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Abstract

Several large volatility matrix estimation procedures have been recently developed
for factor-based It6 processes whose integrated volatility matrix consists of low-rank
and sparse matrices. Their performance depends on the accuracy of input volatility
matrix estimators. When estimating co-volatilities based on high-frequency data, one
of the crucial challenges is non-synchronization for illiquid assets, which makes their
co-volatility estimators inaccurate. In this paper, we study how to estimate the large
integrated volatility matrix without using co-volatilities of illiquid assets. Specifically,
we pretend that the co-volatilities for illiquid assets are missing, and estimate the
low-rank matrix using a matrix completion scheme with a structured missing pattern.
To further regularize the sparse volatility matrix, we employ the principal orthogonal
complement thresholding method (POET). We also investigate the asymptotic prop-
erties of the proposed estimation procedure and demonstrate its advantages over using
co-volatilities of illiquid assets. The advantages of our methods are also verified by an
extensive simulation study and illustrated by high-frequency data for NYSE stocks.
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1 Introduction

High-frequency financial data have provided researchers and practitioners with incredible
information to investigate asset pricing and market volatility dynamics. New analytic chal-
lenges also arise from analysis of high-frequency financial data. First, due to small mar-
ket inefficiency such as bid-ask bounce, asymmetric information, latency, and so on, stock
prices are contaminated by micro-structural noises. If the micro-structural noises are not
accounted for, estimators for integrated volatilities will diverge as the frequency increases
(Ait-Sahalia et al., 2005). Second, the observation time points are not synchronized, which
makes it hard to estimate co-volatilities, particularly for those illiquid assets. Despite these
challenges, several efficient estimation procedures have been developed. Examples include
two-time scale realized volatility (TSRV) (Zhang et al., 2005), multi-scale realized volatility
(MSRV) (Zhang, 2006, 2011), wavelet estimator (Fan and Wang, 2007), pre-averaging real-
ized volatility (PRV) (Christensen et al., 2010; Jacod et al., 2009), kernel realized volatility
(KRV) (Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood estimator (QMLE)
(Ait-Sahalia et al., 2010; Xiu, 2010), local method of moments (Bibinger et al., 2014), and
robust pre-averaging realized volatility (Fan and Kim, 2017).

When estimating co-volatilities, to handle the non-synchronization problem, we often
employ some synchronization scheme such as generalized sampling time (Ait-Sahalia et al.,
2010), refresh time (Barndorff-Nielsen et al., 2011; Fan et al., 2012), previous tick (Wang
and Zou, 2010; Zhang, 2011), and some linear interpolation (Bibinger et al., 2014) schemes.
See also Hayashi and Yoshida (2005, 2011); Malliavin and Mancino (2002); Malliavin et al.
(2009); Mancino and Sanfelici (2008); Park et al. (2016). These synchronization schemes
asymptotically guarantee that the errors coming from the non-synchronized observations
can be negligible as the frequency increases. However, for illiquid assets, whose trading

frequencies are relatively low, the errors may not be asymptotically negligible, as the refresh



times are too long to be useful so that estimators for co-volatilities can be inaccurate. This
generates demand for investigating how to better estimate co-volatilities for illiquid assets.
Apparently, we need to appeal to structural aspects of the model.

A commonly used structure to account for cross-sectional dependence is the factor model.
It was first used to estimate high-dimensional covariance matrix in Fan et al. (2008) for
portfolio allocation and risk management and admits a low-rank plus sparse volatility ma-
trix structure (Fan et al., 2013; Ait-Sahalia and Xiu, 2017; Fan et al., 2016a; Kim et al.,
2017; Kong, 2017). When the number of assets is large, the latent factors can be accurately
estimated. The performance of these factor-based estimators depends critically on the ac-
curacy of the initial volatility matrix input. However, as discussed above, the co-volatility
estimators for illiquid assets are inaccurate, due to relatively long refresh times between any
two illiquid assets. On the other hand, the special covariance structure implied by the factor
model makes us possible to use the covariance information from liquid blocks to infer about
those in illiquid blocks.

How to estimate co-volatilities for illiquid assets, which have serious non-synchronization
issue? In this paper, we appeal to the factor structure to infer these co-volatilities. The
factor structure implies that the volatility matrix consists of a low-rank covariance matrix
induced by the linear combinations of common factors and a sparse covariance matrix in-
duced by idiosyncratic components. We investigate how to estimate the low-rank (or factor)
volatility matrix without using estimators for illiquid assets. Due to the low-rankness of the
covariance matrix induced by the linear combinations of the common factors, the sub-matrix
corresponding to the illiquid assets is spanned by the column space of the remaining low-rank
volatility sub-matrices and can be determined analytically from the sub-matrices that involve
liquid assets. Thus, the problem of estimating the low-rank volatility matrix is related to
the popular matrix completion problem (Candes and Recht, 2009; Koltchinskii et al., 2011),
except that the entries (corresponding to the illiquid assets) are not ‘missing’ at random, but
‘missing’ (not used due to their inaccuracies) with a structured pattern (Cai et al., 2016).
This structured pattern allows us to use the aforementioned analytical formula to estimate

the factor-induced volatility submatrix that corresponds to illiquid assets. Then we estimate



the sparse (or idiosyncratic) volatility matrix by subtracting the low-rank volatility estimator
from the input volatility matrix estimator and apply the adaptive thresholding scheme to the
sparse volatility matrix estimator. The resulting procedure of this kind is called Principal
Orthogonal complEment Thresholding (POET) in Fan et al. (2013).

We will investigate the asymptotic behaviors of the proposed estimators for the volatility
matrices that correspond to linear combinations of factors, the idiosyncratic components, and
the log-returns of assets. We assume that the high-frequency data are contaminated with
micro-structural noises. We ideally model the trading volumes of liquid and illiquid assets.
We explicitly show when and where the gain can be made by ignoring the co-volatilities of
the illiquid assets.

The rest of the paper is organized as follows. Section 2 provides a factor-based diffusion
process and data structure and Section 3 reviews the pairwise refresh time scheme and pre-
averaging realized volatility estimation method. A large volatility estimation procedure is
proposed in Section 4 using matrix completion scheme with the structured missing pattern,
whose asymptotic properties are established. The advantages of the proposed method is
demonstrated via a simulation study in Section 5 and is illustrated by an application to the

NYSE stocks in Section 6. Proofs are collected in Section 7.

2 Model set-up

We first define some notations. For any given vector a, diag(a) creates a diagonal matrix
using elements of a. For any given d; x dy matrix U = (U;;),

dq

da
[0l = max z; Uil U]l = max 2 Uyl, and [ U]max = max| Uy
i= j=

Matrix spectral norm ||U||, is the largest eigenvalue of UUT, the Frobenius norm of U is
|U||r = y/tr(UTU). Uy, denotes the sub-matrix of U formed by rows and columns whose
indices are in [ and J, respectively, where I and J are subsets of {1,...,d;} and {1,...,d>},

respectively. We will use C' to denote a generic constant whose value is free of n and p and



may change from occurrence to occurrence.

