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Abstract

Several novel large volatility matrix estimation methods have been developed based

on the high-frequency financial data. They often employ the approximate factor model

that leads to a low-rank plus sparse structure for the integrated volatility matrix and fa-

cilitates estimation of large volatility matrices. However, for predicting future volatility

matrices, these nonparametric estimators do not have a dynamic structure to imple-

ment. In this paper, we introduce a novel Itô diffusion process based on the approximate

factor models and call it a factor GARCH-Itô model. We then investigate its properties

and propose a quasi-maximum likelihood estimation method for the parameter of the

factor GARCH-Itô model. We also apply it to estimating conditional expected large

volatility matrices and establish their asymptotic properties. Simulation studies are

conducted to validate the finite sample performance of the proposed estimation meth-

ods. The proposed method is also illustrated by using data from the constituents of

the S&P 500 index and an application to constructing the minimum variance portfolio

with gross exposure constraints.
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1 Introduction

Volatility analysis for high-frequency financial data is a vibrant research area in financial

econometrics and statistics. The high-frequency financial data allow us to study market mi-

crostructures and to estimate volatilities using the relatively short time horizon. Examples

include two-time scale realized volatility (TSRV) (Zhang et al., 2005), multi-scale realized

volatility (MSRV) (Zhang, 2006, 2011), pre-averaging realized volatility (PRV) (Christensen

et al., 2010; Jacod et al., 2009), kernel realized volatility (KRV) (Barndorff-Nielsen et al.,

2008, 2011), a quasi-maximum likelihood estimator (QMLE) (Aı̈t-Sahalia et al., 2010; Xiu,

2010), local method of moments (Bibinger et al., 2014), and robust pre-averaging realized

volatility (RPRV) (Fan and Kim, 2017). For the finite number of assets, these estimators

perform well. However, in financial practices and studies, we often encounter a large num-

ber of assets, and it is known that to obtain the efficient and effective estimator for a large

volatility matrix, we need to impose some sparse or factor structure on large volatility matri-

ces. For example, several estimation methods for factor-based high-dimensional Itô processes

have been proposed (Fan et al., 2016a; Ait-Sahalia and Xiu, 2017; Fan and Kim, 2017; Kim

et al., 2017). They assume that the dependence of stock returns is driven by a few common

factors, which leads to a low-rank plus sparse structure for integrated volatility matrix.

In practice, we often need to predict the future volatility given the current information,

and unless the volatility is stable, the nonparametric volatility matrix estimator does not

capture the dynamics of the future volatility. One of the stylized features of returns is that the

log-returns are not significantly autocorrelated while the squared log-returns are positively

autocorrelated. Also we often observe that large changes of returns tend to be followed by

large changes, and small changes of returns tend to be followed by small changes, which is the

so-called volatility clustering (Mandelbrot, 1963). These stylized features indicate that the

volatilities are heterogeneous and autocorrelated, which prompts us to develop parametric

models to account for the dynamics of time-dependent volatilities in the stock market.

In this paper, we develop a parametric Itô diffusion model based on high-dimensional

factor-based Itô processes whose volatility matrices consist of the factor (low-rank) volatility

matrix and idiosyncratic (sparse) volatility matrix. Specifically, latent factor loading ma-

trices are assumed to be relatively stable: namely, the eigenvectors of the factor volatility
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matrix used to construct estimated latent factors do not vary over a short time period (e.g.

within a day). On the other hand, we allow the eigenvalues to evolve with time and impose

a parametric dynamic structure. In particular, we assume that the eigenvalue sequence of

the latent factor volatility matrices admits some unified GARCH-Itô model structure (Kim

and Wang, 2016b) so that the dynamics of the volatility can be explained by the r-factors.

Their daily integrated conditional volatility given the information up to that time point is

a function of the weighted latent factor daily returns and previous conditional expectations.

Thus, it has a structure that is similar to the famous GARCH (Bollerslev, 1986).

To estimate the model parameters of the factor GARCH-Itô process, we first construct

eigenvalue estimators for the latent factor volatility matrices by a nonparametric method

using high-frequency intra-daily data. Then using the relationship between the eigenvalue

estimator and integrated eigenvalue calculated from the factor GARCH-Itô model, we pro-

pose a quasi-maximum likelihood estimation procedure and establish its asymptotic prop-

erties for estimated parameters. Finally, with the quasi-maximum likelihood estimator, we

construct the conditional expected large volatility matrix estimator. Further improvements

are also possible when the idiosyncratic volatility matrices are a martingale sequence and the

eigenvectors of the latent factor volatility matrices are constant. See Section 4 for details.

The rest of the paper is organized as follows. Section 2 introduces a factor GARCH-Itô

model based on the high-dimensional factor-based Itô diffusion process and studies its prop-

erties. Section 3 proposes a quasi-maximum likelihood estimation procedure and establishes

its asymptotic results. In Section 4, we show how to estimate the conditional expected large

volatility matrix and establish its asymptotic properties. Section 5 conducts Monte Carlo

simulation to check the finite sample performance and applies the real data to the factor

GARCH-Itô model. Proofs are collected in Section 6.

2 Factor GARCH-Itô model

We first introduce some notations. For any given d1 × d2 matrix U = (Uij), denote its

Frobenius norm by ‖U‖F =
√

tr(U⊤U), its matrix spectral norm ‖U‖2, and ‖U‖max =

maxi,j |Uij|. For any given vector a, diag(a) denotes a diagonal matrix using elements of a.

Finally, for any given squared matrix A, det(A) is the determinant of the matrix A.

Denote by X(t) = (X1(t), . . . , Xp(t))
⊤ the vector of true log-stock prices at time t. To

account for dependence, we assume that the true log-stock prices follow the factor model:

dX(t) = µ(t) dt+B(t)df(t) + du(t), (2.1)
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where µ(t) ∈ R
p is the drift vector, B(t) ∈ R

p×r the unknown loading matrix, f(t) ∈ R
r

the unobservable factor process, and u(t) the idiosyncratic process. Suppose that the latent

factor and idiosyncratic processes f(t) and u(t) follow continuous-time diffusion models:

df(t) = ϑ⊤(t)dW(t) and du(t) = σ⊤(t)dW∗(t),

where σ(t) is a p by p matrix, ϑ(t) an r by r matrix, W(t) and W∗(t) are r-dimensional and

p-dimensional independent Brownian motions, respectively. Stochastic processes µ(t), X(t),

f(t), u(t), B(t), σ(t), and ϑ(t) are defined on a filtered probability space (Ω,F , {Ft, t ∈
[0,∞)}, P ) with filtration Ft satisfying the usual conditions. It is helpful to think that the

time unit in our applications is day and we have high-frequency intra-daily data for the

assets. The instantaneous volatility of X(t) is

ς(t) = (ςij(t)) = B(t)ϑ⊤(t)ϑ(t)B(t)⊤ + σ⊤(t)σ(t), (2.2)

and the integrated volatility over time [d− 1, d] (e.g., intra-day d)

Γd =

∫ d

d−1

ς(t)dt = Ψd +Σd,

where Ψd =
∫ d

d−1
B(t)ϑ⊤(t)ϑ(t)B(t)⊤dt and Σd =

∫ d

d−1
σ⊤(t)σ(t)dt.

The idiosyncratic volatility matrices Σd usually come from the risk of the individual

firm, which is generally unpredictable, but we can reduce its risk through diversification in

portfolio allocations. On the other hand, the factor volatility matrices Ψd are governed by

the factor-driven component of returns which are related to market factors such as industry

sectors, inflation reports, Fed rate hikes, and oil prices, and it is impossible to completely

avoid their risk in portfolio allocations (unless factor-neutral constraints are imposed). Thus,

it is important to develop a parametric model to explain their dynamics in the stock market.

In light of this, we propose a factor GARCH-Itô process to model the latent factor process

as follows.

Let qd,1, . . . ,qd,r be the eigenvectors of the factor volatility matrix Ψd. We will assume

that they are Fd−1-measurable eigenvectors. This essentially requires that the factor loading

matrix B(t) for t ∈ [d − 1, d) is Fd−1-adaptive (predictable on day d − 1). However, their

corresponding instantaneous eigenvalues, λt,1(θ1), . . . , λt,r(θr), have some specific parametric

structure defined in Definition 1 below.

Definition 1. We call a log-stock price vector X(t), t ∈ [0,∞), to follow a factor GARCH-Itô
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model if it satisfies for any i = 1, . . . , r and t ∈ [d− 1, d),

dq⊤
d,iX(t) =

√
pµidt+

√
λt,i(θi)dWi(t) + q⊤

d,iσ
⊤(t)dW∗(t),

λt,i(θi) = λ[t],i(θi) + (t− [t]){pωi + (γi − 1)λ[t],i(θi)}+
r∑

l=1

βi,l

{∫ t

[t]

√
λs,l(θl)dWl(s)

}2

,

where [t] denotes the integer part of t except that [t] = t − 1 when t is an integer, the drift

µi = p−1/2q⊤
d,iµ(t) is restricted to a non-negative value, and θi = (ωi, γi, βi,1, . . . , βi,r) is the

model parameter.

Remark 1. Since the eigenvector qd,i has the sign problem, that is, qd,i and −qd,i are not

distinguishable, we restrict the sign of the drift term µi in order to identify the model

uniquely. Also, to focus on developing the volatility process, we assume that the drift term

µi is constant over time.

Note that in the above definition, we assume that the weights (eigenvectors) used to

construct latent factors do not change within a day or more generally a short time period.

Yet, the instantaneous eigenvalues can evolve with the time. For example, the instantaneous

eigenvalues are continuous time processes, and when restricted to the integer time d ∈ N,

they have the following GARCH structure

λd,i(θi) = pωi + γiλd−1,i(θi) +
r∑

l=1

βi,lZ
2
d,l,

where Zd,l =
∫ d

d−1

√
λt,l(θl)dWl(t). This has a similar structure to the GARCH model. For

intra-daily volatility, eigenvalues in Definition 1 are also a form of GARCH model, except

some kind of interpolation is used.

The model assumption and structure have some connections with pre-existing factor

models and unified GARCH models (Kim and Wang, 2016b). For example, to identify

the latent factor volatility matrix, we often assume that the factor loading matrix B(t)

in model (2.1) is piecewise constant within a day and orthogonal (Ait-Sahalia and Xiu

(2017); Fan et al. (2013, 2016b)). Then the eigenvectors of the factor volatility matrix

Ψd become qd,k = b[t],k/‖b[t],k‖2, k = 1, . . . , r, where B(t) = (b[t],1, . . . ,b[t],r) and t ∈
[d − 1, d), and the instantaneous volatility matrix of the latent factor process ϑ⊤(t)ϑ(t)

= diag(λt,1(θ1)/‖b[t],1‖22, . . . , λt,r(θr)/‖b[t],r‖22). Thus, the factor GARCH-Itô model assumes

that the latent factor process f(t) consists of r diffusion processes and they follow some

unified GARCH-Itô process (Kim and Wang, 2016b). That is, the factor GARCH-Itô model
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assumes that the dynamics of the stock prices are governed by the latent factor process

f(t). This latent factor process f(t) is identifiable under the pervasive condition of the factor

volatility matrices and sparse condition of the idiosyncratic volatility matrices (Fan et al.,

2013, 2016b; Ait-Sahalia and Xiu, 2017). We will discuss more details in Section 3.

