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Abstract

Several large volatility matrix estimation procedures have been recently developed
for factor-based Itô processes whose integrated volatility matrix consists of low-rank
and sparse matrices. Their performance depends on the accuracy of input volatility
matrix estimators. When estimating co-volatilities based on high-frequency data, one
of the crucial challenges is non-synchronization for illiquid assets, which makes their
co-volatility estimators inaccurate. In this paper, we study how to estimate the large
integrated volatility matrix without using co-volatilities of illiquid assets. Specifically,
we pretend that the co-volatilities for illiquid assets are missing, and estimate the
low-rank matrix using a matrix completion scheme with a structured missing pattern.
To further regularize the sparse volatility matrix, we employ the principal orthogonal
complement thresholding method (POET). We also investigate the asymptotic prop-
erties of the proposed estimation procedure and demonstrate its advantages over using
co-volatilities of illiquid assets. The advantages of our methods are also verified by an
extensive simulation study and illustrated by high-frequency data for NYSE stocks.
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1 Introduction

High-frequency financial data have provided researchers and practitioners with incredible

information to investigate asset pricing and market volatility dynamics. New analytic chal-

lenges also arise from analysis of high-frequency financial data. First, due to small mar-

ket inefficiency such as bid-ask bounce, asymmetric information, latency, and so on, stock

prices are contaminated by micro-structural noises. If the micro-structural noises are not

accounted for, estimators for integrated volatilities will diverge as the frequency increases

(Aı̈t-Sahalia et al., 2005). Second, the observation time points are not synchronized, which

makes it hard to estimate co-volatilities, particularly for those illiquid assets. Despite these

challenges, several efficient estimation procedures have been developed. Examples include

two-time scale realized volatility (TSRV) (Zhang et al., 2005), multi-scale realized volatility

(MSRV) (Zhang, 2006, 2011), wavelet estimator (Fan and Wang, 2007), pre-averaging real-

ized volatility (PRV) (Christensen et al., 2010; Jacod et al., 2009), kernel realized volatility

(KRV) (Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood estimator (QMLE)

(Aı̈t-Sahalia et al., 2010; Xiu, 2010), local method of moments (Bibinger et al., 2014), and

robust pre-averaging realized volatility (Fan and Kim, 2017).

When estimating co-volatilities, to handle the non-synchronization problem, we often

employ some synchronization scheme such as generalized sampling time (Aı̈t-Sahalia et al.,

2010), refresh time (Barndorff-Nielsen et al., 2011; Fan et al., 2012), previous tick (Wang

and Zou, 2010; Zhang, 2011), and some linear interpolation (Bibinger et al., 2014) schemes.

See also Hayashi and Yoshida (2005, 2011); Malliavin and Mancino (2002); Malliavin et al.

(2009); Mancino and Sanfelici (2008); Park et al. (2016). These synchronization schemes

asymptotically guarantee that the errors coming from the non-synchronized observations

can be negligible as the frequency increases. However, for illiquid assets, whose trading

frequencies are relatively low, the errors may not be asymptotically negligible, as the refresh
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times are too long to be useful so that estimators for co-volatilities can be inaccurate. This

generates demand for investigating how to better estimate co-volatilities for illiquid assets.

Apparently, we need to appeal to structural aspects of the model.

A commonly used structure to account for cross-sectional dependence is the factor model.

It was first used to estimate high-dimensional covariance matrix in Fan et al. (2008) for

portfolio allocation and risk management and admits a low-rank plus sparse volatility ma-

trix structure (Fan et al., 2013; Ait-Sahalia and Xiu, 2017; Fan et al., 2016a; Kim et al.,

2017; Kong, 2017). When the number of assets is large, the latent factors can be accurately

estimated. The performance of these factor-based estimators depends critically on the ac-

curacy of the initial volatility matrix input. However, as discussed above, the co-volatility

estimators for illiquid assets are inaccurate, due to relatively long refresh times between any

two illiquid assets. On the other hand, the special covariance structure implied by the factor

model makes us possible to use the covariance information from liquid blocks to infer about

those in illiquid blocks.

How to estimate co-volatilities for illiquid assets, which have serious non-synchronization

issue? In this paper, we appeal to the factor structure to infer these co-volatilities. The

factor structure implies that the volatility matrix consists of a low-rank covariance matrix

induced by the linear combinations of common factors and a sparse covariance matrix in-

duced by idiosyncratic components. We investigate how to estimate the low-rank (or factor)

volatility matrix without using estimators for illiquid assets. Due to the low-rankness of the

covariance matrix induced by the linear combinations of the common factors, the sub-matrix

corresponding to the illiquid assets is spanned by the column space of the remaining low-rank

volatility sub-matrices and can be determined analytically from the sub-matrices that involve

liquid assets. Thus, the problem of estimating the low-rank volatility matrix is related to

the popular matrix completion problem (Candès and Recht, 2009; Koltchinskii et al., 2011),

except that the entries (corresponding to the illiquid assets) are not ‘missing’ at random, but

‘missing’ (not used due to their inaccuracies) with a structured pattern (Cai et al., 2016).

This structured pattern allows us to use the aforementioned analytical formula to estimate

the factor-induced volatility submatrix that corresponds to illiquid assets. Then we estimate
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the sparse (or idiosyncratic) volatility matrix by subtracting the low-rank volatility estimator

from the input volatility matrix estimator and apply the adaptive thresholding scheme to the

sparse volatility matrix estimator. The resulting procedure of this kind is called Principal

Orthogonal complEment Thresholding (POET) in Fan et al. (2013).

We will investigate the asymptotic behaviors of the proposed estimators for the volatility

matrices that correspond to linear combinations of factors, the idiosyncratic components, and

the log-returns of assets. We assume that the high-frequency data are contaminated with

micro-structural noises. We ideally model the trading volumes of liquid and illiquid assets.

We explicitly show when and where the gain can be made by ignoring the co-volatilities of

the illiquid assets.

The rest of the paper is organized as follows. Section 2 provides a factor-based diffusion

process and data structure and Section 3 reviews the pairwise refresh time scheme and pre-

averaging realized volatility estimation method. A large volatility estimation procedure is

proposed in Section 4 using matrix completion scheme with the structured missing pattern,

whose asymptotic properties are established. The advantages of the proposed method is

demonstrated via a simulation study in Section 5 and is illustrated by an application to the

NYSE stocks in Section 6. Proofs are collected in Section 7.

2 Model set-up

We first define some notations. For any given vector a, diag(a) creates a diagonal matrix

using elements of a. For any given d1 × d2 matrix U = (Uij),

‖U‖1 = max
1≤j≤d2

d1∑

i=1

|Uij|, ‖U‖∞ = max
1≤i≤d1

d2∑

j=1

|Uij|, and ‖U‖max = max
i,j

|Uij|.

Matrix spectral norm ‖U‖2 is the largest eigenvalue of UU⊤, the Frobenius norm of U is

‖U‖F =
√

tr(U⊤U). UIJ denotes the sub-matrix of U formed by rows and columns whose

indices are in I and J , respectively, where I and J are subsets of {1, . . . , d1} and {1, . . . , d2},
respectively. We will use C to denote a generic constant whose value is free of n and p and
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may change from occurrence to occurrence.

Let X(t) = (X1(t), . . . , Xp(t))
⊤ be the vector of true log-prices at time t. We assume that

the log-prices of assets follow a continuous-time diffusion model. In economic and financial

studies, the approximate factor model is widely employed to account for the effect of macro-

economic factors and market factors such as sector and industry classification, firm size,

price to book ratios, etc (Bai and Ng, 2002; Chamberlain and Rothschild, 1982; Fama and

French, 1992; Fan et al., 2016a; Ait-Sahalia and Xiu, 2017). In light of these, we employ the

factor-based diffusion model

dX(t) = µ(t)dt+ ϑ⊤(t)dW∗
t + σ⊤(t)dWt, (2.1)

where µ(t) = (µ1(t), . . . , µp(t))
⊤ is a drift vector, ϑ(t) is a r × p matrix, σ(t) is a p × p

matrix, W∗
t and Wt are independent r-dimensional and p-dimensional Brownian motions,

respectively. Stochastic processes µ(t), X(t), σ(t), and ϑ(t) are defined on a filtered proba-

bility space (Ω,F , {Ft, t ∈ [0, 1]}, P ) with filtration Ft satisfying the usual conditions. Note

that r is the number of latent factors. The instantaneous (or spot) volatility matrix of the

log-prices X(t) in (2.1) is

γ(t) = (γij(t))1≤i,j≤p = ϑ⊤(t)ϑ(t) + σ⊤(t)σ(t).

