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Abstract

In statistics and machine learning, we are interested in the eigenvectors (or singular vec-
tors) of certain matrices (e.g. covariance matrices, data matrices, etc). However, those
matrices are usually perturbed by noises or statistical errors, either from random sampling
or structural patterns. The Davis-Kahan sin θ theorem is often used to bound the differ-
ence between the eigenvectors of a matrix A and those of a perturbed matrix Ã = A+ E,
in terms of ℓ2 norm. In this paper, we prove that when A is a low-rank and incoherent
matrix, the ℓ∞ norm perturbation bound of singular vectors (or eigenvectors in the sym-
metric case) is smaller by a factor of

√
d1 or

√
d2 for left and right vectors, where d1 and d2

are the matrix dimensions. The power of this new perturbation result is shown in robust
covariance estimation, particularly when random variables have heavy tails. There, we pro-
pose new robust covariance estimators and establish their asymptotic properties using the
newly developed perturbation bound. Our theoretical results are verified through extensive
numerical experiments.

Keywords: Matrix perturbation theory, Incoherence, Low-rank matrices, Sparsity, Ap-
proximate factor model

1. Introduction

The perturbation of matrix eigenvectors (or singular vectors) has been well studied in matrix
perturbation theory (Wedin, 1972; Stewart, 1990). The best known result of eigenvector
perturbation is the classic Davis-Kahan theorem (Davis and Kahan, 1970). It originally
emerged as a powerful tool in numerical analysis, but soon found its widespread use in
other fields, such as statistics and machine learning. Its popularity continues to surge in
recent years, which is largely attributed to the omnipresent data analysis, where it is a
common practice, for example, to employ PCA (Jolliffe, 2002) for dimension reduction,
feature extraction, and data visualization.

The eigenvectors of matrices are closely related to the underlying structure in a variety
of problems. For instance, principal components often capture most information of data
and extract the latent factors that drive the correlation structure of the data (Bartholomew
et al., 2011); in classical multidimensional scaling (MDS), the centered squared distance
matrix encodes the coordinates of data points embedded in a low dimensional subspace
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(Borg and Groenen, 2005); and in clustering and network analysis, spectral algorithms are
used to reveal clusters and community structure (Ng et al., 2002; Rohe et al., 2011). In
those problems, the low dimensional structure that we want to recover, is often ‘perturbed’
by observation uncertainty or statistical errors. Besides, there might be a sparse pattern
corrupting the low dimensional structure, as in approximate factor models (Chamberlain
et al., 1983; Stock and Watson, 2002) and robust PCA (De La Torre and Black, 2003;
Candès et al., 2011).

A general way to study these problems is to consider

Ã = A+ S +N, (1)

where A is a low rank matrix, S is a sparse matrix, and N is a random matrix regarded
as random noise or estimation error, all of which have the same size d1 × d2. Usually A is
regarded as the ‘signal’ matrix we are primarily interested in, S is some sparse contamination
whose effect we want to separate fromA, andN is the noise (or estimation error in covariance
matrix estimation).

The decomposition (1) forms the core of a flourishing literature on robust PCA (Chan-
drasekaran et al., 2011; Candès et al., 2011), structured covariance estimation (Fan et al.,
2008, 2013), multivariate regression (Yuan et al., 2007) and so on. Among these works, a
standard condition on A is matrix incoherence (Candès et al., 2011). Let the singular value
decomposition be

A = UΣV T =
r∑

i=1

σiuiv
T
i , (2)

where r is the rank of A, the singular values are σ1 ≥ σ2 ≥ . . . ≥ σr > 0, and the matrices
U = [u1, . . . , ur] ∈ R

d1×r, V = [v1, . . . , vr] ∈ R
d2×r consist of the singular vectors. The

coherences µ(U), µ(V ) are defined as

µ(U) =
d1
r
max

i

r∑

j=1

U2
ij , µ(V ) =

d2
r
max

i

r∑

j=1

V 2
ij , (3)

where Uij and Vij are the (i, j) entry of U and V , respectively. It is usually expected that
µ0 := max{µ(U), µ(V )} is not too large, which means the singular vectors ui and vi are
incoherent with the standard basis. This incoherence condition (3) is necessary for us to
separate the sparse component S from the low rank component A; otherwise A and S are
not identifiable. Note that we do not need any incoherence condition on UV T , which is
different from Candès et al. (2011) and is arguably unnecessary (Chen, 2015).

Now we denote the eigengap γ0 = min{σi − σi+1 : i = 1, . . . , r} where σr+1 := 0 for
notational convenience. Also we let E = S + N , and view it as a perturbation matrix
to the matrix A in (1). To quantify the perturbation, we define a rescaled measure as
τ0 := max{

√
d2/d1‖E‖1,

√
d1/d2‖E‖∞}, where

‖E‖1 = max
j

d1∑

i=1

|Eij |, ‖E‖∞ = max
i

d2∑

j=1

|Eij |, (4)
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which are commonly used norms gauging sparsity (Bickel and Levina, 2008). They are
also operator norms in suitable spaces (see Section 2). The rescaled norms

√
d2/d1‖E‖1

and
√

d1/d2‖E‖∞ are comparable to the spectral norm ‖E‖2 := max‖u‖2=1 ‖Eu‖2 in many

cases; for example, when E is an all-one matrix,
√

d2/d1‖E‖1 =
√
d1/d2‖E‖∞ = ‖E‖2.

Suppose the perturbed matrix Ã also has the singular value decomposition:

Ã =

d1∧d2∑

i=1

σ̃iũiṽ
T
i , (5)

where σ̃i are nonnegative and in the decreasing order, and the notation ∧ means a ∧ b =
min{a, b}. Denote Ũ = [ũ1, . . . , ũr], V = [ṽ1, . . . , ṽr], which are counterparts of top r singular
vectors of A.

We will present an ℓ∞ matrix perturbation result that bounds ‖ũi−ui‖∞ and ‖ṽi−vi‖∞
up to sign.1 This result is different from ℓ2 bounds, Frobenius-norm bounds, or the sinΘ
bounds, as the ℓ∞ norm is not orthogonal invariant. The following theorem is a simplified
version of our main results in Section 2.

Theorem 1 Let Ã = A+E and suppose the singular decomposition in (2) and (5). Denote
γ0 = min{σi − σi+1 : i = 1, . . . , r} where σr+1 := 0. Then there exists C(r, µ0) = O(r4µ2

0)
such that, if γ0 > C(r, µ0)τ0, up to sign,

max
1≤i≤r

‖ũi − ui‖∞ ≤ C(r, µ0)
τ0

γ0
√
d1

and max
1≤i≤r

‖ṽi − vi‖∞ ≤ C(r, µ0)
τ0

γ0
√
d2

, (6)

where µ0 = max{µ(U), µ(V )} is the coherence given after (3) and τ0 :=
max{

√
d2/d1‖E‖1,

√
d1/d2‖E‖∞}.

When A is symmetric, τ0 = ‖E‖∞ and the condition on the eigengap is simply γ0 >
C(r, µ0)‖E‖∞. The incoherence condition naturally holds for a variety of applications,
where the low rank structure emerges as a consequence of a few factors driving the data
matrix. For example, in Fama-French factor models, the excess returns in a stock market
are driven by a few common factors (Fama and French, 1993); in collaborative filtering, the
ratings of users are mostly determined by a few common preferences (Rennie and Srebro,
2005); in video surveillance, A is associated with the stationary background across image
frames (Oliver et al., 2000). We will have a detailed discussion in Section 2.3.