In the literature of the high-frequency volatility analysis, we often estimate the inte-

grated volatility matrix Γd by using high-frequency intra-daily data (Aı̈t-Sahalia et al., 2010;

Barndorff-Nielsen et al., 2011; Bibinger et al., 2014; Christensen et al., 2010; Fan and Kim,

2017; Jacod et al., 2009; Zhang, 2006, 2011). Using a nonparametric estimator, we are able

to estimate integrated eigenvalues and infer the parameters in their GARCH structure. This

facilitates volatility prediction. In the following proposition, we establish some properties of

the integrated eigenvalues, which will be used for statistical inferences.

Propostion 2.1. Let β = (βi,j)1≤i,j≤r, with coefficients βi,j defined in Definition 1. Then

we have the following iterative relations for a factor GARCH-Itô model.

(a) For ‖β‖2 < 1 and det(β) 6= 0, we have for d ∈ N

∫ d

d−1

λt(θ)dt = hd(θ) +Dd a.s.,

where λt(θ) = (λt,1(θ1), . . . , λt,r(θr))
⊤, ω = (ω1, . . . , ωr)

⊤, γ = (γ1, . . . , γr)
⊤,

hd(θ) = pβ−2
(
eβ − Ir − β

)
ω + ̺λd−1(θ), (2.3)

Dd =
∞∑

k=0

βk+1

(
2

∫ d

d−1

(d− t)k+1

(k + 1)!

∫ t

d−1

√
λs,i(θi)dWi(s)

√
λt,i(θi)dWi(t)

)⊤

i=1,...,r

,

̺ = β−2
(
eβ − Ir − β

)
(diag(γ) − Ir) + β−1

(
eβ − Ir

)
, eβ =

∑∞
k=0 β

k/k!, and Ir is an

r-dimensional identity matrix.

(b) For ‖β‖2 < 1, det(β) 6= 0, and d ∈ N,

E

[∫ d

d−1

λt(θ)dt

∣∣∣∣Fd−1

]
= hd(θ) a.s.

Proposition 2.1 indicates that the integrated eigenvalues
∫ d

d−1
λt(θ)dt can be decomposed

into hd(θ) and Dd. Also, hd(θ) is adapted to the filtration Fd−1, and Dd is a martingale

difference. Thus, the conditional expectation of the integrated eigenvalues given the past

information Fd−1 is hd(θ) which shares some similarities of the GARCH structure. For
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example, if β is a diagonal matrix or γi’s are the same, hd(θ) has the standard GARCH

structure. That is, when β = diag(β1, . . . , βr) or diag(γ) = γIr, we have

E

[∫ d

d−1

λt(θ)dt

∣∣∣∣Fd−1

]
= hd(θ)

= β−1
(
eβ − Ir

)
ω + diag(γ)hd−1(θ) + ̺βZ2

d−1 a.s.,

where Z2
d = (Z2

d,1, . . . , Z
2
d,r)

⊤.

Remark 2. Generalized dynamic factor models have been developed to estimate and forecast

large volatility matrices (Boivin and Ng, 2006; Forni et al., 2000, 2015; Stock and Watson,

2002). See also Barigozzi and Hallin (2016, 2017); Connor et al. (2006); Diebold and Nerlove

(1989); Harvey et al. (1992); Ng et al. (1992); Rangel and Engle (2012); Sentana et al.

(2008); Van der Weide (2002). These models have some VAR or GARCH structure for the

latent factor volatilities, which are usually developed based on the discrete time models.

For example, for large panels of stock returns, Barigozzi and Hallin (2016) proposed the

nonparametric and model-free two-step generalized dynamic factor model, and Barigozzi and

Hallin (2017) studied how to extend the two-step generalized dynamic model to predicting

future volatilities. As seen in Proposition 2.1, for the daily log-returns, the factor GARCH-

Itô model also has some generalized dynamic factor model structure. Thus, the proposed

factor GARCH-Itô model can be considered as a specific class of the generalized dynamic

factor models. The main effort of this paper is to connect these well-developed discrete

time models to the continuous Itô diffusion process. Thus, the main difference from the

generalized dynamic factor models is that the factor GARCH-Itô model is developed under

the continuous time diffusion process. Thanks to this connection, we can make inferences

using the high-frequency financial data, which provides more accurate parameter estimators.

3 Parameter estimation for the factor GARCH-Itô model

3.1 A model set-up

Suppose that the true log-stock prices follow the factor GARCH-Itô model in Definition 1.

We assume that the integrated volatility matrix Γd has the low-rank plus sparse structure

(Ait-Sahalia and Xiu, 2017; Fan et al., 2016a). Specifically, the factor volatility matrices

Ψd’s have the finite rank r, and the idiosyncratic volatility matrices Σd = (Σd,ij)i,j=1,...,p, d =

7



1, . . . , n, satisfy the sparse condition,

max
1≤d≤n

max
1≤i≤p

p∑

j=1

|Σd,ij|δ(Σd,iiΣd,jj)
(1−δ)/2 ≤Mσsp, (3.1)

where δ ∈ [0, 1), Mσ is a bounded positive random variable, and the sparsity measure sp

diverges slowly with the dimensionality p. When δ = 0 and Σd,ii is bounded from below, sp

measures the maximum number of nonvanishing elements in each row of the idiosyncratic

volatility matrix Σd.

Assume that we observe the true log-stock prices X(t), t = 0, . . . , n, at the low frequency

(e.g., daily). In addition, we have high-frequency intra-daily data that are contaminated

by microstructural noise. To capture this stylized feature, we assume that the observed

log-stock prices are masked with the additive noises:

Yi(td,k) = Xi(td,k) + ǫi(td,k), i = 1, . . . , p, d = 1, . . . , n, k = 0, . . . ,m, (3.2)

where d − 1 = td,0 < · · · < td,m = d, the microstructural noises are independent random

variables which are independent of the price process and volatility process, and for each the

i-th asset and d-th day, ǫi(td,k), k = 1, . . . ,m, are i.i.d. with E{ǫi(td,k)} = 0. Furthermore,

we assume that the observation time points are synchronized and equally spaced, that is,

td,k − td,k−1 = m−1 for d = 1, . . . , n and k = 1, . . . ,m.

Remark 3. In practice, the observed time points are non-synchronized and unequally spaced.

This non-synchronization problem has been well studied in the literature by using refresh

time (see also Aı̈t-Sahalia et al. (2010); Barndorff-Nielsen et al. (2011); Bibinger et al. (2014);

Christensen et al. (2010); Zhang (2011)). Thus, to focus on development of the parametric

model, we assume that the observed time points are synchronized and equally spaced for

simplicity so that the key techniques can be better highlighted.

3.2 Nonparametric estimation methods

To develop a parametric estimation method for the factor GARCH-Itô models, we need a

good nonparametric estimators for the eigenvalues and eigenvectors of the factor volatility

matrix Ψd. In this section, we first investigate asymptotic behaviors of the nonparametric

estimators.

Let Γ̂d be the d-th day integrated volatility matrix estimator which can be one of multi-

scale realized volatility matrix (Zhang, 2006), pre-averaging realized volatility matrix (Chris-
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tensen et al., 2010), and kernel realized volatility matrix (Barndorff-Nielsen et al., 2011). By

the eigen-decomposition, the integrated volatility matrix Γ̂d can be decomposed as

Γ̂d =

p∑

i=1

ξ̂d,iq̂d,iq̂
⊤
d,i,

where the realized eigenvalue ξ̂d,i is the i-th largest eigenvalue of Γ̂d with q̂d,i as its associated

eigenvector. We use the first r eigenvalues and eigenvectors, ξ̂d,i and q̂d,i, i = 1, . . . , r, as

the estimators for the eigenvalues and eigenvectors of the factor volatility matrix Ψd. To

investigate their asymptotic behaviors, we need the following technical conditions. Denote

by C’s generic constants whose values are free of θ, n, m, and p and may change from

occurrence to occurrence.

Assumption 1.

(a) The instantaneous volatility, drift processes, and microstructural noises satisfy, for

some α ≥ 2,

max
1≤t≤n

max
1≤i≤p

E{ςii(t)3α} <∞, max
1≤t≤n

E{‖ς(t)‖3α2 } ≤ Cp3α,

max
1≤t≤n

E{‖σ⊤(t)σ(t)‖3α2 } ≤ Cs3αp , max
1≤t≤n

max
1≤i≤p

E{|µi(t)|6α} <∞,

max
1≤d≤n

max
1≤i≤p

E{|ǫi(td,k)|6α} <∞,

where ς(t) = (ςij(t))i,j=1,...,p is the instantaneous volatility process of the log-price X(t)

defined in (2.2).

(b) Let Dξ = min{ξd,i − ξd,i+1, i = 1, . . . , r, d = 1, . . . , n}, where the integrated eigenvalue

ξd,i =
∫ d

d−1
λt,i(θi)dt and ξd,r+1 = 0. There is a fixed positive constant C such that

Dξ ≥ Cp a.s.

Remark 4. Assumption 1(b) is called the pervasive condition which is often imposed on

analyzing the approximate factor models (Ait-Sahalia and Xiu, 2017; Fan et al., 2016b).

Under the factor GARCH-Itô model, the integrated eigenvalue is a function of the model

parameters θi’s, and there exist the parameters θi’s satisfying Assumption 1(b). For example,

for any i > i′, we choose the parameters θi’s such that βi,1 > βi′,1, . . . , βi,r > βi′,r, γi > γi′ ,

and ωi > ωi′ . Then the eigen-gap Dξ diverges with the order p.

The following theorem provides the convergence rates of ξ̂d,i and q̂d,i.
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Theorem 3.1. Suppose that the true log-stock prices follow the Factor GARCH-Itô model,

and Assumption 1 and the sparsity condition (3.1) are met, and that for any d = 1, . . . , n,

E

(∣∣∣Γ̂d,ij − Γd,ij

∣∣∣
3α
)

≤ Cm−3α/4 for all i, j ∈ {1, . . . , p}. (3.3)

Then we have, for any d = 1, . . . , n,

max
1≤i≤r

E
(
|ξ̂d,i − ξd,i|α

)
≤ Cpα{m−α/4 + (sp/p)

α}, (3.4)

max
1≤i≤r

E
(
‖q̂d,i − sign(〈q̂d,i,qd,i〉)qd,i‖3α2

)
≤ C

{
m−3α/4 + (sp/p)

3α
}
. (3.5)

Remark 5. If the input volatility matrix Γ̂d satisfies the condition (3.3), we can enjoy the

asymptotic properties obtained in Theorem 3.1. For example, multi-scale realized volatility

(MSRV) (Zhang, 2006, 2011), pre-averaging realized volatility (PRV) (Christensen et al.,

2010; Jacod et al., 2009), and kernel realized volatility (KRV) (Barndorff-Nielsen et al.,

2008, 2011) satisfy the condition (3.3) under Assumption 1 (see Christensen et al. (2010);

Kim et al. (2016); Tao et al. (2013a)).

