 is a basis for Cs.
Proof. Note that
{(z")ij 14,5 € G®cipj, = —1,b € Zxo}
U{(z"2™)sj | 1,5 € G°,ia = ja,m € {0,1},b € Zxo}

is a basis for V. The Rs-module V factors through to a Cs-module since 1,scV = 0 by Corollary 5.8.
Letting 4,5 € GO, w € Wy, m + deg(1p,,15) < 1,b € Z>g, we have, by Lemma 5.6(vii),

61')3' (Zb)wiﬂ' if deg(wwli)

= 1'

b m )
yi(yr — ya)"Ywli- 15,5 = .

! 73 61')3' (bem)wi)i if deg(wwli) =0.
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For all w € W;, wi € G°, (wi)g = iq when deg(t,1;) = 0, and (wi)q is a neighbor of iy when
deg(,,1;) = 1. Moreover, wi = ui for w,u € W; if and only if w = u, so the elements of X act on V
as linearly independent operators. Taking into account Proposition 5.13, we deduce that X is a basis
for Cs. |

For each @ € @, and dominant weight A associated to C, there is an important quotient R of
R, called the cyclotomic KLR algebra (see e.g. [2,15]). Of relevance to the discussion at hand is
the level-one case R([;“; it is by definition the quotient of Rs by the two-sided ideal generated by the
elements {yfil’oli | i € I°}. By [16, Lemma 5.1], when k is a field, {Ls; | i € I'} is a full set of
irreducible modules for Rfs\”, so 1l; =01in R?O unless ¢ € G°. So by Corollary 5.8, there is a natural
surjection Cs —» R?O > C5/Csy1Cs.

Lemma 5.20. There is an isomorphism of graded k-algebras Cs = kly1| ® R?”, and R?O, considered
as a subalgebra of Cs, has basis

(5.21) {(y1 — ya)™pwli | i € G°,w € Wi, m + deg(¥u1s) < 1}
Proof. We may construct a map ¢ : RJA“ — Cj via:
11"—)11'; 1/}T’_>1/}T; yrHyr_yl-

All defining relations of R?O are preserved by the map—the only non-obvious relation to check is (2.5),
which follows since y; is central in Cs by Lemma 5.10(iii). Thus ¢ is a well-defined homomorphism
of graded k-algebras which splits the natural surjection Cs — Rf;“. The set (5.21) is clearly in the

image of ¢, so the result follows by Lemmas 5.10, 5.11, 5.12 and Theorem 5.19. O
5.4. Description of the algebra Bs. Recall the signs €; ; from §2.4. Define
1 if ¢ = alV;
£ = €10 Ere—1€0,0 1 C= AE;1>)1;
BRGNS if ¢ = p{Y;
-1 if ¢ = E{".
Then for all other i € I’, define &; such that §£; = —1 whenever c; ; = —1 (this is possible as I' is a
tree). We also define, for all ¢,j € I’ with ¢; ; = —1, the constants
o Eji if&:l;
Fit=Y 1 irg, = 1.

Lemma 5.22. For all i,j € I' with c; j = —1, we have €& = fijfLji-
Proof. This is a direct check, just using the fact that by definition ¢;; = —¢j;. O

Assume for a moment that k is a field. Then {Ls; | ¢ € I'} is a complete set of irreducible Cjs-
modules up to isomorphism and degree shift, Moreover, the orthogonal idempotents {1; | i € G°} in
Cs are primitive, since by Theorem 5.19, the space (1;C51;)o is 1-dimensional. Set

Li=1y (foriel’), la=)_ 1.
il
By Lemma 5.7, we have 1,L5; # 0, and 1;Ls; = 0 for every i # j € I’. So the projective cover As;
of Ls; in Cjs is isomorphic to Cs1;, and
Ag = @A&i ~ (Os51A.
iel’
is a projective generator in Cs-mod. We want to compute the endomorphism algebra
Bs = Endcé (A(;)Op >~ 1ACs1A.

Observe that the definitions of Cs, As, 1a, Bs, Ls,, etc. make sense over an arbitrary commutative
ground ring k. In fact, all our computations below will be done in this generality.
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The following lemma follows from consideration of Theorem 5.19:
Lemma 5.23. Fori,j € I', Homg, (Asi, As,;) = 1,C51; as k-modules, and 1,C51; has k-basis
{y1(y1 —ya)™"1; | b € Zzo,m € {0,1}} if i = j,
and
{y3ij1; | b€ Zxo} if ¢y = —1,
and is zero otherwise.

Recall that T is the Dynkin diagram corresponding to the finite type Cartan matrix C’, so the
vertices of T" are identified with the set I’. The following theorem establishes a Morita equivialence
between the cyclotomic KLR algebra Rf;o and the zigzag algebra Z = Z(T").

Theorem 5.24. Consider 1AR5A“1A as a subalgebra of Cs via Lemma 5.20.
(i) 1AR§°1A has basis
{1 —ya)™ 1 |G €T’,me {01} U{ei 1y |i,j €T, cij =—1}.
(ii) There is an isomorphism of graded algebras
(5.25) @ 1ARMIA 52, 1y er, (y1—ya)li = &Gicei, byl = pyia®™,

Proof. Part (i) follows immediately from Lemma 5.20. For part (ii), let ¢ : 1aR°1a — Z be the
degree zero homogeneous linear isomorphism defined on basis elements as in (5.25). To check that ¢
respects multiplication, observe that elements of the form (y1 —yq4)1; and 1;,1; have degrees 1 and 2

respectively, and both 1 ARJAf’l A and Z are concentrated in degrees 0,1,2. Thus the only non-obvious
check is that @(i;1; - Yrili) = (i ;1i)e(Vril).
Note that by (i), if x € 1AR5A“1A is in degree 2, then 1;x1; = 0 whenever ¢ # j. Thus

Vil Yraly = 85105 5405010 = 85, 16:004,595,i 1.