The parameter of interest is the integrated volatility matrix over time [0, 1]

Γ =

∫ 1

0

γ(t)dt

=

∫ 1

0

ϑ⊤(t)ϑ(t)dt+

∫ 1

0

σ⊤(t)σ(t)dt

= Θ+Σ. (2.2)

The matrix Θ in (2.2) accounts for the factor influence on the volatility matrix. In this

paper, we assume that the rank, r, of Θ is fixed and finite. Additionally, we impose some

sparse structure on the idiosyncratic volatility matrix Σ (see Section 4). Thus, the integrated

volatility matrix Γ has the low-rank plus sparse structure which is widely used in analyzing

5



large covariance or volatility matrices (Fan et al., 2013, 2016b; Ait-Sahalia and Xiu, 2017;

Kim et al., 2017; Kong, 2017).

Unfortunately, in the high-frequency finance, we cannot observe the true log-prices due to

the micro-structural noises caused by small market inefficiencies, for example, asymmetric in-

formation, bid-ask bounce, and latency. We also encounter the so-called non-synchronization

problem that transactions for different assets occur at distinct times, and the observation

time points are not synchronized. To model these stylized features, in the high-frequency

finance, it is usually assumed that the observed price Yi(ti,k) has an additive noise as follows:

Yi(ti,k) = Xi(ti,k) + ǫi(ti,k) for i = 1, . . . , p, k = 0, . . . , ni, (2.3)

where ǫi(ti,k), i = 1, . . . , p, k = 0, . . . , ni, are independent noises with mean zero and variance

ηii and p is the number of assets. Furthermore, we observe that the numbers, n1, . . . , np, of

high-frequency observations are heterogeneous. For the simplicity, we assume that there are

two sub-groups of stocks which have high trading volumes (liquid assets) and low trading

volumes (illiquid assets) as follows:

H = {i ∈ {1, . . . , p}, ni ≍ n} and L = {i ∈ {1, . . . , p}, ni ≍ na}, (2.4)

where a < 1 and H ∪ L = {1, . . . , p}. Their cardinalities are |H| = p1 and |L| = p2. Then,

without loss of generality, we can rearrange the integrated volatility matrix Γ as follows:

Γ =


Γ11 Γ12

Γ21 Γ22


 ,

where Γ11 = ΓHH, Γ12 = ΓHL, Γ21 = ΓLH, and Γ22 = ΓLL. Note that the sub-matrices have

the low-rank plus sparse structure as follows:

Γij = Θij +Σij for i = 1, 2, j = 1, 2,
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when we use the following partitions:

Θ =


Θ11 Θ12

Θ21 Θ22


 and Σ =


Σ11 Σ12

Σ21 Σ22


 .

Due to the errors coming from non-synchronized observation time points, co-volatility

estimators are less accurate especially for the low trading volume set L. That is, estimators

for co-volatilities of Γ22 are less accurate than those of other blocks Γ11 and Γ12. In light

of this, in this paper, we study how to estimate the integrated volatility matrix Γ without

estimating the off-diagonal elements of Γ22.

3 Co-volatility estimation

3.1 Pairwise refresh method

To handle the non-synchronization problem, we can use synchronization schemes such as

generalized sampling time (Aı̈t-Sahalia et al., 2010), refresh time (Barndorff-Nielsen et al.,

2011; Fan et al., 2012), and previous tick (Wang and Zou, 2010; Zhang, 2011) schemes, or

some linear interpolation scheme (Bibinger et al., 2014). There are estimation procedures

which do not require to align data (Hayashi and Yoshida, 2005, 2011; Malliavin and Mancino,

2002; Malliavin et al., 2009; Mancino and Sanfelici, 2008; Park et al., 2016). One way

to utilize the data efficiently is to apply the pairwise refresh time scheme to estimate co-

volatility. Given the k-th refresh time, the (k + 1)-th refresh time is the minimum calendar

time needed for both stock to be traded at least once. The formal definition is as follows.

Definition 1. Let {tij}ni

j=1 be the calendar times where the ith stock is traded as in (2.3).

The first refresh time for the i-th and j-th assets is defined as τij,1 = max{ti,1, tj,1}. The

subsequent refresh times are

τij,k+1 = max{ti,Ni(τij,k)+1, tj,Nj(τij,k)+1},
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where Ni(t) is the number of observations in the i-th asset made up to time t.

With the refresh time scheme, for the i-th asset, we select any observation, Yi(ti,k),

for ti,k between τij,k−1 and τij,k, to be paired or synchronized with Yj(tj,k) with tj,k chosen

similarly, for computing the co-volatility of asset i and asset j. Let n̄ij be the number of such

synchronized observations for the i-th and j-th assets. Then n̄ij ≤ min(ni, nj) and n̄ii = ni.

3.2 Pre-averaging realized volatility estimation

To handle the micro-structural noise, several estimation methods have been developed and

the error from the noise can be removed effectively (see Aı̈t-Sahalia et al. (2010); Barndorff-

Nielsen et al. (2008, 2011); Bibinger et al. (2014); Christensen et al. (2010); Fan and Wang

(2007); Jacod et al. (2009); Xiu (2010); Zhang et al. (2005); Zhang (2006, 2011)). In this

paper, we use the pre-averaging realized volatility estimation scheme (Christensen et al.,

2010; Jacod et al., 2009).

Definition 2 (Christensen et al. (2010); Jacod et al. (2009)). For the pairwise refresh time,

{τij,k}nk=1 with n = n̄ij, the pre-averaging realized volatility (PRV) estimator is given by

Γ̂ij =
1

ψK

n−K+1∑

k=1

{Zi(τij,k)Zj(τij,k)− ς η̂ij 1(i = j)} ,

where ψ =
∫ 1

0
g2(t)dt,

η̂ii =
1

2ni

ni∑

k=1

{Yi(ti,k)− Yi(ti,k−1)}2 ,

Zi(τij,k) =
K−1∑

l=1

g

(
l

K

)
{Yi(τij,k+l)− Yi(τij,k+l−1)} ,

ς =
K−1∑

l=0

{
g

(
l

K

)
− g

(
l + 1

K

)}2

= O

(
1

K

)
,

K = Cn1/2 is a bandwidth parameter for some constant C free of n and p, and g(·) is a

weight function satisfying that g is continuous and piecewise continuously differentiable with
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a piecewise Lipschitz derivative g′ and satisfies g(0) = g(1) = 0.

Remark 1. The bias correction term η̂ij is required to obtain the optimal convergence rate

n−1/4 with the presence of the micro-structural noise. In this paper, we simply assume that

the micro-structural noises are independent and so their diagonal parts are only required

to be estimated. When they have some correlation structure, we may need to estimate the

off-diagonal parts ηij for i 6= j. When it comes to constructing estimation procedures for co-

volatility part ηij, due to the non-synchronization problem, we need to define the correlation

structure carefully, and the estimation procedures are depending on the correlation structure.

Kim et al. (2016) discussed and studied this issue. Fortunately, as long as we can estimate

the co-volatilities well, theoretical results obtained in this paper will be the same. Thus,

to focus on solving the non-synchronization problem, we simply assume that the micro-

structural noises are independent.

To investigate the large volatility matrices, we need the sub-Gaussian concentration in-

equality

Pr

(
|Γ̂ij − Γij| ≥ Cm

√
log p/n̄

1/2
ij

)
≤ p−m,

where Cm is some constant depending only on given constant m. With mild conditions, Kim

and Wang (2016) studied its sub-Gaussian concentration inequality. We will utilize their

result.

