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Abstract

Several novel large volatility matrix estimation methods have been developed based
on the high-frequency financial data. They often employ the approximate factor model
that leads to a low-rank plus sparse structure for the integrated volatility matrix and fa-
cilitates estimation of large volatility matrices. However, for predicting future volatility
matrices, these nonparametric estimators do not have a dynamic structure to imple-
ment. In this paper, we introduce a novel It6 diffusion process based on the approximate
factor models and call it a factor GARCH-It6 model. We then investigate its properties
and propose a quasi-maximum likelihood estimation method for the parameter of the
factor GARCH-It6 model. We also apply it to estimating conditional expected large
volatility matrices and establish their asymptotic properties. Simulation studies are
conducted to validate the finite sample performance of the proposed estimation meth-
ods. The proposed method is also illustrated by using data from the constituents of
the S&P 500 index and an application to constructing the minimum variance portfolio

with gross exposure constraints.
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1 Introduction

Volatility analysis for high-frequency financial data is a vibrant research area in financial
econometrics and statistics. The high-frequency financial data allow us to study market mi-
crostructures and to estimate volatilities using the relatively short time horizon. Examples
include two-time scale realized volatility (TSRV) (Zhang et al., 2005), multi-scale realized
volatility (MSRV) (Zhang, 2006, 2011), pre-averaging realized volatility (PRV) (Christensen
et al., 2010; Jacod et al., 2009), kernel realized volatility (KRV) (Barndorff-Nielsen et al.,
2008, 2011), a quasi-maximum likelihood estimator (QMLE) (Ait-Sahalia et al., 2010; Xiu,
2010), local method of moments (Bibinger et al., 2014), and robust pre-averaging realized
volatility (RPRV) (Fan and Kim, 2017). For the finite number of assets, these estimators
perform well. However, in financial practices and studies, we often encounter a large num-
ber of assets, and it is known that to obtain the efficient and effective estimator for a large
volatility matrix, we need to impose some sparse or factor structure on large volatility matri-
ces. For example, several estimation methods for factor-based high-dimensional It6 processes
have been proposed (Fan et al., 2016a; Ait-Sahalia and Xiu, 2017; Fan and Kim, 2017; Kim
et al., 2017). They assume that the dependence of stock returns is driven by a few common
factors, which leads to a low-rank plus sparse structure for integrated volatility matrix.

In practice, we often need to predict the future volatility given the current information,
and unless the volatility is stable, the nonparametric volatility matrix estimator does not
capture the dynamics of the future volatility. One of the stylized features of returns is that the
log-returns are not significantly autocorrelated while the squared log-returns are positively
autocorrelated. Also we often observe that large changes of returns tend to be followed by
large changes, and small changes of returns tend to be followed by small changes, which is the
so-called volatility clustering (Mandelbrot, 1963). These stylized features indicate that the
volatilities are heterogeneous and autocorrelated, which prompts us to develop parametric
models to account for the dynamics of time-dependent volatilities in the stock market.

In this paper, we develop a parametric It6 diffusion model based on high-dimensional
factor-based It6 processes whose volatility matrices consist of the factor (low-rank) volatility
matrix and idiosyncratic (sparse) volatility matrix. Specifically, latent factor loading ma-

trices are assumed to be relatively stable: namely, the eigenvectors of the factor volatility



matrix used to construct estimated latent factors do not vary over a short time period (e.g.
within a day). On the other hand, we allow the eigenvalues to evolve with time and impose
a parametric dynamic structure. In particular, we assume that the eigenvalue sequence of
the latent factor volatility matrices admits some unified GARCH-It6 model structure (Kim
and Wang, 2016b) so that the dynamics of the volatility can be explained by the r-factors.
Their daily integrated conditional volatility given the information up to that time point is
a function of the weighted latent factor daily returns and previous conditional expectations.
Thus, it has a structure that is similar to the famous GARCH (Bollerslev, 1986).

To estimate the model parameters of the factor GARCH-It6 process, we first construct
eigenvalue estimators for the latent factor volatility matrices by a nonparametric method
using high-frequency intra-daily data. Then using the relationship between the eigenvalue
estimator and integrated eigenvalue calculated from the factor GARCH-It6 model, we pro-
pose a quasi-maximum likelihood estimation procedure and establish its asymptotic prop-
erties for estimated parameters. Finally, with the quasi-maximum likelihood estimator, we
construct the conditional expected large volatility matrix estimator. Further improvements
are also possible when the idiosyncratic volatility matrices are a martingale sequence and the
eigenvectors of the latent factor volatility matrices are constant. See Section 4 for details.

The rest of the paper is organized as follows. Section 2 introduces a factor GARCH-It6
model based on the high-dimensional factor-based It6 diffusion process and studies its prop-
erties. Section 3 proposes a quasi-maximum likelihood estimation procedure and establishes
its asymptotic results. In Section 4, we show how to estimate the conditional expected large
volatility matrix and establish its asymptotic properties. Section 5 conducts Monte Carlo
simulation to check the finite sample performance and applies the real data to the factor
GARCH-It6 model. Proofs are collected in Section 6.

2 Factor GARCH-Ito6 model

We first introduce some notations. For any given dy x dy matrix U = (Uj;), denote its
Frobenius norm by ||Ul|r = 1/tr(UTU), its matrix spectral norm ||Ul|y, and ||Ul|max =
max; ; |U;;|. For any given vector a, diag(a) denotes a diagonal matrix using elements of a.
Finally, for any given squared matrix A, det(A) is the determinant of the matrix A.
Denote by X(t) = (Xi(t),...,X,(t))" the vector of true log-stock prices at time ¢. To

account for dependence, we assume that the true log-stock prices follow the factor model:

dX (1) = p(t) dt + B(t)dE(t) + du(t), (2.1)



where p(t) € RP is the drift vector, B(t) € RP*" the unknown loading matrix, f(¢) € R"
the unobservable factor process, and u(t) the idiosyncratic process. Suppose that the latent

factor and idiosyncratic processes f(t) and u(t) follow continuous-time diffusion models:
df(t) =9 (t)dW(t) and du(t) =o' (t)dW*(1),

where o (t) is a p by p matrix, 9(¢) an r by r matrix, W(¢) and W*(¢) are r-dimensional and
p-dimensional independent Brownian motions, respectively. Stochastic processes p(t), X(t),
f(t), u(t), B(t), o(t), and 9(t) are defined on a filtered probability space (2, F,{F;,t €
[0,00)}, P) with filtration F; satisfying the usual conditions. It is helpful to think that the
time unit in our applications is day and we have high-frequency intra-daily data for the

assets. The instantaneous volatility of X(¢) is
s(t) = (w(t) = B®)9' O9()B(E)" + o' (t)a(t), (2.2)

and the integrated volatility over time [d — 1,d] (e.g., intra-day d)

d
rd:/ S(t)dt = Wy + 3,
d—1
where W, = [ B()9T ()9(1)B(t)Tdt and Sy = [ o (1o (t)dt.

The idiosyncratic volatility matrices 3y usually come from the risk of the individual
firm, which is generally unpredictable, but we can reduce its risk through diversification in
portfolio allocations. On the other hand, the factor volatility matrices W, are governed by
the factor-driven component of returns which are related to market factors such as industry
sectors, inflation reports, Fed rate hikes, and oil prices, and it is impossible to completely
avoid their risk in portfolio allocations (unless factor-neutral constraints are imposed). Thus,
it is important to develop a parametric model to explain their dynamics in the stock market.
In light of this, we propose a factor GARCH-It6 process to model the latent factor process
as follows.

Let qq1,-..,q9q, be the eigenvectors of the factor volatility matrix ¥, We will assume
that they are F;_;-measurable eigenvectors. This essentially requires that the factor loading
matrix B(t) for t € [d — 1,d) is F4_1-adaptive (predictable on day d — 1). However, their
corresponding instantaneous eigenvalues, A;1(01), ..., \:(6,), have some specific parametric
structure defined in Definition 1 below.

Definition 1. We call a log-stock price vector X(t),t € [0,00), to follow a factor GARCH-1t6



model if it satisfies for anyi=1,...,r andt € [d —1,d),

dag ;X (t) = /Dradt + 1/ i (0;)dWi(t) + q,0 " (H)dW™ (),
)\M(Oi) = )\[t]J(OZ) —+ (t — [t]){pwz -+ (’}/Z — 1))\[t],2(91)} + Zﬁi,l {/[t] \/ )\s,l(el>dVVl(5)} ;

where [t| denotes the integer part of t except that [t] =t — 1 when t is an integer, the drift

Wi = p‘1/2q:£iu(t) is restricted to a non-negative value, and 6; = (wi, Vi, Bixs - - -, Bir) 15 the
model parameter.