By Lemma 5.6(vi), w;; = wiSq—1wz for some wy which is bj—admissible, and some w; which is
Sg—1wab’-admissible, and w;; = ngl. Then by Lemma 5.9(i), we may write

Vijli - Prealt = 05800 1%w, Ya—1Puw, o1 Pd—19,, 1 Lie

Since w2_1 is sd,lwflbi—admissible, and wo is wz_lsd,lwflbi—admissible, it follows from relation (2.6)
that 1/)1,121/1“]27115%1“);1 = 1Sd71w;1. Thus we have

Vijli - Yrealt = 0jk0i 10w, Ya—19Pa—19, 1 1.
Since wy 'sq_ 1w 'b' = b, where witis b is bi—_admissible and wy ! is s4_ 1w 'b'-admissible, we have
by Lemma 5.6(ii) that (w; *b")q = i and (w; *b")q_1 = j. Thus by relation (2.6) we have
Vil Yeal = 65 k010w, €5, (Ya—1 — yd)1/)w;11i = 0; 105 1V, €5, (Y1 — yd)zbw;l 1;
= 0;,k0i,165,i(y1 — yd)l/fwﬂ/)w;l 1i = 6, k0:1€5:(y1 — ya)ls.

The second equality follows from Lemma 5.10(i). The third equality follows since w;, being w; 'b'-
admissible, cannot involve s; or s4—1 by Lemma 5.6(ii). The fourth equality follows by admissibility
of wy and w; ', Thus

©(i 1 - Yraly) = &0 ki€ iceq

Now (i ;1) (Y1) = kabIa®!, for some k € k. The zigzag relations imply that this is zero unless
t=1land j=k. So

(Vi 1) e(rilt) = 85x6:1(piga™ ) (jia?*) = 65 k0i 1 pjices
Thus it follows from Lemma 5.22 that ¢(v; ;15 - ¥r,111) = ©(¥i ;1) (Yr,11). O
Corollary 5.26. Let z be an indeterminate in degree 2. We have isomorphisms of graded algebras

Bs = Endg, (As)°? 2 1aC51a 2 kly1] @ 1AR§°1A >k[z]@Z Z;‘H >~ Endg, (As).
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Proof. The first isomorphism is standard. The second isomorphism follows from Lemma 5.20. The
third isomorphism follows from Theorem 5.24. The fourth isomorphism follows from the definition of
73 The fifth isomorphism follows from Lemma 4.11. O

Now, to avoid confusion, we will write v; := 1; for the generating vector of word b in As i = Csl;.
Let vs := Eie]’ v; € Ag.

Corollary 5.27. The k-algebra Ende, (As) is generated by the homomorphisms
e; 1 v — 105, Z 1 Us > Y1vs, ¢i s vs = &y — ya)lvs, aJ :vg = gy ilivs,

where i runs over I' and j runs over all neighbors of i in I, subject only to the same relations as
their namesakes in k[z] ® Z = 739 :

E e; = 1, €;0€; = 5i7j61‘, a"’ o ak’l = j,k(si,lci €L © a*’ = 5i7kal’J,
icl’
cioc; = 0, e;jocj=cjoe; = 5i,jcj; at o Ck =CkO ab) = O, atl o e = 5j,kaz’]a

for all admissible i,j,k,l € I', and z o0 g = go z for all generators g.

Proof. Follows directly from tracing through the isomorphisms of Corollary 5.26. O

6. ON THE HIGHER IMAGINARY STRATUM CATEGORIES

Suppose for a moment that k is a field. It is shown in [20, 22] that the R,s-module A§" =
Ind(;,,,,75(A?") factors through to a projective C,s-module, and A3"™ is a projective generator for Cys
if chark = 0 or chark > n. We will build on the previous section to explicitly describe for all n
the algebra Endc, ,(A$") as the rank n affine zigzag algebra Z°M(T), defined in §4.2, where T is the
finite type Dynkin diagram of type C’. This gives a Morita equivalence between Cps and Z2T when
chark = 0 or chark > n. In fact, our proof that Ende,, (A$") 22 Z2%(I") works over any commutative
until ground ring k.

6.1. Endomorphisms of A$". First we compute the graded dimension of Endg, ;(A3"):

Lemma 6.1. Forn € Z>o we have
n!(l+2(0 —1)q + £g*)"
(1—g¢*) '
Proof. By the Mackey Theorem [15, Proposition 2.18] (see also [20, Theorem 4.3]), the restriction
ReS57,,,751nd57,,,75(ASE") has filtration with n! subquotients all of which are isomorphic to ASZ". But

A?” is projective as a C’t‘?"—module, so these subquotients are in fact summands. So Frobenius
Reciprocity gives

Bude,, (A3") = Homeen (AF", (AF")*) & (Endo, (45)°")°" = ((k[z) © 2)°")°"

dim, Ende, , (A§") =

as k-modules. The result now follows by Lemma 4.2(ii). O
Recalling e;, z, ¢;, a € Ende, (As) from Corollary 5.27, we set ¢ := Y, ¢;. Let & = (i1,...,ipn) €
(I, g € {z,¢,a"} and 1 < r < n. We define endomorphisms
eii=e; 006, gr:=1d°""Vogoid® ™" € Endg ,(A).
Writing
Aji=ANsi0---005,,
we have that A§" = @ie(l’)" A;, and e; is the projection to the summand A;.
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6.2. Twist endomorphisms. We describe one more family of endomorphisms of A§™. Let Ls :=
D, Ls,i. Fori e (I')", we will write L; := L, o---0 Ls;,. As explained in [19], there exists, for
every i,j € I’, a distinguished nonzero degree-zero homomorphism 7% : Ls; o Ls; — Lsj o Ls;. We
will describe this map explicitly later in this section. We have L$? = @i)jel, Ls ;o Ls j, so we may
consider r := Zm—e], r%J as an endomorphism of L$?. More generally, for ¢ € [1,n — 1], we have an
endomorphism r; of L§" given by

= 1d°¢ Yo oige—t=b

It can be seen as in [19, Theorem 4.2.1], that 7y ..., r,_; satisfy Coxeter relations of the symmetric
group &,, and, together with the projections L§" — L;, generate a subalgebra T' of dimension £"n!
in Ende,;(L§") = Endc, ;(L§")o.