Assumption 1.

(1) There are some fixed constants Cµ and Cσ such that, almost surely,

max
1≤i≤p

max
0≤t≤1

|µi(t)| ≤ Cµ, max
1≤i≤p

max
0≤t≤1

γii(t) ≤ Cσ;

(2) ǫi(ti,k) and X(t) are independent. For each i, ǫi(ti,k), k = 0, . . . , ni, have sub-Gaussian

distributions;

(3) The observation time points are independent with log-stock price processes X(t) and

micro-structural noises ǫi(ti,k)’s, and the pairwise refresh time points τij,k satisfy
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max1≤i,j≤p max1≤k≤n̄ij
(τij,k − τij,k−1)n̄ij ≤ Cτ a.s. for some generic constant Cτ free of

n and p.

Remark 2. Assumption 1 is usually assumed to obtain the sub-Gaussian concentration in-

equality which plays an important role in the high-dimensional inferences (Tao et al., 2013;

Kim and Wang, 2016). Recently, Fan and Kim (2017) proposed the robust pre-averaging

realized volatility which can obtain the sub-Gaussian concentration inequality with only the

finite fourth moment condition. The sub-Gaussian conditions Assumption 1 (1)–(2) can be

relaxed by employing the robust pre-averaging realized volatility. Assumption 1 (3) indicates

that the time intervals for each pair have the order n̄−1
ij which goes to zero as the sample size

goes to infinity.

Propostion 3.1 (Theorem 1 (Kim and Wang, 2016)). Under the models (2.1) and (2.3), if

Assumption 1 is met, then the pre-averaging realized volatility estimator Γ̂ij in Definition 2

has the following sub-Gaussian concentration:

Pr
(
|Γ̂ij − Γij| ≥ x

)
≤ ϑ1 exp

(
−
√
n̄ijx

2/ϑ2

)
, (3.1)

where x is a positive number in a neighbor of 0, and ϑ1 and ϑ2 are generic constants free of

n and p.

We need only the input volatility estimator that satisfies the sub-Gaussian concentration

inequality (3.1) in order to investigate the asymptotic behavior of the proposed estimation

procedure. Thus, we can use any other estimation procedure satisfying (3.1). For example,

multi-scale realized volatility (Zhang, 2006, 2011) and robust pre-averaging realized volatility

(Fan and Kim, 2017) can be used. In the numerical analysis, we use the pre-averaging

realized volatility matrix (PRVM) estimation procedure in Definition 2 with K = n1/2 and

g(x) = x ∧ (1− x).
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4 Large volatility matrix estimation

4.1 Low-rank volatility matrix estimation

Several large volatility matrix estimation procedures have been developed based on the factor

model (Fan et al., 2016a; Ait-Sahalia and Xiu, 2017; Kim et al., 2017; Kong, 2017). Their

performances may depend on the accuracy of the input volatility matrix estimator Γ̂. As

discussed in Section 2, when it comes to estimating co-volatilities in high-frequency finance,

one of the crucial issues is the non-synchronization problem. We use the pairwise refresh time

defined in Definition 1 in order to utilize the information efficiently. Then when estimating

co-volatilities for liquid assets H, the estimation errors coming from the non-synchronized

observations can be small. Thus, we can estimate the co-volatilities well in the corresponding

block Γ11. On the other hand, when estimating co-volatilities for illiquid assets L, it is hard
to expect that the estimated co-volatilities are accurate due to the errors coming from non-

synchronized observation time points. The intervals for refresh time can be so large that

the approximation errors are too big for applications. In this section, we investigate how to

estimate the low-rank (or factor) volatility matrix Θ without estimating the co-volatilities

for illiquid assets L.
In order to investigate the effect of the non-synchronization problem in estimating co-

volatilities, we assume that the number of the synchronized time points is

n̄ij = c min

{(
ni + nj

2

)b

, ni, nj

}
for i 6= j, (4.1)

where some generic constant c ≤ 1 and b ∈ (a, 1) with a defined in (2.4). In literature,

researchers usually assume that b = 1 and n̄ij = cmin(ni, nj). However, this is too optimistic

due to lost of data in the synchronization process and hence we will assume b < 1. Combining
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(2.4) and (4.1), we have 



n̄ij ≍ nb if i, j ∈ H

n̄ij ≍ na if i ∈ H, j ∈ L

n̄ij ≍ nab if i, j ∈ L,

where n̄ij = n̄ji. The above formula is a reasonable model, since for the synchronization

between liquid and illiquid assets, it is reasonable to assume that we are able to observe

the liquid assets around each observation time point of illiquid assets so that n̄ij ≍ na. On

the other hand, for the synchronization of similar liquidity assets (liquid-liquid or illiquid-

illiquid), there is some cost to align the data, which is mathematically expressed by b ∈ (a, 1).

Thus, under the assumption (4.1), the estimators for the off-diagonal elements of Γ22 have

slower convergence rates.

To account for the common factors in the financial market, we assume that the integrated

volatility matrix Γ consists of the low-rank and sparse matrices with the block structure as

follows:

Γ = Θ+Σ =


Θ11 Θ12

Θ21 Θ22


+


Σ11 Σ12

Σ21 Σ22


 .

The volatility matrix Σ of the idiosyncratic component is sparse in the sense that it satisfies

max
1≤j≤p

p∑

i=1

|Σij|q(ΣiiΣjj)
(1−q)/2 ≤Mσs(p) a.s., (4.2)

where Mσ is a positive random variable with E (M2
σ) < ∞, q ∈ [0, 1), and s(p) is a deter-

ministic function of p that grows slowly in p. Here we define 00 = 0. For the exact sparse

matrix, that is, q = 0, when Σii is bounded from below, the sparsity level s(p) measures

the maximum number of non-vanishing elements in each row of the idiosyncratic volatility

matrix Σ.

As discussed before, due to the non-synchronization problem, the estimators for the off-

diagonal elements of Γ22 may not be accurate. With the inaccurate estimator, when we
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apply the POET procedure (Fan et al., 2013) to estimating the low-rank volatility matrix

Θ, the resulting estimator may have a poor asymptotic behavior due to the inaccuracy of

the input volatility matrix. The simulation study supports this (see Section 5). To avoid this

problem, we do not use the illiquid asset information for estimating Θ22, but get a better

estimator for Θ22 using the low-rank structure of Θ.

Note that Θ11 is a p1 × p1 integrated volatility matrix of p1 liquid assets. Let λi, i =

1, . . . , r, be the eigenvalues of Θ11 with decreasing order and Q ∈ R
p1×r be the matrix of

their associated eigenvectors. When the rank of Θ11 is r, which is the number of the latent

factors, it admits the spectral decomposition:

Θ11 = QΛQ⊤, where Λ = diag(λ1, . . . , λr).

Since Θ has a rank r, Θ22 must be the linear combinations of the columns spanned by Θ21.

It can easily be shown that

Θ22 = Θ21QΛ−1Q⊤Θ12; (4.3)

see Proposition 1 in Cai et al. (2016). Also, columns of Θ12 are linear combinations of Θ11

as follows:

Θ12 = Θ11QΛ−1Q⊤Θ12 = QQ⊤Θ12. (4.4)

Thus, as long as we have well-performing estimators for Θ11 and Θ12, we can construct the

low-rank volatility matrix Θ using the relationship in (4.3) and (4.4). Identity (4.4) will

be used below to ensure that the rank of empirically constructed Θ̂ has the rank r. See

Remark 3.

For any estimators Γ̂ij for Γij, let

Γ̂11 = (Γ̂ij)i,j∈H, Γ̂22 = (Γ̂ij)i,j∈L, Γ̂12 = (Γ̂ij)i∈H,j∈L, and Γ̂21 = Γ̂
⊤
12.