Remark 1. Since the eigenvector qq; has the sign problem, that is, qq; and —qg; are not
distinguishable, we restrict the sign of the drift term p; in order to identify the model
uniquely. Also, to focus on developing the volatility process, we assume that the drift term

W; 1s constant over time.

Note that in the above definition, we assume that the weights (eigenvectors) used to
construct latent factors do not change within a day or more generally a short time period.
Yet, the instantaneous eigenvalues can evolve with the time. For example, the instantaneous
eigenvalues are continuous time processes, and when restricted to the integer time d € N
they have the following GARCH structure

Aa,i(0i) = pw; + Yira-1,:(0;) + Z BiJZilv
=1

where Zy; = | dd—l \/mdﬂ/l(t). This has a similar structure to the GARCH model. For
intra-daily volatility, eigenvalues in Definition 1 are also a form of GARCH model, except
some kind of interpolation is used.

The model assumption and structure have some connections with pre-existing factor
models and unified GARCH models (Kim and Wang, 2016b). For example, to identify
the latent factor volatility matrix, we often assume that the factor loading matrix B(t)
in model (2.1) is piecewise constant within a day and orthogonal (Ait-Sahalia and Xiu
(2017); Fan et al. (2013, 2016b)). Then the eigenvectors of the factor volatility matrix
W, become qqr = by/|[byslle,k = 1,...,7, where B(t) = (by1,...,by,) and t €
[d — 1,d), and the instantaneous volatility matrix of the latent factor process 9' (t)9(t)
= diag(A1(01)/]ball3: - - - A (0:)/]1by,+113). Thus, the factor GARCH-It6 model assumes
that the latent factor process f(¢) consists of r diffusion processes and they follow some
unified GARCH-It6 process (Kim and Wang, 2016b). That is, the factor GARCH-It6 model



assumes that the dynamics of the stock prices are governed by the latent factor process
f(t). This latent factor process f(¢) is identifiable under the pervasive condition of the factor
volatility matrices and sparse condition of the idiosyncratic volatility matrices (Fan et al.,
2013, 2016b; Ait-Sahalia and Xiu, 2017). We will discuss more details in Section 3.

In the literature of the high-frequency volatility analysis, we often estimate the inte-
grated volatility matrix 'y by using high-frequency intra-daily data (Ait-Sahalia et al., 2010;
Barndorff-Nielsen et al., 2011; Bibinger et al., 2014; Christensen et al., 2010; Fan and Kim,
2017; Jacod et al., 2009; Zhang, 2006, 2011). Using a nonparametric estimator, we are able
to estimate integrated eigenvalues and infer the parameters in their GARCH structure. This
facilitates volatility prediction. In the following proposition, we establish some properties of

the integrated eigenvalues, which will be used for statistical inferences.

Propostion 2.1. Let 8 = (B;;)1<ij<r, with coefficients B;; defined in Definition 1. Then
we have the following iterative relations for a factor GARCH-It6 model.

(a) For ||Bl2 < 1 and det(B) # 0, we have for d € N
d
/ A (0)dt = hy(0) + Dy 0.5,
d—1

where A (0) = (Ae1(01), ..., M ()T, w=(wi,...,0), v =(71,-,7%) ",

hy(0) = pB~% (¢ =TI, — B) w + @Xa-1(0), (2.3)
Zﬁk+1< /dl k+1k+1/d 11/ i(0:)dW;(s)\/ M.i(0 )dWZ(t)) )

0=08"7(" -1 - B) (diag(y) — L)+ 87" (¢’ — L), ® = 332 B*/k!, and 1, is an
r-dimensional identity matriz.

(b) For ||B|l2 <1, det(B) #0, and d € N,

E Vddl At(e)dt‘fd_l] = hy() a.s.

Proposition 2.1 indicates that the integrated eigenvalues [ dd—l A(0)dt can be decomposed
into h,(0) and Dy. Also, h,(0) is adapted to the filtration F,;_;, and Dy is a martingale
difference. Thus, the conditional expectation of the integrated eigenvalues given the past

information Fy_; is hy(@) which shares some similarities of the GARCH structure. For
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example, if 3 is a diagonal matrix or 7;’s are the same, h;(0) has the standard GARCH
structure. That is, when B = diag(fs, ..., 3.) or diag(vy) = ~I,, we have

d
E {/ At(e)dt‘]——d—l} = hy(0)
d—1
= 871 (¢ —1,) w + diag(y)he1(0) + 0B8Z]_, as.,

where Z3 = (Z3,,...,23,)".

Remark 2. Generalized dynamic factor models have been developed to estimate and forecast
large volatility matrices (Boivin and Ng, 2006; Forni et al., 2000, 2015; Stock and Watson,
2002). See also Barigozzi and Hallin (2016, 2017); Connor et al. (2006); Diebold and Nerlove
(1989); Harvey et al. (1992); Ng et al. (1992); Rangel and Engle (2012); Sentana et al.
(2008); Van der Weide (2002). These models have some VAR or GARCH structure for the
latent factor volatilities, which are usually developed based on the discrete time models.
For example, for large panels of stock returns, Barigozzi and Hallin (2016) proposed the
nonparametric and model-free two-step generalized dynamic factor model, and Barigozzi and
Hallin (2017) studied how to extend the two-step generalized dynamic model to predicting
future volatilities. As seen in Proposition 2.1, for the daily log-returns, the factor GARCH-
It6 model also has some generalized dynamic factor model structure. Thus, the proposed
factor GARCH-It6 model can be considered as a specific class of the generalized dynamic
factor models. The main effort of this paper is to connect these well-developed discrete
time models to the continuous It6 diffusion process. Thus, the main difference from the
generalized dynamic factor models is that the factor GARCH-It6 model is developed under
the continuous time diffusion process. Thanks to this connection, we can make inferences

using the high-frequency financial data, which provides more accurate parameter estimators.

3 Parameter estimation for the factor GARCH-1It6 model

3.1 A model set-up

Suppose that the true log-stock prices follow the factor GARCH-It6 model in Definition 1.
We assume that the integrated volatility matrix I'; has the low-rank plus sparse structure
(Ait-Sahalia and Xiu, 2017; Fan et al., 2016a). Specifically, the factor volatility matrices

W ,’s have the finite rank r, and the idiosyncratic volatility matrices 35 = (X4,)j=1

.....



1,...,n, satisfy the sparse condition,

P
12d%n 1212p ]Zl a5l (ZaiTas) ™ < Mysy, (3.1)
where § € [0,1), M, is a bounded positive random variable, and the sparsity measure s,
diverges slowly with the dimensionality p. When 6 = 0 and X,;; is bounded from below, s,
measures the maximum number of nonvanishing elements in each row of the idiosyncratic
volatility matrix 3.
Assume that we observe the true log-stock prices X(¢),t =0, ...,n, at the low frequency
(e.g., daily). In addition, we have high-frequency intra-daily data that are contaminated
by microstructural noise. To capture this stylized feature, we assume that the observed

log-stock prices are masked with the additive noises:
Y;'(td’k) :Xi(td,k)+€i<td,k)7 Z':1,...,p,d:1,...,n,k:0,...,m, (32)

where d — 1 = t59 < -+ < tgm = d, the microstructural noises are independent random
variables which are independent of the price process and volatility process, and for each the
i-th asset and d-th day, €;(tqr),k = 1,...,m, are i.i.d. with E{¢;(¢t4x)} = 0. Furthermore,
we assume that the observation time points are synchronized and equally spaced, that is,

td,k—td,k,lzm_l ford:1,...,nandk:1,...,m.

Remark 3. In practice, the observed time points are non-synchronized and unequally spaced.
This non-synchronization problem has been well studied in the literature by using refresh
time (see also Alt-Sahalia et al. (2010); Barndorff-Nielsen et al. (2011); Bibinger et al. (2014);
Christensen et al. (2010); Zhang (2011)). Thus, to focus on development of the parametric
model, we assume that the observed time points are synchronized and equally spaced for

simplicity so that the key techniques can be better highlighted.

3.2 Nonparametric estimation methods

To develop a parametric estimation method for the factor GARCH-It6 models, we need a
good nonparametric estimators for the eigenvalues and eigenvectors of the factor volatility
matrix Wy, In this section, we first investigate asymptotic behaviors of the nonparametric
estimators.

Let fd be the d-th day integrated volatility matrix estimator which can be one of multi-

scale realized volatility matrix (Zhang, 2006), pre-averaging realized volatility matrix (Chris-



tensen et al., 2010), and kernel realized volatility matrix (Barndorff-Nielsen et al., 2011). By

the eigen-decomposition, the integrated volatility matrix f‘d can be decomposed as

p
b = o~ AT
ry= E §a,i9d,i .5

i=1

where the realized eigenvalue gAd,i is the 7-th largest eigenvalue of f‘d with qq; as its associated
eigenvector. We use the first r eigenvalues and eigenvectors, am- and qgq;,7 = 1,...,7, as
the estimators for the eigenvalues and eigenvectors of the factor volatility matrix ¥,. To
investigate their asymptotic behaviors, we need the following technical conditions. Denote
by C’s generic constants whose values are free of 8, n, m, and p and may change from

occurrence to occurrence.
Assumption 1.