The eigenvector perturbation was studied by Davis and Kahan (1970), where Hermitian
matrices were considered, and the results were extended by Wedin (1972) to general rect-
angular matrices. To compare our result with these classical results, assuming γ0 ≥ 2‖E‖2,
a combination of Wedin’s theorem and Mirsky’s inequality (Mirsky, 1960) (the counterpart
of Weyl’s inequality for singular values) implies

max
1≤k≤r

{
‖vk − ṽk‖2 ∨ ‖uk − ũk‖2

}
≤ 2

√
2‖E‖2
γ0

. (7)

where a ∨ b := max{a, b}.
1. ‘Up to sign’ means we can appropriately choose an eigenvector or singular vector u to be either u or −u

in the bounds. This is becuase eigenvectors and singular vectors are not unique.
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Yu et al. (2015) also proved a similar bound as in (7), and that result is more convenient
to use. If we are interested in the ℓ∞ bound but naively use the trivial inequality ‖x‖∞ ≤
‖x‖2, we would have a suboptimal bound O(‖E‖2/γ0) in many situations, especially in cases
where ‖E‖2 is comparable to ‖E‖∞. Compared with (6), the bound is worse by a factor
of

√
d1 for uk and

√
d2 for vk. In other words, converting the ℓ2 bound from Davis-Kahan

theorem directly to the ℓ∞ bound does not give a sharp result in general, in the presence of
incoherent and low rank structure of A. Actually, assuming ‖E‖2 is comparable with ‖E‖∞,
for square matrices, our ℓ∞ bound (6) matches the ℓ2 bound (7) in terms of dimensions d1
and d2. This is because ‖x‖2 ≤

√
n ‖x‖∞ for any x ∈ R

n, so we expect to gain a factor
√
d1

or
√
d2 in those ℓ∞ bounds. The intuition is that, when A has an incoherent and low-rank

structure, the perturbation of singular vectors is not concentrated on a few coordinates.

To understand how matrix incoherence helps, let us consider a simple example with no
matrix incoherence, in which (7) is tight up to a constant. Let A = d(1, 0, . . . , 0)T (1, 0, . . . , 0)
be a d-dimensional square matrix, and E = d(0, 1/2, 0, . . . , 0)T (1, 0, . . . , 0) of the same
size. It is apparent that γ0 = d, τ0 = d/2, and that v1 = (1, 0, . . . , 0)T , ṽ1 =
(2/

√
5, 1/

√
5, 0, . . . , 0)T up to sign. Clearly, the perturbation ‖ṽ1 − v1‖∞ is not vanish-

ing as d tends to infinity in this example, and thus, there is no hope of a strong upper
bound as in (6) without the incoherence condition.

The reason that the factor
√
d1 or

√
d2 comes into play in (7) is that, the error uk − ũk

(and similarly for vk) spreads out evenly in d1 (or d2) coordinates, so that the ℓ∞ error is
far smaller than the ℓ2 error. This, of course, hinges on the incoherence condition, which in
essence precludes eigenvectors from aligning with any coordinate.

Our result is very different from the sparse PCA literature, in which it is usually assumed
that the leading eigenvectors are sparse. In Johnstone and Lu (2009), it is proved that there
is a threshold for p/n (the ratio between the dimension and the sample size), above which
PCA performs poorly, in the sense that 〈ṽ1, v1〉 is approximately 0. This means that the
principal component computed from the sample covariance matrix reveals nothing about
the true eigenvector. In order to mitigate this issue, in Johnstone and Lu (2009) and
subsequent papers (Vu and Lei, 2013; Ma, 2013; Berthet and Rigollet, 2013), sparse leading
eigenvectors are assumed. However, our result is different, in the sense that we require a
stronger eigengap condition γ0 > C(r, µ0)‖E‖∞ (i.e. stronger signal), whereas in Johnstone
and Lu (2009), the eigengap of the leading eigenvectors is a constant times ‖E‖2. This
explains why it is plausible to have a strong uniform eigenvector perturbation bound in this
paper.

We will illustrate the power of this perturbation result using robust covariance estimation
as one application. In the approximate factor model, the true covariance matrix admits a
decomposition into a low rank part A and a sparse part S. Such models have been widely
applied in finance, economics, genomics, and health to explore correlation structure.

However, in many studies, especially financial and genomics applications, it is well known
that the observations exhibit heavy tails (Gupta et al., 2013). This problem can be resolved
with the aid of recent results of concentration bounds in robust estimation (Catoni, 2012;
Hsu and Sabato, 2014; Fan et al., 2017a), which produces the estimation error N in (1)
with an optimal entry-wise bound. It nicely fits our perturbation results, and we can tackle
it easily by following the ideas in Fan et al. (2013).
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Here are a few notations in this paper. For a generic d1 by d2 matrix, the matrix max-
norm is denoted as ‖M‖max = maxi,j |Mij |. The matrix operator norm induced by vector ℓp
norm is ‖M‖p = sup‖x‖p=1 ‖Mx‖p for 1 ≤ p ≤ ∞. In particular, ‖M‖1 = maxj

∑d1
i=1 |Mij |;

‖M‖∞ = maxi
∑d2

j=1 |Mij |; and ‖ · ‖ denotes the spectral norm, or the matrix 2-norm ‖ · ‖2
for simplicity. We use σj(M) to denote the jth largest singular value. For a symmetric
matrix M , denote λj(M) as its jth largest eigenvalue. If M is a positive definite matrix,
then M1/2 is the square root of M , and M−1/2 is the square root of M−1.

2. The ℓ∞ perturbation results

2.1 Symmetric matrices

First, we study ℓ∞ perturbation for symmetric matrices (so d1 = d2). The approach we
study symmetric matrices will be useful to analyze asymmetric matrices, because we can
always augment a d1× d2 rectangular matrix into a (d1+ d2)× (d1+ d2) symmetric matrix,
and transfer the study of singular vectors to the eigenvectors of the augmented matrix. This
augmentation is called Hermitian dilation. (Tropp, 2012; Paulsen, 2002)

Suppose that A ∈ R
d×d is an d-dimensional symmetric matrix. The perturbation matrix

E ∈ R
d×d is also d-dimensional and symmetric. Let the perturbed matrix be Ã := A+ E.

Suppose the spectral decomposition of A is given by

A = [V, V⊥]

(
Λ1 0
0 Λ2

)
[V, V⊥]

T =

r∑

i=1

λiviv
T
i +

∑

i>r

λiviv
T
i , (8)

where Λ1 = diag{λ1, . . . , λr}, Λ2 = diag{λr+1, . . . , λn}, and where |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.
Note the best rank-r approximation of A under the Frobenius norm is Ar :=

∑
i≤r λiviv

T
i .

2

Analogously, the spectral decomposition of Ã is

Ã =
r∑

i=1

λ̃iṽiṽ
T
i +

∑

i>r

λ̃iṽiṽ
T
i ,

and write Ṽ = [ṽ1, . . . , ṽr] ∈ R
d×r, where |λ̃1| ≥ |λ̃2| ≥ . . . ≥ |λ̃n|. Recall that ‖E‖∞ given

by (4) is an operator norm in the ℓ∞ space, in the sense that ‖E‖∞ = sup‖u‖∞≤1 ‖Eu‖∞.
This norm is the natural counterpart of the spectral norm ‖E‖2 := sup‖u‖2≤1 ‖Eu‖2.

We will use notations O(·) and Ω(·) to hide absolute constants.3 The next theorem
bounds the perturbation of eigenspaces up to a rotation.

Theorem 2 Suppose |λr| − ε = Ω(r3µ2‖E‖∞), where ε = ‖A − Ar‖∞, which is the ap-
proximation error measured under the matrix ∞-norm and µ = µ(V ) is the coherence of V

2. This is a consequence of Wielandt-Hoffman theorem.
3. We write a = O(b) if there is a constant C > 0 such that a < Cb; and a = Ω(b) if there is a constant

C′ > 0 such that a > C′b.
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defined in (3). Then, there exists an orthogonal matrix R ∈ R
r×r such that

‖Ṽ R− V ‖max = O

(
r5/2µ2‖E‖∞
(|λr| − ε)

√
d

)
.