The corresponding true volatility sub-matrices Γ11 and Γ12 have the low-rank plus sparse

structure. To estimate the latent low-rank volatility sub-matrices, Θ11, Θ12, and Θ22, we

employ the POET procedure, and then use the relationship (4.3) and (4.4) to construct the
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low-rank volatility matrix Θ. For example, let the singular value decompositions of Γ̂11 and

Γ̂12 be

Γ̂11 =

p1∑

k=1

λ̂kq̂kq̂
⊤
k and Γ̂12 =

p1∧p2∑

k=1

ξ̂kv̂kû
⊤
k ,

where λ̂k and ξ̂k are the k-th largest singular values of Γ̂11 and Γ̂12, respectively, q̂k are the

singular vectors (eigenvectors) corresponding to λ̂k, and ûk and v̂k are the left and right

singular vectors corresponding to ξ̂k. Using the plug-in procedure, we estimate the low-rank

volatility sub-matrices Θ11 and Θ12 by

Θ̂11 = Q̂Λ̂Q̂⊤ and Θ̃12 =
r∑

k=1

ξ̂kv̂kû
⊤
k ,

respectively, where Q̂ = (q̂1, . . . , q̂r) and Λ̂ = diag(λ̂1, . . . , λ̂r). Under the pervasive and

incoherence conditions (Assumption 2(d)–(e)), they will be shown to have good asymptotic

performances. The liquid asset block estimator Θ̂11 is the most accurate estimator and will

be used as the pivotal estimator. We estimate the other blocks, Θ12 and Θ22, using the

relationship (4.3) and (4.4) as follows:

Θ̂22 = Θ̂21Q̂Λ̂
−1
Q̂⊤Θ̂12 and Θ̂12 = Θ̂11Q̂Λ̂

−1
Q̂⊤Θ̃12 = Q̂Q̂⊤Θ̃12.

See Remark 3 for the reason why we do not use directly Θ̃12 in the both expression above.

Combining the low-rank volatility sub-matrix estimators, we estimate the low-rank volatility

matrix estimator by

Θ̂ =


Θ̂11 Θ̂12

Θ̂21 Θ̂22


 , (4.5)

where Θ̂21 = Θ̂
⊤
12. We call it the structured low-rank volatility matrix estimator.

Remark 3. The other possible estimator of Θ is

Θ̂
alt

=


Θ̂11 Θ̃12

Θ̃21 Θ̂22


 , (4.6)
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which has the same element-wise convergence rate of the proposed estimator in (4.5). How-

ever, for the finite sample, we cannot guarantee that the rank of Θ̂
alt

is r. This is because

the colomns of Θ̃12 is not necessary in the space spanned by the columns of Θ̂11. In contrast,

by the construction of Θ̂12, the structured low-rank volatility estimator Θ̂ has the rank r,

which is one of the desired properties. For the same reason, we used Θ̂12 instead of Θ̃12 in

constructing Θ̂22. The simulation study in Section 5 indicates that Θ̂ outperforms Θ̂
alt
.

To investigate the asymptotic behavior of the low-rank volatility matrix estimator Θ̂, we

make several technical conditions.

Assumption 2.

(a) The ranks of Θ11 and Θ are the same;

(b) There are some deterministic sequences β1,n and β2,n such that, with probability greater

than 1− δ,

‖Γ̂11 − Γ11‖max ≤ β1,n = o(1), ‖Γ̂12 − Γ12‖max ≤ β2,n = o(1),

and β1,n ≤ β2,n;

(c) The sparsity level diverges slowly such that s(p)/
√
p1 ∧ p2 = o(1);

(d) Let Dλ = min{λi−λi+1 : 1 ≤ i ≤ r} and Dξ = min{ξi−ξi+1 : 1 ≤ i ≤ r}, and there are

some fixed constants c1, . . . , c4 such that λ1/Dλ+p1Mσ/Dλ+ξ1/Dξ+
√
p1p2Mσ/Dξ ≤ c1,

ξ1/Dλ ≤ c2
√
p2/p1, Dξ ≥ c3

√
p1p2, and Dλ ≥ c4p1 almost surely, where ξi’s are

singular values of Θ12 with decreasing order;

(e) For some fixed constants c5, c6, and c7, we have almost surely

p1
r

max
1≤i≤p1

r∑

j=1

q2ij ≤ c5,
p1
r

max
1≤i≤p1

r∑

j=1

v2ij ≤ c6,
p2
r

max
1≤i≤p2

r∑

j=1

u2ij ≤ c7,

where Q = (qij)1≤i≤p1,1≤j≤r is the eigenvector matrix of Θ11, and V = (vij)1≤i≤p1,1≤j≤r

and U = (uij)1≤i≤p2,1≤j≤r are the left and right singular vector matrices of Θ12.
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Remark 4. Assumption 2(a) indicates that the liquid-liquid blockΘ11 has the full information

of the low-rank volatility matrix Θ and the liquid-illiquid block Θ12 provides the linear

relationship between Θ11 and Θ22. This assumption allows us to use the accurate estimator

Θ̂11 as the pivotal estimator. The common factor affects on the whole stock prices and so

the corresponding volatility matrix Θ is dense. This implies that eigenvalues of Θ increases

with the p order. Thus, the so-called pervasive condition (Assumption 2(d)) is reasonable to

impose on the factor volatility matrixΘ. Assumption 2(e) is called the incoherence condition

which is widely used in analyzing low-rank matrices (see Candès and Recht (2009); Fan et al.

(2016b)). This technical condition allows us to analyze the element-wise asymptotic behavior

of the factor volatility matrix Θ.

The following theorem shows the element-wise convergence rate of the structured low-

rank volatility matrix estimator Θ̂.

Theorem 4.1. Under the models (2.1) and (2.3), if Assumption 2 and the sparse condition

(4.2) are met, then the structured low-rank volatility matrix estimator in (4.5) has for large

n, with probability greater than 1− δ,

‖Θ̂11 −Θ11‖max ≤ C

{
β1,n +Mσ

s(p)

p1

}
, (4.7)

‖Θ̂12 −Θ12‖max ≤ C

{
β2,n +Mσ

s(p)

p1 ∧ p2

}
, (4.8)

‖Θ̂22 −Θ22‖max ≤ C

{
β2,n +Mσ

s(p)

p1 ∧ p2

}
. (4.9)

Remark 5. Under the assumption (4.1), Proposition 3.1 shows that the pre-averaging realized

volatility estimator have, with probability greater than 1 − p−1, β1,n = C
√
log p/nb/2 and

β2,n = C
√

log p/na/2. In the financial market, the numbers of stocks in the high trading

volume and low trading volume, H and L, are comparable, and so p1 ≍ p2. Then Theorem

4.1 shows that the low-rank volatility matrix estimator Θ̂ has, with probability greater than

1− p−1,

‖Θ̂−Θ‖max ≤ C

{√
log p/na/2 +Mσ

s(p)

p

}
.

On the other hand, when estimating the low-rank volatility matrix Θ using the POET
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procedure (Fan and Kim, 2017; Fan et al., 2013), we have, with probability greater than

1− p−1,

‖Θ̂POET −Θ‖max ≤ C

{√
log p/nab/2 +Mσ

s(p)

p

}
,

where Θ̂POET is the low-rank volatility matrix estimator calculated from the POET proce-

dure. Due to the inaccurate estimator for the off-diagonal elements of Γ22, Θ̂POET has the

term
√
log p/nab/2.