Remark 6. Theorem 3.1 shows that the nonparametric eigen-factor estimators have conver-

gence rates, consisting of two terms m−1/4 and sp/p. The first term comes from estimating

the integrated volatility matrix Γd, which is optimal in presence of the microstructural noise.

The second term sp/p appears because we cannot observe the latent factors f(t). It is the

cost that we need to separate the factor volatility matrix Ψd and idiosyncratic volatility

matrix Σd from the integrated volatility matrix Γd. Thus, the sparsity condition such as

sp/p = o(1) is required.

3.3 Quasi-maximum likelihood estimator

In this section, we propose a quasi-maximum likelihood estimator for the parameters of the

factor GARCH-Itô model and establish its asymptotic convergence rate. We denote the true

parameters by θ0 = (θ0,1, . . . ,θ0,r) and θ0,i = (ω0,i, γ0,i, µ0,i, β0,i,1, . . . , β0,i,r).

To estimate the true parameters θ0, we use the direct relationship between the integrated

eigenvalue estimator ξ̂d,i and integrated eigenvalue calculated from the factor GARCH-Itô

model. For example, p−1ξ̂d,i converges to the integrated eigenvalue p−1ξd,i = p−1
∫ d

d−1
λt,i(θ0)dt
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with the convergence rate m−1/4 + sp/p (see Theorem 3.1). Let

φd,i(θ) =
pωi + (γi + 1)λd−1,i(θ)

2
+

r∑

l=1

βi,l κd,l(µl),

where

λd,i(θ) = pωi + γiλd−1,i(θ) +
r∑

l=1

βi,l (Zd,l +
√
pµ0,l −

√
pµl)

2 ,

κd,i(µi) =

∫ d

d−1

[
q⊤
d,i{X(t)−X(d− 1)} − q⊤

d,i{u(t)− u(d− 1)} − (t− d+ 1)
√
pµi

]2
dt,

and, under the unified GARCH-Itô model, the integrated eigenvalue ξd,i is the same as

φd,i(θ0). Using this relationship, we can construct a quasi-likelihood function as follows:

Ln,m,i(θ) = − 1

2n

n∑

d=1

{
log φd,i(θ) +

ξ̂d,i
φd,i(θ)

}
.

To evaluate the quasi-likelihood function, we need a good nonparametric estimator for

κd,i(µi). The difficulty of estimating these quantities is to identify the latent factor process.

Under the pervasive condition (Assumption 1(b)) and the sparsity condition (3.1), we can

separate the factor part from the log-price process X(t) (see Ait-Sahalia and Xiu (2017)).

Since the microstructural noise is assumed to have a sparse correlation structure, using the

similar argument, we can also separate the factor part from the noisy observation Y(td,i).

Using this technique, we can estimate κd,i(µi) nonparametrically by

κ̂d,i(µi) =
m∑

l=1

{q̂⊤
d,i(Y(td,l)−Y(d− 1))− (td,l − d+ 1)

√
pµi}2∆d,l,

where ∆d,l = td,l − td,l−1. It can then be shown that p−1κ̂d,i(µi) uniformly converges to

p−1κd,i(µi) with the convergence rate m−1/4 + (sp/p)
1/2 (see Lemma 6.1 in Section 6).

With the nonparametric estimator κ̂d,i, we estimate the quasi-likelihood function by

L̂n,m,i(θ) = − 1

2n

n∑

d=1

{
log φ̂d,i(θ) +

ξ̂d,i

φ̂d,i(θ)

}
,

11



where λ̂d,i(θ) is the solution to (3.6),

λ̂d,i(θ) = pωi + γiλ̂d−1,i(θ) +
r∑

l=1

βi,l
[
q̂⊤
d,l{X(d)−X(d− 1)} − √

pµl

]2
, (3.6)

and

φ̂d,i(θ) =
pωi + (γi + 1)λ̂d−1,i(θ)

2
+

r∑

l=1

βi,l κ̂d,l(µl).

Then the true parameters θ0 are estimated by maximizing the quasi-likelihood function

L̂n,m(θ) =
∑r

i=1 L̂n,m,i(θ), that is,

θ̂ = argmax
θ∈Θ

L̂n,m(θ), (3.7)

where Θ is the parameter space of θ. To investigate the asymptotic behavior of quasi-

maximum likelihood estimator θ̂, we make some technical conditions as follows.

Assumption 2.

(a) Assume that the parameter space Θ for θ is compact, ‖β‖2 < 1 , det(β) 6= 0, 0 < γi < 1

for all i = 1, . . . , r, and θ0 is an interior point of Θ, where β = (βi,j)i,j=1,...,r.

(b) The initial value λ0 in Definition 1 is given.

Remark 7. We impose the initial value condition (Assumption 2(b)) to investigate the asymp-

totic behaviors with the finite period. However, even if this condition is violated, the effect

of the initial value is negligible with the convergence rate n−1 (see Lemma 1 in Kim and

Wang (2016b)) and the convergence rate in Theorem 3.2 has one additional term n−1.

The following theorem provides the convergence rate of the quasi-maximum likelihood

estimator (QMLE) θ̂.

Theorem 3.2. Under the assumptions of Theorem 3.1 and Assumption 2, for n ≥ 2 + 4r,

we have

‖θ̂ − θ0‖max = Op

(
m−1/4 + (sp/p)

1/2
)
.

Remark 8. Theorem 3.2 shows that the quasi-maximum likelihood estimator θ̂ has the con-

vergence rate m−1/4 +
√
sp/p. The first term is coming from the high-frequency observation

in presence of the microstructural noise, and the second term is due to identifying the la-

tent factors in the volatility matrix. If we can observe the latent factor part, we may have

the optimal convergence rate m−1/4. Or when the number, p, of assets is big, for example,

m1/2sp = O(p), we have the convergence rate m−1/4.

12



Remark 9. Asymptotic distribution of the QMLE θ̂ would be useful for its inference. How-

ever, to establish the asymptotic distribution, we face two challenges. One is to identify

the latent factor part f(t). If the number of assets is big enough to make the term
√
sp/p

negligible, this issue will be solved and we may be able to derive the asymptotic distribu-

tion of the non-parametric eigenvalue estimator ξ̂d,i under some conditions. The other issue

is to estimate the parametric integrated eigenvalue φd,i(θ0). Since its asymptotic conver-

gence rate is m−1/4 +
√
sp/p (see Lemma 6.1), it is not negligible and we need to derive

its asymptotic distribution. The major challenge of deriving the asymptotic distribution of

φ̂d,i(θ0) is to handle the eigenvector estimator q̂d,i. For example, we need to manage the

terms {q̂⊤
d,i(Y(td,l) − Y(d − 1))}2, which is not easy. In short, if we know the asymptotic

joint distribution of ξ̂d,i and φ̂d,i(θ0), d = 1, . . . , n, i = 1, . . . , r, we can possibly derive the

asymptotic distribution of θ̂. All these problems are very challenging and we leave this issue

for a future study.

4 Large volatility matrix estimation

In financial practices such as portfolio allocation, it is important to predict future volatilities.

In this section, we show how to predict the future large volatility matrix under the factor

GARCH-Itô model.

Given the current information Fn, the conditional expectation E (Γn+1|Fn) is the best

predictor for the future volatility matrix. To evaluate the conditional expectation under the

factor GARCH-Itô model, we need some additional structure for the idiosyncratic volatility

matrix Σn+1 and eigenvectors of the factor volatility matrix Ψn+1. As discussed in Section

2, the idiosyncratic risk is unpredictable, but it can be mitigated by diversification. Hence it

may not be harmful to assume that the idiosyncratic volatility matrices Σd are martingale

processes: E (Σn+1|Fn) = Σn a.s. Also, we assume that the eigenvectors qd,i’s are constant

and qd,i = qi for all d = 1, . . . , n+ 1. Then the conditional expected large volatility matrix

Γn+1 is

E (Γn+1|Fn) =
r∑

i=1

hn+1,i(θ0)qiq
⊤
i +Σn a.s.,

where hn(θ0) = (hn,1(θ0), . . . , hn,r(θ0))
⊤ is defined in (2.3). We use the conditional expec-

tation E (Γn+1|Fn) as the future volatility matrix estimator.

Remark 10. In this paper, we mainly focus on developing the parametric model of the factor

volatility process. When analyzing the factor volatility matrix, we do not need any strong

condition for the idiosyncratic volatility matrix. In fact, we only impose the sparse structure

13



(3.1) on it. On the other hand, in order to predict the future volatilities, we need some

parametric structure for the idiosyncratic volatility matrix. To focus on the development

of the factor volatility process, we simply assume that the idiosyncratic volatility process is

a martingale. However, several studies show that the idiosyncratic volatility exhibits het-

eroskedasticity and its proportion of the total volatility is significant (Connor et al., 2006;

Herskovic et al., 2016; Rangel and Engle, 2012). Also, the empirical study of Barigozzi and

Hallin (2016) shows that the market volatility shocks are hitting not only factor volatilities

but also idiosyncratic volatilities. Thus, it would be interesting and important to develop a

parametric model for the idiosyncratic volatility process based on the continuous time model.

Since the factor volatility process proposed in this paper is developed independently from

the idiosyncratic volatility process, and so it would be easy to combine other idiosyncratic

volatility process with the proposed factor GARCH-Itô model. However, modeling idiosyn-

cratic volatility process is hard when sparsity condition is imposed, which is necessary for

identifiability and high-dimensional covariance matrix regularization. One possible idea is to

appeal special sparsity structure. It was documented in Fan et al. (2016a) that the volatility

matrix of idiosyncratic components admits a block diagonal structure when sorted by sec-

tors or industries. We can then model the dynamics of the idiosyncratic volatility matrices

for each sector or industry by using a multivariate GARCH or DCC (dynamic conditional

correlation) model (Bollerslev, 1990; Bollerslev et al., 1988; Engle, 2002; Engle and Kroner,

1995). This part of dynamics can also be modeled by the GARCH-Itô process in the same

way as we model the factor volatility.