The projective C(‘?"—module ASE" surjects onto LSE", which induces a (degree zero) surjection 7 :
A" — L3". For t € [1,n—1], the Coxeter relations imply that r? is the identity function on L$", so 7y
is an isomorphism of L§"™. Since A§" is a projective Cy,s-module, 7 lifts to a surjection 74 : Ag™ — L3".
Then, again by projectivity of A§", 7 lifts to an endomorphism 7, : A§" — A§", as shown in the
commuting diagram below:

on ”A‘t on
A" - L AS

-
-
-
-
™ . ™
LT
1K

Lgn ~ Lgn
Tt

Moreover, since 7 is a degree zero map, we have 7y € Endc, ;(A§™)o. We also have, for every ¢ € (I')",
the projection e; : A§" — A; C A", which lifts the projection L§" — L; C L§" to an element of
Endo,, (A5")o.

Lemma 6.2. We have:

(i) Every element of T C Endc,, (L") may be lifted to an element of Endc, ,(A§™)o, and this
lift is unique.
(ii) The elements 71,. .., n—1 satisfy the Cozeter relations of &,,.

Proof. By the above paragraph, we have the endomorphisms {71,...,7,—1}, and {e; | ¢ € (I")"}
in Ende,, (A3")o, which lift the generators of 7. Thus every element of 7' may be lifted to an
element of Endc, ,(A§")o. But T has a basis which lifts to give ¢”n! linearly independent elements
in Ende, ;(A$")o, so by Lemma 6.1, this constitutes a basis for Endc, , (A§™)o. It follows that lifts of
elements of T' to Endc, , (A§™)o must be unique. Part (ii) follows from (i) and the fact that ri,..., 7,1
satisfy Coxeter relations. O

Let 0,0’ € Ras be the following products of ¢’s, displayed diagrammatically:

1 2 ... d dtl df2 ... 24 2 ... d dfl dt2 ... 24

1
/
;e , g;_‘>€§<

The labels in this case only indicate strand position and are not meant to color the strands.

In order to understand the multiplicative structure of Endc, ,(A§"), we will need to describe the
maps 7; more explicitly and examine commutation relations between these maps and the others
detailed in §6.1. The following two lemmas are steps in this direction. Their proofs are straightforward
but rather lengthy exercises in manipulating KLR diagrams. For this reason we defer the proofs until
87.

The generators v; € As,; introduced in §5.4, yield generators

Vi = Vjq,.. =1® Vi, @ Qu;, € A; = Ind57,,,,5(A5,i1 X...-X Aé,in)a

')i7l
for i = (i1,...,in) € (I')™. The elements a ® b for a,b € Ry are interpreted as elements of Ras via the
parabolic embedding Rs ® Rs— Ras. With this notation we have:
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Lemma 6.3. Leti,j € I'. In As; o Asj, we have
ilya®1+1® (ya — 2y1)Jvis if i = j;

o'vij = 1 &igij (Y, © Vi j)vi g if cij =—1;
0 otherwise.
Lemma 6.4. Leti,j,m € I' with ¢;; = —1. In As 0 As,;i, we have

()i @1)0Ums = [0(1 @ 9j4) + 05,m& (1 @ 1)) — 6im&i (V)i © 1)|vm, i

Now we briefly describe the construction of the map 7%/, presented in [14,19]. It is recommended
that the interested reader consult that paper for a thorough treatment. If z is an indeterminate in
degree 2, let ¢ : Rs — k[z] ® Rs be the algebra homomorphism defined by ¢(1;) = 1;, t(3r) = 9y, and

(yr) = yr + . Let Ls; o := k[z] ® Ls,; be the k[z] ® Rs-module with action twisted by ¢. We may
perform the same construction with another indeterminate 2/, and con51der the k[z, 2] ® Ras-modules

Ls20Ls j4r and Ls j 0 Ls ; . There is a nonzero homomorphlsm 72 Ly 20Ls jor — Lsja0Lsiq
defined in terms of certain intertwining elements of Rys. Then %7 is equal to

o Nes i
(6.5) rod=[(z — ") Sr;fm,]m:zlzo,

where s is maximal such that r7 (L(; iz 0 Lsja) C(x—a")Lsja 0 Lsa
For any i € I’, let v; € L(;_,Z be the image of v; in the quotient As; — Ls,;. Writing v;; for
1®0; ®v; € Ls; 0 Ls ;, it can be seen as in [19, Proposition 8.2.1] that

(66) r;ﬂ x’! (,DZ»]) = (‘T - xl)ﬁo-’vjﬂl + (‘T - ),i 10—1?}]717
_d d o
where k=371 3y 5b;,bg-
Lemma 6.7. Fort € [1,n — 1], the homomorphism 7+ € Endc, ;(AS™) satisfies
ft(v'i) = (1® : ®1®(U + 5it,it+1§it)®1® o '®1)v5ti7
where (o + 8;,.5,,,&,) is inserted in the (t,t + 1)th slots, for all i € (I')".

Proof. Let i,5 € I'. All y's and 1’s of positive degree act as zero on Ls; and L ; since these modules
are concentrated in degree zero. So by Lemma 6.3, we have 0’7, ; = 0; j&;(x — 2')7;,;. Thus, (6.5) and
(6.6) give rid (Vi;) = (0 + &0 )V

It may be seen via Theorem 5.19 and word/degree considerations that (1yip As ;0 As;)o has basis
{vii,ov;;} if i = j, and {ov;;} if ¢ # j. Thus Lemma 6.2(i) implies that 7 (v; ;) = (0 + i ;& )V}
The result for general n follows from this case.
6.3. Commutation relations in Endc,,,(A$™). Now we examine commutation relations between
elements of Endg,,;(A3™). We will use the following generator of Ag™:

V5.6 =1lQUs®---Qus = Z Vi -
ie(l)m

Lemma 6.8. The following relations hold in Endc, ;(AS"):

(6.9) Pt 0 €; = €54 0T,
6.10 Froabd — a o 7t)oe; =0,
u s¢(u)
(6.11) (7t 0 €y = Cgy(u) 0 Tt) 0 €5 = 0,
(Out = Out1)(ce + Ci41) 0 €5 if iy = d¢415
(6.12) (Pt 0 2u — Zs,(u) © Tt) © €5 = § (Out — Ou,p41)0y it15de azlllt“ oe; ifci i, =—1
0 otherwise,

forallt € [l,n—1],uwe[l,n], and ¢ € (I')".
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Proof. Tt is enough to check these relations in the case n = 2. We note that (6.9) holds by construction
of the map 7. For ¢,j,m € I’ such that ¢; ; = —1, we have
P10a77 0 €5 (v55) = (V5.6 @ 1)(0 + 8im&i)vm,i = (0 + 85,m&) (1 ® 5 vmsi
= a;’j of10 ejym(vgﬁg),
where Lemma 6.7 has been applied for the first equality and Lemma 6.4 has been applied for the

second equality. Thus (6.10) holds when u = 1. Since 7 = 1, the claim also holds for u = 2,
completing the proof of (6.10).