This result involves an unspecified rotation R, due to the possible presence of multiplicity
of eigenvalues. In the case where λ1 = · · · = λr > 0, the individual eigenvectors of V are
only identifiable up to rotation. However, assuming an eigengap (similar to Davis-Kahan
theorem), we are able to bound the perturbation of individual eigenvectors (up to sign).

Theorem 3 Assume the conditions in Theorem 2. In addition, suppose δ satisfies δ >
‖E‖2, and for any i ∈ [r], the interval [λi − δ, λi + δ] does not contain any eigenvalues of A
other than λi. Then, up to sign,

max
i∈[r]

‖ṽi − vi‖∞ = ‖Ṽ − V ‖max = O

(
r4µ2‖E‖∞
(|λr| − ε)

√
d
+

r3/2µ1/2‖E‖2
δ
√
d

)
.

To understand the above two theorems, let us consider the case where A has exactly
rank r (i.e., ε = 0), and r and µ are not large (say, bounded by a constant). Theorem
2 gives a uniform entrywise bound O(‖E‖∞/|λr|

√
d) on the eigenvector perturbation. As

a comparison, the Davis–Kahan sinΘ theorem (Davis and Kahan, 1970) gives a bound
O(‖E‖2/|λr|) on ‖Ṽ R−V ‖2 with suitably chosen rotation R.4 This is an order of

√
d larger

than the bound given in Theorem 2 when ‖E‖∞ is of the same order as ‖E‖2. Thus, in
scenarios where ‖E‖2 is comparable to ‖E‖∞, this is a refinement of Davis-Kahan theorem,
because the max-norm bound in Theorem 2 provides an entry-wise control of perturbation.
Although ‖E‖∞ ≥ ‖E‖2,5 there are many settings where the two quantities are comparable;
for example, if E has a submatrix whose entries are identical and has zero entries otherwise,
then ‖E‖∞ = ‖E‖2.

Theorem 3 provides the perturbation of individual eigenvectors, under a usual eigengap
assumption. When r and µ are not large, we incur an additional term O(‖E‖2/δ

√
d) in the

bound. This is understandable, since ‖ṽi − vi‖2 is typically O(‖E‖2/δ).
When the rank of A is not exactly r, we require that |λr| is larger than the approximation

error ‖A−Ar‖∞. It is important to state that this assumption is more restricted than the
eigengap assumption in the Davis-Kahan theorem, since ‖A−Ar‖∞ ≥ ‖A−Ar‖2 = |λr+1|.
However, different from the matrix max-norm, the spectral norm ‖ · ‖2 only depends on the
eigenvalues of a matrix, so it is natural to expect ℓ2 perturbation bounds that only involve
λr and λr+1. It is not clear whether we should expect an ℓ∞ bound that involves λr+1

instead of ε. More discussions can be found in Section 5.

We do not pursue the optimal bound in terms of r and µ(V ) in this paper, as the two
quantities are not large in many applications, and the current proof is already complicated.

4. To see how the Davis-Kahan sinΘ theorem relates to this form, we can use the identity ‖ sinΘ(Ṽ , V )‖2 =

‖Ṽ Ṽ T − V V T ‖2 (Stewart, 1990), and the (easily verifiable) inequality 2minR ‖Ṽ R − V ‖2 ≥ ‖Ṽ Ṽ T −

V V T ‖2 ≥ minR ‖Ṽ R− V ‖2 where R is an orthogonal matrix.
5. Since ‖E‖1‖E‖∞ ≥ ‖E‖22 (Stewart, 1990), the inequality follows from ‖E‖1 = ‖E‖∞ by symmetry.
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2.2 Rectangular matrices

Now we establish ℓ∞ perturbation bounds for general rectangular matrices. The results here
are more general than those in Section 1, and in particular, we allow the matrix A to be of
approximate low rank. Suppose that both A and E are d1 × d2 matrices, and Ã := A+E.
The rank of A is at most d1 ∧ d2 (where a ∧ b = min{a, b}). Suppose an integer r satisfies
r ≤ rank(A). Let the singular value decomposition of A be

A =

r∑

i=1

σiuiv
T
i +

d1∧d2∑

i=r+1

σiuiv
T
i ,

where the singular values are ordered as σ1 ≥ σ2 ≥ . . . ≥ σd1∧d2 ≥ 0, and the unit vectors
u1, . . . , ud1∧d2 (or unit vectors v1, . . . , vd1∧d2) are orthogonal to each other. We denote
U = [u1, . . . , ur] ∈ R

d1×r and V = [v1, . . . , vr] ∈ R
d2×r. Analogously, the singular value

decomposition of Ã is

Ã =

r∑

i=1

σ̃iũiṽ
T
i +

d1∧d2∑

i=r+1

σ̃iũiṽ
T
i ,

where σ̃1 ≥ . . . ≥ σ̃d1∧d2 . Similarly, columns of Ũ = [ũ1, . . . , ũr] ∈ R
d1×r and Ṽ =

[ṽ1, . . . , ṽr] ∈ R
d2×r are orthonormal.

Define µ0 = max{µ(V ), µ(U)}, where µ(U) (resp. µ(V )) is the coherence of U (resp.
V ). This µ0 will appear in the statement of our results, as it controls both the structure
of left and right singular spaces. When, specially, A is a symmetric matrix, the spectral
decomposition of A is also the singular value decomposition (up to sign), and thus µ0

coincides with µ defined in Section 2.1.

Recall the definition of matrix ∞-norm and 1-norm of a rectangular matrix (4). Similar
to the matrix ∞-norm, ‖ · ‖1 is an operator norm in the ℓ1 space. An obvious relationship
between matrix ∞-norm and 1-norm is ‖E‖∞ = ‖ET ‖1. Note that the matrix ∞-norm
and 1-norm have different number of summands in their definitions, so we are motivated to
consider τ0 := max{

√
d1/d2‖E‖∞,

√
d2/d1‖E‖1} to balance the dimensions d1 and d2.

Let Ar =
∑

i≤r σiuiv
T
i be the best rank-r approximation of A under the Frobenius

norm, and let ε0 =
√

d1/d2‖A − Ar‖∞ ∨
√
d2/d1‖A − Ar‖1, which also balances the two

dimensions. Note that in the special case where A is symmetric, this approximation error
ε0 is identical to ε defined in Section 2.1. The next theorem bounds the perturbation of
singular spaces.

Theorem 4 Suppose that δ0 − ε0 = Ω(r3µ2
0τ0). Then, there exists orthogonal matrices

RU , RV ∈ R
r×r such that,

‖ŨRU − U‖max = O
( r5/2µ2

0τ0

(σr − ǫ0)
√
d1

)
, ‖Ṽ RV − V ‖max = O

( r5/2µ2
0τ0

(σr − ǫ0)
√
d2

)
.

Similar to Theorem 3, under an assumption of gaps between singular values, the next
theorem bounds the perturbation of individual singular vectors.

7
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Theorem 5 Suppose the same assumptions in Theorem 4 hold. In addition, suppose δ0
satisfies δ0 > ‖E‖2, and for any i ∈ [r], the interval [σi − δ0, σi + δ0] does not contain any
eigenvalues of A other than σi. Then, up to sign,

max
i∈[r]

‖ũi − ui‖∞ = O
( r4µ2

0τ0

(σr − ε0)
√
d1

+
r3/2µ

1/2
0 ‖E‖2

δ0
√
d1

)
, (9)

max
i∈[r]

‖ṽi − vi‖∞ = O
( r4µ2

0τ0

(σr − ε0)
√
d2

+
r3/2µ

1/2
0 ‖E‖2

δ0
√
d2

)
. (10)

As mentioned in the beginning of this section, we will use dilation to augment all d1×d2
matrices into symmetric ones with size d1 + d2. In order to balance the possibly different
scales of d1 and d2, we consider a weighted max-norm. This idea will be further illustrated
in Section 5.