Let X(t) = (X1(t),...,X,(t))" be the vector of true log-prices at time ¢. We assume that
the log-prices of assets follow a continuous-time diffusion model. In economic and financial
studies, the approximate factor model is widely employed to account for the effect of macro-
economic factors and market factors such as sector and industry classification, firm size,
price to book ratios, etc (Bai and Ng, 2002; Chamberlain and Rothschild, 1982; Fama and
French, 1992; Fan et al., 2016a; Ait-Sahalia and Xiu, 2017). In light of these, we employ the

factor-based diffusion model
dX(t) = p(t)dt + 0" (t)dW; + o (t)dW,, (2.1)

where p(t) = (pui(t),...,p1p(t))" is a drift vector, 9(t) is a r x p matrix, o(t) is a p X p
matrix, W; and W, are independent r-dimensional and p-dimensional Brownian motions,
respectively. Stochastic processes u(t), X(t), o(t), and ¥(t) are defined on a filtered proba-
bility space (Q, F, {F;,t € [0,1]}, P) with filtration F; satisfying the usual conditions. Note
that 7 is the number of latent factors. The instantaneous (or spot) volatility matrix of the

log-prices X(t) in (2.1) is

(t) = (v (t))gm‘gp = '9T(t)79(t) +o'(t)o(t).

The parameter of interest is the integrated volatility matrix over time [0, 1]

r - /O (bt

= /1 19T(t)19(t)dt+/l o' (t)o(t)dt
— 9+ ’ (2.2)

The matrix @ in (2.2) accounts for the factor influence on the volatility matrix. In this
paper, we assume that the rank, r, of © is fixed and finite. Additionally, we impose some
sparse structure on the idiosyncratic volatility matrix 3 (see Section 4). Thus, the integrated

volatility matrix I' has the low-rank plus sparse structure which is widely used in analyzing



large covariance or volatility matrices (Fan et al., 2013, 2016b; Ait-Sahalia and Xiu, 2017;
Kim et al., 2017; Kong, 2017).

Unfortunately, in the high-frequency finance, we cannot observe the true log-prices due to
the micro-structural noises caused by small market inefficiencies, for example, asymmetric in-
formation, bid-ask bounce, and latency. We also encounter the so-called non-synchronization
problem that transactions for different assets occur at distinct times, and the observation
time points are not synchronized. To model these stylized features, in the high-frequency

finance, it is usually assumed that the observed price Y;(%; ;) has an additive noise as follows:

Y;(tz,k) = Xz(tz,k) ‘f‘ei(ti,k) for i = 1,...,]?,]{3 = O,...,?’Li7 (23)
where €;(t;x),i=1,...,p,k =0,...,n;, are independent noises with mean zero and variance
N and p is the number of assets. Furthermore, we observe that the numbers, n,...,n,, of

high-frequency observations are heterogeneous. For the simplicity, we assume that there are
two sub-groups of stocks which have high trading volumes (liquid assets) and low trading

volumes (illiquid assets) as follows:

H={ie{l,...,p},n;<xn} and L={ie{l,...,p},n; =<n} (2.4)

where a < 1 and HU L = {1,...,p}. Their cardinalities are |H| = p; and |L| = ps. Then,

without loss of generality, we can rearrange the integrated volatility matrix I' as follows:

T — Fll F12 ’
F21 F22

where I'yy = I'yy, I'io = Ty, oy = ey, and I'yy = 'z Note that the sub-matrices have

the low-rank plus sparse structure as follows:

Fij:@ij+2ij forz'zl,?,jzl,?,



when we use the following partitions:

®, 6 Y X
o — 11 12 and > 11 12
@21 @22 221 222

Due to the errors coming from non-synchronized observation time points, co-volatility
estimators are less accurate especially for the low trading volume set £. That is, estimators
for co-volatilities of I'gs are less accurate than those of other blocks I'y; and I'15. In light
of this, in this paper, we study how to estimate the integrated volatility matrix I' without

estimating the off-diagonal elements of I's,.

3 Co-volatility estimation

3.1 Pairwise refresh method

To handle the non-synchronization problem, we can use synchronization schemes such as
generalized sampling time (Ait-Sahalia et al., 2010), refresh time (Barndorff-Nielsen et al.,
2011; Fan et al., 2012), and previous tick (Wang and Zou, 2010; Zhang, 2011) schemes, or
some linear interpolation scheme (Bibinger et al., 2014). There are estimation procedures
which do not require to align data (Hayashi and Yoshida, 2005, 2011; Malliavin and Mancino,
2002; Malliavin et al., 2009; Mancino and Sanfelici, 2008; Park et al., 2016). One way
to utilize the data efficiently is to apply the pairwise refresh time scheme to estimate co-
volatility. Given the k-th refresh time, the (k + 1)-th refresh time is the minimum calendar

time needed for both stock to be traded at least once. The formal definition is as follows.

Definition 1. Let {t;;}7", be the calendar times where the i stock is traded as in (2.3).
The first refresh time for the i-th and j-th assets is defined as 7;;; = max{t;1,t;1}. The

subsequent refresh times are

Tijk+1 = max{t; (rij6)+15 LiN; (n-]-,k)+1}7



where N;(t) is the number of observations in the i-th asset made up to time t.

With the refresh time scheme, for the i-th asset, we select any observation, Y;(¢; ),
for t; , between 7;;,_1 and 7;;%, to be paired or synchronized with Y;(¢;x) with ¢, chosen
similarly, for computing the co-volatility of asset ¢ and asset j. Let ii;; be the number of such

synchronized observations for the i-th and j-th assets. Then n;; < min(n;,n;) and n; = n;.

3.2 Pre-averaging realized volatility estimation

To handle the micro-structural noise, several estimation methods have been developed and
the error from the noise can be removed effectively (see Ait-Sahalia et al. (2010); Barndorff-
Nielsen et al. (2008, 2011); Bibinger et al. (2014); Christensen et al. (2010); Fan and Wang
(2007); Jacod et al. (2009); Xiu (2010); Zhang et al. (2005); Zhang (2006, 2011)). In this
paper, we use the pre-averaging realized volatility estimation scheme (Christensen et al.,

2010; Jacod et al., 2009).

Definition 2 (Christensen et al. (2010); Jacod et al. (2009)). For the pairwise refresh time,

{Tijk}rey with n = n,j, the pre-averaging realized volatility (PRV) estimator is given by

n—K+1
~ 1

Ly = e ; 1Zi(7ij k) Zi(Tign) — sy 1(i = j) }

where ¢ = fol g*(t)dt,

Zi(Tij k) = Kz_:lg (%) {Yi(7ijrt) = Yi(Tijari-1)}
=S {o(@) o (F)) o (x),

K = Cn'? is a bandwidth parameter for some constant C free of n and p, and g(-) is a

weight function satisfying that g is continuous and piecewise continuously differentiable with



a piecewise Lipschitz derivative g’ and satisfies g(0) = g(1) = 0.