4.2 Sparse volatility matrix estimation

We can estimate the sparse (or idiosyncratic) volatility matrix using some thresholding pro-

cedures. For the general sparse structure (4.2), we still need to estimate the off-diagonal

elements of Γ22, which causes slower convergence rates for the sparse volatility matrix Σ. To

avoid this, we need to impose more structure on Γ22 that it is a low-rank plus a diagonal ma-

trix (Fan et al., 2008). That is, the idiosyncratic risks for the illiquid assets are uncorrelated

and satisfies

Σ22 = diag ((Σii)i∈L) . (4.10)

Based on the sparse conditions (4.2) and (4.10), we estimate the sparse idiosyncratic volatility

matrix Σ by letting Σ̃ij = Γ̂ij − Θ̂ij and

Σ̂ij =





Σ̃ij ∨ 0, if i = j

sij(Σ̃ij)1(|Σ̃ij| ≥ ̟ij), if i 6= j and (i, j) /∈ {(l, k) : l, k ∈ L}

0, if i 6= j and (i, j) ∈ {(l, k) : l, k ∈ L},

where the adaptive thresholding level̟ij = {(̟1,n−̟2,n)1(i, j ∈ H)+̟2,n}
√

(Σ̃ii ∨ 0)(Σ̃jj ∨ 0),

and sij(·) satisfies that |sij(x) − x| ≤ ̟ij. The shrinkage function sij(x) includes the use-

ful examples such as the soft thresholding function sij(x) = x − sign(x)̟ij and the hard

thresholding function sij(x) = x. The tuning parameters ̟1,n and ̟2,n will be specified in

Theorem 4.2.
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With the structured low-rank volatility matrix estimator Θ̂ = (Θ̂ij)1≤i,j≤p in (4.5) and

the sparse volatility matrix estimator Σ̂ = (Σ̂ij)1≤i,j≤p, we estimate the integrated volatility

matrix Γ by

Γ̃ = Θ̂+ Σ̂.

We call it the structured POET (SPOET) estimator.

To investigate the asymptotic behavior of the SPOET, we make the following technical

conditions.

Assumption 3.

(a) We have, with probability greater than 1− δ,

max
i∈L

|Γ̂ii − Γii| ≤ β2,n = o(1) and Mσ ≤ C;

(b) (Pervasive condition) There are some fixed constants c8 and c9 such that λr(Θ) ≥ c8p

and λ1(Θ)/λr(Θ) ≤ c8 almost surely, where λk(Θ) is the k-th largest eigenvalue of Θ.

The following theorem shows the convergence rate of the proposed SPOET estimator.

Theorem 4.2. Under the models (2.1) and (2.3), assume that Assumptions 2–3, the sparse

conditions (4.2) and (4.10), and (4.7)-(4.9) are met. Take ̟1,n = C1,̟(β1,n +Mσs(p)/p1)

and ̟2,n = C2,̟(β2,n +Mσs(p)/p1 ∧ p2) for some large fixed constants C1,̟ and C2,̟. Then

we have for large n, with probability greater than 1− δ,

‖Γ̃− Γ‖Γ ≤ C

{
pβ2

1,n + p2β
2
2,n

p1/2
+

p2s
2(p)

p1/2(p1 ∧ p2)2
+Mσs(p)α

1−q
n

}
, (4.11)

‖Γ̃− Γ‖max ≤ Cαn, (4.12)

‖Σ̂−Σ‖2 ≤ CMσs(p)α
1−q
n , (4.13)

‖Σ̂−Σ‖max ≤ Cαn, (4.14)

where the relative Frobenius norm ‖U‖2
Γ
= p−1‖Γ−1/2UΓ−1/2‖2F , and αn = β2,n+Mσs(p)/p1∧

p2. Furthermore, if the smallest eigenvalues of Γ̃ and Σ̂ are positive, we have for large n,
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with probability greater than 1− δ,

‖Γ̃−1 − Γ−1‖2 ≤ CMσs(p)α
1−q
n , (4.15)

‖Σ̂−1 −Σ−1‖2 ≤ CMσs(p)α
1−q
n . (4.16)

Remark 6. Theorem 4.2 shows the consistency of the SPOET in terms of the relative Frobe-

nius norm. For example, when both p1 and p2 have the order of p, we have, with probability

greater than 1− p−1,

‖Γ̃− Γ‖Γ ≤ C




p1/2 log p

na/2
+Mσs(p)

(√
log p

na/2
+Mσ

s(p)

p

)1−q


 .

The SPOET estimator is consistent so long as p = o(na).

Remark 7. The diagonal condition (4.10) may be too restrictive in analyzing volatilities. So

when relaxing the sparse condition (4.10) to the following sparse condition

max
j∈L

∑

i∈L
|Σij|q(ΣiiΣjj)

(1−q)/2 ≤Mσs(p),

the convergence rates corresponding to the sparse volatility matrix Σ are changed. For

example, we have the term
√

log p/nab/2 +Mσs(p)/p1 ∧ p2 instead of αn in the results of

Theorem 4.2. When p1 ≍ p2, we have, with probability greater than 1− p−1,

‖Γ̃− Γ‖Γ ≤ C




p1/2 log p

na/2
+Mσs(p)

(√
log p

nab/2
+Mσ

s(p)

p

)1−q


 .

5 Simulation study

5.1 Consistency of estimators

To check the finite sample performance of the proposed estimator, we conducted a simulation

study. The true log-stock price follows a continuous-time r-factor model defined in (2.1) with
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µ(t) = 0. Let σ(t) be the Cholesky decomposition of the instantaneous volatility process

ς(t) = (ςij(t))1≤i,j≤p. The diagonal elements of ς(t) follow four different processes such as

geometric Ornstein-Uhlenbeck processes, the sum of two CIR processes (Barndorff-Nielsen,

2002; Cox et al., 1985), the volatility process in Nelson’s GARCH diffusion limit model

(Wang, 2002), and two-factor log-linear stochastic volatility process (Huang and Tauchen,

2005) with leverage effect. Details can be found in Wang and Zou (2010). To obtain the

sparse integrated volatility matrix Σ, we generated the off-diagonal elements as follows:

ςij(t) =




0, if i, j ∈ L

{κ(t)}|i−j|√ςii(t)ςjj(t), otherwise,

where the process κ(t) is

κ(t) =
e

1

2
u(t) − 1

e
1

2
u(t) + 1

, du(t) = 0.03{0.64− u(t)}dt+ 0.118u(t)dWκ,t,

Wκ,t =
√
0.96W 0

κ,t − 0.2

p∑

i=1

Wit/
√
p,

and W 0
κ,t, κ = 1, . . . , p, are one-dimensional Brownian motions which are independent of

the Brownian motions W∗
t and Wt. The low-rank instantaneous volatility matrix ςf (t) =

ϑ⊤(t)ϑ(t) isH⊤{ϑf (t)}⊤ϑf (t)H, whereH = (Hij)1≤i≤r,1≤j≤p ∈ R
r×p and Hij were generated

from i.i.d. uniform distribution on [−2, 2]. ϑf (t) was generated similarly to σ(t). For exam-

ple, ϑf (t) is a diagonal matrix, and its squared diagonal elements were generated from three

different processes: geometric Ornstein-Uhlenbeck processes, the sum of two CIR processes,

and the volatility process in Nelsons GARCH diffusion limit model.

We generated the noisy high-frequency data Yi(tk) by adding a noise term ǫi(tk) obtained

from independent normal distribution with mean zero and standard deviation 0.1
√
Γii. To

generate the non-synchronized data, we randomly selected the non-synchronized observation

time points from the synchronized observation time points tk =
k

nall , k = 1, . . . , nall − 1. For

example, the number of observation time points for each asset is determined by
⌊
πin

all
⌋
,

where the proportion πi ∈ (0, 1). For liquid assets, the proportion πi was generated from
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i.i.d. uniform distribution (0.5, 1), while for illiquid assets, the proportion πi was generated

from i.i.d. uniform distribution ( 5L√
nall

, 10L√
nall

), where the liquidity level L was varied from 0.25

to 2. Then we obtained the non-synchronized sample path by randomly sampling
⌊
πin

all
⌋

observation time points from {t1, t2, . . . , tnall−1}.
We fixed the proportion of liquid assets to be 0.5, that is, p1 = p/2. Using the simulated

noisy non-synchronized data Yi(ti,k), i = 1, . . . , p, k = 1, . . . , ni, we calculated the PRVM,

defined in Definition 2 with the weight function g(x) = x ∧ (1 − x) and K = ⌊n1/2⌋. Then

we applied the proposed SPOET procedure and POET procedure. The latter regularizes

directly the PRVM estimator Γ̂. For the thresholding step, we used the adaptive hard

thresholding scheme and chose the optimal thresholding level for each method by minimizing

the corresponding Frobenius norm of the difference between the estimate and true value. In

the simulation study, we fixed p = 200, r = 3, and nall = 23400 which equals to the number

of seconds in one day’s trading period. The simulation process was repeated 500 times.