2.3 Examples: which matrices have such structure?

In many problems, low-rank structure naturally arises due to the impact of pervasive latent
factors that influence most observed data. Since observations are imperfect, the low-rank
structure is often ‘perturbed’ by an additional sparse structure, gross errors, measurement
noises, or the idiosyncratic components that can not be captured by the latent factors. We
give some motivating examples with such structure.

Panel data in stock markets. Consider the excess returns from a stock market over a
period of time. The driving factors in the market are reflected in the covariance matrix
as a low rank component A. The residual covariance of the idiosyncratic components is
often modeled by a sparse component S. Statistical analysis including PCA is usually
conducted based on the estimated covariance matrix Ã = Σ̂, which is perturbed from the
true covariance Σ = A+ S by the estimation error N (Stock and Watson, 2002; Fan et al.,
2013). In Section 3.1, we will develop a robust estimation method in the presence of heavy-
tailed return data.

Video surveillance. In image processing and computer vision, it is often desired to
separate moving objects from static background before further modeling and analysis (Oliver
et al., 2000; Hu et al., 2004). The static background corresponds to the low rank component
A in the data matrix, which is a collection of video frames, each consisting of many pixels
represented as a long vector in the data matrix. Moving objects and noise correspond to
the sparse matrix S and noise matrix N . Since the background is global information and
reflected by many pixels of a frame, it is natural for the incoherence condition to hold.

Wireless sensor network localization. In wireless sensor networks, we are usually inter-
ested in determining the location of sensor nodes with unknown position based on a few
(noisy) measurements between neighboring nodes (Doherty et al., 2001; Biswas and Ye,
2004). Let X be an r by n matrix such that each column xi gives the coordinates of each
node in a plane (r = 2) or a space (r = 3). Assume the center of the sensors has been
relocated at origin. Then the low rank matrix A = X

T
X, encoding the true distance infor-

mation, has to satisfy distance constraints given by the measurements. The noisy distance
matrix Ã after centering, equals to the sum of A and a matrix N consisting of measurement

8
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errors. Suppose that each node is a random point uniformly distributed in a rectangular
region. It is not difficult to see that with high probability, the top r eigenvalues of XT

X

and their eigengap scales with the number of sensors n and the leading eigenvectors have a
bounded coherence.

In our theorems, we require that the coherence µ is not too large. This is a natural
structural condition associated with the low rank matrices. Consider the following very
simple example: if the eigenvectors v1, . . . , vr of the low rank matrix A are uniform unit
vectors in a sphere, then with high probability, maxi ‖vi‖∞ = O(

√
log n), which implies µ =

O(log n). An intuitive way to understand the incoherence structure is that no coordinates
of v1 (or v2, . . . vr) are dominant. In other words, the eigenvectors are not concentrated on
a few coordinates.

In all our examples, the incoherence structure is natural. The factor model satisfies such
structure, which will be discussed in Section 3. In the video surveillance example, ideally,
when the images are static, A is a rank one matrix x1T . Since usually a majority of pixels
(coordinates of x) help to display an image, the vector x often has dense coordinates with
comparable magnitude, so A also has an incoherence structure in this example. Similarly,
in the sensor localization example, the coordinates of all sensor nodes are comparable in
magnitude, so the low rank matrix A formed by X

T
X also has the desired incoherence

structure.

2.4 Other perturbation results

Although the eigenvector perturbation theory is well studied in numerical analysis, there
is a renewed interest among statistics and machine learning communities recently, due to
the wide applicability of PCA and other eigenvector-based methods. In Cai and Zhang
(2016); Yu et al. (2015), they obtained variants or improvements of Davis-Kahan theorem
(or Wedin’s theorem), which are user-friendly in the statistical contexts. These results
assume the perturbation is deterministic, which is the same as Davis-Kahan theorem and
Wedin’s theorem. In general, these results are sharp, even when the perturbation is random,
as evidenced by the BBP transition (Baik et al., 2005).

However, these classical results can be suboptimal, when the perturbation is random
and the smallest eigenvalue gap λ1−λ2 does not capture particular spectrum structure. For
example, Vu (2011); O’Rourke et al. (2013) showed that with high probability, there are
bounds sharper than the Wedin’s theorem, when the signal matrix is low-rank and satisfies
certain eigenvalue conditions.

In this paper, our perturbation results are deterministic, thus the bound can be subop-
timal when the perturbation is random with certain structure (e.g. the difference between
sample covariance and population one for i.i.d. samples). However, the advantage of a
deterministic result is that it is applicable to any random perturbation. This is especially
useful when we cannot make strong random assumptions on the perturbation (e.g., the
perturbation is an unknown sparse matrix). In Section 3, we will see examples of this type.

3. Application to robust covariance estimation

We will study the problem of robust estimation of covariance matrices and show the strength
of our perturbation result. Throughout this section, we assume both rank r and the coher-
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ence µ(V ) are bounded by a constant, though this assumption can be relaxed. We will use
C to represent a generic constant, and its value may change from line to line.

3.1 PCA in spiked covariance model

To initiate our discussions, we first consider sub-Gaussian random variables. Let X =
(X1, . . . , Xd) be a random d-dimensional vector with mean zero and covariance matrix

Σ =
r∑

i=1

λiviv
T
i + σ2Id := Σ1 +Σ2, (λ1 ≥ . . . ≥ λr > 0), (11)

and X be an n by d matrix, whose rows are independently sampled from the same distribu-
tion. This is the spiked covariance model that has received intensive study in recent years.
Let the empirical covariance matrix be Σ̂ = X

T
X/n. Viewing the empirical covariance

matrix as its population version plus an estimation error, we have the decomposition

Σ̂ = Σ1 +Σ2 +
( 1
n
X
T
X− Σ

)
,

which is a special case of the general decomposition in (1). Here, Σ2 is the sparse component,
and the estimation error XT

X/n−Σ is the noise component. Note that v1, . . . , vr are just the
top r leading eigenvectors of Σ and we write V = [v1, . . . , vr]. Assume the top r eigenvectors
of Σ̂ are denoted by v̂1, . . . , v̂r. We want to find an ℓ∞ bound on the estimation error v̂i−vi
for all i ∈ [r].

When the dimension d is comparable to or larger than n, it has been shown by Johnstone
and Lu (2009) that the leading empirical eigenvector v̂1 is not a consistent estimate of the
true eigenvector v1, unless we assume larger eigenvalues. Indeed, we will impose more
stringent conditions on λi’s in order to obtain good ℓ∞ bounds.

Assuming the coherence µ(V ) is bounded, we can easily see Var(Xj) ≤ σ2 + Cλ1/d for
some constant C. It follows from the standard concentration result (e.g., Vershynin (2010))
that if rows of X contains i.i.d sub-Gaussian vectors and log d = O(n), then with probability
greater than 1− d−1,

‖ 1
n
X
T
X− Σ‖max ≤ C

(
σ2 +

λ1

d

)
√

log d

n
. (12)

To apply Theorem 3, we treat Σ1 as A and Σ̂ − Σ1 as E. If the conditions in Theorem 3
are satisfied, we will obtain

max
1≤k≤r

‖v̂k − vk‖∞ = O(‖E‖∞/(λr

√
d) + ‖E‖2/(δ

√
d)). (13)

Note there are simple bounds on ‖E‖∞ and ‖E‖2:

‖E‖2 ≤ ‖E‖∞ ≤ σ2 + d ‖ 1
n
X
T
X− Σ‖max ≤ C

{
1 +

(
dσ2 + λ1

)
√

log d

n

}
.