Remark 1. The bias correction term 7);; is required to obtain the optimal convergence rate
n~* with the presence of the micro-structural noise. In this paper, we simply assume that
the micro-structural noises are independent and so their diagonal parts are only required
to be estimated. When they have some correlation structure, we may need to estimate the
off-diagonal parts 7;; for ¢ # j. When it comes to constructing estimation procedures for co-
volatility part 7;;, due to the non-synchronization problem, we need to define the correlation
structure carefully, and the estimation procedures are depending on the correlation structure.
Kim et al. (2016) discussed and studied this issue. Fortunately, as long as we can estimate
the co-volatilities well, theoretical results obtained in this paper will be the same. Thus,
to focus on solving the non-synchronization problem, we simply assume that the micro-

structural noises are independent.

To investigate the large volatility matrices, we need the sub-Gaussian concentration in-

Pr <|fzg — Ty > Cray/ 10gp/7_l3j/2) <p ",

where C,, is some constant depending only on given constant m. With mild conditions, Kim

equality

and Wang (2016) studied its sub-Gaussian concentration inequality. We will utilize their

result.
Assumption 1.

(1) There are some fized constants C,, and C, such that, almost surely,

) < iy < .
1220202 IO = G0 g pult) < Cor

(2) €i(tir) and X(t) are independent. For each i, €;(t;x), k =0,...,n;, have sub-Gaussian

distributions;

(8) The observation time points are independent with log-stock price processes X(t) and

micro-structural noises €;(t; ) ’s, and the pairwise refresh time points T satisfy



Maxi < j<p MaXi<k<n,, (Tijk — Tijh—1)Ni; < Cr a.s. for some generic constant C; free of

n and p.

Remark 2. Assumption 1 is usually assumed to obtain the sub-Gaussian concentration in-
equality which plays an important role in the high-dimensional inferences (Tao et al., 2013;
Kim and Wang, 2016). Recently, Fan and Kim (2017) proposed the robust pre-averaging
realized volatility which can obtain the sub-Gaussian concentration inequality with only the
finite fourth moment condition. The sub-Gaussian conditions Assumption 1 (1)—(2) can be
relaxed by employing the robust pre-averaging realized volatility. Assumption 1 (3) indicates
that the time intervals for each pair have the order ﬁi_jl which goes to zero as the sample size

goes to infinity.

Propostion 3.1 (Theorem 1 (Kim and Wang, 2016)). Under the models (2.1) and (2.3), if
Assumption 1 is met, then the pre-averaging realized volatility estimator fij in Definition 2

has the following sub-Gaussian concentration:
Pr (‘fU - F”‘ 2 fE) S 191 exp (— T_Lijl'2/192) y (31)

where x is a positive number in a neighbor of 0, and Y1 and Y5 are generic constants free of

n and p.

We need only the input volatility estimator that satisfies the sub-Gaussian concentration
inequality (3.1) in order to investigate the asymptotic behavior of the proposed estimation
procedure. Thus, we can use any other estimation procedure satisfying (3.1). For example,
multi-scale realized volatility (Zhang, 2006, 2011) and robust pre-averaging realized volatility
(Fan and Kim, 2017) can be used. In the numerical analysis, we use the pre-averaging

2

realized volatility matrix (PRVM) estimation procedure in Definition 2 with K = n'/? and

gx)=a N (1 —ux).

10



4 Large volatility matrix estimation

4.1 Low-rank volatility matrix estimation

Several large volatility matrix estimation procedures have been developed based on the factor
model (Fan et al., 2016a; Ait-Sahalia and Xiu, 2017; Kim et al., 2017; Kong, 2017). Their
performances may depend on the accuracy of the input volatility matrix estimator T. As
discussed in Section 2, when it comes to estimating co-volatilities in high-frequency finance,
one of the crucial issues is the non-synchronization problem. We use the pairwise refresh time
defined in Definition 1 in order to utilize the information efficiently. Then when estimating
co-volatilities for liquid assets H, the estimation errors coming from the non-synchronized
observations can be small. Thus, we can estimate the co-volatilities well in the corresponding
block I';. On the other hand, when estimating co-volatilities for illiquid assets L, it is hard
to expect that the estimated co-volatilities are accurate due to the errors coming from non-
synchronized observation time points. The intervals for refresh time can be so large that
the approximation errors are too big for applications. In this section, we investigate how to
estimate the low-rank (or factor) volatility matrix ® without estimating the co-volatilities
for illiquid assets L.

In order to investigate the effect of the non-synchronization problem in estimating co-

volatilities, we assume that the number of the synchronized time points is

b
mj:cmin{<nl—;n]> ,m,ng} for i # 7, (4.1)

where some generic constant ¢ < 1 and b € (a,1) with a defined in (2.4). In literature,
researchers usually assume that b = 1 and 7,; = ¢min(n;, n;). However, this is too optimistic

due to lost of data in the synchronization process and hence we will assume b < 1. Combining

11



(2.4) and (4.1), we have

ng=n’ ifi,jeH

nig;=xn® ifieH,jeLl

ni; =<n® ifi,jeL,
where 7;; = nj;. The above formula is a reasonable model, since for the synchronization
between liquid and illiquid assets, it is reasonable to assume that we are able to observe
the liquid assets around each observation time point of illiquid assets so that 7n;; < n® On
the other hand, for the synchronization of similar liquidity assets (liquid-liquid or illiquid-
illiquid), there is some cost to align the data, which is mathematically expressed by b € (a, 1).
Thus, under the assumption (4.1), the estimators for the off-diagonal elements of I's; have
slower convergence rates.

To account for the common factors in the financial market, we assume that the integrated

volatility matrix I' consists of the low-rank and sparse matrices with the block structure as

follows:

611 612 4 E11 212
@21 @22 E21 222

The volatility matrix 3 of the idiosyncratic component is sparse in the sense that it satisfies

p

Ay oy \(1-a)/2
g%;mw(z:uzﬂ) D2 < M,s(p) a.s., (4.2)

where M, is a positive random variable with E (M?) < oo, ¢ € [0,1), and s(p) is a deter-
ministic function of p that grows slowly in p. Here we define 0° = 0. For the exact sparse
matrix, that is, ¢ = 0, when X;; is bounded from below, the sparsity level s(p) measures
the maximum number of non-vanishing elements in each row of the idiosyncratic volatility
matrix 3.

As discussed before, due to the non-synchronization problem, the estimators for the off-

diagonal elements of I'yy may not be accurate. With the inaccurate estimator, when we

12



apply the POET procedure (Fan et al., 2013) to estimating the low-rank volatility matrix
©, the resulting estimator may have a poor asymptotic behavior due to the inaccuracy of
the input volatility matrix. The simulation study supports this (see Section 5). To avoid this
problem, we do not use the illiquid asset information for estimating ®9y, but get a better
estimator for @4, using the low-rank structure of .