To estimate the idiosyncratic volatility matrix Σn, we employ the principal orthogonal

component thresholding (POET) (Fan et al., 2013) procedure as follows. For any given

integrated volatility estimator Γ̂n, the spectral-decomposition provides

Γ̂n =

p∑

i=1

ξ̂n,iq̂n,iq̂
⊤
n,i,

where ξ̂n,i is the i-th largest eigenvalue of Γ̂n and q̂n,i is its corresponding eigenvector. The

sparse volatility matrix is estimated by the thresholding of the input idiosyncratic volatility

matrix Σ̃n = (Σ̃n,ij)1≤i,j≤p = Γ̂n −
∑r

i=1 ξ̂n,iq̂n,iq̂
⊤
n,i:

Σ̂n,ij =




Σ̃n,ij ∨ 0, if i = j

sij(Σ̃n,ij)1(|Σ̃n,ij| ≥ ̟ij), if i 6= j
and Σ̂n = (Σ̂n,ij)1≤i,j≤p, (4.1)
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where the thresholding function sij(·) satisfies that |sij(x)− x| ≤ ̟ij, and the thresholding

level ̟ij = ̟m

√
(Σ̃ii ∨ 0)(Σ̃jj ∨ 0) is the same as applying thresholding ̟m to the cor-

relation matrix. Interesting examples of the thresholding function sij(x) includes the soft

thresholding and hard thresholding function. Under some conditions, Fan and Kim (2017)

showed that Σ̂n converges to Σn in terms of the spectral norm. We use Σ̂n as the idiosyn-

cratic volatility matrix estimator.

Next, using the quasi-maximum likelihood estimator θ̂ in (3.7), we estimate the condi-

tional expected factor volatility matrix by

Ψ̂n+1 =
r∑

i=1

ĥn+1,i(θ̂)q̂n,iq̂
⊤
n,i, (4.2)

where by Proposition 2.1,

ĥn+1(θ̂) = (ĥn+1,1(θ̂), . . . , ĥn+1,r(θ̂))
⊤ = pβ̂

−2
(
eβ̂ − Ir − β̂

)
ω̂ + ̺̂λ̂n(θ̂),

λ̂n(θ̂) = (λ̂n,1(θ̂), . . . , λ̂n,r(θ̂))
⊤, λ̂n,i(θ)’s are defined in (3.6), β̂ = (β̂i,j)1≤i,j≤r, ω̂ = (ω̂1, . . . , ω̂r)

⊤,

γ̂ = (γ̂1, . . . , γ̂r)
⊤, and ̺̂ = β̂

−2
(
eβ̂ − Ir − β̂

)
(diag(γ̂)−Ir)+β̂

−1
(
eβ̂ − Ir

)
. Then, combin-

ing the idiosyncratic volatility matrix estimator Σ̂n and conditional expected factor volatility

matrix estimator Ψ̂n+1, we predict the conditional expected volatility matrix as follows:

Γ̃n+1 = Ψ̂n+1 + Σ̂n. (4.3)

To investigate its asymptotic behavior, we make the following technical conditions.

Assumption 3.

(a) For some fixed constant C1, we have

p

r
max
1≤i≤p

r∑

j=1

q2ij ≤ C1,

where qj = (q1j, . . . , qpj)
⊤ is the j-th eigenvector of Ψn;

(b) There is some fixed positive constant C2 such that ξn,1/Dξ ≤ C2 a.s., and the smallest

eigenvalue of Σn stays away from zero;

(c) sp/
√
p+

√
log p/m1/2 = o(1).
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Remark 11. Assumption 3(a) is incoherence condition which is usually imposed on investi-

gating the low-rank matrix inferences (Candès et al., 2011; Fan et al., 2016b).

The following theorem shows the asymptotic behaviors of the conditional expected volatil-

ity matrix estimators.

Theorem 4.1. Under the assumptions of Theorem 3.2, suppose that

Pr

{
max

1≤i,j≤p
|Γ̂n,ij − Γn,ij| ≥ C

√
log(p ∨m)

m1/2

}
≤ p−1, (4.4)

and Assumption 3 are met. Take ̟m = C̟τm for some large fixed constant C̟, where

τm = sp/p+
√
log(p ∨m)/m1/2. Then we have

‖Σ̂n −Σn‖2 = Op

(
spτ

1−δ
m

)
, (4.5)

‖Σ̂n −Σn‖max = Op (τm) , (4.6)

‖Γ̃n+1 − E (Γn+1|Fn) ‖Γ∗ = Op

(
p1/2m−1/2 + sp/p

1/2 + spτ
1−δ
m

)
, (4.7)

where the relative Frobenius norm ‖A‖2
Γ
∗ = p−1‖Γ∗−1/2AΓ∗−1/2‖2F and Γ∗ = E (Γn+1|Fn).

Remark 12. Condition (4.4) can be obtained under the bounded instantaneous volatility

condition (Tao et al., 2013b). Thanks to the localization argument made in Section 4.4.1 of

Jacod and Protter (2011), we assume the bounded condition without loss of generality. So

this condition is not restrictive at all.

Remark 13. Theorem 4.1 shows that the conditional expected volatility matrix estimator

Γ̃n+1 is consistent in terms of relative Frobenius norm as long as p = o(n). Its convergence

rate is comparable with the convergence rates obtained in Fan and Kim (2017). The dif-

ference is the additional term sp/p
1/2 which comes from estimating the parameters θ0. As

discussed in Remark 8, it is due to identifying the latent factor volatility, and so if the latent

factor part is observable, the term sp/p
1/2 is removed.

To evaluate the conditional expected volatility matrix E (Γn+1|Fn), we assume that the

eigenvectors of the latent factor volatility matrices Ψn’s are constant. Under this condition,

we are able to estimate eigenvectors using the whole period information. For example, we

can estimate the eigenvectors q1, . . . ,qr by the first r eigenvectors, q̂c
1, . . . , q̂

c
r, of

1
n

∑n
d=1 Γ̂d.

With this aggregated estimation, the eigenvalues for the d-th day are now estimated by

ξ̂cd,i = (q̂c
i)

⊤Γ̂dq̂
c
i for i = 1, . . . , r.
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Then we apply the quasi-maximum likelihood estimation procedure proposed in Section

3 with q̂c
i and ξ̂cd,i instead of q̂d,i and ξ̂d,i, and θ̂

c
denotes the resulting quasi-maximum

likelihood estimator. Let us call it the aggregated QMLE. Using θ̂
c
, ξ̂cd,i, and q̂c

i , we estimate

the conditional expected factor volatility matrix by

Ψ̂
c

n+1 =
r∑

i=1

ĥcn+1,i(θ̂
c
)q̂c

i(q̂
c
i)

⊤, (4.8)

where

ĥc
n+1(θ̂

c
) = (ĥcn+1,1(θ̂

c
), . . . , ĥcn+1,r(θ̂

c
))⊤ = p(β̂

c
)−2
(
eβ̂

c

− Ir − β̂
c
)
ω̂

c + ̺̂cλ̂c

n(θ̂
c
),

λ̂
c

n(θ̂
c
) = (λ̂cn,1(θ̂

c
), . . . , λ̂cn,r(θ̂

c
))⊤,

λ̂cn,i(θ̂
c
) = pω̂c

i + γ̂ci λ̂
c
n−1,i(θ̂

c
) +

r∑

l=1

β̂c
i,l

[
(q̂c

l )
⊤{X(n)−X(n− 1)} − √

pµ̂c
l

]2
,

and β̂
c
, γ̂c, ω̂c, and ̺̂c are estimated using θ̂

c
instead of θ̂. Finally, the conditional expected

volatility matrix is estimated by

Γ̃
c

n+1 = Ψ̂
c

n+1 + Σ̂n, (4.9)

where Σ̂n is defined in (4.1). The alternative estimator Γ̃
c

n+1 can enjoy the same asymptotic

properties in Theorem 4.1 under the constant eigenvector condition.

5 Numerical study

5.1 A simulation study

We conducted simulations to verify the finite sample performances of the proposed estimators

θ̂ and θ̂
c
and conditional expected volatility matrix estimators Γ̃n+1 and Γ̃

c

n+1 given the past

n period observations. We generated the log-prices X(ti,j) for n days with frequency 1/m on

each day: ti,j = i− 1 + j/m, i = 1, . . . , n, j = 1, . . . ,m, from the factor GARCH-Itô model

in Definition 1 with the following form:

dX(t) = Qλ1/2(t)dW(t) + σ⊤dW ∗(t),

λt,i(θ0) = λ[t],i(θ0) + (t− [t]){pω0,i + (γ0,i − 1)λ[t],i(θ0)}+
r∑

l=1

β0,i,l

{∫ t

[t]

√
λt,l(θ0)dWl(t)

}2

,
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where λ(t) = diag(λt,1(θ0), . . . , λt,r(θ0)) with r = 3,

θ0 = (ω0,1, . . . , ω0,r, γ0,1, . . . , γ0,r, β0,1,1, . . . , β0,r,r)

= (0.15, 0.125, 0.1, 0.2, 0.15, 0.1, 0.25, 0.2, 0.15, 0, 0.15, 0.125, 0, 0, 0.1),

and W(t) = (W1(t), . . . , Wr(t))
⊤ and W∗(t) are r- and p-dimensional independent Brownian

motions. To generate the eigenvector matrixQ, we first made a p by pmatrix whose elements

were generated by i.i.d. uniform [0, 1], and chose its first r eigenvectors as Q. To obtain the

sparse volatility matrix Σ = (Σij)1≤i,j≤p, its off-diagonal elements were generated as follows:

Σij = 0.5|i−j|
√

ΣiiΣjj,

the diagonal elements are Σii = 1, i = 1, . . . , p, and σ is the Cholesky decomposition of Σ.

We took the initial values X0 = 0 and λ0 = p × diag(1.5, 1, 0.5), the rank r = 3, n = 100,

and p = 200. We varied m from 400 to 5,000.

The low-frequency data were taken to be X(i), i = 0, . . . , n. The high-frequency data

Y(td,j) were simulated from the model (3.2), where the true log-stock prices X(td,j) were

taken from the generated log-prices described above, and for the i-th asset, the market mi-

crostructural noises ǫi(td,j) were from i.i.d. normal distribution with mean zero and standard

deviation 0.01
√
Σii. To estimate the integrated volatility matrices Γd’s, we employed the pre-

averaging realized volatility matrix (PRVM) estimator (Christensen et al., 2010; Jacod et al.,

2009) as follows:

Γ̂d =
1

ψK

m−K+1∑

k=1

{
Ȳ(td,k)Ȳ(td,k)− ς η̂

}
, (5.1)

where

η̂d = diag(η̂d,11, . . . , η̂d,pp), η̂d,ii =
1

2m

m∑

k=1

{Yi(td,k)− Yi(td,k−1)}2 ,

Ȳ(td,k) =
K−1∑

l=1

g

(
l

K

)
{Y(td,k+l)−Y(td,k+l−1)} ,

ς =
K−1∑

l=0

{
g

(
l

K

)
− g

(
l + 1

K

)}2

, ψ =

∫ 1

0

g(t)2dt,

the bandwidth size K = ⌊m1/2⌋, and the weight function g(x) = x ∧ (1 − x). We esti-

mated the model parameters by the proposed QMLE procedure in Section 3.3 with/without

aggregation. The whole simulation procedure was repeated 500 times.
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Table 1: The MADEs of QMLEs estimated with/without aggregation for p = 200, r = 3,
n = 100, m = 400, 1000, 2000, 5000.