10
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By assuming a strong uniform eigengap, the conditions in Theorem 3 are satisfied, and the
bound in (13) can be simplified. Define the uniform eigengap as

γ = min{λi − λi+1 : 1 ≤ i ≤ r}, λr+1 := 0.

Note that γ ≤ min{λr, δ}, so if γ > C(1 +
(
dσ2 + λ1

)√
log d/n), we have

max
1≤k≤r

‖v̂k − vk‖∞ = OP

(‖E‖∞
γ
√
d

)
= OP

(1 +
(
dσ2 + λ1

)√
log d/n

γ
√
d

)
,

In particular, when λ1 ≍ γ and γ ≫ max{1, σ2d
√

log d/n}, we have

max
1≤k≤r

‖v̂k − vk‖∞ = oP

( 1√
d

)
.

The above analysis pertains to the structure of sample covariance matrix. In the following
subsections, we will estimate the covariance matrix using more complicated robust proce-
dure. Our perturbation theorems in Section 2 provide a fast and clean approach to obtain
new results.

3.2 PCA for robust covariance estimation

The usefulness of Theorem 3 is more pronounced when the random variables are heavy-
tailed. Consider again the covariance matrix Σ with structure (11). Instead of assuming sub-
Gaussian distribution, we assume there exists a constant C > 0 such that maxj≤dEX4

j < C,
i.e. the fourth moments of the random variables are uniformly bounded.

Unlike sub-Gaussian variables, there is no concentration bound similar to (12) for the
empirical covariance matrix. Fortunately, thanks to recent advances in robust statistics
(e.g., Catoni (2012)), robust estimate of Σ with guaranteed concentration property becomes
possible. We shall use the method proposed in Fan et al. (2017a). Motivated by the classical
M -estimator of Huber (1964), Fan et al. (2017a) proposed a robust estimator for each
element of Σ̂, by solving a Huber loss based minimization problem

Σ̂ij = argminµ

n∑

t=1

lα(XtiXtj − µ), (14)

where lα is the Huber loss defined as

lα(x) =

{
2α|x| − α2, |x| ≥ α,

x2, |x| ≤ α.

The parameter α is suggested to be α =
√
nv2/ log(ǫ−1) for ǫ ∈ (0, 1), where v is assumed

to satisfy v ≥ maxij
√

Var(XiXj). If log(ǫ
−1) ≤ n/8, Fan et al. (2017a) showed

P
(
|Σ̂ij − Σij | ≤ 4v

√
log(ǫ−1)

n

)
≥ 1− 2ǫ.

11
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From this result, the next proposition is immediate by taking ǫ = d−3.

Proposition 1 Suppose that there is a constant C with maxj≤dEX4
j < C. Then with

probability greater than 1 − d−1(1 + d−1), the robust estimate of covariance matrix with
α =

√
3nv2 log(d) satisfies

‖Σ̂− Σ‖max ≤ 4v

√
3 log d

n
,

where v is a pre-determined parameter assumed to be no less than maxij
√
Var(XiXj).

This result relaxes the sub-Gaussianity assumption by robustifying the covariance esti-
mate. It is apparent that the ℓ∞ bound in the previous section is still valid in this case. To
be more specific, suppose µ(V ) is bounded by a constant. Then, (13) holds for the PCA
based on the robust covariance estimation. When λ1 ≍ γ and γ ≫ max{1, σ2d

√
log d/n},

we again have

max
1≤k≤r

‖v̂k − vk‖∞ = OP

(1 +
(
dσ2 + λ1

)√
log d/n

γ
√
d

)
= oP

( 1√
d

)
.

Note that an entrywise estimation error op(1/
√
d) necessarily implies consistency of

the estimated eigenvectors, since we can easily convert an ℓ∞ result into an ℓ2 result. The
minimum signal strength (or magnitude of leading eigenvalues) for such consistency is shown
to be σ2d/n under the sub-Gaussian assumption (Wang and Fan, 2017).

If the goal is simply to prove consistency of v̂k, the strategy of using our ℓ∞ perturbation
bounds is not optimal. However, there are also merits: our result is nonasymptotic; it holds
for more general distributions (beyond sub-Gaussian distributions); and its entrywise bound
gives stronger guarantee. Moreover, the ℓ∞ perturbation bounds provide greater flexibility
for analysis, since it is straightforward to adapt analysis to problems with more complicated
structure. For example, the above discussion can be easily extended to a general Σ2 with
bounded ‖Σ2‖∞ rather than a diagonal matrix.

3.3 Robust covariance estimation via factor models

In this subsection, we will apply Theorem 3 to robust large covariance matrix estimation for
approximate factor models in econometrics. With this theorem, we are able to extend the
data distribution in factor analysis beyond exponentially decayed distributions considered
by Fan et al. (2013), to include heavy-tailed distributions.

Suppose the observation yit, say, the excess return at day t for stock i, admits a decom-
position

yit = bTi ft + uit, i ≤ d, t ≤ n, (15)

where bi ∈ R
r is the unknown but fixed loading vector, ft ∈ R

r denotes the unobserved factor
vector at time t, and uit’s represent the idiosyncratic noises. Let yt = (y1t, . . . , ydt)

T and
ut = (u1t, . . . , udt)

T so that yt = Bft + ut, where B = (b1, . . . , bd)
T ∈ R

d×r. Suppose that
ft and ut are uncorrelated and centered random vectors, with bounded fourth moments,
i.e., the fourth moments of all entries of ft and ut are bounded by some constant. We
assume {ft, ut} are independent for t, although it is possible to allow for weak temporal

12
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dependence as in Fan et al. (2013). From (15), we can decompose Σ = Cov(yt) into a low
rank component and a residual component:

Σ = BBT +Σu, (16)

where Σu := Cov(ut). To circumvent the identifiability issue common in latent variable
models, here we also assume, without loss of generality, Cov(ft) = Ir and that BTB is a
diagonal matrix, since rotating B will not affect the above decomposition (16).

We will need two major assumptions for our analysis: (1) the factors are pervasive in
the sense of Definition 2, and (2) there is a constant C > 0 such that ‖Σ−1

u ‖2, ‖Σu‖2 ≤ C,
which are standard assumptions in the factor model literature. The pervasive assumption is
reasonable in financial applications, since the factors have impacts on a large fraction of the
outcomes (Chamberlain et al., 1983; Bai, 2003). If the factor loadings {bi}di=1 are regarded
as random realizations from a bounded random vector, the assumption holds (Fan et al.,
2013).

Definition 2 In the factor model (15), the factors are called pervasive if there is a constant
C > 0 such that ‖B‖max ≤ C and the eigenvalues of the r by r matrix BTB/d are distinct
and bounded away from zero and infinity.

Let {λi, vi}ri=1 be the top r eigenvalues and eigenvectors of Σ, and similarly, {λi, vi}ri=1

for BBT . In the following proposition, we show that pervasiveness is naturally connected to
the incoherence structure. This connects the econometrics and machine learning literature
and provide a good interpretation on the concept of the incoherence. Its proof can be found
in the appendix.

Proposition 3 Suppose there exists a constant C > 0 such that ‖Σu‖ ≤ C. The factors ft
are pervasive if and only if the coherence µ(V ) for V = (v1, . . . , vr) ∈ R

d×r is bounded by
some constant, and λi = λi(Σ) ≍ d for i ≤ r so that min1≤i 6=j≤r |λi − λj |/λj > 0.