(a) The instantaneous volatility, drift processes, and microstructural noises satisfy, for

some o > 2,

N 3a 3o 3o
max lrggéE{@n(t) } < oo, 1@%§E{!\<(t)\|z } < Cp,
T 3a) 3a ) 6a

max B{[lo’ (o (t)ll;"} < Os,%,  max max E{|u(t)"} < oc,

. 6a
fax max B{je;(tqr)[™} < oo,
where §(t) = (6;j(t))ij=1,..p 5 the instantaneous volatility process of the log-price X(t)
defined in (2.2).

(b) Let D¢ = min{&y; — &qit1,0 = 1,...,r,d = 1,...,n}, where the integrated eigenvalue
i = fdd—l Aei(0:)dt and g1 = 0. There is a fized positive constant C such that
D¢ > Cp as.

Remark 4. Assumption 1(b) is called the pervasive condition which is often imposed on
analyzing the approximate factor models (Ait-Sahalia and Xiu, 2017; Fan et al., 2016b).
Under the factor GARCH-It6 model, the integrated eigenvalue is a function of the model
parameters 6;’s, and there exist the parameters 6,’s satisfying Assumption 1(b). For example,
for any i > 7', we choose the parameters 0,’s such that ;1 > 81, ..., Bir > Birrs v > Virs
and w; > wy. Then the eigen-gap D, diverges with the order p.

The following theorem provides the convergence rates of gd,i and Q.



Theorem 3.1. Suppose that the true log-stock prices follow the Factor GARCH-It6 model,

and Assumption 1 and the sparsity condition (3.1) are met, and that for any d =1,... n,

~ 3o
E (’Fd,ij - Fd,ij ) < Cmiga/él fOT' all Z,j € {1, ce ,p} (33)
Then we have, for anyd=1,...,n,
max B (1 — €ail”) < Cp™{m=/" + (5,/p)"}, (3.4)
max B ([[a; — sign((Qu. qaa))daill3”) < C{m™*" + (s,/p)*}. (3.5)

Remark 5. If the input volatility matrix f‘d satisfies the condition (3.3), we can enjoy the
asymptotic properties obtained in Theorem 3.1. For example, multi-scale realized volatility
(MSRV) (Zhang, 2006, 2011), pre-averaging realized volatility (PRV) (Christensen et al.,
2010; Jacod et al., 2009), and kernel realized volatility (KRV) (Barndorff-Nielsen et al.,
2008, 2011) satisfy the condition (3.3) under Assumption 1 (see Christensen et al. (2010);
Kim et al. (2016); Tao et al. (2013a)).

Remark 6. Theorem 3.1 shows that the nonparametric eigen-factor estimators have conver-

/4 and s,/p. The first term comes from estimating

gence rates, consisting of two terms m™
the integrated volatility matrix I'y, which is optimal in presence of the microstructural noise.
The second term s,/p appears because we cannot observe the latent factors f(¢). It is the
cost that we need to separate the factor volatility matrix ¥, and idiosyncratic volatility
matrix X, from the integrated volatility matrix I'y. Thus, the sparsity condition such as

sp/p = o(1) is required.

3.3 Quasi-maximum likelihood estimator

In this section, we propose a quasi-maximum likelihood estimator for the parameters of the
factor GARCH-It6 model and establish its asymptotic convergence rate. We denote the true
parameters by 8y = (61, . ..,00,) and 0g; = (wo,i, 70,5 o5 Bosi1s - - -5 Bosinr)-

To estimate the true parameters 8, we use the direct relationship between the integrated
eigenvalue estimator Ed,l- and integrated eigenvalue calculated from the factor GARCH-It6

model. For example, p‘lgu converges to the integrated eigenvalue p~'&,, = p~*' [ ddfl Ae.i(00)dt

10



with the convergence rate m~/4 + s,/p (see Theorem 3.1). Let

pw; + (Vi + 1) Aa-1,:(0)
2

+ Y Biakaalm),

=1

$a,i(0) =
where
Aai(0) = pwi + vida-14(0) + 121 Bia (Zag + /Drog — /br)*
Kai(ps) = /:1 [ag {X(t) = X(d = 1)} — qj {ut) —u(d = 1)} = (t —d+1)y/p] " dt,

and, under the unified GARCH-It6 model, the integrated eigenvalue {y; is the same as

¢4,i(60). Using this relationship, we can construct a quasi-likelihood function as follows:

1 < Eai

To evaluate the quasi-likelihood function, we need a good nonparametric estimator for

kaqi(pi). The difficulty of estimating these quantities is to identify the latent factor process.
Under the pervasive condition (Assumption 1(b)) and the sparsity condition (3.1), we can
separate the factor part from the log-price process X(t) (see Ait-Sahalia and Xiu (2017)).
Since the microstructural noise is assumed to have a sparse correlation structure, using the
similar argument, we can also separate the factor part from the noisy observation Y (¢4;).

Using this technique, we can estimate ,4,(j;) nonparametrically by

Ka,i(11:) Z{de (tag) = Y(d = 1)) = (tag — d + 1)/ppi}* Ay,

where Ag; = tq; — tg;_1. It can then be shown that p!

Ra,i(1;) uniformly converges to
p~kqi(p;) with the convergence rate m=/4 + (s,/p)/? (see Lemma 6.1 in Section 6).

With the nonparametric estimator k4, we estimate the quasi-likelihood function by

Ln,mz :__Z{Og¢dz fdl }
1

)

$4,:(0)

11



where Xd,i(a) is the solution to (3.6),

2ai(8) = pwi +ida-1a(0) + > Bia [7AX(d) — X(d = 1)} — ], (3.6)
=1
and N )
ng,i(e) _ pw; + <7z +21))‘d1,z(0) + Z /6i7l /'L%d,l(,ul)-

=1
Then the true parameters @, are estimated by maximizing the quasi-likelihood function

En,m(e) = Zzzl En,m,i(e), that iS,
0 = arg ax Ln.m(6), (3.7)

where © is the parameter space of 8. To investigate the asymptotic behavior of quasi-

maximum likelihood estimator 5, we make some technical conditions as follows.
Assumption 2.

(a) Assume that the parameter space © for @ is compact, ||B|la < 1, det(B) #0,0 <y <1

foralli=1,...,r, and 6y is an interior point of ©, where B = (B; ;)i j=1...r-
(b) The initial value Ay in Definition 1 is given.

Remark 7. We impose the initial value condition (Assumption 2(b)) to investigate the asymp-
totic behaviors with the finite period. However, even if this condition is violated, the effect
of the initial value is negligible with the convergence rate n~! (see Lemma 1 in Kim and

Wang (2016b)) and the convergence rate in Theorem 3.2 has one additional term n~!.

The following theorem provides the convergence rate of the quasi-maximum likelihood
estimator (QMLE) 6.

Theorem 3.2. Under the assumptions of Theorem 3.1 and Assumption 2, for n > 2 + 4r,
we have

18 — Bo[max = O, (m™V4 + (5,/p)"?) .

Remark 8. Theorem 3.2 shows that the quasi-maximum likelihood estimator 0 has the con-
vergence rate m~ /4 4+ \/8p/p. The first term is coming from the high-frequency observation
in presence of the microstructural noise, and the second term is due to identifying the la-

tent factors in the volatility matrix. If we can observe the latent factor part, we may have

1/4

the optimal convergence rate m~"/*. Or when the number, p, of assets is big, for example,

m'/2s, = O(p), we have the convergence rate m~'/4.

12



Remark 9. Asymptotic distribution of the QMLE 0 would be useful for its inference. How-
ever, to establish the asymptotic distribution, we face two challenges. One is to identify
the latent factor part f(¢). If the number of assets is big enough to make the term m
negligible, this issue will be solved and we may be able to derive the asymptotic distribu-
tion of the non-parametric eigenvalue estimator Ed,i under some conditions. The other issue
is to estimate the parametric integrated eigenvalue ¢4,(6o). Since its asymptotic conver-
gence rate is m~/* + \/% (see Lemma 6.1), it is not negligible and we need to derive
its asymptotic distribution. The major challenge of deriving the asymptotic distribution of
$d7i(00) is to handle the eigenvector estimator g,;. For example, we need to manage the
terms {q (Y (tq:) — Y(d — 1))}?, which is not easy. In short, if we know the asymptotic
joint distribution of g“- and ngSdﬂ-(OO), d=1,...,n,i=1,...,r, we can possibly derive the
asymptotic distribution of 6. All these problems are very challenging and we leave this issue

for a future study.