MADE×102

ω γ βi,1 βi,2 βi,3 µ

m θ̂ θ̂c θ̂ θ̂c θ̂ θ̂c θ̂ θ̂c θ̂ θ̂c θ̂ θ̂c

λ1 400 4.39 2.18 7.83 8.12 3.52 3.36 4.39 4.12 5.61 5.89 2.41 2.13
1000 3.34 1.96 6.08 6.16 2.95 2.30 3.62 3.35 4.50 4.79 1.95 1.64
2000 2.85 1.86 5.15 5.31 2.60 2.00 3.18 2.87 4.38 4.31 1.81 1.66
5000 2.33 1.72 4.21 4.22 2.33 1.91 2.57 2.41 3.66 3.48 1.55 1.57

λ2 400 3.02 1.42 10.86 10.69 1.85 0.44 3.75 3.69 4.18 3.63 2.48 1.76
1000 2.39 1.37 9.86 8.78 1.23 0.33 2.70 2.51 3.15 2.62 1.87 1.71
2000 1.97 1.36 8.09 7.92 0.89 0.30 2.39 2.07 2.79 2.53 1.67 1.46
5000 1.70 1.22 7.32 6.86 0.56 0.22 1.69 1.48 2.48 2.19 1.31 1.32

λ3 400 1.61 0.84 9.30 9.26 0.39 0.23 2.05 0.58 3.33 3.57 2.95 1.82
1000 1.27 0.81 8.01 8.09 0.31 0.20 1.54 0.43 2.46 2.59 2.32 1.73
2000 1.29 0.94 7.67 7.66 0.22 0.17 1.24 0.37 2.16 1.77 2.21 1.45
5000 1.06 0.85 6.22 6.38 0.17 0.13 0.84 0.33 1.65 1.34 1.54 1.33

Table 1 reports the mean absolute deviation errors (MADE) of the model parameter

estimators θ̂ and θ̂
c
. As expected, it shows that as m increases, the MADEs decrease;

the aggregated QMLE, θ̂
c
, outperforms θ̂. This is due to more accurate aggregated esti-

mated eigenvectors q̂c
i under the constant eigenvector condition. These results support the

theoretical findings in Section 3.3.

Using the QMLEs, we predicted the conditional expected eigenvalues, hn+1,i(θ0), and

conditional expected integrated volatility matrix, E (Γn+1|Fn), given the past n period ob-

servations. For example, the conditional expected eigenvalues are estimated by ĥn+1,i(θ̂) and

ĥcn+1,i(θ̂
c
) in (4.2) and (4.8), respectively, and the conditional expected integrated volatility

matrix by Γ̃n+1 and Γ̃
c

n+1 in (4.3) and (4.9), respectively. On the other hand, when not

considering parametric models, we often assume the martingale structure on the integrated

volatility matrices and estimate the conditional expected volatility matrix using the pre-

vious period estimator, that is, Γ̂n. In the light of this, we compare the proposed factor

GARCH-Itô estimators with the nonparametric estimator Γ̂n. For the conditional expected

eigenvalues hn+1,i(θ0), we measured the errors by the relative errors

|λ̂i − hn+1,i(θ0)|
hn+1,i(θ0)

,
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where λ̂i could be one of three estimators: unaggregated estimator ĥn+1,i(θ̂), aggregated

estimator ĥcn+1,i(θ̂
c
), and the nonparametric estimation, which is the i-th eigenvalue ξ̂n,i of

the PRVM estimator Γ̂n. Figure 1 depicts the relative errors against m. We can find that the

estimates based on the factor GARCH-Itô model, ĥn+1,i(θ̂) and ĥ
c
n+1,i(θ̂

c
), are better than

the i-th eigenvalue, ξ̂n,i, of the PRVM estimator Γ̂n. The results reveal that the aggregated

estimator ĥcn+1,i(θ̂
c
) has the smallest relative errors.
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Figure 1: Average relative estimation errors of estimators for the conditional eigenvalues
against m, with p = 200, r = 3, and n = 100.

Finally, we consider the conditional expected integrated volatility matrix E (Γn+1|Fn).

The integrated volatility matrix has the low-rank plus sparse structure, and so we employ

the POET procedure to account for the such structure. Denote the POET estimator at the

n-th day by Γ̂
POET

n . For the thresholding step, we used the thresholding level
√

2 log p/m1/2.

We used Γ̃n+1, Γ̃
c

n+1, Γ̂n, and Γ̂
POET

n as the estimator of the conditional expected integrated

volatility matrix E (Γn+1|Fn). We measured the average errors of matrix estimation using

the Frobenius norm, spectral norm, and relative Frobenius norm (Fan et al., 2013). Figure

2 depicts the average errors under different matrix norms against m. It is clear that the

estimators based on the factor GARCH-Itô model, Γ̃n+1 and Γ̃
c

n+1, outperform the other two

estimators. When comparing Γ̃n+1 with Γ̃
c

n+1, the aggregated estimator Γ̃
c

n+1 has smaller

average errors, as expected.

20



1000 2000 3000 4000 5000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Frobenius

m

A
ve

ra
g
e
 e

rr
o
r

●

●

●

●

● Factor GARCH−Ito
Aggregated Factor GARCH−Ito
POET
PRVM

1000 2000 3000 4000 5000

1
0

2
0

3
0

4
0

Spectral

m

A
ve

ra
g
e
 e

rr
o
r

●

●

●

●

1000 2000 3000 4000 5000

1
.0

1
.5

2
.0

2
.5

Relative Frobenius

m

A
ve

ra
g
e
 e

rr
o
r

●

●
●

●

Figure 2: Average estimation errors of estimators for the conditional integrated volatility
matrix against m under different matrix norms, with p = 200, r = 3, and n = 100.

5.2 An empirical study

In this section, we applied the proposed estimators to high-frequency trading data for 200

assets from January 1st to December 31st in 2013 (n = 252). The data is taken from the

Wharton Data Service (WRDS) system. Top 200 large trading volume stocks were selected

among S&P 500, and we used 1-min log-returns. To employ the proposed estimators, we

first need to find the rank r. To do this, we first calculated 252 daily integrated volatility

matrices using the PRVM estimation method in (5.1). We estimated the rank r using the

procedure proposed by Ait-Sahalia and Xiu (2017) as follows:

r̂ = arg min
1≤j≤rmax

252∑

d=1

[
p−1ξ̂d,j + j × c1

{√
log p/m1/2 + p−1 log p

}c2]
− 1,

where rmax = 30, c1 = 0.02 × ξ̂d,30, and c2 = 0.5. The minimum value is r̂ = 3. Also we

draw the scree plot using the average values of eigenvalues from the 252 PRVM estimators.

Figure 3 shows that the possible values of the rank r are 1, 2, 3, 4. From those results, we

determined r = 3.

We used the open-to-close period high frequency data as the one time period. To eval-

uate the quasi-likelihood function, we used the first r eigenvalues of the first day as the

initial eigenvalue λ0. We calculated θ̂ and estimated the conditional integrated eigenvalues
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Figure 3: The scree plot for average eigenvalues of PRVM.

hd(θ0) by ĥd(θ̂) in (4.2). The estimated values are θ̂ = (ω̂1, . . . , ω̂3, γ̂1, . . . , γ̂3, β̂1,1, . . . , β̂3,3,

µ̂1, . . . , µ̂3) = 10−3× (0.012, 0.006, 0.004, 362.479, 242.343, 315.174, 139.116, 74.370, 63.324,

17.151, 53.201, 75.818, 9.190, 25.905, 38.370, 2.366, 0.554, 0.670). Figure 4 depicts the esti-

mated daily integrated eigenvalues by the integrated eigenvalue estimates ξ̂d,i and estimated

conditional expected integrated eigenvalues ĥd,i(θ̂). It shows that the estimated conditional

integrated eigenvalue estimators ĥd,i(θ̂) can capture the dynamics of the integrated eigen-

value estimates ξ̂d,i and their path is smoother than the integrated eigenvalue estimates

ξ̂d,i.

We consider the constrained portfolio allocation problem using our forecasted volatility:

min
w s.t. w⊤J=1,‖w‖1=c0

w⊤Γ̃n+1w, (5.2)

where J = (1, . . . , 1)⊤ ∈ R
p and c0 is the gross exposure constraint which varied from 1

to 2. We estimated the conditional expected volatility matrix E (Γn+1|Fn) using the past

n-period observations, and we varied n from 148 to 252. That is, we used at least 148

daily observations (7 months) to estimate θ0. To check the dependency of the split points,

we calculated the out-of-sample risk for three different testing periods: from 148 to 252

(5 months), from 169 to 252 (4 months), and from 190 to 252 (3 months). A popular

alternative method is to use the integrated volatility matrix in the previous period as the

estimator of the future volatility matrix Γn+1. Thus, for the comparison, we also used the

PRVM estimator Γ̂n and POET estimator Γ̂
POET

n in order to construct the portfolio in

(5.2). To make the estimates positive semi-definite, we first projected the input volatility
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Figure 4: The plots of daily integrated eigenvalue estimates, the integrated eigenvalue esti-
mate ξ̂d,i and factor GARCH-Itô eigenvalue ĥd,i(θ̂).

matrix PRVM estimators onto the positive semi-definite cone in the spectral norm. For

the thresholding step in estimating the covariance matrix of the idiosyncratic component,

we utilized the global industry classification standard (GICS) for sectors, and maintained

within-sector volatilities but set others to zero (Fan et al., 2016a). To model the dynamics
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for the idiosyncratic volatilities, we apply the factor GARCH-Itô model to each block with

the full rank. Under the block diagonal structure, the factor GARCH-Itô model is still

complex, which causes huge estimation errors. To simplify the model, we assume that each

eigenvalue is not affected by other eigenvalue parts, that is, β is assumed to be diagonal, and

eigenvectors are constant over time. Then we can estimate the model parameters marginally.

We call it idiosyncratic GARCH-Itô.
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Figure 5: The out-of-sample risks of the optimal portfolios constructed by using the volatil-
ity matrix from the factor GARCH-Itô, aggregated factor GARCH-Itô, aggregated factor
GARCH-Itô with idiosyncratic GARCH-Itô, POET, and PRVM estimators.