Our goal is to obtain a good covariance matrix estimator by exploiting the structure (16).
Our strategy is to use a generalization of the principal orthogonal complement thresholding
(POET) method proposed in Fan et al. (2013). The generic POET procedure encompasses
three steps:

(1) Given three pilot estimators Σ̂, Λ̂ = diag(λ̂1, . . . , λ̂r), V̂ = (v̂1, . . . , v̂r) respectively for
true covariance Σ, leading eigenvalues Λ = diag(λ1, . . . , λr) and leading eigenvectors
V = (v1, . . . , vr), compute the principal orthogonal complement Σ̂u:

Σ̂u = Σ̂− V̂ Λ̂V̂ T . (17)

(2) Apply the correlation thresholding to Σ̂u to obtain thresholded estimate Σ̂⊤
u defined

as follows:

Σ̂⊤
u,ij =

{
Σ̂u,ij , i = j

sij(Σ̂u,ij)I(|Σ̂u,ij | ≥ τij), i 6= j
, (18)

where sij(·) is the generalized shrinkage function (Antoniadis and Fan, 2001; Rothman
et al., 2009) and τij = τ(σ̂u,iiσ̂u,jj)

1/2 is an entry-dependent threshold. τ will be
determined later in Theorem 6. This step exploits the sparsity of Σu.

13
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(3) Construct the final estimator Σ̂⊤ = V̂ Λ̂V̂ T + Σ̂⊤
u .

The key feature in the above procedure lies in the flexibility of choosing the pilot estima-
tors in the first step. We will choose Σ̂ according to data generating distribution. Typically
we can use λ̂i, v̂i for i ≤ r as the eigenvalues/vectors of Σ̂. However, Λ̂ and V̂ in general
do not have to come from the spectral information of Σ̂ and can be obtained separately via
different methods.

To guide the selection of proper pilot estimators, Fan et al. (2017+) provided a high
level sufficient condition for this simple procedure to be effective, and its performance is
gauged, in part, through the sparsity level of Σu, defined as md := maxi≤d

∑
j≤d |Σu,ij |q.

When q = 0, md corresponds to the maximum number of nonzero elements in each row of
Σu. For completeness, we present the theorem given by Fan et al. (2017+) in the following.

Theorem 6 Let wn =
√

log d/n + 1/
√
d. Suppose there exists C > 0 such that

‖Σ−1
u ‖, ‖Σu‖ ≤ C and we have pilot estimators Σ̂, Λ̂, V̂ satisfying

‖Σ̂− Σ‖max = O(
√

log d/n), (19)

|λ̂i/λi − 1| = O(
√
log d/n), (20)

‖v̂i − vi‖∞ = O(wn/
√
d). (21)

Under the pervasiveness condition of the factor model (15), with τ ≍ wn, if mdw
1−q
n = o(1),

the following rates of convergence hold with the generic POET procedure:

‖Σ̂⊤
u − Σu‖2 = O

(
mdw

1−q
n

)
= ‖(Σ̂⊤

u )
−1 − Σu

−1‖2 , (22)

and
‖Σ̂⊤ − Σ‖max = O

(
wn

)
,

‖Σ̂⊤ − Σ‖Σ = O
(√d log d

n
+mdw

1−q
n

)
,

‖(Σ̂⊤)−1 − Σ−1‖2 = O
(
mdw

1−q
n

)
,

(23)

where ‖A‖Σ = d−1/2‖Σ−1/2AΣ−1/2‖F is the relative Frobenius norm.

We remark that the additional term 1/
√
d in wn, is due to the estimation of unobservable

factors and is negligible when the dimensional d is high. The optimality of the above rates
of convergence is discussed in details in Fan et al. (2017+). Theorem 6 reveals a profound
deterministic connection between the estimation error bound of the pilot estimators with the
rate of convergences of the POET output estimators. Notice that the eigenvector estimation
error is under the ℓ∞ norm, for which our ℓ∞ perturbation bounds will prove to be useful.

In this subsection, since we assume only bounded fourth moments, we choose Σ̂ to be the
robust estimate of covariance matrix Σ defined in (14). We now invoke our ℓ∞ bounds to
show that the spectrum properties (eigenvalues and eigenvectors) are stable to perturbation.
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Let us decompose Σ̂ into a form such that Theorem 3 can be invoked:

Σ̂ =
r∑

i=1

λiviv
T
i +Σu + (Σ̂− Σ),

where Σ̂ is viewed as Ã, the low-rank part
∑r

i=1 λiviv
T
i , which is also BBT , is viewed as A,

and the remaining terms are treated as E. The following results follow immediately.

Proposition 4 Assume that there is a constant C > 0 such that ‖Σu‖ ≤ C. If the factors
are pervasive, then with probability greater than 1−d−1, we have (19) – (21) hold with λ̂i, v̂i
as the leading eigenvalues/vectors of Σ̂ for i ≤ r. In addition, (22) and (23) hold.

The inequality (19) follows directly from Proposition 1 under the assumption of bounded
fourth moments. It is also easily verifiable that (20), (21) follow from (19) by Weyl’s
inequality and Theorem 3 (noting that ‖Σu‖∞ ≤

√
d‖Σu‖). See Section 3.2 for more

details.

Note that in the case of sub-Gaussian variables, sample covariance matrix and its leading
eigenvalues/vectors will also serve the same purpose due to (12) and Theorem 3 as discussed
in Section 3.1.

We have seen that the ℓ∞ perturbation bounds are useful in robust covariance estima-
tion, and particularly, they resolve a theoretical difficulty in the generic POET procedure
for factor model based covariance matrix estimation.

4. Simulations

4.1 Simulation: the perturbation result

In this subsection, we implement numerical simulations to verify the perturbation bound
in Theorem 3. We will show that the error behaves in the same way as indicated by our
theoretical bound.

In the experiments, we let the matrix size d run from 200 to 2000 by an increment
of 200. We fix the rank of A to be 3 (r = 3). To generate an incoherence low rank
matrix, we sample a d × d random matrix with iid standard normal variables, perform
singular value decomposition, and extract the first r right singular vectors v1, v2, . . . , vr.
Let V = (v1, . . . , vr) and D = diag(rγ, (r − 1)γ, . . . , γ) where γ as before represents the
eigengap. Then, we set A = V DV T . By orthogonal invariance, vi is uniformly distributed
on the unit sphere Sd−1. It is not hard to see that with probability 1−O(d−1), the coherence
of V µ(V ) = O(

√
log d).

We consider two types of sparse perturbation matrices E: (a) construct a d× d matrix
E0 by randomly selecting s entries for each row, and sampling a uniform number in [0, L] for
each entry, and then symmetrize the perturbation matrix by setting E = (E0 +ET

0 )/2; (b)
pick ρ ∈ (0, 1), L′ > 0, and let Eij = L′ρ|i−j|. Note that in (b) we have ‖E‖∞ ≤ 2L′/(1−ρ),
and thus we can choose suitable L′ and ρ to control the ℓ∞ norm of E. This covariance
structure is common in cases where correlations between random variables depend on their
“distance” |i− j|, which usually arises from autoregressive models.
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Figure 1: The left plot shows the perturbation error of eigenvectors against matrix size d
ranging from 200 to 2000, with different eigengap γ. The right plot shows log(err) against
log(d). The slope is around −0.5. Blue lines represent γ = 10; red lines γ = 50; green lines
γ = 100; and black lines γ = 500. We report the largest error over 100 runs.

The perturbation of eigenvectors is measured by the element-wise error:

err := max
1≤i≤r

min
ηi∈{±1}

‖ηiṽi − vi‖∞,

where {ṽi}ri=1 are the eigenvectors of Ã = A+ E in the descending order.

To investigate how the error depends on γ and d, we generate E according to mechanism
(a) with s = 10, L = 3, and run simulations in different parameter configurations: (1) let
the matrix size d range from 200 to 2000, and choose the eigengap γ in {10, 50, 100, 500}
(Figure 1); (2) fix the product γ

√
d to be one of {2000, 3000, 4000, 5000}, and let the matrix

size d run from 200 to 2000 (Figure 2).