The relation (6.11) follows from (6.10) when C # Agl) since ¢; may be expressed in terms of a?’s.
When C = Agl), we have
frocioenn(vss) = [(y1 —y2) ®1](0 + 1)v1
cgorioern(vss) = (0 + 1)1 ® (y1 — y2)lvia.

The equality of these expressions is easily verified by direct application of KLR relations.
For relation (6.12), we have

(Fro210€ji —z20f10€5)(vs,5) = [(y1 ® 1)(0 + 8:,3§5) — (0 + 6i,;&) (1 @ y1)]vi
=[o(l®y1) — 0" +0:;8 1 ® 1) — (0 +6i,3&) (1 @ y1)]vi
=[—0" +6:;&(y1 ® 1) — 65,38 (1 @ y1)]vi
after applying KLR relation (2.5) to write (y1 ® 1)olpipi = (0(1 @ y1) — ') 1pips-
Therefore, when ¢ = j, we have by Lemma 6.3 that
(71021 0€j,—22 071 0€5;)(vs,5)
=&i[-Wa®1) = (1@ (ya—2y1)) + (11 ® 1) = (L@ y1)]vis
=&[((y1 —wa) ®1) + (1@ (y1 — ya))]vii
= (c1 4 c2) oe4(v5,5)
On the other hand, if ¢; ; = —1, then Lemma 6.3 gives us
(froz10eji—2z2071 0e5)(vss) = —&i€ij (V)i @i j)vij = &igji(Vji @ Pij)vij
= (i (1 ® 3,)][p5(5.6 @ D]viy = a7 0 af’ o ei(vs.5),
applying Lemma 5.22 for the third equality. The case c; ; = 0 follows immediately from Lemma 6.3.
Thus relation (6.12) holds for v = 1, and the case u = 2 follows from (6.9), (6.10) and (6.11). O

Now we define some convenient notation for elements of Endc,,,(A§"). For w = sy, - - 8¢, € Gy,
define 7, := 74, 0- - -0y, € Endg, , (A")o. By Lemma 6.2(ii) this definition is independent of reduced
expression for w. For t € Z%, and u € {0, 1}", we set

2= 2o 0200, =" oot
For i,j € I', we say i and j are connected if i = j or ¢; ; = —1. We say ¢,j € (I')"™ are connected if

i, and j, are connected for all 7 € [1,n]. For connected 4,5 € I’ and r € [1,n], let 4% € Endc, , (AS")
be defined

Wi if s s = —1:
Gid o ) if ¢;; =—1;
" id ifi=j.

For connected 4,5 € (I')", set
a* :=a" " o oapIn,
Lemma 6.13. The algebra Endc, ,(A$™) has basis
(6.14) {zt o 0aI oy, 064},
ranging over w € &y, t € 7%, 4,5 € (I')" such that i and wj are connected, and w € {0,1}" such
that w, =0 if iy # (WF)y.
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Proof. First, we argue that the elements of (6.14) are linearly independent. This argument proceeds
along similar lines to the proof of [19, Theorem 4.2.1].

.....

KLR basis theorem [15, Theorem 2.5], A§™ has k-basis {¢,,v}, where w € .@,?fi“)d, and v ranges over

basis elements for A?”.
For w € &,,, define the block permutation bl(w) € &,,4 by

bl(w)(a) = w([a/d])d + (¢ — 1 mod d) — d + 1.
Diagrammatically speaking, bl(w) is achieved by replacing each strand of the diagram of w by d
parallel strands. E.g., bl(s1) = 0 € Gaq.
Let j € (I)", and assume w = sy, - - - 8y, . Then, by the definition of #,,, we have
P (V) = (Poi(s,,,) +Em) -+ (Yoigs,,) T K1)Vwjs
for some constants K1, ..., Ky € k. Recombining terms, this may be written in turn as
Ubl(w-1)Vwj + (%),

where (x) is a k-linear combination of terms of the form ), v, where v € ASE", and w' € @é‘)‘f”d is
such that £(w’) < £(bl(w™h)).
Then, considering the action of an element of (6.14) on A$™, we have

ztoctoab oy 0ej(vs.. 5) =

Vo1 (Y1 (Y1 = Ya)“ Ywgyrin @ @ Y (Y1 — Ya) " Ywgynin Vi + (%),
where (%) is again a k-linear combination of terms of the form v, where v € A?”, and w’ € @gfl”’d

is such that £(w’) < £(bl(w™')). Thus, by Lemma 5.23 and induction on the word length of w, it can
be shown that the elements (6.14) form a linearly independent set of endomorphisms. Now, comparing
graded dimension of the set (6.14) with Lemma 6.1 proves the result. O

Theorem 6.13 has the immediate corollary:
Corollary 6.15. The algebra Endc, ,(AS™) is generated by the homomorphisms
{eilie ()"} U {cr,2r,a |r €[l,n], 4,5 €I’ withc;j =—1} U {# |t€[l,n—1]}.

6.4. Proof of the Main Theorem. Now we prove the main result of the paper (which appears as
Theorem A in the introductory section):

Theorem 6.16. The map ¢ : Z*7(C') — Endc, , (AS"), defined on generators by

e; — e;, ai’j — ai’j, ct > Cy, Sy > T, 2t > 2,
forallt € 1,n], w e [I,n—1], 4 € (I, and i,j € I' such that c;; = —1, is an isomorphism of
graded k-algebras.