Note that ©4; is a p; x p; integrated volatility matrix of p; liquid assets. Let A\;,1 =
1,...,r, be the eigenvalues of ®1; with decreasing order and Q € RP'*" be the matrix of
their associated eigenvectors. When the rank of @1, is r, which is the number of the latent

factors, it admits the spectral decomposition:
©,, = QAQ', where A =diag(\,...,\).

Since © has a rank r, ®5, must be the linear combinations of the columns spanned by ®,;.

It can easily be shown that

O = 0, QA'Q Oyy; (4.3)

see Proposition 1 in Cai et al. (2016). Also, columns of ©;5 are linear combinations of 1,

as follows:

©,=0,,QA7'Q"0,, =QQ'O,,. (4.4)

Thus, as long as we have well-performing estimators for ®;; and ®15, we can construct the
low-rank volatility matrix © using the relationship in (4.3) and (4.4). Identity (4.4) will
be used below to ensure that the rank of empirically constructed © has the rank 7. See
Remark 3.

For any estimators fij for I';;, let

~ ~ ~ ~ ~ ~ ~ ~T
', = (Fij)i,jeH> 'y = (Fij)i,j€£7 'y, = (Fij)ieH,jEEa and I’y = F12-

The corresponding true volatility sub-matrices I'j; and I'ys have the low-rank plus sparse
structure. To estimate the latent low-rank volatility sub-matrices, @11, @15, and @9y, we

employ the POET procedure, and then use the relationship (4.3) and (4.4) to construct the

13



low-rank volatility matrix ©. For example, let the singular value decompositions of fn and

flg be

pP1 P1AP2

e T A~ AT

' = E Akdrdy and I‘12 = E kak:llk,
k=1 k=1

where )\k and fk are the k-th largest singular values of I‘H and ]_-‘12, respectively, q;. are the
singular vectors (eigenvectors) corresponding to )\k, and U and v, are the left and right
singular vectors corresponding to Ek Using the plug-in procedure, we estimate the low-rank

volatility sub-matrices ©1; and @15 by
O, = QAQT and @12 = ngVkuk )

respectively, where Q = (qi,.-.,q,) and A = diag(/)zl, e ,/):r). Under the pervasive and
incoherence conditions (Assumption 2(d)—(e)), they will be shown to have good asymptotic
performances. The liquid asset block estimator (:)11 is the most accurate estimator and will
be used as the pivotal estimator. We estimate the other blocks, ®5 and @4y, using the

relationship (4.3) and (4.4) as follows:
~ ~ o~~~ ~
O =05QA Q'6, and @12 = @11QA QT@H QQ @12

See Remark 3 for the reason why we do not use directly élg in the both expression above.
Combining the low-rank volatility sub-matrix estimators, we estimate the low-rank volatility

matrix estimator by

. (6, 6
O — All A12 7 (45>
621 @22

~ ~T
where @9 = ©,,. We call it the structured low-rank volatility matrix estimator.

Remark 3. The other possible estimator of ® is

o 0, O
o =" T (4.6)
621 622

14



which has the same element-wise convergence rate of the proposed estimator in (4.5). How-
ever, for the finite sample, we cannot guarantee that the rank of @alt is r. This is because
the colomns of O is not necessary in the space spanned by the columns of @11. In contrast,
by the construction of (:)12, the structured low-rank volatility estimator © has the rank r,

which is one of the desired properties. For the same reason, we used @12 instead of 612 in

~ alt
constructing @22 The simulation study in Section 5 indicates that © outperforms 0.

To investigate the asymptotic behavior of the low-rank volatility matrix estimator (:), we

make several technical conditions.
Assumption 2.

(a) The ranks of ©11 and © are the same;

(b) There are some deterministic sequences [y, and Ba, such that, with probability greater

than 1 — 9,
||f11 - Fll”max < 51,71 = 0(1), ||f12 - F12||max < 52,71 = 0(1),

and Bl,n S /BQ,TL;
(¢) The sparsity level diverges slowly such that s(p)/\/p1 A p2 = o(1);

(d) Let Dy = min{\;—X\iy1 : 1 <i <r} and D¢ = min{§;—&41 : 1 <i <r}, and there are
some fized constants c, . . ., cq such that \y/Dyx+p1 M,/ Dx+&/De++/DipaM, ) De < ¢4,
&1/Dyx < can/pa/p1, De > c3\/pip2, and Dy > cypr almost surely, where &’s are

singular values of @15 with decreasing order;

(e) For some fized constants cs, cg, and ¢z, we have almost surely

—maxg <c —maXEv<c —max§u<c
r 1<i<p q” =5 r 1<i<p ij =6 r 1<i<ps v

where Q = (qij)1<i<pr 1<j<r 1S the eigenvector matriz of 11, and V = (vij)1<i<pi1<j<r

and U = (u;j)1<i<ps1<j<r are the left and right singular vector matrices of ©;s.

15



Remark 4. Assumption 2(a) indicates that the liquid-liquid block ®1; has the full information
of the low-rank volatility matrix ® and the liquid-illiquid block @i, provides the linear
relationship between ©1; and ©,,. This assumption allows us to use the accurate estimator
(:)11 as the pivotal estimator. The common factor affects on the whole stock prices and so
the corresponding volatility matrix © is dense. This implies that eigenvalues of © increases
with the p order. Thus, the so-called pervasive condition (Assumption 2(d)) is reasonable to
impose on the factor volatility matrix @. Assumption 2(e) is called the incoherence condition
which is widely used in analyzing low-rank matrices (see Candes and Recht (2009); Fan et al.
(2016b)). This technical condition allows us to analyze the element-wise asymptotic behavior

of the factor volatility matrix ©.
The following theorem shows the element-wise convergence rate of the structured low-

rank volatility matrix estimator o.

Theorem 4.1. Under the models (2.1) and (2.3), if Assumption 2 and the sparse condition
(4.2) are met, then the structured low-rank volatility matriz estimator in (4.5) has for large

n, with probability greater than 1 — 46,

||@11 — O |lmax < C {ﬁl,n + Ma#} ; (4.7)
1
||é12 — O2|max < C {52,n + M, 5(p) } ) (4.8)
P1 A\ P2
||é22 - 622||max S C {Bln + MO’ S<p) } . (49)
p1/\ P2

Remark 5. Under the assumption (4.1), Proposition 3.1 shows that the pre-averaging realized
volatility estimator have, with probability greater than 1 —p~', 3, = C \/W and
Bon = C \/W. In the financial market, the numbers of stocks in the high trading
volume and low trading volume, H and L, are comparable, and so p; < py. Then Theorem

4.1 shows that the low-rank volatility matrix estimator e has, with probability greater than

O — Ol < C <4 /1o na/2+Mc,@}.
16 - o {\/ ep/ :

On the other hand, when estimating the low-rank volatility matrix © using the POET

1 _p717

16



procedure (Fan and Kim, 2017; Fan et al., 2013), we have, with probability greater than