4 Large volatility matrix estimation

In financial practices such as portfolio allocation, it is important to predict future volatilities.
In this section, we show how to predict the future large volatility matrix under the factor
GARCH-It6 model.

Given the current information JF,, the conditional expectation E (T, 41]|F,) is the best
predictor for the future volatility matrix. To evaluate the conditional expectation under the
factor GARCH-It6 model, we need some additional structure for the idiosyncratic volatility
matrix 3,1 and eigenvectors of the factor volatility matrix ¥, ;. As discussed in Section
2, the idiosyncratic risk is unpredictable, but it can be mitigated by diversification. Hence it
may not be harmful to assume that the idiosyncratic volatility matrices 3, are martingale
processes: E (X2,11|F,) = X, a.s. Also, we assume that the eigenvectors qq;’s are constant
and qq; = q; for all d = 1,...,n + 1. Then the conditional expected large volatility matrix
| SR

r
E (Tl Fo) =Y hnsri(00) i) + Z as.,
i=1
where h,,(60y) = (hn,1(00), ..., "y (00))" is defined in (2.3). We use the conditional expec-
tation E (I',,41|F,) as the future volatility matrix estimator.

Remark 10. In this paper, we mainly focus on developing the parametric model of the factor
volatility process. When analyzing the factor volatility matrix, we do not need any strong

condition for the idiosyncratic volatility matrix. In fact, we only impose the sparse structure

13



(3.1) on it. On the other hand, in order to predict the future volatilities, we need some
parametric structure for the idiosyncratic volatility matrix. To focus on the development
of the factor volatility process, we simply assume that the idiosyncratic volatility process is
a martingale. However, several studies show that the idiosyncratic volatility exhibits het-
eroskedasticity and its proportion of the total volatility is significant (Connor et al., 2006;
Herskovic et al., 2016; Rangel and Engle, 2012). Also, the empirical study of Barigozzi and
Hallin (2016) shows that the market volatility shocks are hitting not only factor volatilities
but also idiosyncratic volatilities. Thus, it would be interesting and important to develop a
parametric model for the idiosyncratic volatility process based on the continuous time model.
Since the factor volatility process proposed in this paper is developed independently from
the idiosyncratic volatility process, and so it would be easy to combine other idiosyncratic
volatility process with the proposed factor GARCH-It6 model. However, modeling idiosyn-
cratic volatility process is hard when sparsity condition is imposed, which is necessary for
identifiability and high-dimensional covariance matrix regularization. One possible idea is to
appeal special sparsity structure. It was documented in Fan et al. (2016a) that the volatility
matrix of idiosyncratic components admits a block diagonal structure when sorted by sec-
tors or industries. We can then model the dynamics of the idiosyncratic volatility matrices
for each sector or industry by using a multivariate GARCH or DCC (dynamic conditional
correlation) model (Bollerslev, 1990; Bollerslev et al., 1988; Engle, 2002; Engle and Kroner,
1995). This part of dynamics can also be modeled by the GARCH-It6 process in the same

way as we model the factor volatility.

To estimate the idiosyncratic volatility matrix 3,, we employ the principal orthogonal
component thresholding (POET) (Fan et al., 2013) procedure as follows. For any given

integrated volatility estimator f‘n, the spectral-decomposition provides
A~ p ~
r,= Z §m?1m?1L,
i=1

where 5,” is the i-th largest eigenvalue of fn and q,; is its corresponding eigenvector. The
sparse volatility matrix is estimated by the thresholding of the input idiosyncratic volatility
matrix En = (En7ij>1§i7j§p = Fn - Z;‘":l &,flmﬁlzi
~ Y, V0, if i = j . .
Yinyij = ~ ~ 7 and By = Cagicigge, (41)
$ij(Zni7) (| X5 = wig), i i #
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where the thresholding function s;;(-) satisfies that |s;;j(x) — z| < w;;, and the thresholding

level @w;; = @, \/(iu \Y 0)(§]jj V 0) is the same as applying thresholding w,, to the cor-
relation matrix. Interesting examples of the thresholding function s;;(z) includes the soft
thresholding and hard thresholding function. Under some conditions, Fan and Kim (2017)
showed that ﬁn converges to X, in terms of the spectral norm. We use in as the idiosyn-
cratic volatility matrix estimator.

Next, using the quasi-maximum likelihood estimator 0 in (3.7), we estimate the condi-

tional expected factor volatility matrix by
lIanrl == Z hn+1,i(9)an,iajl,iv (42>
i=1

where by Proposition 2.1,

~ ~ o~ ~ ~ ~

Bui1(8) = (hus11(0), . Foir, (0)" = pB (# =1, = B) &+ 2X,(0).

A(8) = (0an(0), ..., 2r(0)T, A i(8)s are defined in (3.6), 8 = (B;)1<ijcr @ = (@1,...,0,)7,

Aot 2 ~ ~—1
¥=,..-,3) ,and g = 3 (eﬁ o ﬁ) (diag(v)—1I,)+3 (eﬁ — IT). Then, combin-
ing the idiosyncratic volatility matrix estimator 3, and conditional expected factor volatility

matrix estimator \/I\’nﬂ, we predict the conditional expected volatility matrix as follows:

~ ~

Fn+1 - \/I\In+1 + En (43)

To investigate its asymptotic behavior, we make the following technical conditions.
Assumption 3.

(a) For some fized constant Cy, we have

where q; = (qij,.--,qp;) 18 the j-th eigenvector of W,,;

(b) There is some fized positive constant Cy such that &,1/De < Cy a.s., and the smallest

eigenvalue of X, stays away from zero;

(c) sp/\/P+ /logp/m'/? = o(1).
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Remark 11. Assumption 3(a) is incoherence condition which is usually imposed on investi-

gating the low-rank matrix inferences (Candes et al., 2011; Fan et al., 2016b).

The following theorem shows the asymptotic behaviors of the conditional expected volatil-

ity matrix estimators.

Theorem 4.1. Under the assumptions of Theorem 3.2, suppose that

= 1
PI‘{ max ‘Fn,lj - Fn7”| Z C M} S pil, (44)

1<i,j<p ml/2

and Assumption 3 are met. Take w,, = CyT, for some large fixed constant C,, where
Tm = 8p/D + /log(p V- m)/mi/2. Then we have

”in — 2= 0, (SpTrii(S) ) (4.5)
||2n - z]n”max = Op (Tm) s (46)
ITys1 — E (T F) [0 = Oy (p1/2m_1/2 + Sp/p1/2 + SPT%_é) ) (4.7)

2= p [T AT and T = BT | ).

where the relative Frobenius norm ||A|

Remark 12. Condition (4.4) can be obtained under the bounded instantaneous volatility
condition (Tao et al., 2013b). Thanks to the localization argument made in Section 4.4.1 of
Jacod and Protter (2011), we assume the bounded condition without loss of generality. So

this condition is not restrictive at all.

Remark 13. Theorem 4.1 shows that the conditional expected volatility matrix estimator
I',.1 is consistent in terms of relative Frobenius norm as long as p = o(n). Its convergence
rate is comparable with the convergence rates obtained in Fan and Kim (2017). The dif-

1/2

ference is the additional term s,/p'/® which comes from estimating the parameters 6. As

discussed in Remark 8, it is due to identifying the latent factor volatility, and so if the latent

1/2

factor part is observable, the term s,/p'/? is removed.

To evaluate the conditional expected volatility matrix E (I',,41|F,), we assume that the
eigenvectors of the latent factor volatility matrices W,,’s are constant. Under this condition,
we are able to estimate eigenvectors using the whole period information. For example, we
can estimate the eigenvectors qu, ..., q, by the first r eigenvectors, qf, ..., q¢, of % >y T,

With this aggregated estimation, the eigenvalues for the d-th day are now estimated by
gﬁ,i = (Gf)deai fori=1,...,7.
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Then we apply the quasi-maximum likelihood estimation procedure proposed in Section
3 with qf and Egﬂ. instead of qq; and &;;, and 6° denotes the resulting quasi-maximum
likelihood estimator. Let us call it the aggregated QMLE. Using 50, Eg’l., and qf, we estimate

the conditional expected factor volatility matrix by

n+1 - Z hn—i—l i qz qz) ) (48)

where

B0 (07) = (s (8, T (0)T = p(B) 2 (¢ 1, = B7) &7 + 2N, (6),
X (0) = (X1(0),... X, (0)7,

)y n,T

N (07) = pf + AN (00) + 3 B (@) X (n) — X(n— 1)} — v/og]”,
=1

and 8, ¢, @°, and P are estimated using 0" instead of 8. Finally, the conditional expected

volatility matrix is estimated by

~ ~

o= ‘I’Z-H + 3, (4.9)

where 3, is defined in (4.1). The alternative estimator f‘; 41 can enjoy the same asymptotic

properties in Theorem 4.1 under the constant eigenvector condition.