The average numbers of synchronized observations after applying the pairwise refresh time

scheme for liquid-liquid, liquid-illiquid, illiquid-illiquid combinations are reported in Table

1.

Table 1: Average sample sizes after applying the refresh time scheme for liquid-liquid, liquid-
illiquid, and illiquid-illiquid combinations.

L liquid-liquid liquid-illiquid illiquid-illiquid

0.25 14300.82 286.27 186.75
0.5 14292.87 573.04 374.48
1 14305.63 1145.44 752.32
2 14295.88 2279.87 1517.39

Figure 1 depicts the average estimation errors of the SPOET and POET for estimating

the low-rank volatility matrix Θ against the liquidity level L and the numerical results are

reported in Table 2. It can easily be seen that the SPOET outperforms the POET (relative

efficient greater than one) except one case where L = 2 using spectral norm. In terms of

the Frobenius norm, the SPOET gets more efficiency than the POET as the liquidity level
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L decreases. In fact, when the liquidity level decreases, both SPOET and POET estimators

have larger average errors. However, the SPOET has smaller increment of errors than the

POET, as the SPOET does not use the illiquid-illiquid block data but infers volatility in

this block from the low-rank structure. Thus, it is more robust to the liquidity level L. On

the other hand, the performance in terms of the spectral norm is relatively stable over the

liquidity level L. To check the effect of the projection of Θ̃12 onto the space spanned by

Θ̂11, we compare the SPOET with A-SPOET (alternative SPOET in (4.6)). The projected

low-rank estimator Θ̂12 shows better performance than Θ̃12. From this result, we can find

that the projection onto the accurate estimator Θ̂11 helps to improve the performance of

estimating low-ranking volatility Θ.

Table 2: Average errors under Frobenius norm and spectral norm of the SPOET, A-SPOET,
and POET for Θ with L = 0.25, 0.5, 1, 2.

Θ Θ11 Θ22 Θ12

L SPOET A-SPOET POET SPOET POET SPOET POET SPOET A-SPOET POET

Frobenius

0.25 437.18 519.76 525.59 119.79 177.72 293.91 343.83 211.41 289.62 251.19
0.5 367.59 421.48 426.16 119.76 151.45 234.92 270.16 180.48 231.80 206.77
1 313.33 347.68 353.97 119.80 133.95 188.54 216.86 155.02 188.03 173.47
2 269.98 290.40 297.53 119.69 121.83 150.51 174.20 133.79 153.67 147.04

Spectral

0.25 297.96 329.07 326.38 74.98 99.58 219.82 230.02 143.57 181.05 155.61
0.5 239.34 258.64 263.53 75.11 86.26 165.79 179.94 119.60 143.18 128.37
1 196.57 207.73 218.08 75.02 78.01 126.47 143.33 100.32 115.00 107.74
2 162.20 167.90 181.27 74.87 72.36 95.09 113.11 83.64 92.38 90.65

Table 3 reports the average estimation errors, measured by the Frobenius, spectral, rela-

tive Frobenius norms, of the SPOET, A-SPOET, POET, and PRVM estimators for Γ, Γ11,

Γ12, and Γ22. Figure 2 shows the average errors of estimates for the integrated volatility

matrix Γ based on the SPOET, A-SPOET, POET, and PRVM procedures for different liq-

uidity levels L. As what we expected, SPOET, A-SPOET, and POET usually show better

performance than PRVM. Furthermore, SPOET has the smallest average errors among these

four estimators.

Finally, we compare performances of estimating the sparse volatility matrix Σ and in-

verse matrices Γ−1 and Σ−1. We report average estimation errors in Table 4, using both
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Figure 1: Relative efficiency of the SPOET with respect to the POET for estimating Θ

against the liquidity level L.

Table 3: The average estimaton errors of the SPOET, A-SPOET, POET, and PRVM for Γ
using different matrix norms with L = 0.25, 0.5, 1, 2.

Frobenius
Γ Γ11 Γ22 Γ12

L SPOET A-SPOET POET PRVM SPOET POET PRVM SPOET POET PRVM SPOET POET PRVM

0.25 441.9 523.6 527.9 790.1 128.1 182.8 162.3 297.5 344.7 478.5 211.4 251.2 429.4
0.5 372.5 425.8 429.6 671.3 128.1 158.3 162.3 238.3 271.7 404.1 180.5 206.8 361.2
1 318.5 352.3 358.2 572.5 128.1 142.1 162.3 191.7 218.5 341.5 155.1 173.5 303.9
2 275.4 295.5 302.4 488.2 128.0 130.9 162.3 153.4 175.9 285.8 133.8 147.1 255.2

Spectral
0.25 294.2 325.5 319.7 313.9 71.5 91.7 58.2 216.2 224.5 210.0 143.6 155.6 182.9
0.5 236.6 256.1 259.0 251.7 71.6 80.9 58.2 163.6 176.2 166.6 119.6 128.4 145.3
1 194.4 205.8 214.9 205.8 71.5 74.3 58.2 125.3 140.7 134.4 100.3 107.7 117.0
2 160.3 166.3 179.0 168.7 71.3 69.6 58.0 94.6 111.3 107.3 83.6 90.6 94.4

Relative Frobenius
0.25 1.23 1.65 1.60 2.94 0.56 0.86 0.91 1.13 1.44 2.35 - - -
0.5 1.03 1.31 1.26 2.49 0.55 0.73 0.91 0.88 1.09 1.98 - - -
1 0.88 1.06 1.04 2.13 0.55 0.65 0.91 0.70 0.86 1.67 - - -
2 0.76 0.88 0.87 1.82 0.56 0.60 0.91 0.55 0.67 1.40 - - -

Frobenius and spectral norms. Similar to the previous results, the SPOET usually shows

better performance than other estimation procedures. However, when the liquidity level L

is large (L = 2), the performances of the SPOET and POET procedures are similar. This is
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Figure 2: The average estimation errors of the SPOET, A-SPOET, POET, and PRVM for
Γ using different matrix norms against the liquidity level L.

understandable: when the liquidity level is large, there is no big benefit from using accurate

estimates to reconstruct the low-rank volatility matrix Θ.

Table 4: Average errors under Frobenius and spectral norms of the SPOET, POET, and
PRVM for Σ, Σ−1 and Γ−1 with L = 0.25, 0.5, 1, 2.

Σ Σ
−1

Γ
−1

L SPOET POET SPOET POET SPOET POET PRVM

Frobenius

0.25 82.379 107.408 0.786 5.321 1.362 10.074 58.239
0.5 74.629 88.109 0.612 4.113 0.547 3.342 67.054
1 69.349 75.566 0.577 1.279 0.507 0.807 82.767
2 65.904 67.645 0.573 0.588 0.502 0.554 54.519

Spectral

0.25 17.098 23.652 0.495 4.932 1.074 9.713 56.479
0.5 16.466 19.490 0.361 3.845 0.296 3.089 64.938
1 16.416 17.154 0.349 1.039 0.280 0.566 80.336
2 16.417 15.976 0.356 0.360 0.287 0.327 51.740

5.2 Portfolio risks

In this section, we further compared the SPOET, A-SPOET, POET, and PRVM for volatility

matrix estimation using the portfolio risks as evaluation. Specifically, for each simulation

setting, we generate 200 random portfolios w = (w1, . . . , wp)
⊤ (approximately) uniformly
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Figure 3: Average relative errors of estimators for the portfolio risk calculated using the
SPOET, A-SPOET, POET, and PRVM estimators against the liquidity level L with the
gross exposures c0 = 1, 1.2, 1.4, 1.6, 1.8, 2, p = 200, and r = 3.

from the set {w :
∑p

i=1wi = 1 and ‖w‖1 = c0}, where c0 is a given gross exposure. That

is accomplished as follows. See Fan et al. (2015) for details and derivations. The number,

k, of long positions is determined by a realization from binomial distribution Bin(p, c0+1
2c0

).