Proof. By Corollary 5.27, Lemma 6.2(ii), and Lemma 6.8, the images of the generators obey the defin-
ing relations of ZZH as presented in Lemma 4.9. Hence ¢ defines a graded k-algebra homomorphism.
Moreover, ¢ surjects onto the generators of Ende,,;(A3") by Corollary 6.15, so it follows that ¢ is an
isomorphism by comparison of the graded dimensions in Lemma 4.10 and Lemma 6.1. 0

Corollary 6.17. If k is a field of characteristic p = 0 or p > n, then By is Morita equivalent to
27 (c).

Proof. In this situation the module A§™ is a projective generator for B,s, see [20, Lemma 6.22], so
B,,s is Morita equivalent to Endc,, (AS™)°P 22 (Z21)°P. Then the result follows by Lemma 4.11. [
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7. APPENDIX

This section is devoted to proving Lemmas 6.3 and 6.4, which are crucial in determining the
commutation relations among generating endomorphisms of A$™. In all cases, the approach to proving
these lemmas is similar:

(i) Every element of As; o As ; should be written as a linear combination of terms of the form
Y (T1 @x2)v; 5, where 1, 2 € Rs, and w is a minimal left coset representative for Sqq/& g %
&,4. Diagrammatically speaking, this is a matter of moving beads, and crossings of strands
which originate from the same side, to the top of the diagram by applying KLR relations.

(ii) Once all terms are rewritten as in (i), use Lemmas 5.9 through 5.12 to simplify the expressions
(x1 ® x2)v;, j, rewriting these elements of A ;KA ; in the form of the basis in Theorem 5.19.

We have written a Sage program which performs steps (i) and (ii), and have used this algorithm
to verify Lemmas 6.3 and 6.4 in the exceptional cases of type E( ). This program is available upon

request. In the following proofs we assume C is of type A(l) or D(l).

Lemma 6.3. Leti,j € I', and recall that v; j is a generator for As; o As ;. Then we have
ilya®1+1® (ya — 2y1)Jvis  if i = j;
0'vi; = &g (P © Pij)vi g ifeij=—1;
0 otherwise.

Proof. Casei=j,C= A(l). If ¢ = 1, the result is easily checked. Assume ¢ > 2. We depict o’v;
diagrammatically, where v; ; is conceived to be at the top of the diagram:

We now move crossings up, when possible, to act on the individual factors A;s;, and use Lemmas 5.6

1 0 1
and 5.11 to recognize when these terms are zero. Applying the braid relation to the 3L braid,
1 01
we see that the >335 term allows for the (0, 1)-crossing to move up to act on As; as zero, leaving

only the remainder term &g i ? i . This behavior will occur frequently enough that we will merely
say that the (i,7 + 1,4)-braid ‘opens’. Indeed, the (1,0,1)- through (i — 1,4 — 2,7 — 1)-braids open in
succession, giving:

0 1--vi—1p¢..i+l i 0 1.-.i—=1 ¢ ...i+1 4 0 ¢ i+l i 0 1 ...i—1 g .. il 4

T €i—2,i—1 1 78i—2,9—1%i42,i+1 "~ €£,£—-1°0,¢

[
H

after the (¢,0,¢)-braid opeuns, followed by the (¢ — 1,¢,¢ — 1)- through (i + 2,4 + 1,7 4+ 2)-braids in
succession. Now, applying the (7,7 + 1,¢)-braid relation, this is equal to

1...i—=1¢ ...+l 45 0 1 ...-—1 ¢ ...941 4 0 =1 . .41 4 0 1 ...i—1 g .. i1 4

H\ (x|

17 €§—2,4—-1%i42,i4+1" """ €£,L—150,¢ €01 8i—2,i—1%i+41,i%i42,i4+1 """ €¢,£—10,¢

i ‘
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In the left term in (7.1), the (i,i — 1,4)-braid opens, introducing an (i + 1,7)-double crossing, which
opens to give
=&l ® (Ya—1 — ya)lvii = —&[1 ® (y1 — ya)lvii-
In the right term in (7.1), the (é,7 — 1)-double crossing opens to give
Eilvya®1 =1 ylvi; =&ya®1 — 1@ yi1]vi,
proving the claim.

Casei=j,C= Dél), 1<i<{¢—2. We depict 0’v; ; diagrammatically:

0 2. 820-1 0 62 . il 1 ... 5 0 2...0-20-1 g L2 ..l 1 ... 4

We begin dragging the 0-strand to the right to simplify the diagram. The (2,0, 2)-braid opens, followed
by the (3,2, 3)- through (¢ —1,¢—2,¢— 1)-braids in succession. Then the (£ —2,¢, £ — 2)-braid opens,
followed by the (¢ — 3,¢ —2,¢ — 3)- through (i 4+ 1,7+ 2,¢ + 1)-braids in succession, giving (excluding
straight strands on the left):

2. . .41 1 2...1-1 4 0 2...420-1 p £2. .. 1 2 ...1-1 4

(=1 FPegaeng - i ip150 0,01

Now the (£—2,¢—1)-double crossing opens, introducing a ({—2, {—3, {—2)-braid which opens, followed
by a (£ —2,¢—3)-double crossing which opens. This sequence repeats until the (i+ 2,7+ 1,7+ 2)-braid
opens, followed by (i 4+ 2,4 + 1)-double crossing which opens. Finally, the (i 4+ 1,4,7 + 1)-braid opens,
giving:

1 2...%1 4 0 2...%—1 4 #l. .. £—20-1 ¢ £2.. .1 1 2 ...1-1 4

(—1fte

€02€23 """ €i—1,i

Now the central (i — 1,4,% — 1)- through (1,2, 1)-braids open in succession, and then (i — 2,4 — 1)-
through (1,2)-double crossings open in succession. Then the (2,0,2)-braid opens, followed by the
(3,2, 3)- through (i — 1,7 — 2,4 — 1)-braids opening in succession, giving (omitting straight strands on
the left):

i 0 2...1—1 5 1l .. 201 g 2. ..l 1 2 ...i—1 4

(—1ytHitl
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Now, applying the braid relation to the (i,i -1, i)-braid gives

2 ..l g L6201 p 2. i 1 2. 2.l g il 620-1 p 2. i 1 2 ...i-1 4
(—1)t+i+l (—nttitle,

In the term on the left, the (i, +1,4)-braid opens, introducing (i — 1, 4)- and (¢, %+ 1)-double crossings
which open, finally introducing an (4,7 — 1,7)-braid which opens, giving
(D1 ® (Ya-1 — ya)Jvii = (=) 1@ (11 — ya)]via
In the term on the right, the (i, — 1)-double crossing opens, followed by an (i, + 1)-crossing opening,
finally introducing an (i,7 — 1,4)-braid which opens, giving
(=) ya® 1 - 1@ yi]ois,

proving the statement.