5 Numerical study

5.1 A simulation study

We conducted simulations to verify the finite sample performances of the proposed estimators
0 and " and conditional expected volatility matrix estimators f‘nﬂ and f‘; 41 given the past
n period observations. We generated the log-prices X(¢; ;) for n days with frequency 1/m on
eachday: t;;, =i—1+j/m,i=1,...,n,j=1,...,m, from the factor GARCH-It6 model

in Definition 1 with the following form:

dX(t) = QAY2(t)dW (t) + o TdW* (1),

A i(80) = N s(80) + (¢ — (1) pos + (0; — D80} + 3 B { /[ | \/Atvl(eomwl(t)} ,
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where A(t) = diag(A¢1(600), - - -, At (00)) with r = 3,

0, = (wo,lu <o Wors Y015 - - -5 Y0, 50,1,17 cen 750,7"#)

= (0.15,0.125,0.1,0.2,0.15,0.1,0.25,0.2,0.15, 0, 0.15,0.125, 0,0, 0.1),

and W (t) = (Wy(t),..., W,(t))" and W*(t) are - and p-dimensional independent Brownian
motions. To generate the eigenvector matrix Q, we first made a p by p matrix whose elements
were generated by i.i.d. uniform [0, 1], and chose its first r eigenvectors as Q. To obtain the

sparse volatility matrix ¥ = (X;;)1<; j<p, its off-diagonal elements were generated as follows:
Zij = O5|Z_J| E,-,-Ejj,

the diagonal elements are ¥;; = 1,7 = 1,...,p, and o is the Cholesky decomposition of 3.
We took the initial values Xy = 0 and Ag = p x diag(1.5,1,0.5), the rank r = 3, n = 100,
and p = 200. We varied m from 400 to 5,000.

The low-frequency data were taken to be X(i), ¢ = 0,...,n. The high-frequency data
Y (tq;) were simulated from the model (3.2), where the true log-stock prices X(¢4;) were
taken from the generated log-prices described above, and for the i-th asset, the market mi-
crostructural noises €;(t4;) were from i.i.d. normal distribution with mean zero and standard
deviation 0.01y/3;;. To estimate the integrated volatility matrices I'y’s, we employed the pre-
averaging realized volatility matrix (PRVM) estimator (Christensen et al., 2010; Jacod et al.,
2009) as follows:

m—K+1
Y tar)Y(t — 5.1
Ly = wK Z { ak)Y (tar) cn} (5.1)
where
. PR R N 1 « 2
Mg = diag(Ma11, - - - Napp), i = 5~ ; {Yi(tar) — Yiltar—1)}",

Y (tax) = Kzlg ( ) {Y(tartt) = Y(tagsia)},

EPE (R oo

the bandwidth size K = [m!/?], and the weight function g(z) = = A (1 — x). We esti-
mated the model parameters by the proposed QMLE procedure in Section 3.3 with/without

aggregation. The whole simulation procedure was repeated 500 times.
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Table 1: The MADEs of QMLEs estimated with/without aggregation for p = 200, r = 3,
n = 100, m = 400, 1000, 2000, 5000.

MADEx 10?

w 7 51‘,1 51',2 ﬁi,3 %

m 0 0° 0 o° 0 0° 0 o° 0 0¢ 0 ¢

A 400 439 2.18 783 8.12 3.52 3.36 4.39 4.12 5.61 5.89 241 213
1000 3.34 1.96 6.08 6.16 2.95 2.30 3.62 3.35 4.50 4.79 1.95 1.64
2000 2.85 1.86 5.15 531 2.60 2.00 3.18 2.87 4.38 4.31 1.81 1.66
5000 2.33 1.72 4.21  4.22 233 191 257 241 3.66  3.48 1.55 1.57

Ay 400 3.02 1.42 10.86 10.69 1.85 0.44 3.75  3.69 4.18 3.63 248 1.76
1000 2.39 1.37 9.86 8.78 1.23 0.33 2.70 251 3.15 2.62 1.87 1.71
2000 1.97 1.36 8.09 7.92 0.89 0.30 2.39 2.07 2.79 2.53 1.67 1.46
5000 1.70 1.22 732  6.86 0.56 0.22 1.69 1.48 248 2.19 1.31 1.32

Az 400 1.61 0.84 9.30  9.26 0.39 0.23 2.05 0.58 3.33  3.57 295 1.82
1000 1.27 0.81 8.01  8.09 0.31 0.20 1.54 0.43 2.46 2.59 232 1.73
2000 1.29 0.94 7.67 7.66 0.22 0.17 1.24 0.37 216 1.77 221 1.45
5000 1.06 0.85 6.22  6.38 0.17 0.13 0.84 0.33 1.65 1.34 1.54 1.33

Table 1 reports the mean absolute deviation errors (MADE) of the model parameter
estimators @ and 6. As expected, it shows that as m increases, the MADESs decrease;
the aggregated QMLE, 50, outperforms 6. This is due to more accurate aggregated esti-
mated eigenvectors ¢ under the constant eigenvector condition. These results support the
theoretical findings in Section 3.3.

Using the QMLEs, we predicted the conditional expected eigenvalues, hy,41,:(6), and
conditional expected integrated volatility matrix, E (I',,41]F,), given the past n period ob-
servations. For example, the conditional expected eigenvalues are estimated by ﬁnﬂz(g) and
E;; +1ﬂ-(l/9\c) in (4.2) and (4.8), respectively, and the conditional expected integrated volatility
matrix by I'.1 and f‘; 41 in (4.3) and (4.9), respectively. On the other hand, when not
considering parametric models, we often assume the martingale structure on the integrated
volatility matrices and estimate the conditional expected volatility matrix using the pre-
vious period estimator, that is, fn In the light of this, we compare the proposed factor
GARCH-It6 estimators with the nonparametric estimator fn For the conditional expected

eigenvalues h,41,:(6p), we measured the errors by the relative errors

i = hoy1(80)]
hn+17i(00) ’
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where Xl could be one of three estimators: unaggregated estimator ﬁnﬂyi(b\), aggregated
estimator h¢ H,Z@C), and the nonparametric estimation, which is the i-th eigenvalue Em of
the PRVM estimator fn. Figure 1 depicts the relative errors against m. We can find that the
estimates based on the factor GARCH-It6 model, ﬁn+“(§) and Eg+17i(56), are better than
the i-th eigenvalue, gn,i, of the PRVM estimator f‘n The results reveal that the aggregated

“~C

estimator /H; 1+1,:(0") has the smallest relative errors.
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Figure 1: Average relative estimation errors of estimators for the conditional eigenvalues
against m, with p = 200, r = 3, and n = 100.

Finally, we consider the conditional expected integrated volatility matrix E (T',41|F,).
The integrated volatility matrix has the low-rank plus sparse structure, and so we employ
the POET procedure to account for the such structure. Denote the POET estimator at the
n-th day by f:OET. For the thresholding step, we used the thresholding level \/W )
We used f‘n+1, f‘; e f‘n, and ff orT as the estimator of the conditional expected integrated
volatility matrix E (T',,.1|F,). We measured the average errors of matrix estimation using
the Frobenius norm, spectral norm, and relative Frobenius norm (Fan et al., 2013). Figure
2 depicts the average errors under different matrix norms against m. It is clear that the
estimators based on the factor GARCH-It6 model, an and f; 11, outperform the other two
estimators. When comparing f‘n+1 with IN‘; 41, the aggregated estimator f‘; 41 has smaller

average errors, as expected.
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Figure 2: Average estimation errors of estimators for the conditional integrated volatility
matrix against m under different matrix norms, with p = 200, r = 3, and n = 100.

5.2 An empirical study

In this section, we applied the proposed estimators to high-frequency trading data for 200
assets from January 1st to December 31st in 2013 (n = 252). The data is taken from the
Wharton Data Service (WRDS) system. Top 200 large trading volume stocks were selected
among S&P 500, and we used 1-min log-returns. To employ the proposed estimators, we
first need to find the rank r. To do this, we first calculated 252 daily integrated volatility
matrices using the PRVM estimation method in (5.1). We estimated the rank r using the
procedure proposed by Ait-Sahalia and Xiu (2017) as follows:

252

Cc2
r= argKggip |:p_1§d7j +j X {\/logp/ml/Q —|—p_110gp} } -1,
I =1

where 1. = 30, ¢; = 0.02 X @730, and ¢, = 0.5. The minimum value is 7 = 3. Also we
draw the scree plot using the average values of eigenvalues from the 252 PRVM estimators.
Figure 3 shows that the possible values of the rank r are 1,2,3,4. From those results, we
determined r = 3.