Figure 5 plots the out-of-sample risk of the portfolio constructed by the factor GARCH-Itô

estimator Γ̃n+1, aggregated factor GARCH-Itô estimator Γ̃
c

n+1, aggregated factor GARCH-

Itô with idiosyncratic GARCH-Itô, POET estimator Γ̂
POET

n , and PRVM estimator Γ̂n. Here

the portfolio risk was measured using the 1-min portfolio log-returns for one day. For the

three different periods, we have similar behaviors, and so the results do not significantly

depend on the split points. We find that for the purpose of portfolio allocation, the factor

GARCH-Itô performs well and improves the performance of the POET. On the other hand,

the allocation based on the PRVM estimator becomes unstable as the exposure constraint

increases and its out-of-sample risk also much bigger than those of the factor GARCH-Itô

and POET. Meanwhile, the aggregated factor GARCH-Itô has the smallest risk when the

exposure is small, that is, the portfolio is sparse. We also find that the idiosyncratic GARCH-

Itô estimates show stable performance over the exposure level. The results suggest that the

proposed factor GARCH-Itô model can explain the dynamics of the volatility in the stock

market. Also it is important to model the dynamics for the idiosyncratic volatility, and so
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we need to study its asymptotic behaviors. We leave this for the future study.

6 Proof

6.1 Proof of Proposition 2.1

Proof of Proposition 2.1. (a). Let

R(k) = (R1(k), . . . , Rr(k))
⊤ and Ri(k) =

∫ d

d−1

(d− t)k

k!
λt,i(θi)dt.

By the Itô’s lemma, we have

Ri(k) =
pωi + (γi + k + 1)λd−1,i(θi)

(k + 2)!

+2
r∑

l=1

βi,l

∫ d

d−1

(d− t)k+1

(k + 1)!

∫ t

d−1

√
λs,l(θl)dWl(s)

√
λt,l(θl)dWl(t)

+
r∑

l=1

βi,lRl(k + 1) a.s.,

and then

R(k) =
pω + {diag(γ) + (k + 1)Ir}λd−1(θ)

(k + 2)!

+β

(
2

∫ d

d−1

(d− t)k+1

(k + 1)!

∫ t

d−1

√
λs,l(θl)dWl(s)

√
λt,l(θl)dWl(t)

)⊤

l=1,...,r

+βR(k + 1) a.s.

Thus,

R(0) =

∫ d

d−1

λt(θ)dt

=
∞∑

k=0

βk pω + {diag(γ) + (k + 1)Ir}λd−1(θ)

(k + 2)!

+
∞∑

k=0

βk+1

(
2

∫ d

d−1

(d− t)k+1

(k + 1)!

∫ t

d−1

√
λs,i(θi)dWi(s)

√
λt,i(θi)dWi(t)

)⊤

i=1,...,r

a.s.
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The exponential of β is given by the power series

eβ =
∞∑

k=0

βk

k!
.

Using this definition, we have

∞∑

k=0

βk pω + {diag(γ) + (k + 1)Ir}λd−1(θ)

(k + 2)!

= pβ−2
(
eβ − Ir − β

)
ω + β−2

(
eβ − Ir − β

)
(diag(γ)− Ir)λd−1(θ)

+β−1
(
eβ − Ir

)
λd−1(θ)

= pβ−2
(
eβ − Ir − β

)
ω + ̺λd−1(θ) a.s.

(b). Since hd(θ) is adapted to Fd−1 and Dd is a martingale difference, the statement is

immediately showed. �

6.2 Proof of Theorem 3.1

Proof of Theorem 3.1. For the simplicity, we omit the subscript d. Without loss of the

generality, we assume that sign(〈q̂i,qi〉) = 1 and eigenvectors qi’s are constants. First we

consider (3.4). We have for i ∈ {1, . . . , r},

ξ̂i − ξi = q⊤
i (Γ̂− Γ)qi + (q̂⊤

i Γ̂q̂i − q⊤
i Γ̂qi) + (q⊤

i Γqi − ξi)

= (a) + (b) + (c).

For (c), we have

|(c)| = q⊤
i Σqi ≤ ‖Σ‖2 ≤ ‖Σ‖1 ≤ max

1≤i≤p

p∑

j=1

|Σij|δ(ΣiiΣjj)
(1−δ)/2 ≤Mσsp.

Then we have

E{|(c)|α} ≤ Csαp . (6.1)

For (b), we have

|(b)| ≤ |(qi − q̂i)
⊤Γ̂(qi − q̂i)|+ 2|ξ̂iq̂⊤

i (q̂i − qi)|
≤ 2‖Γ̂‖2‖qi − q̂i‖22
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≤ C‖Γ̂‖F
‖Γ̂−Ψ‖22
(ξi − ξi+1)2

≤ C‖Γ̂‖F
‖Γ̂− Γ‖2F +M2

σs
2
p

p2
, (6.2)

where the third inequality is due to the Davis-Khan’s sine theorem. Then we have

E{|(b)|α} ≤ Cp−2α E
(
‖Γ̂‖αF‖Γ̂− Γ‖2αF + ‖Γ̂‖αFM2α

σ s2αp

)

≤ Cp−2α

{
E
(
‖Γ̂‖3αF

)1/3
E
(
‖Γ̂− Γ‖3αF

)2/3
+ E

(
‖Γ̂‖3αF

)1/3
E
(
M3α

σ

)2/3
s2αp

}

≤ Cp−2α
(
p3αm−α/2 + pαs2αp

)

≤ C
(
pαm−α/2 + s2αp p

−α
)
, (6.3)

where the second and third inequalities are due to the Hölder’s inequality and (3.3), respec-

tively.

For (a), similar to the proofs of Theorem 1 (Kim and Wang, 2016a), we can show

E (|(a)|α) ≤ Cpαm−α/4. (6.4)

By (6.1), (6.3), and (6.4), we have

E
(
|ξ̂i − ξi|α

)
≤ Cpα{m−α/4 + (sp/p)

α}.

Consider (3.5). Similar to the proof of (6.2), we have

E
(
‖q̂d,i − sign(〈q̂d,i,qd,i〉)qd,i‖3α2

)
≤ Cp−3α

{
E
(
‖Γ̂− Γ‖3αF

)
+ E

(
M3α

σ

)
s3αp

}

≤ C{m−3α/4 + (sp/p)
3α},

where the last inequality is due to (3.3). �

6.3 Proof of Theorem 3.2

Define

L̂n,m(θ) =
r∑

i=1

L̂n,m,i(θ) = − 1

2n

r∑

i=1

n∑

d=1

log(φ̂d,i(θ)) +
ξ̂d,i

φ̂d,i(θ)
= − 1

2n

r∑

i=1

n∑

d=1

l̂d,i(θ),

Ln(θ) =
r∑

i=1

Ln,i(θ) = − 1

2n

r∑

i=1

n∑

d=1

log(φd,i(θ)) +
φd,i(θ0)

φd,i(θ)
= − 1

2n

r∑

i=1

n∑

d=1

ld,i(θ),
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ψ̂n,m(θ) =
∂L̂n,m(θ)

∂θ
and ψn(θ) =

∂Ln(θ)

∂θ
.

We denote derivatives of any function g at x0 by

∂g(x0)

∂x
=
∂g(x)

∂x

∣∣∣
x=x0

.

For any given random variable X and constant c ≥ 1, define ‖X‖Lc
= {E (|X|c)}1/c. Let

0 < ρ < 1 be a generic constant whose values are free of θ, n and m and may change from

occurrence to occurrence. By Assumption 1(a), without loss of generality, we assume that

there are non-negative constants ωi,l, ωi,u, γi,l, γi,u, µi,l, µi,u, βi,1,l, βi,1,u, . . . , βi,r,l, βi,r,u such

that ωi,l < ωi < ωi,u, γi,l < γi < γi,u < 1, µi,l < µi < µi,u, βi,1,l < βi,1 < βi,1,u, . . . , βi,r,l <

βi,r < βi,r,u

Lemma 6.1. Under the assumptions of Theorem 3.1, we have

E

(
max

µi,l≤µi≤µi,u

|κ̂d,i(µi)− κd,i(µi)|3α/2
)

≤ Cp3α/2
(
m−3α/8 + (sp/p)

3α/4
)
.

Proof of Lemma 6.1. Without loss of the generality, we assume that sign(〈q̂d,i,qd,i〉) =
1. We have

∣∣∣∣∣κ̂d,i(µi)−
m∑

l=1

{q⊤
d,i(Y(td,l)−Y(d− 1))− (td,l − d+ 1)

√
pµi}2∆d,l

∣∣∣∣∣

≤
m∑

l=1

|(q̂d,i − qd,i)
⊤(Y(td,l)−Y(d− 1))|

×
{
|(q̂d,i + qd,i)

⊤(Y(td,l)−Y(d− 1))|+ |2(td,l − d+ 1)
√
pµi|

}
∆d,l

≤ 2
m∑

l=1

‖q̂d,i − qd,i‖2‖Y(td,l)−Y(d− 1)‖2 {‖Y(td,l)−Y(d− 1)‖2 +
√
pµi,u}∆d,l

≤ C‖q̂d,i − qd,i‖2
m∑

l=1

{‖Y(td,l)−Y(d− 1)‖22 +
√
p‖Y(td,l)−Y(d− 1)‖2}∆d,l,

and thus,

E



∣∣∣∣∣κ̂d,i(µi)−

m∑

l=1

{q⊤
d,i(Y(td,l)−Y(d− 1))− (td,l − d+ 1)

√
pµi}2∆d,l

∣∣∣∣∣

3α/2


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≤ C E
[
‖q̂d,i − qd,i‖3α2

]1/2
(
E



∣∣∣∣∣

m∑

l=1

‖Y(td,l)−Y(d− 1)‖22∆d,l

∣∣∣∣∣

3α


1/2

+E



∣∣∣∣∣

m∑

l=1

p1/2‖Y(td,l)−Y(d− 1)‖2∆d,l

∣∣∣∣∣

3α



1/2)

≤ Cp3α/2
(
m−3α/8 + (sp/p)

3α/2
)
, (6.5)

where the second and last inequalities are due to the Hölder’s inequality and Theorem 3.1,

respectively.

Simple algebra shows

m∑

l=1

{q⊤
d,i(Y(td,l)−Y(d− 1))− (td,l − d+ 1)

√
pµi}2∆d,l − κd,i(µi)

=
m∑

l=1

{q⊤
d,i(X(td,l)−X(d− 1))− (td,l − d+ 1)

√
pµi}2∆d,l − κd,i(µi)

+
m∑

l=1

{q⊤
d,iε(td,l)}2∆d,l + 2

m∑

l=1

q⊤
d,iε(td,l)(X(td,l)−X(d− 1))⊤qd,i∆d,l

−2
m∑

l=1

q⊤
d,iε(td,l)(td,l − d+ 1)

√
pµi∆d,l

= (I) + (II) + 2(III) + 2(IV ).