~ 3(p)
S —O|pax < C log p nab/2+M(,—},
181061 — lse < € {02/ ;

where © porr is the low-rank volatility matrix estimator calculated from the POET proce-

1 _p_l)

dure. Due to the inaccurate estimator for the off-diagonal elements of I'ys, e) poeT has the

term +/log p/nab/2,

4.2 Sparse volatility matrix estimation

We can estimate the sparse (or idiosyncratic) volatility matrix using some thresholding pro-
cedures. For the general sparse structure (4.2), we still need to estimate the off-diagonal
elements of I'y5, which causes slower convergence rates for the sparse volatility matrix 3. To
avoid this, we need to impose more structure on I'ys that it is a low-rank plus a diagonal ma-
trix (Fan et al., 2008). That is, the idiosyncratic risks for the illiquid assets are uncorrelated

and satisfies

39y = diag ((Xii)iec) - (4.10)

Based on the sparse conditions (4.2) and (4.10), we estimate the sparse idiosyncratic volatility

matrix X by lettlng iij = fz’j - @ij and

5, V0, ifi=j
Nij = 55 1(|255] > @), ifi#jand (i,5) ¢ {(,k): Lk € L}
0, it i+ jand (i,5) € {(Lk): Lk € L},

where the adaptive thresholding level w;; = {(w1 ,—w2,)1(%,5 € H)+w2n} \/(iu v 0)(§]jj v 0),
and s;;(-) satisfies that |s;j(x) — x| < w;;. The shrinkage function s;;(z) includes the use-
ful examples such as the soft thresholding function s;;(z) = z — sign(x)w;; and the hard

thresholding function s;;(x) = x. The tuning parameters w; , and ws,, will be specified in

Theorem 4.2.
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With the structured low-rank volatility matrix estimator © = (@z‘j)1§i,j§p in (4.5) and

the sparse volatility matrix estimator 3 = (iij)lgi,jgp, we estimate the integrated volatility

matrix I' by

r=0+3.

We call it the structured POET (SPOET) estimator.
To investigate the asymptotic behavior of the SPOET, we make the following technical

conditions.
Assumption 3.

(a) We have, with probability greater than 1 — 0,
maﬁx |f“ — Fu‘ S 62,71 = O(l) and Mo- S C,
1€
(b) (Pervasive condition) There are some fixed constants cg and cg such that A\.(©) > csp
and A\ (©)/\.(O) < cg almost surely, where \i(©) is the k-th largest eigenvalue of ©.

The following theorem shows the convergence rate of the proposed SPOET estimator.

Theorem 4.2. Under the models (2.1) and (2.3), assume that Assumptions 2-3, the sparse
conditions (4.2) and (4.10), and (4.7)-(4.9) are met. Take @, = C1&(f1n + Mys(p)/p1)
and wy,, = Co o (Bon + Mys(p)/p1 A pa) for some large fived constants Cy o and Cy . Then

we have for large n, with probability greater than 1 — ¢,

~ pBi, +pafs, p25°(p) -

I —T|p<c{h ’ M, al 411
[ rlp < 0 {2 TRy ) sp)al (a.11)
IT = T lmax < Carn, (4.12)
IZ — 2|2 < CM,s(p)ay ", (4.13)
12 = 2 lmax < Cat, (4.14)

where the relative Frobenius norm ||U||3 = p~'|T~Y2UT"Y?||%, and oy, = Bon+M,s(p)/p1 A

pa. Furthermore, if the smallest eigenvalues off‘ and ¥ are positive, we have for large n,
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with probability greater than 1 — 9,

T =T s < CM,s(p)al, (4.15)
IS — =7, < OM,s(p)al. (4.16)

n

Remark 6. Theorem 4.2 shows the consistency of the SPOET in terms of the relative Frobe-

nius norm. For example, when both p; and p, have the order of p, we have, with probability

greater than 1 — p=1,

1—q
~ 1/2] 1
[F-Tfe<cC %JFMUS(]?)( ngwa%)

The SPOET estimator is consistent so long as p = o(n?).

Remark 7. The diagonal condition (4.10) may be too restrictive in analyzing volatilities. So

when relaxing the sparse condition (4.10) to the following sparse condition
max 3 Il (Suy) 0% < Mos(o),

the convergence rates corresponding to the sparse volatility matrix 3 are changed. For
example, we have the term /logp/n®/2 + M,s(p)/p1 A ps instead of «, in the results of
Theorem 4.2. When p; < py, we have, with probability greater than 1 — p~1,

1—¢
~ 1/2], 1 ( )
prlogp ogp s\p
IT = Tlle < O =27 + Mos(p) ( —z + Mo—p

5 Simulation study

5.1 Consistency of estimators

To check the finite sample performance of the proposed estimator, we conducted a simulation

study. The true log-stock price follows a continuous-time r-factor model defined in (2.1) with
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wp(t) = 0. Let o(t) be the Cholesky decomposition of the instantaneous volatility process
6(t) = (ij(t))1<ij<p- The diagonal elements of ¢(¢) follow four different processes such as
geometric Ornstein-Uhlenbeck processes, the sum of two CIR processes (Barndorff-Nielsen,
2002; Cox et al., 1985), the volatility process in Nelson’s GARCH diffusion limit model
(Wang, 2002), and two-factor log-linear stochastic volatility process (Huang and Tauchen,
2005) with leverage effect. Details can be found in Wang and Zou (2010). To obtain the

sparse integrated volatility matrix 3, we generated the off-diagonal elements as follows:

0, ifi,jeL

{k(t)}=91/Gi(t)s;;(t), otherwise,
where the process k(t) is

zult) _ 1
k()= S du(t) = 0.03{0.64 — u(t)}dt + 0.118u(t)dW,,,
ezu®) +1 7

p
Wie = V0.96W, — 02 Wa/\/p,
=1

and WY

.k = 1,...,p, are one-dimensional Brownian motions which are independent of

the Brownian motions W; and W,. The low-rank instantaneous volatility matrix ¢/(t) =
9T (1)9(t) is H {9/ (t)} 79/ (t)H, where H = (H;;)1<i<r1<j<p € R"™? and H;; were generated
from 1.i.d. uniform distribution on [—2,2]. 9/ (¢) was generated similarly to o (t). For exam-
ple, 97 (t) is a diagonal matrix, and its squared diagonal elements were generated from three
different processes: geometric Ornstein-Uhlenbeck processes, the sum of two CIR processes,
and the volatility process in Nelsons GARCH diffusion limit model.

We generated the noisy high-frequency data Y;(¢;) by adding a noise term ¢;(¢;) obtained
from independent normal distribution with mean zero and standard deviation 0.1/T;. To
generate the non-synchronized data, we randomly selected the non-synchronized observation
time points from the synchronized observation time points ¢, = %7,k =1,...,n — 1. For
example, the number of observation time points for each asset is determined by Lmn““J,

where the proportion m; € (0,1). For liquid assets, the proportion m; was generated from

20



i.i.d. uniform distribution (0.5, 1), while for illiquid assets, the proportion 7; was generated
from i.i.d. uniform distribution (\/i—LW, \}S—TL”), where the liquidity level L was varied from 0.25
to 2. Then we obtained the non-synchronized sample path by randomly sampling Lmna”J
observation time points from {tq,ts, ..., tpau_1}.