Casei=7j,C= D@l), 1 =4{,0 — 1. We’ll check the i = ¢ case, the other case being similar. We depict
o'v;; diagrammatically:

0 2...6-20-11 2...0624 0 2...620-11 2...6-2

As in the last case, we begin by pulling the 0-strand to the right. The (2,0, 2)-braid opens, then the
(3,2,3)- through (¢ — 1,¢ — 2,¢ — 1)-braids open in succession, giving (omitting straight strands on
the left):

1 2...4629¢ 0 2...4620-11 2...¢ 299 0 2...0620-1 1 2.
£02€23 " Eg—2,0—1 TE028¢—2,6—1

after the (1,2,1)-braid opens, followed by the (2,1,2)- through (¢ —2,¢ — ¢ — 3,¢ — 2)-braids. Now
the (2, 3)- through (¢ — 2,¢ — 1)-braids open in succession. Then (2, 0, 2)-braid opens, followed by the
(3,2,3)- through (¢ —2,¢ — 3,¢ — 2)- braids in succession, giving (omitting straight strands on the
left):

20-1 1 2 ...¢ 2 ... 0—20—1 1 2. 2 ... 0—20—1 1 2.
Tfr—2,¢

after applying the braid relation to the (¢, —2, E)—braid. In the left term, the (¢, ¢ — 2, ¢)-braid opens,
then the (¢ — 2, ¢)-double crossing opens, giving

~(1® (ya-1 — ya))vii = —(1 @ (y1 — ya))vii-
In the right term, the (¢, ¢ — 2)-double crossing opens, giving

(Ya @1 =1 yr—2)vii = (Ya®1 — 1R y1)vi,

proving the claim in this case.
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Casec;;=—-1,C= Aél). We have j =i+1or j =i—1. We will prove the statement in the former

case; the latter is similar. We write o'v; ; diagrammatically:

0 o 1...+—1¢... 3 4 0 1..-.2+—14 ¢... 3]
after the (1,0, 1)- through (i,7 — 1,4)-braids open in succession. Now the (¢, 0, ¢)-braid opens, followed
by the (¢ —1,¢,¢—1)- through (4, j + 1, j)-braids in succession, giving &;e;;(1;,: ® ¥ ;)vi, ;, as desired.

Case ¢; ; = —1, CzDél)7 1<i,j<f—2. We have j =i+ 1or j =i—1. We will prove the
statement in the former case; the latter is similar. We write o’v; ; diagrammatically:

1=l g .o d i 0 1..—14 g...34

€01 €i—1,i

0 2...6-20-1 ¢ 62 .. 35 1...4 0 2...6-20-1 p £-2...54 1 ... 3j

Dragging the 0-strand to the right, the (2,0, 2)-braid opens, then the (3, 2, 3)- through (/—1,¢—2,¢—1)-
braids open in succession. Then (¢, {—2, £)- and ({—2, ¢, {—2)-braids open, followed by ({—3, (-2, {—2)-
through (j + 1,7 + 2, j + 1)-braids opening in succession. This gives (omitting straight strands on the
left):

2. ..+ 5 1... 4 0 2...6-20-1 ¢ 2. .. 5+ 1 ... J

141
(71)£+z+ €02€23 """ €i41,i4280—2,£4—1

Now the (£ —2,¢ —1)-double crossing opens. The (£ —2,¢ — 3, ¢ — 2)-braid opens, which introduces an
(¢ — 2,¢ — 3)-double crossing which opens. This sequence repeats, until the (j 4+ 2,7 + 1,5 + 1)-braid
opens, introducing a (j + 2, j 4 1)-double crossing which opens. Finally, a (j + 1, 7, j + 1)-braid opens,
giving (omitting straight strands on the left):

j 1 2...+—-14 0 2...+=1 4 F jH... 201 g £-2...541 1 2...%—=1 3 J

(—1yttit+l

€02€23 """ 4,041

Now the (i, j,i)-braid opens, and then the (i — 1,4,7 — 1)-through (1,2, 1)-braids open in succession.
Finally, the (4,7 + 1, j)-braid opens, giving:

j 1 2...+—-14 0 2...%=1 4 g jH... =201 g £-2...541 1 2...:—=1 3 J
(- iegae1aeiqa it
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Now the (4, j 4+ 1)-double crossing opens, followed by the (i — 1,7)- through (1, 2)-double crossings in
succession, giving (omitting strands on the right):

j 1 2...+14 0 2...4=1 4 JF jH... 6201 ¢ £—2.. .54+ 1 2...%=1 5 J

i+1
() H egoenge; 15

Now the (2,0,2)-braid opeuns, followed by the (3,2,3)- through (4,4, j)-braids in succession, giving
(—1)Z+i+161‘7i+1(¢j71‘ X ¢i7j)vi7j, as desired.