Consider (I). For td,l−1 ≤ t ≤ td,l, we have

E
[∣∣q⊤

d,i {X(td,l)−X(d− 1)} − q⊤
d,i{X(t)−X(d− 1)}+ q⊤

d,i{u(t)− u(d− 1)}
∣∣6α
]

≤ E
[∣∣q⊤

d,i {X(td,l)−X(t)}+ q⊤
d,i{u(t)− u(d− 1)}

∣∣6α
]

≤ C

(
E

[{∫ td,l

t

‖ς(t)‖2dt
}3α

]
+ E

[{∫ td,l

d−1

‖σ⊤(t)σ(t)‖2dt
}3α

]
+m−6αp3α

)

≤ C
(
m−3αp3α + s3αp

)
, (6.6)

where the second inequality is due to the Burkholder’s inequality, and

E
[∣∣q⊤

d,i {X(td,l)−X(d− 1)}+ q⊤
d,i{X(t)−X(d− 1)} − q⊤

d,i{u(t)− u(d− 1)}
∣∣6α
]

≤ Cp3α.
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Then

E{|(I)|3α} ≤ Cp3α
(
m−3α/2 + (sp/p)

3α/2
)
. (6.7)

For (II), by the application of the Burkholder’s inequality, we can show

E{|(II)|3α|qd,i} ≤ Cm−1

m∑

l=1

E
[
{q⊤

d,iε(td,l)}6α|qd,i

]
≤ C a.s. (6.8)

For (III), we have

E{|(III)|3α|X} ≤ Cm−3α/2−1

m∑

l=1

E{|q⊤
d,iε(td,l)|3α|X}

∣∣(X(td,l)−X(d− 1))⊤qd,i

∣∣3α

≤ Cm−3α/2−1

m∑

l=1

∣∣(X(td,l)−X(d− 1))⊤qd,i

∣∣3α a.s.,

where the first inequality is due to the Burkholder’s inequality, and

E{|(III)|3α} ≤ Cm−3α/2−1

m∑

l=1

E
{∣∣(X(td,l)−X(d− 1))⊤qd,i

∣∣3α
}

≤ Cm−3α/2p3α/2, (6.9)

where the last inequality can be derived similar to the proof of (6.6). Similarly, we can show

E{|(IV )|3α} ≤ Cm−3α/2p3α/2. (6.10)

Combining (6.5), (6.7), (6.8), (6.9), and (6.10), we have

E

(
max

µi,l≤µi≤µi,u

|κ̂d,i − κd,i|3α/2
)

≤ Cp3α/2
(
m−3α/8 + (sp/p)

3α/4
)
.

�

Lemma 6.2. Under the assumptions of Theorem 3.1, we have

E
(

max
µl,l≤µl≤µl,u

∣∣∣
[
q⊤
d,l{X(d)−X(d− 1)} − q⊤

d,l{u(d)− u(d− 1)} − √
pµl

]2

−
[
q̂⊤
d,l{X(d)−X(d− 1)} − √

pµl

]2 ∣∣∣
3α/2)

≤ Cp3α/2
(
m−3α/8 + (sp/p)

3α/4
)
.

Proof of Lemma 6.2. Similar to the proofs of Lemma 6.1, we can show the statement.
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�

Lemma 6.3. Under the assumptions of Theorem 3.2, we have

max
1≤i≤r

max
1≤d≤n

E

{
sup
θ∈Θ

|φ̂d,i(θ)− φd,i(θ)|
}

≤ Cp
{
m−1/4 + (sp/p)

1/2
}
.

Proof of Lemma 6.3. By the compactness of Θ and Lemmas 6.1 and 6.2, the statement

is showed. �

Lemma 6.4. Under the assumptions of Theorem 3.2, we have

sup
θ∈Θ

|L̂n,m,i(θ)− Ln,i(θ)| = Op

(
m−1/4 + (sp/p)

1/2
)
for i = 1, . . . , r.

Proof of Lemma 6.4. Since p−1φd,i(θ) and p
−1φ̂d,i(θ) stay way from zero, we have

|L̂n,m,i(θ)− Ln,i(θ)|

≤ 1

2n

n∑

d=1

[ ∣∣∣log
{
φ̂d,i(θ)/φd,i(θ)

}∣∣∣+
∣∣∣∣∣
ξ̂d,i − φd,i(θ0)

φ̂d,i(θ)

∣∣∣∣∣

+φd,i(θ0)

∣∣∣∣∣
φd,i(θ)− φ̂d,i(θ)

φ̂d,i(θ)φd,i(θ)

∣∣∣∣∣

]

≤ Cn−1p−1

n∑

d=1

{∣∣∣ξ̂d,i − φd,i(θ0)
∣∣∣+ p−1φd,i(θ0)

∣∣∣φd,i(θ)− φ̂d,i(θ)
∣∣∣
}

a.s.

Then the statement is showed from Theorem 3.1 and Lemma 6.3. �

Lemma 6.5. Under the assumptions of Theorem 3.2, we have

(a) for n ≥ 2 + 2r, −▽ψn(θ0) is almost surely a positive definite matrix;

(b) supθ∈Θ

∣∣∣ ∂3 l̂d,i(θ)

∂bj∂bk∂bl

∣∣∣ = Op(1) for all i = 1, . . . , r, d = 1, . . . , n, and any j, k, l ∈ {1, . . . , 3r+
r2}, where θ = (b1, . . . , b3r+r2) = (θ1, . . . ,θr).

Proof of Lemma 6.5. (a). Simple algebraic manipulations show

−▽ψn(θ0) =
1

2n

n∑

d=1

r∑

i=1

∂φd,i(θ0)

∂θ

∂φd,i(θ0)

∂θ

⊤

φd,i(θ0)
−2 =

1

2n

n∑

d=1

r∑

i=1

φθ,d,iφ
⊤
θ,d,i,

where φθ,d,i =
∂φd,i(θ0)

∂θ
φd,i(θ0)

−1. First, we suppose that −▽ψn(θ0) is not a positive definite
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matrix. Then there is some non-zero constant vector a ∈ R
3r+r2 such that

1

2n

n∑

d=1

r∑

i=1

a⊤φθ,d,iφ
⊤
θ,d,ia = 0 a.s.,

which implies that

φ⊤
θ,d,ia = 0 a.s. for all d = 1, . . . , n, i = 1, . . . , r.

Since X(t) is nondegenerate, for n ≥ 2 + 2r, the vector a should be the zero vector in order

to satisfy the above equation, which contradicts a 6= 0. �

(b). Simple algebras show

∂3l̂d,i(θ)

∂bj∂bk∂bl

=

{
1− ξ̂d,i

φ̂d,i(θ)

}{
1

φ̂d,i(θ)

∂3φ̂d,i(θ)

∂bj∂bk∂bl

}

+

{
2

ξ̂d,i

φ̂d,i(θ)
− 1

}{
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bj

}{
1

φ̂d,i(θ)

∂2φ̂d,i(θ)

∂bk∂bl

}

+

{
2

ξ̂d,i

φ̂d,i(θ)
− 1

}{
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bk

}{
1

φ̂d,i(θ)

∂2φ̂d,i(θ)

∂bj∂bl

}

+

{
2

ξ̂d,i

φ̂d,i(θ)
− 1

}{
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bl

}{
1

φ̂d,i(θ)

∂2φ̂d,i(θ)

∂bj∂bk

}

+

{
2− 6

ξ̂d,i

φ̂d,i(θ)

}{
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bj

}{
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bk

}{
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bl

}
.(6.11)

To handle (6.11), we first need to find bounds for derivatives of φ̂d,i(θ). The parameters re-

lated to φ̂d,i(θ) are only θi and µ1, . . . , µr, and so we investigate the derivatives corresponding

to them. First, we investigate the first derivatives. Since φ̂d,i(θ) is a linear function for ωi

and βi,1, . . . , βi,r, we obtain that

1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂bl
≤ C for bl ∈ {ωi, βi,1, . . . , βi,r}.
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For γi, using the fact that x/(1 + x) ≤ xs for all x ≥ 0 and any s ∈ [0, 1], we have

1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂γi

=
1

φ̂d,i(θ)

{
λ̂d−1,i(θ)

2
+
γi + 1

2

[
d−2∑

k=1

kγk−1
i

{
pωi +

r∑

l=1

βi,l

(
Ẑd−k−1,l −

√
pµi

)2 }

+(d− 1)γd−2
i λ0,i(θ) + γd−1

i

∂λ0,i(θ)

∂γi

]}

≤ C + C
d−2∑

k=1

k

γki

{
ωi + p−1

∑r
l=1 βi,l

(
Ẑd−k−1,l −

√
pµi

)2}

ωi + γki

{
ωi + p−1

∑r
l=1 βi,l

(
Ẑd−k−1,l −

√
pµi

)2}

≤ C + C

d−2∑

k=1

kγksi

{
ωi + p−1

r∑

l=1

βi,l(Ẑd−k−1,l −
√
pµi)

2

}s

≤ C + C

d−2∑

k=1

kγksi,u

{
ωi,u + p−1

r∑

l=1

βi,l,u(Ẑd−k−1,l −
√
pµi)

2

}s

≤ C + C

d−2∑

k=1

kρks

(
p−1

r∑

l=1

βi,l,u(Ẑd−k−1,l −
√
pµi)

2

)s

,

where Ẑd,l = q̂⊤
d,l(X(d) − X(d − 1)). Then, for any c ≥ 1, choose s ∈ [0, 1] such that∥∥∥

(
p−1

∑r
l=1 βi,l,u(Ẑd−k−1,l −

√
pµi)

2
)s∥∥∥

Lc

<∞, and by Minkowski’s inequality, we obtain

∥∥∥∥∥supθ∈Θ

∣∣∣∣∣
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂γi

∣∣∣∣∣

∥∥∥∥∥
Lc

≤ C + C
d−2∑

k=1

kρks

∥∥∥∥∥

(
p−1

r∑

l=1

βi,l,u(Ẑd−k−1,l −
√
pµi)

2

)s∥∥∥∥∥
Lc

.

Since |ρ| < 1,

sup
1≤i≤r,1≤d≤n

∥∥∥∥∥supθ∈Θ

∣∣∣∣∣
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂γi

∣∣∣∣∣

∥∥∥∥∥
Lc

<∞.

For µl, we have

∣∣∣∣∣
1

φ̂d,i(θ)

∂φ̂d,i(θ)

∂µl

∣∣∣∣∣ ≤ C
1

φ̂d,i(θ)

[
p+ βi,lκ̂d,l(µl) +

d−2∑

k=1

γki βi,l(Ẑd−k−1,l −
√
pµl)

2

]

≤ C.

Similarly, the bounds for the second and third derivatives can be found.
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Since p−1φ̂d,i(θ) stays away from zero,

sup
θ∈Θ

ξ̂d,i

φ̂d,i(θ)
≤ Cp−1ξ̂d,i = Op(1).

Combining these results,

sup
θ∈Θ

∣∣∣∣∣
∂3l̂d,i(θ)

∂bj∂bk∂bl

∣∣∣∣∣ = Op(1).

�

Propostion 6.1. Under the assumptions of Theorem 3.2, we have

‖θ̂ − θ0‖max = op(1).