Then we generated independently {Ei}i=1,...,p from standard exponential distributions. For

the k long positions, the weight wi = (c0 + 1)Ei/(2
∑k

j=1Ej), i = 1, . . . , k, and for the short

positions, wi = −(c0 − 1)Ei/(2
∑p

j=k+1Ej), i = k + 1, . . . , p. Finally, randomly permute

those weights {wi}pi=1.

For each of 500 simulated sample paths, we generated 200 testing portfolios, and so we

have 100,000 portfolios in total for each estimation method. We varied the gross exposure c0

from 1 to 2. For each portfolio, we calculated the relative error of estimated risk using the

estimate Γ̂ by |w⊤(Γ̂−Γ)w|
w⊤Γw

, where Γ̂ can be the SPOET, A-SPOET, POET, and PRVM. Then

we computed the averages of 100, 000 errors as the performance measure for each method.
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Figure 3 depicts the average relative errors of the portfolio risks calculated by the SPOET,

A-SPOET, POET, and PRVM against the liquidity level L. We can find that the estimates

based on the SPOET have the smallest error. As the liquidity level L increases, the difference

between estimates based on the SPOET and POET estimators gets smaller. This is because

when the liquidity level L is large, the illiquid part Γ22 is well estimated via POET procedure

and so there is no huge benefit from using the structure of the low-rank matrix.

6 Empirical Applications

We collected intra-daily transaction prices of NYSE constituents from January to March

in 2016 from the TAQ database in the Wharton Data Service (WRDS) system, 60 trading

days in total. We excluded stocks which have less than 100 trading observations and chose

the top 100 liquid stocks and the top 100 illiquid stocks as the candidates of our portfolio

construction. We used the log-prices in seconds and exclude overnight returns to avoid

dividend issuances and stock splits. To manage the non-synchronization problem, we used

the pairwise refresh time. Average sample sizes for liquid-liquid, liquid-illiquid, and illiquid-

illiquid blocks after applying the refresh time scheme are 6400, 615, and 313, respectively.

We calculated the SPOET, POET, and PRVM estimators for each trading day. For

PRVM, we chose g(x) = x∧ (1−x) and K = ⌊n1/2⌋. For the thresholding step for the sparse

volatility matrix Σ, we used two different thresholding techniques for each of SPOET and

POET that avoid the choice of thresholding parameters (Fan et al., 2016a): block diagonal,

and block diagonal but using the diagonal part of estimated Σ22. We denoted the latter block

diagonal threshold estimators by SPOET+Block and POET+Block. Blocks are determined

using the Global Industry Classification Standard (GICS) (Fan et al., 2016a; Ait-Sahalia and

Xiu, 2017). The idiosyncratic components for different blocks (sector) are set to zero and for

the same block are untouched (Fan et al., 2016a). To determine the number, r, of factors,

we calculated 60 integrated volatility matrices using the PRVM estimation procedure. Then

we used the average eigenvalues from 60 PRVM estimators and draw the scree plot, which is

shown in Figure 4. From Figure 4, we can see that the number of leading factors is around
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5. In the empirical study, we chose r = 1, 2, 3, 4, 5, 6 for sensitivity analysis, though it is

known that slight overestimate of the number of factors does no little harm to the portfolio

choice(Fan et al., 2013).
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Figure 4: The scree plot of average eigenvalues of 60 PRVMs.

We examined the performance of the integrated volatility matrix estimators in a mini-

mum variance portfolio allocation problem. We consider the following constrained minimum

variance portfolio allocation problem:

min
ω

ω⊤Γ̂ω, subject to ω⊤J = 1 and ‖ω‖1 = c0,

where J = (1, . . . , 1)⊤ ∈ R
p, the gross exposure constraint c0 was varied from 1 to 3, and

Γ̂ could be SPOET, POET, and PRVM. To make the estimates positive semi-definite, we

projected the sparse volatility estimators for SPOET and POET, and PRVM estimator onto

the positive semi-definite cone in the spectral norm. We constructed the portfolio at the

beginning of each trading day and held it for one day. We calculated the standard deviation

using the open-to-close log-returns of the portfolios, which is used to measure the portfolio

risk.

Figure 5 depicts the out-of-sample risks of the portfolios constructed by SPOET, SPOET+Block,
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Figure 5: The out-of-sample risks of the optimal portfolios constructed by using the volatility
matrix from SPOET, SPOET+Block, POET, POET+Block, and PRVM estimators with
r = 1, . . . , 6.

POET, POET+Block, and PRVM against the exposure constraint c0. The minimum risks for

portfolios constructed by using SPOET, SPOET+Block, POET, POET+Block, and PRVM

over the c0 are 13.2 %, 13.27%, 17.19 %, 18.34 %, and 18.91%, respectively. The SPOET es-

timation method reduces the minimum risks by 30%–43%. We can find that for the purpose

of portfolio allocation, the SPOET and POET type estimators perform well and improve the

performance of the PRVM. In addition, the PRVM estimator becomes unstable as the ex-

posure constraint increases. When comparing thresholding schemes, the block thresholding

scheme is generally better than taking Σ22 to be diagonal, which indicates that the block

diagonal assumption is an appropriate assumption for stock returns. Meanwhile, when the

number of factor is 5, the SPOET shows the stable results and performs better than others.

The results suggest that the proposed SPOET procedure can help estimate the volatilities

for illiquid assets.
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7 Proofs

Proof of Theorem 4.1. Similar to the proof of Theorem 4.1 of Fan and Kim (2017), we

can show

‖Θ̂11 −Θ11‖max ≤ C

(
Mσ

s(p)

p1
+ β1,n

)
.

Now consider ‖Θ̂12 −Θ12‖max. By Weyl’s Theorem, we have

max
1≤k≤r

|ξ̂k − ξk| ≤ ‖Γ̂12 −Θ12‖2
≤ ‖Γ̂12 − Γ12‖2 + ‖Γ12 −Θ12‖2
≤ √

p1p2‖Γ̂12 − Γ12‖max +Mσs(p). (7.1)

By Theorem 1.1 in Fan et al. (2016b), we have

max
1≤k≤r

‖v̂k − sign(〈v̂k,vk〉)vk‖max

≤ C

√
p1p2‖Γ̂12 − Γ12‖max +Mσ

√
p1p2 max(s(p)/p1, s(p)/p2)

Dξ
√
p1

≤ C
√
p2
‖Γ̂12 − Γ12‖max +Mσ max(s(p)/p1, s(p)/p2)

Dξ

(7.2)

and

max
1≤k≤r

‖ûk − sign(〈ûk,uk〉)uk‖max

≤ C

√
p1p2‖Γ̂12 − Γ12‖max +Mσ

√
p1p2 max(s(p)/p1, s(p)/p2)

Dξ
√
p2

≤ C
√
p1
‖Γ̂12 − Γ12‖max +Mσ max(s(p)/p1, s(p)/p2)

Dξ

. (7.3)

Then simple algebraic manipulations show

‖v̂kû
⊤
k − vkuk‖max

≤ ‖v̂k − vk‖max‖ûk − uk‖max + ‖v̂k − vk‖max‖uk‖max + ‖vk‖max‖ûk − uk‖max

≤ C

Dξ

{β2,n +Mσ max(s(p)/p1, s(p)/p2)} . (7.4)
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By (7.1) and (7.4), we have

‖Θ̃12 −Θ12‖max

= ‖
r∑

k=1

(
ξ̂kv̂kû

⊤
k − ξkvku

⊤
k

)
‖max

≤
r∑

k=1

‖(ξ̂k − ξk)(v̂kû
⊤
k − vku

⊤
k )‖max + ‖(ξ̂k − ξk)vku

⊤
k ‖max + ‖ξk(vku

⊤
k − v̂kû

⊤
k )‖max

≤ C {β2,n +Mσ max(s(p)/p1, s(p)/p2)}
≤ C

{
β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}
. (7.5)

Simple algebraic manipulations show

‖Θ̂12 −Θ12‖max

≤ ‖QQ⊤(Θ̃12 −Θ12)‖max + ‖(Q̂Q̂⊤ −QQ⊤)Θ12‖max

+‖(Q̂Q̂⊤ −QQ⊤)(Θ̃12 −Θ12)‖max

= (a) + (b) + (c).