Casec;;=—-1,C= Dgl), {—2<1,j <L We will check the case i = ¢ — 2, j = £. The other cases
are similar. We write o’v; ; diagrammatically:

Dragging the 0O-strand to the right, the (2,0, 2)-braid opens, then the (3, 2, 3)- through (/—1,£—2,¢—1)-
braids open in succession. The (¢ —3,¢—2,¢—2)-braid opens, and then the (£ —4,¢—3,{—4)- through
(1,2, 1)—braids open in succession, giving (omitting straight strands on the left):

=302 (9 2 ...4-30-20—1 1 2 ...0-30—2 ¢ =302 (0 2 ...4-30-20—1 1 2 ...0-30-2 ¢
TE02€128¢—-2,£—1 —€r—2,0-1

after the (¢ —4,¢— 3)- through (1, 2)-double crossings open in succession, followed by the (2,0, 2)- and
(3,2,3)- through (¢ — 3,¢ — 4, ¢ — 3)-braids opening in succession. Now the (£ — 2, ¢ — 3, ¢ — 2)-braid
opens, introducing an (¢ — 2, ¢ — 1)-double crossing which opens, followed by (¢ — 2,¢ — 3,¢ — 2)- and
(¢, £ — 2, ¢)-braids opening, which gives —e;;(1;,; ® 1; ;)v;,;, as desired.

Case c; j = 0, all types. By the usual manipulations of KLR elements (cf. [3, §2.6]), we may write

o'v; j as a sum of terms of the form 1lpipithy(z; ® ;), where z; € As; and z; € Asj, and w <o’
(where we consider ¢’ as an element of Go,4) is a minimal left coset representative for Gqq/Gy X Sy
Since (bjbi)l = (bjbi)d_H = 0 and i1 = 0 for every word ¢ of A;; and Ay ;, it follows that w = id.
But 1;A;; = 0 by Lemma 5.23, so ¢’v; ; = 0. O

Lemma 6.4. Let i,5,m € I' with c; ; = —1. Then we have
(Y5, ® 1)Uvmz' =[o(1®vj:) +6;,m& (1 ®Yj:) — 6im&i(¥),i ® 1)]vm s

Proof. Case m =j,C= Ae Since ¢ and j are neighbors, either j =i —1 or j =i+ 1. We will prove

the claim in the former case; the latter is similar. We depict (¢;; ® 1)ov;; diagrammatically:

i J 0 1--9-17 €. £--- i J 0 1...3-13 ¢.

e
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Applying the braid relation to the (i, j,¢)-braid, we have o(1 ® ¢;;)v;,i, plus the error term:

0 1. G=lg..itl i § 0 1.-9=135 ¢...41 4

€5

the (i,i+ 1,7)- through (¢,¢ — 1,¢)-braids open in succession, giving

o 1.--Jd=leg... 4 3 0 1.-.-d-13 ¢... 4 cee i J 0 1=l e i
€i—1,i€i+1,i """ €L0—1 €i—1,i%i4+1,5" " €£,£—150,

after the (0, ¢, 0)-braid opens. Now, the (1,0, 1)- through (4,7 — 1, j)-braids open in succession, giving
§J(1 (24 d)j,i)vj,ia as desired.
Casem =1, C= Aél). We show that the claim holds in the case i = j + 1; the case ¢+ = j — 1 is

similar. We depict (¢;; ® 1)ov; ; diagrammatically:

1--J-1J3 ¢- i 1-.0-17 ¢. i 1--J-1J3 ¢- i 1--0-173 ¢. i

Y

Applying the braid relation to the (i, j,¢)-braid, we get o(1 ® 9;;)v;; plus the error term:

1..9-1j ¢...4l ¢ 0 1..J-1J ¢...i41 4

%ﬂ

For this term, the (i + 1,¢,7 + 1)- through (¢,¢ — 1, ¢)-braids open, giving

0o 1--J=1j ¢--- i 0 1..J-13 ¢... 4 0o 1--J-1Jj 2. i 1--0-173 ¢. i
€i—1,i%i+1,i " €L,0—1 €i—1,i€i4+1,5 " €L,0—1€0,¢

after the (0, ¢, 0)-braid opens. Now the (1,0, 1)- through (j, 7 — 1, j)-braids open in succession, giving
—51 (ﬂJjJ' (24 l)viyi, as desired.

Case m=j,C= Dél), 1<4,j <¢—2. We check that (6.4) holds in the case j = i + 1. The case
j =14 — 1 is similar. We depict (¢;; ® 1)ov;,; diagrammatically, with v;; at the top of the diagram:

0 2. 0201 g 62 .41 1 2...0—1; j 0 2...626-1 ¢ £2...5+1 5 1 2...i—1;

>3-
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The j-strand moves past the first (7, 7)-crossing, as the open term in the (¢, j,7)-braid relation is zero.
This gives

0 2. 6201 g 62 .41 1 2...0—1 4 j
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Applying the braid relation to the (4, j, ¢)-braid, we have o(1 ® v;,:)v; j, plus a remainder term. Now
we simplify the remainder term. The (3, j,¢)-braid opens, followed by the (i — 1,4,4 — 1)- through
(1,2, 1)-braids opening in succession. This gives

0 2. 0201 g 62 .41 1 2...0—1; j 0 2...626-1 ¢ £2..5+1 5 1 2...i—1;

Now the (2,1, 2)- and (0, 2, 0)-braids open, followed by the (3,2, 3)- through (¢ —1,£—2,£— 1)-braids
and the (¢,¢ — 2, ¢)-braid, giving

0 2...62061 p 2. ..5411 2...i—14 J 0 2...261 p ¢2...541 5 1 2...i—1 4

€02%5,j+1 """ fL—2,4—-1°¢—2,¢

Now the (¢ — 2,¢,¢ — 2)-braid opeuns, followed by the (£ — 3,¢ — 2, ¢ — 3)- through (j,j + 1, j)-braids
opening in succession, giving

0 2...62061 ¢ 62...5+11 2...4—14 3 0 2...6261 ¢ £2...5+41 35 1 2...i—1 4

Lk 3

(0t egpep 5 g

Now the (¢ —2,¢— 1)-double crossing opens. Then the (¢ —2,¢ — 3, ¢ — 2)-braid opens, followed by the
(¢ — 3,¢—2)-double crossing. This pattern repeats until the (j 4+ 2,5 + 1,7 + 2)-braid opens, followed
by the (j + 1,7 + 2)-double crossing. Then the (5 + 1,7,j + 1)-braid opens, which gives (omitting
strands outside the central area)

1 2

after the (2, 3)- through (j, j + 1)-double crossings open. Now the (2,0, 2)-crossing opens, followed by
the (3,2, 3)- through (4,7 — 1, j)-braids, giving (—1)*"+1(1 ® ¥ ;)v;.;, as desired.