To find how the errors behave for E generated from different methods, we run simulations
as in (1) but generate E differently. We construct E through mechanism (a) with L =
10, s = 3 and L = 0.6, s = 50, and also through mechanism (b) with L′ = 1.5, ρ = 0.9 and
L′ = 7.5, ρ = 0.5 (Figure 3). The parameters are chosen such that ‖E‖∞ is about 30.

In Figure 1 – 3, we report the largest error based on 100 runs. Figure 1 shows that the
error decreases as d increases (the left plot); and moreover, the logarithm of the error is linear
in log(d), with a slope −0.5, that is, err ∝ 1/

√
d (the right plot). We can take the eigengap

γ into consideration and characterize the relationship in a more refined way. In Figure 2,
it is clear that err almost falls on the same horizontal line for different configurations of
d and γ, with γ

√
d fixed. The right panel clearly indicates that err × γ

√
d is a constant,

and therefore err ∝ 1/(γ
√
d). In Figure 3, we find that the errors behave almost the
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Figure 2: The left plot shows the perturbation error of eigenvectors against matrix size d
ranging from 200 to 2000, when γ

√
d is kept fixed, with different values. The right plot

shows the error multiplied by γ
√
d against d. Blue lines represent γ

√
d = 2000; red lines

γ
√
d = 3000; green lines γ

√
d = 4000; and black lines γ

√
d = 5000. We report the largest

error over 100 runs.

same regardless of how E is generated. These simulation results provide stark evidence
supporting the ℓ∞ perturbation bound in Theorem 3.

4.2 Simulation: robust covariance esitmation

We consider the performance of the generic POET procedure in robust covariance estimation
in this subsection. Note that the procedure is flexible in employing any pilot estimators
Σ̂, Λ̂, V̂ satisfying the conditions (19) – (21) respectively.

We implemented the robust procedure with four different initial trios: (1) the sample
covariance Σ̂S with its leading r eigenvalues and eigenvectors as Λ̂S and V̂ S ; (2) the Huber’s
robust estimator Σ̂R given in (14) and its top r eigen-structure estimators Λ̂R and V̂ R; (3)
the marginal Kendall’s tau estimator Σ̂K with its corresponding Λ̂K and V̂ K ; (4) lastly, we
use the spatial Kendall’s tau estimator to estimate the leading eigenvectors instead of the
marginal Kendall’ tau, so V̂ K in (3) is replaced with Ṽ K . We need to briefly review the two
types of Kendall’s tau estimators here, and specifically give the formula for Σ̂K and Ṽ K .

Kendall’s tau correlation coefficient, for estimating pairwise comovement correlation, is
defined as

τ̂jk :=
2

n(n− 1)

∑

t<t′

sgn((ytj − yt′j)(ytk − yt′k)) . (24)
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Figure 3: These plots show log(err) aginst log(d), with matrix size d ranging from 200 to
2000 and different eigengap γ. The perturbation E is generated from different ways. Top
left: L = 10, s = 3; top right: L = 0.6, s = 50; bottom left: L′ = 1.5, ρ = 0.9; bottom
right: L′ = 7.5, ρ = 0.5. The slopes are around −0.5. Blue lines represent γ = 10; red lines
γ = 50; green lines γ = 100; and black lines γ = 500. We report the largest error over 100
runs.

Its population expectation is related to the Pearson correlation via the transform rjk =

sin
(
π
2 E[τ̂jk]

)
for elliptical distributions (which are far too restrictive for high-dimensional

applications). Then r̂jk = sin
(
π
2 τ̂jk

)
is a valid estimation for the Pearson correlation

rjk. Letting R̂ = (r̂jk) and D̂ = diag(
√

Σ̂R
11, . . . ,

√
Σ̂R
dd) containing the robustly estimated

standard deviations, we define the marginal Kendall’s tau estimator as

Σ̂K = D̂ R̂ D̂ . (25)

In the above construction of D̂, we still use the robust variance estimates from Σ̂R.

The spatial Kendall’s tau estimator is a second-order U-statstic, defined as

Σ̃K :=
2

n(n− 1)

∑

t<t′

(yt − yt′)(yt − yt′)
T

‖yt − yt′‖22
. (26)
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Then Ṽ S is constructed by the top r eigenvectors of Σ̃K . It has been shown by Fan
et al. (2017+) that under elliptical distribution, Σ̂K and its top r eigenvalues Λ̂K satisfy
(19) and (20) while Ṽ S suffices to conclude (21). Hence Method (4) indeed provides good
initial estimators if data are from elliptical distribution. However, since Σ̂K attains (19)
for elliptical distribution, by similar argument for deriving Proposition 4 based on our ℓ∞
pertubation bound, V̂ K consisting of the leading eigenvectors of Σ̂K is also valid for the
generic POET procedure. For more details about the two types of Kendall’s tau, we refer
the readers to Fang et al. (1990); Choi and Marden (1998); Han and Liu (2014); Fan et al.
(2017+) and references therein.

In summary, Method (1) is designed for the case of sub-Gaussian data; Method (3)
and (4) work under the situation of elliptical distribution; while Method (2) is proposed in
this paper for the general heavy-tailed case with bounded fourth moments without further
distributional shape constraints.

We simulated n samples of (fT
t , u

T
t )

T from two settings: (a) a multivariate t-distribution
with covariance matrix diag{Ir, 5Id} and various degrees of freedom (ν = 3 for very heavy
tail, ν = 5 for medium heavy tail and ν = ∞ for Gaussian tail), which is one example
of the elliptical distribution (Fang et al., 1990); (b) an element-wise iid one-dimensional t
distribution with the same covariance matrix and degrees of freedom ν = 3, 5 and ∞, which
is a non-elliptical heavy-tailed distribution.

Each row of coefficient matrix B is independently sampled from a standard normal
distribution, so that with high probability, the pervasiveness condition holds with ‖B‖max =
O(

√
log d). The data is then generated by yt = Bft+ut and the true population covariance

matrix is Σ = BBT + 5Id.

For d running from 200 to 900 and n = d/2, we calculated errors of the four robust
estimators in different norms. The tuning for α in minimization (14) is discussed more
throughly in Fan et al. (2017b). For the thresholding parameter, we used τ = 2

√
log d/n.

The estimation errors are gauged in the following norms: ‖Σ̂⊤
u − Σu‖, ‖(Σ̂⊤)−1 − Σ−1‖

and ‖Σ̂⊤ − Σ‖Σ as shown in Theorem 6. The two different settings are separately plotted
in Figures 4 and 5. The estimation errors of applying sample covariance matrix Σ̂S in
Method (1) are used as the baseline for comparison. For example, if relative Frobenius
norm is used to measure performance, ‖(Σ̂⊤)(k) −Σ‖Σ/‖(Σ̂⊤)(1) −Σ‖Σ will be depicted for
k = 2, 3, 4, where (Σ̂⊤)(k) are generic POET estimators based on Method (k). Therefore
if the ratio curve moves below 1, the method is better than naive sample estimator (Fan
et al., 2013) and vice versa. The more it gets below 1, the more robust the procedure is
against heavy-tailed randomness.