We fixed the proportion of liquid assets to be 0.5, that is, p; = p/2. Using the simulated
noisy non-synchronized data Y;(t;x),i = 1,...,p,k = 1,...,n;, we calculated the PRVM,
defined in Definition 2 with the weight function g(z) = 2 A (1 — ) and K = [n'/2]. Then
we applied the proposed SPOET procedure and POET procedure. The latter regularizes
directly the PRVM estimator [. For the thresholding step, we used the adaptive hard
thresholding scheme and chose the optimal thresholding level for each method by minimizing
the corresponding Frobenius norm of the difference between the estimate and true value. In
the simulation study, we fixed p = 200, r = 3, and n® = 23400 which equals to the number
of seconds in one day’s trading period. The simulation process was repeated 500 times.
The average numbers of synchronized observations after applying the pairwise refresh time
scheme for liquid-liquid, liquid-illiquid, illiquid-illiquid combinations are reported in Table

1.

Table 1: Average sample sizes after applying the refresh time scheme for liquid-liquid, liquid-
illiquid, and illiquid-illiquid combinations.

L liquid-liquid liquid-illiquid illiquid-illiquid
0.25 14300.82 286.27 186.75
0.5 14292.87 573.04 374.48

1 14305.63 1145.44 752.32

14295.88 2279.87 1517.39

Figure 1 depicts the average estimation errors of the SPOET and POET for estimating
the low-rank volatility matrix ® against the liquidity level L and the numerical results are
reported in Table 2. It can easily be seen that the SPOET outperforms the POET (relative
efficient greater than one) except one case where L = 2 using spectral norm. In terms of

the Frobenius norm, the SPOET gets more efficiency than the POET as the liquidity level
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L decreases. In fact, when the liquidity level decreases, both SPOET and POET estimators
have larger average errors. However, the SPOET has smaller increment of errors than the
POET, as the SPOET does not use the illiquid-illiquid block data but infers volatility in
this block from the low-rank structure. Thus, it is more robust to the liquidity level L. On
the other hand, the performance in terms of the spectral norm is relatively stable over the
liquidity level L. To check the effect of the projection of élg onto the space spanned by
©11, we compare the SPOET with A-SPOET (alternative SPOET in (4.6)). The projected
low-rank estimator (:)12 shows better performance than élg. From this result, we can find
that the projection onto the accurate estimator @11 helps to improve the performance of

estimating low-ranking volatility ©.

Table 2: Average errors under Frobenius norm and spectral norm of the SPOET, A-SPOET,
and POET for ® with L = 0.25,0.5,1, 2.

O] O O3 O
L SPOET A-SPOET POET SPOET POET SPOET POET SPOET A-SPOET POET
0.25 437.18 519.76 525.59 119.79 177.72 293.91 343.83 211.41 289.62 251.19
5 367.59 421.48 426.16 119.76 151.45 234.92 270.16 180.48 231.80 206.77

Frobenius 0 31535 347,68 353.97 119.80 133.95 188.54 216.86 155.02 188.03 173.47
2 269.98  290.40 297.53 119.69 121.83 150.51 174.20 133.79 153.67 147.04

0.25 297.96 329.07 326.38 7498 99.58 219.82 230.02 143.57 181.05 155.61

Spoctral 05 23931 258.64 26353 7511 §6.26 16579 17994 11960 143.18 128.37
1 196.57 207.73 218.08 75.02 78.01 126.47 143.33 100.32 115.00 107.74

2 162.20 167.90 181.27 74.87 7236 95.09 113.11 83.64 92.38 90.65

Table 3 reports the average estimation errors, measured by the Frobenius, spectral, rela-
tive Frobenius norms, of the SPOET, A-SPOET, POET, and PRVM estimators for I, T'y1,
I'15, and T'ys. Figure 2 shows the average errors of estimates for the integrated volatility
matrix I based on the SPOET, A-SPOET, POET, and PRVM procedures for different lig-
uidity levels L. As what we expected, SPOET, A-SPOET, and POET usually show better
performance than PRVM. Furthermore, SPOET has the smallest average errors among these
four estimators.

Finally, we compare performances of estimating the sparse volatility matrix 3 and in-

verse matrices I'™! and 3!, We report average estimation errors in Table 4, using both
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Figure 1: Relative efficiency of the SPOET with respect to the POET for estimating ©
against the liquidity level L.

Table 3: The average estimaton errors of the SPOET, A-SPOET, POET, and PRVM for I
using different matrix norms with L = 0.25,0.5,1, 2.

Frobenius
r 'y Iy '
L SPOET A-SPOET POET PRVM SPOET POET PRVM SPOET POET PRVM SPOET POET PRVM
0.25 441.9 523.6 527.9 790.1 128.1 182.8 162.3 297.5 344.7 478.5 211.4 251.2 429.4
0.5 3725 425.8 429.6 671.3 128.1 158.3 162.3 238.3 271.7 404.1 180.5 206.8 361.2
1 318.5 352.3 358.2 572.5  128.1 142.1 162.3 191.7 218.5 341.5 155.1 173.5 303.9
2 275.4 295.5 302.4 488.2 128.0 130.9 162.3 153.4 175.9 285.8 133.8 147.1 255.2
Spectral
0.25 294.2 325.5 319.7 313.9 71.5 91.7 582 216.2 224.5 210.0 143.6 155.6 182.9
0.5 236.6 256.1 259.0 251.7 71.6 80.9 582 163.6 176.2 166.6 119.6 128.4 145.3
1 1944 205.8 214.9 205.8 71.5 74.3 582 125.3 140.7 134.4 100.3 107.7 117.0
160.3 166.3 179.0 168.7 71.3 69.6 58.0 94.6 111.3 107.3 83.6 90.6 94.4
Relative Frobenius
0.25 1.23 1.65 1.60 2.94 0.56 0.86 0.91 1.13 1.44 2.35 - - -
0.5 1.03 1.31 1.26 2.49 0.55 0.73 0.91 0.88 1.09 1.98 - - -
1 0.88 1.06 1.04 2.13 0.55 0.65 0.91 0.70 0.86 1.67 - - -
0.76 0.88 0.87 1.82 0.56 0.60 0.91 0.55 0.67 1.40 - - -

Frobenius and spectral norms. Similar to the previous results, the SPOET usually shows
better performance than other estimation procedures. However, when the liquidity level L

is large (L = 2), the performances of the SPOET and POET procedures are similar. This is
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Figure 2: The average estimation errors of the SPOET, A-SPOET, POET, and PRVM for
I' using different matrix norms against the liquidity level L.

understandable: when the liquidity level is large, there is no big benefit from using accurate

estimates to reconstruct the low-rank volatility matrix ©.