For (a), we have

(a) ≤ ‖QQ⊤‖1‖Θ̃12 −Θ12‖max

≤ C

{
β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}
, (7.6)

where the last inequality is due to (7.5) and Assumption 2(e). For (b), we have

(b) ≤ p1‖Q̂Q̂⊤ −QQ⊤‖max‖Θ12‖max

≤ C
p1
Dλ

{β1,n +Mσs(p)/p1}
ξ1√
p1p2

≤ C {β1,n +Mσs(p)/p1} , (7.7)

where the second inequality can be derived similar to the proof of (7.4). Finally, for (c),

similar to the proofs of (7.6) and (7.7), we can show

(c) ≤ p1‖Q̂Q̂⊤ −QQ⊤‖max‖Θ̃12 −Θ12‖max
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≤ C
p1
Dλ

{β1,n +Mσs(p)/p1}
{
β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}

= o((a) + (b)). (7.8)

Thus, from (7.6)–(7.8), we have

‖Θ̂12 −Θ12‖max ≤ C

{
β1,n + β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}
.

Consider ‖Θ̂22 −Θ22‖max. It follows that

‖Θ̂22 −Θ22‖max

≤ ‖(Θ̂21 −Θ21)Q̂Λ̂
−1
Q̂⊤Θ̂12‖max + ‖Θ21Q̂Λ̂

−1
Q̂⊤(Θ̂12 −Θ12)‖max

+‖Θ21{Q̂Λ̂
−1
Q̂⊤ −QΛ−1Q⊤}Θ12‖max

= (I) + (II) + (III).

For (I), we have for large n,

(I) ≤ ‖Θ̂21 −Θ21‖max‖Q̂Λ̂
−1
Q̂⊤Θ̂12‖1

≤
r∑

k′=1

r∑

k=1

ξ̂k′

λ̂k
‖q̂kq̂

⊤
k v̂k′û

⊤
k′‖1‖Θ̂21 −Θ21‖max

≤ C
ξ1
λr

max
1≤k,k′≤r

‖q̂kû
⊤
k′‖1‖Θ̂21 −Θ21‖max

≤ C
ξ1
λr
p
1/2
1 max

1≤k≤r
‖uk‖max‖Θ̂21 −Θ21‖max

≤ C‖Θ̂21 −Θ21‖max

≤ C

{
β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}
,

where the third inequality is due to (7.1) and Proposition 7.1 (Fan and Kim, 2017) and the

fourth inequality is from (7.3). Similarly, we can show

(II) ≤ C

{
β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}
.
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For (III), we have

(III) ≤ ‖Θ12‖21‖Q̂Λ̂
−1
Q̂⊤ −QΛ−1Q⊤‖max

≤ Cξ21 max
1≤k≤r

‖vku
⊤
k ‖21‖Q̂Λ̂

−1
Q̂⊤ −QΛ−1Q⊤‖max

≤ C
ξ21p1
p2

‖Q̂Λ̂
−1
Q̂⊤ −QΛ−1Q⊤‖max

≤ C
ξ21p1
p2

r∑

i=1

(
‖(λ̂−1

i − λ−1
i )qiq

⊤
i ‖max + ‖λ̂−1

i (q̂iq̂
⊤
i − qiq

⊤
i )‖max

)

≤ C
ξ21p1
p2

(
p1β1,n +Mσs(p)

p1λ2r
+
β1,n +Mσs(p)/p1

Dλλr

)

≤ C
ξ21p1
p2

1

λrDλ

(
β1,n +Mσ

s(p)

p1

)

≤ C

(
β1,n +Mσ

s(p)

p1

)
,

where the fifth inequality can be derived similar to (7.1) and (7.4). �

Proof of Theorem 4.2. (4.12) and (4.14) are immediately proved by Theorem 4.1,

Assumption 2(b), and Assumption 3(a).

Consider (4.13). By Theorem 4.1, Assumption 2(b), and Assumption 3(a), we have

‖Σ̃11 −Σ11‖max ≤ C

{
β1,n +Mσ

s(p)

p1

}
,

‖Σ̃12 −Σ12‖max ≤ C

{
β2,n +Mσ

s(p)

p1 ∧ p2

}
. (7.9)

Then we have for j ∈ H,

p∑

i=1

|Σ̂ij − Σij|

≤
p∑

i=1

|sij(Σ̃ij)− Σij|1(|Σ̃ij| ≥ ̟ij) +

p∑

i=1

|Σij| |1(|Σ̃ij| ≥ ̟ij)− 1(|Σij| ≥ ̟ij)|

+

p∑

i=1

|Σij|1(|Σij| < ̟ij)

≤ 3

2

p∑

i=1

̟ij1(|Σij| ≥ ̟ij − |Σij − Σ̃ij|) +
p∑

i=1

|Σij|1
(∣∣|Σ̃ij| −̟ij

∣∣ ≤ |Σij − Σ̃ij|
)
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+

p∑

i=1

|Σij|q̟1−q
ij

≤ 3

2
2q

p∑

i=1

|Σij|q̟1−q
ij +

p∑

i=1

|Σij|1
(
|Σij| ≤

3

2
̟ij

)
+

p∑

i=1

|Σij|q̟1−q
ij

≤ C

p∑

i=1

|Σij|q̟1−q
ij

≤ C

(
∑

i∈H
|Σij|q̟1−q

ij +
∑

i∈L
|Σij|q̟1−q

ij

)

≤ CMσ

[
s(p)

{
β1,n +Mσ

s(p)

p1

}1−q

+s(p)

{
β1,n + β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}1−q
]
,

and similarly, for j ∈ L,

p∑

i=1

|Σ̂ij − Σij|

≤ C

[
Mσs(p)

{
β1,n + β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}1−q

+

{
β1,n + β2,n +Mσ

(
s(p)

p1
+
s(p)

p2

)}]
.

Thus,

‖Σ̂−Σ‖2 ≤ CMσs(p)α
1−q
n .

Consider (4.11). Simple algebraic manipulation shows

‖Γ̃− Γ‖Γ ≤ ‖Θ̂−Θ‖Γ + ‖Σ̂−Σ‖Γ.

For ‖Θ̂−Θ‖Γ, similar to the proofs of Theorem 4.2 (Kim et al., 2017), we have

‖Θ̂−Θ‖Γ

≤ C

{
1

p1/2λr(Θ)
‖Θ̂−Θ‖F +

λ1(Θ̂)

p1/2λr(Θ)2
‖Θ̂−Θ‖2F +

λ1(Θ̂)

p1/2λr(Θ)3/2
‖Θ̂−Θ‖F

}

33



≤ C

{
1

p1/2λr(Θ)
‖Θ̂−Θ‖2F +

1

p1/2λr(Θ)1/2
‖Θ̂−Θ‖F

}
.

For ‖Σ̂−Σ‖Γ, we have

‖Σ̂−Σ‖Γ ≤ p−1/2‖Σ̂−Σ‖2‖Γ−1‖F
≤ CMσs(p)α

1−q
n ,

where the last inequality is due to (4.13). Therefore,

‖Γ̃− Γ‖Γ ≤ C

{
‖Θ̂−Θ‖2F
p1/2λr(Θ)

+
‖Θ̂−Θ‖F
p1/2λr(Θ)1/2

+Mσs(p)α
1−q
n

}

≤ C
[
p−3/2

{
p21β

2
1,n + p1p2β

2
2,n + p22(β

2
1,n + β2

2,n)
}
+

p2s
2(p)

p1/2(p1 ∧ p2)2
+Mσs(p)α

1−q
n

]
,

where the last inequality is due to Theorem 4.1.

The statements (4.15)and (4.16) can be shown similar to the proofs of Theorem 4.1 (Fan

and Kim, 2017). �
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