We used the open-to-close period high frequency data as the one time period. To eval-
uate the quasi-likelihood function, we used the first r eigenvalues of the first day as the

initial eigenvalue Ag. We calculated 6 and estimated the conditional integrated eigenvalues
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Figure 3: The scree plot for average eigenvalues of PRVM.

h,(0,) by ﬁd(b\) in (4.2). The estimated values are 0= (W1, -, W3, 915 - -+, 73, 3171, . ,3373,
f1, ..., 03) = 1073x (0.012, 0.006, 0.004, 362.479, 242.343, 315.174, 139.116, 74.370, 63.324,
17.151, 53.201, 75.818, 9.190, 25.905, 38.370, 2.366, 0.554, 0.670). Figure 4 depicts the esti-
mated daily integrated eigenvalues by the integrated eigenvalue estimates gm and estimated
conditional expected integrated eigenvalues ﬁdl(é) It shows that the estimated conditional
integrated eigenvalue estimators ﬁdz(é) can capture the dynamics of the integrated eigen-
value estimates giﬂ- and their path is smoother than the integrated eigenvalue estimates
Sa,i-

We consider the constrained portfolio allocation problem using our forecasted volatility:

. wTrgliIll,Hle:co w T, W, (5.2)
where J = (1,...,1)T € R? and ¢, is the gross exposure constraint which varied from 1
to 2. We estimated the conditional expected volatility matrix E (I',1|F;,) using the past
n-period observations, and we varied n from 148 to 252. That is, we used at least 148
daily observations (7 months) to estimate 8. To check the dependency of the split points,
we calculated the out-of-sample risk for three different testing periods: from 148 to 252
(5 months), from 169 to 252 (4 months), and from 190 to 252 (3 months). A popular
alternative method is to use the integrated volatility matrix in the previous period as the
estimator of the future volatility matrix I';,, 1. Thus, for the comparison, we also used the
PRVM estimator I', and POET estimator f‘fOET in order to construct the portfolio in

(5.2). To make the estimates positive semi-definite, we first projected the input volatility
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Figure 4: The plots of daily integrated eigenvalue estimates, the integrated eigenvalue esti-

Time

mate &,; and factor GARCH-It6 eigenvalue hy;(6).

matrix PRVM estimators onto the positive semi-definite cone in the spectral norm. For
the thresholding step in estimating the covariance matrix of the idiosyncratic component,
we utilized the global industry classification standard (GICS) for sectors, and maintained

within-sector volatilities but set others to zero (Fan et al., 2016a). To model the dynamics
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for the idiosyncratic volatilities, we apply the factor GARCH-It6 model to each block with
the full rank. Under the block diagonal structure, the factor GARCH-It6 model is still
complex, which causes huge estimation errors. To simplify the model, we assume that each
eigenvalue is not affected by other eigenvalue parts, that is, 3 is assumed to be diagonal, and
eigenvectors are constant over time. Then we can estimate the model parameters marginally.

We call it idiosyncratic GARCH-Ito.

Portfolio Risk (5 months) Portfolio Risk (4 months) Portfolio Risk (3 months)
% 1—— Factor GARCH-Ito . En En
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Figure 5: The out-of-sample risks of the optimal portfolios constructed by using the volatil-
ity matrix from the factor GARCH-It0, aggregated factor GARCH-It0, aggregated factor
GARCH-It6 with idiosyncratic GARCH-1t6, POET, and PRVM estimators.

Figure 5 plots the out-of-sample risk of the portfolio constructed by the factor GARCH-Ito
estimator I‘n+1, aggregated factor GARCH-Ito estlmator I‘n 41, aggregated factor GARCH-
It6 with idiosyncratic GARCH-Ito, POET estimator I‘n ET, and PRVM estimator I‘n. Here
the portfolio risk was measured using the 1-min portfolio log-returns for one day. For the
three different periods, we have similar behaviors, and so the results do not significantly
depend on the split points. We find that for the purpose of portfolio allocation, the factor
GARCH-It6 performs well and improves the performance of the POET. On the other hand,
the allocation based on the PRVM estimator becomes unstable as the exposure constraint
increases and its out-of-sample risk also much bigger than those of the factor GARCH-It6
and POET. Meanwhile, the aggregated factor GARCH-It6 has the smallest risk when the
exposure is small, that is, the portfolio is sparse. We also find that the idiosyncratic GARCH-
It0 estimates show stable performance over the exposure level. The results suggest that the
proposed factor GARCH-It6 model can explain the dynamics of the volatility in the stock

market. Also it is important to model the dynamics for the idiosyncratic volatility, and so
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we need to study its asymptotic behaviors. We leave this for the future study.

6 Proof

6.1 Proof of Proposition 2.1

Proof of Proposition 2.1. (a). Let
R(K) = (Ri(k),..., (k)T and Ri(k) = / @)
-1 -

By the Ito’s lemma, we have

pw; + (’71 +k+ 1))\d71,z’<0i)

Rz(k) =

(k+2)
ks
+226@l/d 1 k;—i—l /dl\/ As, 1 (01)dWi (s \/)\tlel)dmfl()
+Zﬁi,ZRl(k +1)as
=1
and then
rey P ding) £ (k£ DLPA(6)

(k+2)!

+B( /dl k:+1k+1/dlv ROt VAtlel)dWm)

+BR(k+1) as.

R(0) — /d : A (0)dt

2 opw + {diag(v) + (B + DL IAg_1(0)
2.5 Gral

k=0
+;ﬁkﬂ< /dl k+1k+l/d1V (B dWi(s)y/ Ari(0 )dWi(t))-
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The exponential of 3 is given by the power series
© ok
s_N P
€= Z Ll
k=0
Using this definition, we have

L opw + {diag(y) + (k + DI} Aq_1(0)

kz:% g (k+2)!

=pB72 (e’ -1, - B)w+ B (e’ — 1. — B) (diag(y) — L) Aa_1(0)
+87" (e’ — L) Au_1(0)

=pB 2 (¢’ =L, — B) w + @A4-1(0) as.

(b). Since hy(8) is adapted to Fy_1 and Dy, is a martingale difference, the statement is

immediately showed.

6.2 Proof of Theorem 3.1

Proof of Theorem 3.1. For the simplicity, we omit the subscript d. Without loss of the
generality, we assume that sign((q;,q;)) = 1 and eigenvectors q;’s are constants. First we
consider (3.4). We have for ¢ € {1,...,7},

gz‘ —& = qu(f‘ —T)aq; + (@Tf‘a@' - qin(h') + (qiTI‘qi — &)
= (a) +(b) + (o).

For (¢), we have
p
()] = a/ Baq; < |Z]2 < [|Z] < 1H<1?<>;Z ’Zij|6(2z'z'2jj)(l_5)/2 < Mssp.
i<

Then we have

E{l(0)*} < Csy. (6.1)

For (b), we have

(O] < (4 — @) "T(a; — @) + 2166 (@ — )l
< 2|Tl2lla; — Gill3
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T — w3

= Wlrig =gy
~|IT =T 4 M2s?
< off),) ”p’; :, (6.2)

where the third inequality is due to the Davis-Khan’s sine theorem. Then we have

B0 < Cp B (IB3IE - DI + | Ejpaes)
—2a (13 1/3 T 3a 2/3 13 1/3 3a\2/3 20
< cp @SB (I0)E) TE(IT-T) T+ E(IT)E) T (M) s
< Cp—Qa (p3am—a/2 _'_pasia)
< C(pm P 4 s20p) (6.3)

where the second and third inequalities are due to the Holder’s inequality and (3.3), respec-
tively.
For (a), similar to the proofs of Theorem 1 (Kim and Wang, 2016a), we can show
E (|(a)|*) < Cp*m=e/%, (6.4)
By (6.1), (6.3), and (6.4), we have
B (& —&1) < Cp™{m™/ + (s,/p)°}.
Consider (3.5). Similar to the proof of (6.2), we have

cp {B (P =T + B (M) i}
C{m™ + (s,/p)**},

E (||ﬁdz — sign((Qa, Cld,i>)£1d,i”§a) <
<

where the last inequality is due to (3.3). W

6.3 Proof of Theorem 3.2

Define
N o r n é.\dl 1 T no
ane = anze = T4 1 ¢7,9 ~ = 5 7,07
( ) 1=1 ( ) 2 zz:;dz:; Og( ! ( )) ¢d,l<0) 2n =1 d=1 ’ ( )
B r 1 r o n | Qsdz(eo) _i r on
L.(0) = ; Ln:(0) = on 12:1: ;;log(¢d,2(0)) + $4.:(0) = o, ; ;ld i(0),