Table 4: Average errors under Frobenius and spectral norms of the SPOET, POET, and
PRVM for ¥, 7! and I''! with L = 0.25,0.5, 1, 2.

) »! r!

L SPOET POET SPOET POET SPOET POET PRVM

0.25 82.379 107.408 0.786 5.321 1.362 10.074 58.239
Frobenins 00 74629 88109 0.612 4113 0547  3.342  67.054
1 69.349 75566 0.577 1.279 0.507 0.807 82.767

2 65.904 67.645 0.573 0.588 0.502 0.554 54.519

0.25 17.098 23.652 0.495 4.932 1.074 9.713 56.479

Spectral 0.5 16.466 19.490 0.361 3.845 0.296 3.089 64.938
1 16416 17.154 0.349 1.039 0.280 0.566 80.336

2 16417 15976  0.356 0.360 0.287  0.327  51.740

5.2 Portfolio risks

In this section, we further compared the SPOET, A-SPOET, POET, and PRVM for volatility
matrix estimation using the portfolio risks as evaluation. Specifically, for each simulation

(approximately) uniformly

setting, we generate 200 random portfolios w = (wy, ... ,wp)T
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Figure 3: Average relative errors of estimators for the portfolio risk calculated using the
SPOET, A-SPOET, POET, and PRVM estimators against the liquidity level L with the
gross exposures ¢ = 1,1.2,1.4,1.6,1.8,2, p = 200, and r = 3.

from the set {w : >>7  w; =1 and ||w||; = co}, where ¢, is a given gross exposure. That

is accomplished as follows. See Fan et al. (2015) for details and derivations. The number,
k, of long positions is determined by a realization from binomial distribution Bin(p, %)
Then we generated independently {E;};,—1 _, from standard exponential distributions. For
the k long positions, the weight w; = (¢o + 1) E;/(2 2?:1 E;),i=1,...,k, and for the short
positions, w; = —(co — 1)E;/(2 Z?:kﬂ E;), i =k+1,...,p. Finally, randomly permute
those weights {w; }?_;.

For each of 500 simulated sample paths, we generated 200 testing portfolios, and so we
have 100,000 portfolios in total for each estimation method. We varied the gross exposure cg
from 1 to 2. For each portfolio, we calculated the relative error of estimated risk using the
estimate T by *E-D% yhere T can be the SPOET, A-SPOET, POET, and PRVM. Then

we computed the averages of 100,000 errors as the performance measure for each method.
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Figure 3 depicts the average relative errors of the portfolio risks calculated by the SPOET,
A-SPOET, POET, and PRVM against the liquidity level L. We can find that the estimates
based on the SPOET have the smallest error. As the liquidity level L increases, the difference
between estimates based on the SPOET and POET estimators gets smaller. This is because
when the liquidity level L is large, the illiquid part I'ss is well estimated via POET procedure

and so there is no huge benefit from using the structure of the low-rank matrix.

6 Empirical Applications

We collected intra-daily transaction prices of NYSE constituents from January to March
in 2016 from the TAQ database in the Wharton Data Service (WRDS) system, 60 trading
days in total. We excluded stocks which have less than 100 trading observations and chose
the top 100 liquid stocks and the top 100 illiquid stocks as the candidates of our portfolio
construction. We used the log-prices in seconds and exclude overnight returns to avoid
dividend issuances and stock splits. To manage the non-synchronization problem, we used
the pairwise refresh time. Average sample sizes for liquid-liquid, liquid-illiquid, and illiquid-
illiquid blocks after applying the refresh time scheme are 6400, 615, and 313, respectively.
We calculated the SPOET, POET, and PRVM estimators for each trading day. For
PRVM, we chose g(z) = 2 A(1—z) and K = |n'/?|. For the thresholding step for the sparse
volatility matrix 3, we used two different thresholding techniques for each of SPOET and
POET that avoid the choice of thresholding parameters (Fan et al., 2016a): block diagonal,
and block diagonal but using the diagonal part of estimated 35,. We denoted the latter block
diagonal threshold estimators by SPOET+Block and POET+Block. Blocks are determined
using the Global Industry Classification Standard (GICS) (Fan et al., 2016a; Ait-Sahalia and
Xiu, 2017). The idiosyncratic components for different blocks (sector) are set to zero and for
the same block are untouched (Fan et al., 2016a). To determine the number, r, of factors,
we calculated 60 integrated volatility matrices using the PRVM estimation procedure. Then
we used the average eigenvalues from 60 PRVM estimators and draw the scree plot, which is

shown in Figure 4. From Figure 4, we can see that the number of leading factors is around
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5. In the empirical study, we chose r = 1,2,3,4,5,6 for sensitivity analysis, though it is
known that slight overestimate of the number of factors does no little harm to the portfolio

choice(Fan et al., 2013).

Scree plot
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Figure 4: The scree plot of average eigenvalues of 60 PRVMs.

We examined the performance of the integrated volatility matrix estimators in a mini-
mum variance portfolio allocation problem. We consider the following constrained minimum

variance portfolio allocation problem:

min w' Tw, subject to w'J =1 and |lwl|; = co,
w

where J = (1,...,1)T € RP, the gross exposure constraint ¢, was varied from 1 to 3, and
T could be SPOET, POET, and PRVM. To make the estimates positive semi-definite, we
projected the sparse volatility estimators for SPOET and POET, and PRVM estimator onto
the positive semi-definite cone in the spectral norm. We constructed the portfolio at the
beginning of each trading day and held it for one day. We calculated the standard deviation
using the open-to-close log-returns of the portfolios, which is used to measure the portfolio
risk.

Figure 5 depicts the out-of-sample risks of the portfolios constructed by SPOET, SPOET+Block,
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Figure 5: The out-of-sample risks of the optimal portfolios constructed by using the volatility
matrix from SPOET, SPOET+Block, POET, POET+Block, and PRVM estimators with
r=1,...,6.

POET, POET+Block, and PRVM against the exposure constraint ¢y. The minimum risks for
portfolios constructed by using SPOET, SPOET+Block, POET, POET+Block, and PRVM
over the cq are 13.2 %, 13.27%, 17.19 %, 18.34 %, and 18.91%, respectively. The SPOET es-
timation method reduces the minimum risks by 30%-43%. We can find that for the purpose
of portfolio allocation, the SPOET and POET type estimators perform well and improve the
performance of the PRVM. In addition, the PRVM estimator becomes unstable as the ex-
posure constraint increases. When comparing thresholding schemes, the block thresholding
scheme is generally better than taking 3o, to be diagonal, which indicates that the block
diagonal assumption is an appropriate assumption for stock returns. Meanwhile, when the
number of factor is 5, the SPOET shows the stable results and performs better than others.
The results suggest that the proposed SPOET procedure can help estimate the volatilities

for illiquid assets.
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7 Proofs

Proof of Theorem 4.1. Similar to the proof of Theorem 4.1 of Fan and Kim (2017), we

can show

~ s
1©11 — O11||max < C (Ma% + ﬁln) .