1 2..di—14 j 0 2...-1 i § FHH2 o=l G o0 2...i1 4§ A2

(—1)t+it+1

(—1)f+it+1

€02€4,j+1 €02€23 * €51,
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Casem=j,C= Dél), {—2<1,j <L We check that the claim holds in the case i = ¢ — 2,5 = /.
The other cases are similar. We depict (¢;; ® 1)ov;,; diagrammatically:

0 2...6-11...62¢p 0 2...¢ 1...2

The ¢-strand moves past the first (£ — 2, ¢ — 2)-crossing, and applying the braid relation to the next
(£ —2,¢,¢ — 2)-braid gives (1 ® 1y ¢_2)ve¢—2 plus an error term:

0 2...4-11...62¢ 0 2...4¢ 1...£-36—2

€0, 0—2
Now the (¢ —3,¢ — 2,¢ — 3)- through (1,2, 1)-braids open in succession. Then the (2,1, 2)-braid and
(0,2, 0)-braids open, followed by the (3,2, 3)- through (¢ —1,¢ —2,¢— 1)-braids opening in succession,
giving:

Lo—-11 2...62¢p 0 2...6-1 ¢ 1...42

)=

T€0,280—-2,6—1%¢,£4—2

0

Now the (2, 3)- through (¢ — 2, ¢ — 1)-double crossings open, introducing a (2,0, 2)-braid, which opens.
Then the (3,2, 3)- through (¢ —2,¢— 3, ¢ —2)-braids open, followed by a (£, ¢ — 2, £)-braid which opens,
giving &,(1 ® g ¢—2)ve 2, as desired.

Casem =1i,C= Dgl), 1 <i,57 <{f—2. We show that the claim holds in the case i = j 4 1; the case
i =j — 1 is similar. We depict (¢;; ® 1)ov;; diagrammatically:

0 2...¢462 ..+ 1...4 0 2.-.. 42 .41 1... 4

Now the (i + 1)-strand moves up to the right past the first (i,¢)-crossing. Applying the braid relation
to the next (4,7 + 1,4)-braid gives (1 ® 9;;)ov; 4, plus a remainder term:

0 2 v 062 il 1 ..iml 4 0 2. 0 =2 .. i 1 ...l 4

Dragging the i-strand to the left, the (i — 1,4, — 1)- through (1,2,1)-braids open in succession,
followed by the (2, 1,2)- and (0, 2,0)-braids. Then the (3,2, 3)- through (¢ —1,¢—2,¢— 1)-braids open
in succession, followed by the (¢,¢ — 2, ¢)-braid, giving (omitting straight strands outside the central
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area):

€02%i4+1,i4+2 """ CL—2£—-1%¢—2,¢

Now the (2,3)- through (i, + 1)-double crossings open, introducing a (2,0, 2)-braid which opens,
followed by (3,2, 3)- through (4,7 — 1, 4)-braids which open, giving:

2 ..l 1 2...+—1 4 0 2...+—1 4 i+l .. g 2. .. 21 2. .21 1 ... 4 0 2...6-1

e e 4

€it2,i+1 " €6—2,6-3 (-1, s i1ep 041

after the (£—2, ¢, ¢ —2)-braid opens, followed by the (£/—3,¢—2,¢—3)-through (i+1,i+2,7+ 1)-braids
in succession. Now the (£ —2, ¢)-double crossing opens. The (£—2,¢—3,¢—2)-braid opens, followed by
an (¢ —2,¢— 3)-double crossing which opens. This sequence repeats until the (i + 2,7+ 1,4+ 2)-braid
opens, followed by an (i + 2,7 + 1)-double crossing which opens. Finally, the (i 4+ 1,4,7 + 1)-braid
opens, giving —&; (¥, ® 1)v;;, as desired.

Case m =1, C= Dgl), {—2<1i,7 </l We show that the claim holds in the case i = ¢ — 2,5 = ¢;
the other cases are similar. We depict (¢;; ® 1)ov;; diagrammatically:

0 2...6~1¢ 1...620 2...6=1 ¢ 1...£-2

The ¢-strand moves up past the first (¢ — 2, ¢ — 2)-crossing. Applying the braid relation to the next
(£ —2,¢,¢ — 2)-braid gives o(1 ® Vg ¢_2)v¢—_2,¢—2, plus an error term:

0 2...4-1y¢ 1...6-3-209 2...-1 ¢ 1 ...0-30—2

—=|

€e,0—2
Now we simplify this error term. The (¢ — 3,¢ — 2, ¢ — 3)- through (1,2, 1)-braids open in succession,
giving (omitting straight strands to the right):

0 2...6-1y¢ 1...6-3-20 2...0-1 =1 y¢ 1 2...420 2...4-1y¢

4 0o 2-
€12 f00—2 TE0280—2,0—150,0—2
after the (2,1, 2)- and (0, 2, 0)-braids open, followed by the (3,2, 3)- through (¢ — 1,¢— 2, ¢ — 1)-braids
opening in succession. Now, the (2,3)- through (¢ — 2,¢ — 1)-braids open in succession. Then the
(2,0,2)- braid opens, followed by the (3,2, 3)- through (¢ —2,¢— 3, ¢ —2)-braids opening in succession.
Finally the (¢,¢ — 2,£)-braid opens, giving (¢ ¢—2 ® 1)vs_2 ¢—_2, as desired.
Case j # m # i, all types. We may write

(V5,0 @ 1)oUmi = 0(1 @ Yj,i)vm,i + (%),
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where (%) is a linear combination of terms of the form 1p;pm )y (21 ® 22), where 21 € Agm, T2 € A,
and w < o is a minimal left coset representative for Goq/S4 X &4. As in the similar case in Lemma
6.3, it follows that 1, = 1. Thus z; is a vector of word b’ and x5 is a vector of word b™. Hence by
Lemma 5.23, it follows that () is zero unless m neighbors both j and 7. But since 7 neighbors j by
assumption, this cannot be the case. O

(1]
(2]

[27]
28]
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