Proof of Proposition 6.1. First, we show that there is a unique maximizer of Ln(θ).

By the definition of Ln(θ), we have

max
θ∈Θ

Ln(θ) ≤ − 1

2n

r∑

i=1

n∑

d=1

min
θ∈Θ

{
log φd,i(θ) +

φd,i(θ0)

φd,i(θ)

}
.

Thus, the maximizer θ∗ should satisfy that φd,i(θ
∗) = φd,i(θ0) for d = 1, . . . , n and i =

1, . . . , r. Suppose that there exists θ∗ 6= θ0 such that θ∗ satisfies that φd,i(θ
∗) = φd,i(θ0) for

d = 1, . . . , n and i = 1, . . . , r.

Simple algebra shows

λd,i(θ) = pωi + γi
2{φd,i(θ)−

∑r
l=1 βi,lκd,l(µl)} − pωi

γi + 1
+

r∑

l=1

βi,l(Zd,l +
√
pµ0,l −

√
pµl)

2

and

φd+1,i(θ) =
pωi + (γi + 1)λd,i(θ)

2
+

r∑

l=1

βi,l κd+1,l(µl)

= pωi + γiφd,i(θ) +
r∑

l=1

(γi + 1)βi,l
2

(Zd,l +
√
pµ0,l)

2 + p

r∑

l=1

(γi + 1)βi,lµ
2
l

2

−2
√
p

r∑

l=1

(γi + 1)βi,lµl

2
(Zd,l +

√
pµ0,l)

−
r∑

l=1

γiβi,lκd,l,1 −
r∑

l=1

µlγiβi,lκd,l,2 −
p

3

r∑

l=1

µ2
l γiβi,l
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+
r∑

l=1

βi,l κd+1,l,1 +
r∑

l=1

βi,lµl κd+1,l,2 +
p

3

r∑

l=1

βi,lµ
2
l

= γiφd,i(θ) +
r∑

l=1

βi,l
{
(Zd,l +

√
pµ0,l)

2/2 + κd+1,l,1

}

+
r∑

l=1

γiβi,l
{
(Zd,l +

√
pµ0,l)

2/2− κd,l,1
}
+ p

{
ωi +

r∑

l=1

(γi + 5)βi,lµ
2
l /6

}

−
r∑

l=1

βi,lµl(
√
pZd,l + pµ0,l − κd+1,l,2)

−
r∑

l=1

γiβi,lµl(
√
pZd,l + pµ0,l + κd,l,2),

where κd,i(µi) = κd,i,1 + κd,i,2µi +
p
3
µ2
i ,

κd,i,1(µi) =

∫ d

d−1

[
q⊤
d,i{X(t)−X(d− 1)} − q⊤

d,i{u(t)− u(d− 1)}
]2
dt,

κd,i,2(µi) = −2
√
p

∫ d

d−1

(t− d+ 1)
[
q⊤
d,i{X(t)−X(d− 1)} − q⊤

d,i{u(t)− u(d− 1)}
]
dt.

Then, similar to the proofs of Theorem 1 in Kim (2016), for n ≥ 2 + 4r, we can show that

θ∗ should be the same as θ0 to satisfy φd,i(θ
∗) = φd,i(θ0) for d = 1, . . . , n and i = 1, . . . , r.

Therefore, θ0 is the unique maximizer of Ln(θ). Then, since Ln(θ) is the continuous function

with respect to θ, for any given ε > 0, there is a constant c > 0 such that

Ln(θ0)− max
θ∈Θ:‖θ−θ0‖max≥ε

Ln(θ) > c a.s. (6.12)

Then the statement is the consequence of Theorem 1 in Xiu (2010), Lemma 6.4, and (6.12).

�

Proof of Theorem 3.2. By Taylor expansion and the mean value theorem, there exist

θ̃ between θ0 and θ̂ such that

ψ̂n,m(θ̂)− ψ̂n,m(θ0) = −ψ̂n,m(θ0) = ▽ψ̂n,m(θ̃)(θ̂ − θ0).

If −▽ψ̂n,m(θ̃)
p→ −▽ψn(θ0) which is a positive definite matrix by Lemma 6.5 (a), then

we can conclude that the convergence rate of (θ̂− θ0) is the same as that of ψ̂n,m(θ0). First

we show −▽ψ̂n,m(θ̃)
p→ −▽ψn(θ0). Define

▽ψ̂n,m(θ) = (Ĥi,j(θ))i,j=1,...,3r+r2 and ▽ψn(θ) = (Hi,j(θ))i,j=1,...,3r+r2 .
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We have

∥∥∥▽ψ̂n,m(θ̃)− ▽ψn(θ0)
∥∥∥
max

≤
∥∥∥▽ψ̂n,m(θ̃)− ▽ψ̂n,m(θ0)

∥∥∥
max

+
∥∥∥▽ψ̂n,m(θ0)− ▽ψn(θ0)

∥∥∥
max

.

For
∥∥∥▽ψ̂n,m(θ̃)− ▽ψ̂n,m(θ0)

∥∥∥
max

, we have, for some θ̄ between θ̃ and θ0,

∣∣∣Ĥi,j(θ̃)− Ĥi,j(θ0)
∣∣∣ =

∣∣∣∣∣
∂Ĥi,j(θ̄)

∂θ
(θ̃ − θ0)

∣∣∣∣∣

≤ C sup
θ∈Θ

∥∥∥∥∥
∂Ĥi,j(θ)

∂θ

∥∥∥∥∥
max

∥∥∥θ̃ − θ0

∥∥∥
max

≤ op(1),

where the first equality is due to the mean value theorem and Taylor expansion, and the last

inequality is from Proposition 6.1 and Lemma 6.5 (b).

For
∥∥∥▽ψ̂n,m(θ0)− ▽ψn(θ0)

∥∥∥
max

, by Lemmas 6.1, 6.2, and 6.3, Theorem 3.1, and Propo-

sition 6.1, we can show

∥∥∥▽ψ̂n,m(θ0)− ▽ψn(θ0)
∥∥∥
max

= op(1).

Thus,
∥∥∥▽ψ̂n,m(θ̃)− ▽ψn(θ0)

∥∥∥
max

p→ 0.

Now, we consider ψ̂n,m(θ0). We have

‖ψ̂n,m(θ0)‖max ≤ 1

2n

n∑

d=1

r∑

i=1

∥∥∥∥∥
∂φ̂d,i(θ0)

∂θ

(
1

φ̂d,i(θ0)
− ξ̂d,i

φ̂2
d,i(θ0)

)∥∥∥∥∥
max

≤ 1

2n

n∑

d=1

r∑

i=1

∥∥∥∥∥
∂φ̂d,i(θ0)

∂θ
φ̂d,i(θ0)

−1

∥∥∥∥∥
max

∣∣∣∣∣
φ̂d,i(θ0)− ξ̂d,i

φ̂d,i(θ0)

∣∣∣∣∣

≤ Op

(
m−1/4 + (sp/p)

1/2
) 1

2n

n∑

d=1

r∑

i=1

∥∥∥∥∥
∂φ̂d,i(θ0)

∂θ
φ̂d,i(θ0)

−1

∥∥∥∥∥
max

≤ Op

(
m−1/4 + (sp/p)

1/2
)
,

where the third inequality is due to Theorem 3.1 and Lemma 6.3, and the last inequality

can be derived similar to the proofs of Lemma 6.5 (b). �
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6.4 Proof of Theorem 4.1

Proof of Theorem 4.1. The statements (4.5) and (4.6) are immediately showed by Theo-

rem 4.1 (Fan and Kim, 2017).

We consider (4.7). We have

‖Γ̃n+1 − E (Γn+1|Fn) ‖Γ∗ ≤ ‖Σ̂n −Σn‖Γ∗ + ‖Ψ̂n+1 −
r∑

i=1

hn+1,i(θ0)qiq
⊤
i ‖Γ∗

≤ ‖Ψ̂n+1 −
r∑

i=1

hn+1,i(θ0)qiq
⊤
i ‖Γ∗ +Op

(
spτ

1−δ
m

)
,

where the last inequality is due to (4.5). Now, it is enough to show

‖Ψ̂n+1 −
r∑

i=1

hn+1,i(θ0)qiq
⊤
i ‖Γ∗ = Op(p

1/2m−1/2 + sp/p
1/2 + spτ

1−δ
m ).

We have

‖Ψ̂n+1 −
r∑

i=1

hn+1,i(θ0)qn,iq
⊤
n,i‖F

≤ ‖
r∑

i=1

{ĥn+1,i(θ̂)− hn+1,i(θ0)}q̂n,iq̂
⊤
n,i‖F + ‖

r∑

i=1

hn+1,i(θ0)
(
qn,iq

⊤
n,i − q̂n,iq̂

⊤
n,i

)
‖F

≤
r∑

i=1

|ĥn+1,i(θ̂)− hn+1,i(θ0)|‖q̂n,iq̂
⊤
n,i‖F +

r∑

i=1

hn+1,i(θ0)‖qn,iq
⊤
n,i − q̂n,iq̂

⊤
n,i‖F

≤ Op

(
p{m−1/4 + (sp/p)

1/2}
)
, (6.13)

where the last inequality is due to Theorem 3.1 and (6.14) below. We have

‖eβ̂ − eβ0‖2 = ‖e(β̂−β0)+β0 − eβ0‖2
≤ ‖β̂ − β0‖2e‖β0‖2e‖β̂−β0‖2

≤ Op

(
m−1/4 + (sp/p)

1/2
)
,

where the last inequality is due to Theorem 3.2, and by Theorem 3.2 and Lemma 6.2, we

can show

‖λ̂n−1(θ̂)− λn−1(θ0)‖2 = Op

(
p{m−1/4 + (sp/p)

1/2}
)
,
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which imply, together with Theorem 3.2,

‖ĥn+1(θ̂)− hn+1(θ0)‖2 ≤ Op

(
p{m−1/4 + (sp/p)

1/2}
)
. (6.14)

Similar to the proofs of Theorem 4.1 (Fan and Kim, 2017), we can show

‖Ψ̂n+1 −
r∑

i=1

hn+1,i(θ0)qiq
⊤
i ‖Γ∗ ≤ C

[
{p−3/2 + p−2ĥn+1,1(θ̂)}‖Ψ̂n+1 −

r∑

i=1

hn+1,i(θ0)qiq
⊤
i ‖F

+p−5/2ĥn+1,1(θ̂)‖Ψ̂n+1 −
r∑

i=1

hn+1,i(θ0)qiq
⊤
i ‖2F

]

≤ Op

(
m−1/4 + p1/2m−1/2 + sp/p

1/2
)
,

where the last inequality is due to (6.13) and (6.14). Therefore, we have

‖Γ̃n+1 − E (Γn+1|Fn) ‖Γ∗ = Op

(
p1/2m−1/2 + sp/p

1/2 + spτ
1−δ
m

)
.
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