1

Now consider ||@12 — O15]|max- By Weyl’s Theorem, we have

max ’é\k & < Hfu — O152

1<k<r
< |IT12 = Tyl + [[T12 — O12]|2
< \/p1p2||f12 — Tio|lmax + Moys(p). (7.1)

By Theorem 1.1 in Fan et al. (2016b), we have

121]?;" HVk — sign(ﬁf\k, Vk>)Vk||max

< C\/Pl]?szlz — T12|lmax + My/P1p2 max(s(p)/p1, s(p)/p2)
- De/p1

f -T ax MO’ 5
S C\/p_QH 12 12Hm + DT&X(S(p)/pl S(p)/p2> (72)

and

121]?%(71 ||ﬁk — SZg’Il((ﬁk, uk))ukaax

< C,\/P1p2||f12 — Iiol|max + Moy/P1p2 max(s(p)/p1, s(p)/p2)

De/p2

S C\/]?_1||F12 - I‘12||max + MUDI;aX(S(p)/pl, 3(]7)/]72) ) (73)

Then simple algebraic manipulations show

[V, — Vit [ max
S ”6.% - Vk‘HIIlaXHﬁk‘ - uk”max + ||vk - Vk”maXHuk“max + ||Vk||max||ﬁk - uk”max

< D% {Ban + M, max(s(p)/p1, 5(p)/p2)} . (7.4)
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By (7.1) and (7.4), we have

||612 - GIQHmaX
—| Z (&9 = &evi] ) llms
o T

< Z (& — &) (18] = Vi) lmax + 1€ = G Vi max + 1€6(viy — V5] fimax

< C{an + Mo max(s(p)/p1, s(p) /p2)}

cofomsan (04 )1, o

Simple algebraic manipulations show

1812 = © 12/ 1max

< QQ"(©12 — ©12)[lmax + (QQ" — QQ)O 12[1max
+HI(QQ" — QQ")(O12 — ©13)]|max

= (a) + (b) + (o).

For (a), we have

(@) < 1QQ"[1812 — O12]lmax

< o a (W0, o

where the last inequality is due to (7.5) and Assumption 2(e). For (b), we have
) < nlIQQ" ~ QQ x| ©1s]lma

D1 &1
CD_)\ {Bl,n + Mos(p)/pl} \/]sz
< C{Bin+ Mss(p)/p1}, (7.7)

IA

where the second inequality can be derived similar to the proof of (7.4). Finally, for (c),

similar to the proofs of (7.6) and (7.7), we can show

@) < mIQQ" — QQ |lmax/|©12 — O12]|max
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C% {Bin + Mos(p)/pr1} {5% + Mo (ﬁ * @) }

P b2

= o((a) +(0)). (7.8)
Thus, from (7.6)—(7.8), we have

||®12 - 612||max S C{Bln +62n ‘I‘M (@ + ﬂ)} .
D1 D2

Consider ||@22 — O9|max- It follows that

||(:)22 — O3] max

< [(Ba1 — ©1)QAR QO3 s + [|0:QA QT (B2 — 1) s
+]©:{QA Q" — QA'Q}O1s

=)+ D)+ (I1I]).

For (1), we have for large n,

(I) < ||@21—921||max||QA Q O1s
Eht e T

< Z Z A’“ GG Vit 11]©21 — ©21|imax
=1 k=1

< 5 1480182 — O]

- N 1<k <r k max
&

< A—pi” 1025 [[ 1 ins [ ©21 — O n

S CH@Ql_@Ql”max

< C{ﬁ2n+M (ﬁjt@)},

y4! P2

where the third inequality is due to (7.1) and Proposition 7.1 (Fan and Kim, 2017) and the

fourth inequality is from (7.3). Similarly, we can show

(IT) < {6zn+M <](jf>+%)}.
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For (II1), we have

~~—1~
(ITT) < [[©nP|QA QT — QA'Q [lma
~e~—1~
< Cf% maX Hvku;H%HQA QT_QA_IQT“maX
p _
< ¥ IHQA 07— QA'Q
€ D PR
< c;—;z(m ] s+ 13 @6 — it e
=1
S Cf%pl (plﬂl,n+]¥03(p) +B1,n+Mas(p)/p1)
D2 p1>\ D)\)\r
< f1p1 1

())
P2 ArDy (ﬁm—i-M p1

< C(ﬁanrM 1(31)>’

where the fifth inequality can be derived similar to (7.1) and (7.4). B

Proof of Theorem 4.2. (4.12) and (4.14) are immediately proved by Theorem 4.1,
Assumption 2(b), and Assumption 3(a).

Consider (4.13). By Theorem 4.1, Assumption 2(b), and Assumption 3(a), we have

Hzll_zllumaxgc{ﬁln_'_]\/[ ( )}7

P
_ s(p)
||212 ElQHmax S C BQn + M (79)
P1 A D2
Then we have for j € H,
S5, -5
=1
p " p _
Z sii(Zi7) — Syl 1(1 8] > @) + D[Sl 111251 = @35) = 1(IS45] > 35)]
1 =1

+Z |25 11(13555] < @35)

i=1

p p
<3 Zwu (125] = @i — [T — S + ) %41 <H2z‘j’ — @] <8y — Eij’)

=1 =1
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p
+ Z |53 7ao;
3

< 5 Z |2U|q T+ Z 211 <|Ew| < wzy) + Z |2w|qw

i=1 =

< CZ |Efu|qw1 !

(zmwww S Sl )

1EH €L

d@{&m+kh%?}kq

+5(p ){5ln+B2n+M ( (p)+@)}l_q],

b1 D2

< CM,

and similarly, for 7 € L,

E]&] il
Vs {30, (22 YL

y4! P2

e (1)

I = 2|l < CM,s(p)ay .

<C

Thus,

Consider (4.11). Simple algebraic manipulation shows
IT = Tllr < [|© = Bl|r + [|% = X
For ||© — O||r, similar to the proofs of Theorem 4.2 (Kim et al., 2017), we have

1© - O

1l 5 M(©) 5 M(O) o
< C{mﬂg —Ofr + WHG - QH%JFIWH@ —0O|r
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1 o 9 1 —~
< C{m”g - 0|7+ WH@ — @HF} .
For Hi — X||r, we have

IZ-2r < pE -2 T e
< CM,s(p)at™,

where the last inequality is due to (4.13). Therefore,

IT-Tfr < + M,s(p)a

ol1e-ep  e-ej
pI2A.(©) ' pl2A.(©)1/2

p252(p)

1_
P1/2<p1 /\P2)2 - Mas(p)an q},

< Clp 2 {piBt. + pipeba, + 03B, + B3a) } +

where the last inequality is due to Theorem 4.1.

The statements (4.15)and (4.16) can be shown similar to the proofs of Theorem 4.1 (Fan
and Kim, 2017). H
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