~

0L, (0)

OL.(6)
96 '

G (0) = 4

and  ,(0) =

We denote derivatives of any function g at zy by

dg(wo) _ dgla)
830 8x r=x0 ’

For any given random variable X and constant ¢ > 1, define || X||, = {E(IX|)}¢. Let
0 < p < 1 be a generic constant whose values are free of 8, n and m and may change from
occurrence to occurrence. By Assumption 1(a), without loss of generality, we assume that
there are non-negative constants w;, Wi, Vil Vi Kits Biws Bitds Bitws -5 Birids Birw sSUch
that wi; < wi < Wi, Vg < Vi < Vi < 1 phig < i < fins Bing < Bin < Bitu, -, Birt <

Bi,r < Bi,r,u

Lemma 6.1. Under the assumptions of Theorem 3.1, we have

E < max  |Ra;(pi) — ﬁd,i(ﬂi)’3a/2) < Cp*e/? (mfga/s + (Sp/p)ga/4) :

it S S

Proof of Lemma 6.1. Without loss of the generality, we assume that sign((Qa,, Q4.)) =
1. We have

Kai(fi) Z{qdz (tag) = Y(d = 1)) = (tag — d + 1)y/pi}* Ay

Z CIdz qdz (Y(td,l) - Y(d - 1>>|
=1

X 1@ai + da) " (Y(tag) = Y(d = 1) + [2(tas — d + 1)y/ppal } Ay
<2 dai — qaill2l Y (tag) = Y(d = D2 {IY (tar) = Y(d = D)ll2 + /Diin} Aay

=1
< Cl[das — qaill2 Y _{IY (tar) = Y (d = D)3+ /BIY (tag) = Y(d = 1) ]2} Auy,

=1
and thus,

m 3a/2

Kai(1i) Z{de (tas) = Y(d = 1)) = (tgs — d 4+ 1)y/pi}* Aay
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3a 1/2

Z 1Y (tas) = Y(d = 1)[5A4,

> Y () — Y(d = 1)[2A4 )

< CpP/% (mm 4 (s, /p)*/?) (6.5)

~ all/2
< CE [quz qd'LH3 / (

3a 1/2

where the second and last inequalities are due to the Holder’s inequality and Theorem 3.1,
respectively.

Simple algebra shows

Z{qdz (tar) = Y(d = 1)) = (tag — d + 1) /P Doy — Kai(s)
= Z{qdz (tar) = X(d = 1)) = (tag — d + 1)\/ppi}*Aag — Kai(p:)
+ Z{q;ﬁ(th)}zAd,z + 2 Z Qg€ (tas)(X(tar) — X(d — 1)) "quilda,

—2 Z Ag,i€(tag)(tay — d + 1) /Dl

=1

=)+ (IT)+2(IIT)+2(IV).
Consider (I). For tg;—1 <t <t4,, we have

B [l {X(tan) = X(d = 1)} = ap,{X(6) = X(d = D} +ag,{u(t) — u(d - 1)}
< B |af, {X(tar) = X(0)} + af {u(t) - u(@ - D}

|
<C (E [{[d’l y\g(t)\det}3a {/dt_d: HaT(t)U(t)szt}ga +m6o‘p3“>

< O (mPp* + s ), (6.6)

+EB

where the second inequality is due to the Burkholder’s inequality, and

E UQL {X(tas) = X(d = 1)} + qp{X(t) = X(d = 1)} — q,{u(t) —u(d - 1)}\6a]
< Cp*.
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Then
E{|(D[*} < Cp*™ (m™> + (s,/p)**?) . (6.7)

For (I1), by the application of the Burkholder’s inequality, we can show

E{|(ID)*|qa;} < Cm™" Y B [{age(tar)}*qa:] < C as. (6.8)

=1

For (II1), we have

E{JUIDPYX} < Cm—2/ 1ZE{quz (ta) P 1X} (X (ta) = X(d = 1)) Tqai] ™

= 1

< COm3l Z ‘ (tay) — 1))TCId,i|3a a.s.,
where the first inequality is due to the Burkholder’s inequality, and

E{|(IID)}**} < Cm™3/*! Z E { |(X(tay) — X(d — 1))qu,i\3“}

=1
< Cm73a/2p3a/2’ (69)

where the last inequality can be derived similar to the proof of (6.6). Similarly, we can show
E{|(IV)]?*} < C'm—3/2p3/2, (6.10)

Combining (6.5), (6.7), (6.8), (6.9), and (6.10), we have

: ( max [Fai— “dvi|3a/2) < Op*? (m=37 4 (s,/p)**/*).

i 1 S <phiu
[ |

Lemma 6.2. Under the assumptions of Theorem 3.1, we have

E( max

KL S <pi,u

[ag {X(d) — X(d — 1)} — ] {u(d) — u(d — 1)} — /]

- [ X X(a - 1)) = vl [*")

< Cp3a/2 (m—3a/8 + (Sp/p>3a/4) )
Proof of Lemma 6.2. Similar to the proofs of Lemma 6.1, we can show the statement.
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Lemma 6.3. Under the assumptions of Theorem 3.2, we have

, ~1/4 1/2
frglleg llélggan {zlelp |¢dz( ) — ¢d,z(0)|} <Cp {m + (sp/p) } )

Proof of Lemma 6.3. By the compactness of ® and Lemmas 6.1 and 6.2, the statement
is showed. Wl

Lemma 6.4. Under the assumptions of Theorem 3.2, we have

sup Lpni(8) — Li(8)| = O, (m™Y4 + (s,/p)/?) fori=1,....r
c

Proof of Lemma 6.4. Since p~'¢4,(0) and pilggd’i(O) stay way from zero, we have

|Enm1(0) - Ln,i(0)| R
1 — ~ §di — ¢di(90)
< — 1 i(0 (0) ] + [ —=—"——
3 [\og{m( )/ dal >}]A ‘ o
$a,i(0) — ¢4.:(0)
+04.(0 — .
GO0 6)0u6) ]

< O30 {6 = 64000 + 17 000) [60,(0) — 50s0)] } s
d=1

Then the statement is showed from Theorem 3.1 and Lemma 6.3. B
Lemma 6.5. Under the assumptions of Theorem 3.2, we have
(a) form > 2+ 2r, —Vi,(0y) is almost surely a positive definite matriz;

(b) Supeee’%‘ O,(1) foralli=1,...,r,d=1,...,n, and any j,k,l € {1,...,3r+

r?}, where @ = (by, ..., b3qr2) = (04,...,0,).

Proof of Lemma 6.5. (a). Simple algebraic manipulations show

0 0
—V1/1n<90) = % ZZ 8¢Cgé 0) @qédazé 0) ¢d1 90 = —ZZ%M%CM’

d=1 =1 d=1 =1

where ¢g.4,; = %ﬁqﬁd’i(eo)_l. First, we suppose that —V1,,(6y) is not a positive definite
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. . 2
matrix. Then there is some non-zero constant vector a € R3*™ such that

% Z Z a' g4t =0 as.,

d=1 i=1

which implies that
gb;d’ia: Oas. foralld=1,....,n,a=1,...,r

Since X(t) is nondegenerate, for n > 2 4 2r, the vector a should be the zero vector in order
to satisfy the above equation, which contradicts a £ 0. B

(b). Simple algebras show

831,:(0)

1 0%044(0)
() 0bi,Ob;

0%04.4(0)
{Ad,i(9> ob;ob; }

&

02044(0)
d,i(9) 0b;0by,

o 1 06u6) 004i(0) | [ 1 004:(0)
+{2 6$d,i(9)}{$d,i(9) 0b; }{é\d,i(ﬂ) Oby, }{5@'(9) ob, }(6'11)

To handle (6.11), we first need to find bounds for derivatives of ad,i(a)- The parameters re-

lated to (Ed,i(e) are only 6; and g, ..., i, and so we investigate the derivatives corresponding

_I_
———
[\

i
&
S |&M
8 =~
|
—
—— —— ——
———
\.&‘ )
P
2
o))
|
S |Ts
N P
=2
——— N ——

to them. First, we investigate the first derivatives. Since ;ﬁ\d,i(O) is a linear function for w;
and B;1,..., B, we obtain that

1 064(0)

= < C for b € Wiy Pi1ye~esPirgs-
¢d7i(0) 81)1 = l { ﬁ,l 6,}
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For ;, using the fact that /(1 + x) < z® for all z > 0 and any s € [0, 1], we have

1 0dai(0)
¢d,i<6) 871

N d—2 ,
= — { 2 + 2 Z krYz {pwz + lzlﬁi,l (Zd—k—l,l — \/Z_)'uz) }

$4,(6) k=1
0. (0
= 120, (0) + 7 20®)
i
. . 2
d—2 vE {Wi +p > B (dekfl,l - \/]_0/h> }

d—2

<C+ OZ ks {wz’ +p! Z Bi,l(/Z\d—k—l,l — \/@%‘)2}
k=1 =1

d—2 r s
<CH+CY ks {w S BiraZagri — \/M)Q}

k=1 =1

d—2 r R s
<C+C Z kpks (p_l Z ﬁi,l,u(Zd—k—l,l - \/]_?Ni)2> R

k=1 =1

where Zy, = dq,(X(d) — X(d — 1)). Then, for any ¢ > 1, choose s € [0,1] such that

(7 S B Zasna — )|

< 00, and by Minkowski’s inequality, we obtain
L.

1 agg (0> d—2 r S
dyi ks -1 4 2
sup | = <C+C» kp (P Bitu(Za—k-1,1 — /D) )
6coO ¢d72(9) 8’71 Le ; ; L.
Since |p| < 1,
1 0¢q:(0)
sup sup | = 00.
1<i<ri<d<n ||0€© | $4:(0) OV .

For p;, we have

1
C=
$a.:(0)
< (.

1 0dai(0)
$a:(0) Ot

IN

d—2
P+ BuRai(m) + Y VB Zaok-11 — \/Z_7Ml)2]
k=1

Similarly, the bounds for the second and third derivatives can be found.
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Since p—l@,j(e) stays away from zero,

0c0 ¢q:(0)
Combining these results,
9%11,(6)
— 0 2 1 =0.(1).
S0P \ Gttt |~ O

Propostion 6.1. Under the assumptions of Theorem 3.2, we have
16 = B[ max = 0p(1).

Proof of Proposition 6.1. First, we show that there is a unique maximizer of L, ().
By the definition of L, (€), we have

T n

1 ba,i(60)
I;leaé{L ) < ——Z;ggg{loggbdz 0) + 90:(0) }

Thus, the maximizer 8" should satisfy that ¢q;(0") = ¢4:(60) for d = 1,...,n and i =
1,...,r. Suppose that there exists 8" # 6, such that 8" satisfies that ¢4;(0") = ¢4,(60) for
d=1,...,nandi=1,...,r.

Simple algebra shows

2{¢4,1(0) = 21z Bigkan ()} — pus
v+ 1

Aa,i(0) = pw; +

+ Z Bi1(Zag + /Phoy — \/Piu)’
=1

and

Wi + z >\ z
¢d+1,i(9) = b ( d Zﬂzl“d-i—ll Mz

(i + 1)Biy —~ (v + 1) Biap?
= pw; +7:0qi(0) + E EC ) (Zas+ \/@bo,l)2 +p E —( 2) !
=1 =1

i+ 1)5;,
2\/_2 u<zd,l + /Phos)
T
p
- ZZI: %ﬁi,zﬁd,u - 121: /Ll%ﬁi,lﬁd,l,z - 5 121: M?Vzﬂi,z

34



+ i Bij Kav11 + i Biaty Kav12 + b i Biani
=
= %i¢ai(0 +Z/3” {(Zag + v/Proa)? /2 + Kasrga )
+ Z ViBiy {(Zay + /Drog)? /2 — Kag1 ) +p {wi + i(% + 5),6’2-,5/112/6}
=1 =1
— i Biati(/DZay + phtog — Kdt1,,2)
=1

— Z ViBiiti (NP Zay + priog + Kai2),
=1
where fqi(ti) = Kain + Kaazti + §u?,

aiae) = [ aLX(0) = X(d = 1)} af {uft) ~ ua— 1},
Raga) = =25 [ (1= d ) [af (X(0) - X(d = D) - a{ult) - uid - )] dr.

Then, similar to the proofs of Theorem 1 in Kim (2016), for n > 2 + 4r, we can show that
0 should be the same as 0 to satisfy ¢4;(0") = ¢q:(0) ford=1,...,nandi=1,...,7.
Therefore, 8 is the unique maximizer of L, (0). Then, since L, (@) is the continuous function

with respect to @, for any given € > 0, there is a constant ¢ > 0 such that

L,(00) — L, (0 S 6.12
( 0) Oe®:||;r—1%())(llmax26 ( )> cas ( )

Then the statement is the consequence of Theorem 1 in Xiu (2010), Lemma 6.4, and (6.12).
|

Proof of Theorem 3.2. By Taylor expansion and the mean value theorem, there exist
0 between 0, and 0 such that

1/171 m( ) 7,/)71 m(e()) = _¢n m(eo) - V% m( )(0 00)

If — V@/}nm( ) B —V4,(6,) which is a positive definite matrix by Lemma 6.5 (a), then
we can conclude that the convergence rate of (9 — 6y) is the same as that of z/;mm(ao). First
we show —V{b\nm(é) LN —V,(0p). Define

v{ﬁ\n,m<9) = (HZJ(O))Z,] 1,...,3r+72 and Wﬂn(o) = (Hi,j(e))i,j:1 ..... 3r4r2.
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We have

|900m(8) = 7Bm(00)]|
+ | 9nin(80) = ua(60)|

| 70n(8) = 70(80)]

max

max

, we have, for some 6 between 0 and 0o,

max

For HVQZJ\nm(,é) — V{D\n,m(eo)’

o 9H, ;(0
7,0 - 00| = |G g,
5’ﬁz"(0) 0
< — —
< Cup| | 1=,
S Op(l)a

where the first equality is due to the mean value theorem and Taylor expansion, and the last
inequality is from Proposition 6.1 and Lemma 6.5 (b).
For szmm(eo) — Vz/Jn(HO)H , by Lemmas 6.1, 6.2, and 6.3, Theorem 3.1, and Propo-

sition 6.1, we can show

= 0,(1).

max

|7in(80) = 70 60)|

Thus, Hv&mm(é) - W"(GO)HW 2,

Now, we consider @Zn,m(eo). We have

- 1 = || 004,(80) 1 fa
nm (00) |lmax < 7 : . Y
[%n,m (00)]| anz 00 <¢d7i(00) qbfi,i(@o))

max

I ¢ 3¢dz(90) ngi(GO) — &4
< — —¢dz(90) —= 7
on ; ; 00 o $a,i(60)
™ 2 1 =t &bdl (6o) ~
< Op(m™ M+ (5p/0)"7) 5 ; 2; 0010)3, (00)

< O, (m™V* 4 (s,/p)"?),

where the third inequality is due to Theorem 3.1 and Lemma 6.3, and the last inequality
can be derived similar to the proofs of Lemma 6.5 (b). W
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6.4 Proof of Theorem 4.1

Proof of Theorem 4.1. The statements (4.5) and (4.6) are immediately showed by Theo-
rem 4.1 (Fan and Kim, 2017).
We consider (4.7). We have

Hrn+1 - E (Fn+1’fn) | r+ < Hzn - En’

e [ Wogt = Y hogri(00)aig ||

i=1

< ||\/I\ln+1 — Z hn+1,z<00)qlq:|

=1

r-+ 0, (SpTr}fé) ;
where the last inequality is due to (4.5). Now, it is enough to show

-0 <p1/2m 1/2 +Sp/p1/2 —I—Sstfa).

H‘I’n+1 - Z hn+1,z’(90)QiqiT r*

i=1

We have

| W, — Z hn+1,i(90)qn,iqlillF

=1

< H Z{En+l,z(§) - n+1 1(90)}qn zq HF =+ H Zthrlz 00) (qn zqnz qn zqn z) HF

=1

< Z |hn—|—1z - n+1 1(00)H|qnzanHF + Zhn—i-lz OO)anzqnz anquF

=1

(p{m i (p/p)w}), (6.13)

where the last inequality is due to Theorem 3.1 and (6.14) below. We have

B —eBoll, = |[eBBotho _ eBol,
1B — B, |28l IS0l

<
< Oy (m™V 4 (5/0)'?)

where the last inequality is due to Theorem 3.2, and by Theorem 3.2 and Lemma 6.2, we

can show

IAn=1(8) = Au1(80)l2 = O, (p{m ™" + (s,/p)"/?})

37



which imply, together with Theorem 3.2,

B 1(8) = hiy1(80) 12 < O, (p{m " + (s,/p)"/?}) . (6.14)

Similar to the proofs of Theorem 4.1 (Fan and Kim, 2017), we can show

i1 =Y hngri(B0)aia) I < C[{Pfg/z + 0 211 O} =D hnri(B0)asa ||

=1 -
-+ hy11(0)]| Wiy — Z h”“’i(eO)qiqﬂ%}

i=1
< 0, (m™YA 4 pPm 2 45, /pt?) |
where the last inequality is due to (6.13) and (6.14). Therefore, we have

||fn+1 —E @1l F) o = O, (p1/2m_1/2 + Sp/p1/2 + Spﬁm_a) .

|
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