The first setting (Figure 4) represents a heavy-tailed elliptical distribution, where we
expect Methods (2), (3), (4) all outperform the POET estimator based on the sample
covariance, i.e. Method (1), especially in the presence of extremely heavy tails (solid lines
for ν = 3). As expected, all three curves under various measures show error ratios visibly
smaller than 1. On the other hand, if data are indeed Gaussian (dotted line for ν =
∞), Method (1) has better behavior under most measures (error ratios are greater than
1). Nevertheless, our robust Method (2) still performs comparably well with Method (1),
whereas the median error ratios for the two Kendall’s tau methods are much worse. In
addition, the IQR (interquartile range) plots reveal that Method (2) is indeed more stable
than two Kendall’s tau Methods (3) and (4). It is also noteworthy that Method (4), which
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Figure 4: Error ratios of robust estimates against varying dimension. Blue lines represent
errors of Method (2) over Method (1) under different norms; black lines errors of Method
(3) over Method (1); red lines errors of Method (4) over Method (1). (fT

t , u
T
t ) is generated

by multivariate t-distribution with df = 3 (solid), 5 (dashed) and ∞ (dotted). The median
errors and their IQR’s (interquartile range) over 100 simulations are reported.

leverages the advantage of spatial Kendall’s tau, performs more robustly than Method (3),
which solely base its estimation of the eigen-structure on marginal Kendall’s tau.

The second setting (Figure 5) provides an example of non-elliptical distributed data. We
can see that the performance of the general robust Method (2) dominates the other three
methods, which verifies the benefit of robust estimation for a general heavy-tailed distribu-
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Figure 5: Error ratios of robust estimates against varying dimension. Blue lines represent
errors of Method (2) over Method (1) under different norms; black lines errors of Method
(3) over Method (1); red lines errors of Method (4) over Method (1). (fT

t , u
T
t ) is generated

by element-wise iid t-distribution with df = 3 (solid), 5 (dashed) and ∞ (dotted). The
median errors and their IQR’s (interquartile range) over 100 simulations are reported.

tion. Note that Kendall’s tau methods do not apply to distributions outside the elliptical
family, excluding even the element-wise iid t distribution in this setting. Nonetheless, even
in the first setting where the data are indeed elliptical, with proper tuning, the proposed
robust method can still outperform Kendall’s tau by a clear margin.
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5. Proof organization of main theorems

5.1 Symmetric Case

For shorthand, we write τ = ‖E‖∞, and κ =
√
d ‖EV ‖max. An obvious bound for κ is

κ ≤ √
rµ τ (by Cauchy-Schwarz inequality). We will use these notations throughout this

subsection.

Recall the spectral decomposition of A in (8). Expressing E in terms of the column
vectors of V and V⊥, which form an orthogonal basis in R

n, we write

[V, V⊥]
TE[V, V⊥] =:

(
E11 E12

E21 E22

)
. (27)

Note that E12 = ET
21 since E is symmetric. Conceptually, the perturbation results in a

rotation of [V, V⊥], and we write a candidate orthogonal basis as follows:

V := (V + V⊥Q)(Ir +QTQ)−1/2, V ⊥ := (V⊥ − V QT )(Id−r +QQT )−1/2, (28)

where Q ∈ R
(d−r)×r is to be determined. It is straightforward to check that [V , V ⊥] is

an orthogonal matrix. We will choose Q in a way such that (V , V ⊥)
T Ã(V , V ⊥) is a block

diagonal matrix, i.e., V
T
⊥ÃV = 0. Substituting (28) and simplifying the equation, we obtain

Q(Λ1 + E11)− (Λ2 + E22)Q = E21 −QE12Q. (29)

The approach of studying perturbation through a quadratic equation is known. See Stewart
(1990) for example. Yet, to the best of our knowledge, existing results study perturbation
under orthogonal-invariant norms (or unitary-invariant norms in the complex case), which
includes a family of matrix operator norms and Frobenius norm, but excludes the matrix
max-norm. The advantages of orthogonal-invariant norms are pronounced: such norms of a
symmetric matrix only depend on its eigenvalues regardless of eigenvectors; moreover, with
suitable normalization they are consistent in the sense ‖AB‖ ≤ ‖A‖ · ‖B‖. See Stewart
(1990) for a clear exposition.

The max-norm, however, does not possess these important properties. An imminent
issue is that it is not clear how to relate Q to V⊥Q, which will appear in (29) after expanding
E according to (27), and which we want to control. Our approach here is to study Q := V⊥Q
directly through a transformed quadratic equation, obtained by left multiplying V⊥ to (29).
Denote H = V⊥E21, Q = V⊥Q,L1 = Λ1 + E11, L2 = V⊥(Λ2 + E22)V

T
⊥ . If we can find an

appropriate matrix Q with Q = V⊥Q, and it satisfies the quadratic equation

QL1 − L2Q = H −QHTQ, (30)

then Q also satisfies the quadratic equation (29). This is because multiplying both sides
of (30) by V T

⊥ yields (29), and thus any solution Q to (30) with the form Q = V⊥Q must
result in a solution Q to (29).

Once we have such Q (or equivalently Q), then (V , V ⊥)
T Ã(V , V ⊥) is a block diagonal

matrix, and the span of column vectors of V is a candidate space of the span of first r
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eigenvectors, namely span{ṽ1, . . . , ṽr}. We will verify the two spaces are identical in Lemma
7. Before stating that lemma, we first provide bounds on ‖Q‖max and ‖V − V ‖max.

Lemma 5 Suppose |λr| − ε > 4rµ(τ + 2rκ). Then, there exists a matrix Q ∈ R
(d−r)×r

such that Q = V⊥Q ∈ R
d×r is a solution to the quadratic equation (30), and Q satisfies

‖Q‖max ≤ ω/
√
d. Moreover, if rω < 1/2, the matrix V defined in (28) satisfies

‖V − V ‖max ≤ 2
√
µωr/

√
d . (31)

Here, ω is defined as ω = 8(1 + rµ)κ/(|λr| − ε).

The second claim of the lemma (i.e., the bound (31)) is relatively easy to prove once the
first claim (i.e., the bound on ‖Q‖max) is proved. To understand this, note that we can

rewrite V as V = (V + Q)(Ir + Q
T
Q)−1/2, and ‖QT

Q‖max can be controlled by a trivial

inequality ‖QT
Q‖max ≤ d‖Q‖2max ≤ w2. To prove the first claim, we construct a sequence

of matrices through recursion that converges to the fixed point Q, which is a solution to the
quadratic equation (30). For all iterates of matrices, we prove a uniform max-norm bound,

which leads to a max-bound on ‖Q‖max by continuity. To be specific, we initialize Q
0
= 0,

and given Q
t
, we solve a linear equation:

QL1 − L2Q = H −Q
t
HTQ

t
, (32)

and the solution is defined as Q
t+1

. Under some conditions, the iterate Q
t
converges to a

limit Q, which is a solution to (30). The next general lemma captures this idea. It follows
from Stewart (1990) with minor adaptations.

Lemma 6 Let T be a bounded linear operator on a Banach space B equipped with a norm
‖ · ‖. Assume that T has a bounded inverse, and define β = ‖T−1‖−1. Let ϕ : B → B be a
map that satisfies

‖ϕ(x)‖ ≤ η‖x‖2, and ‖ϕ(x)− ϕ(y)‖ ≤ 2ηmax{‖x‖, ‖y‖}‖x− y‖ (33)

for some η ≥ 0. Suppose that B0 is a closed subspace of B such that T−1(B0) ⊆ B0 and
ϕ(B0) ⊆ B0. Suppose y ∈ B0 that satisfies 4η‖y‖ < β2. Then, the sequence initialized with
x0 = 0 and iterated through

xk+1 = T−1(y + ϕ(xk)), k ≥ 0 (34)

converges to a solution x⋆ to Tx = y + ϕ(x). Moreover, we have x⋆ ⊆ B0, and ‖x⋆‖ ≤
2‖y‖/β.

To apply this lemma to the equation (30), we view B as the space of matrices R
d×r

with the max-norm ‖ · ‖max, and B0 as the subspace of matrices of the form V⊥Q where
Q ∈ R

(d−r)×r. The linear operator T is set to be the T (Q) = QL1−L2Q, and the map ϕ is
set to be the quadratic function ϕ(Q) = −QHTQ. Roughly speaking, under the assumption
of Lemma 6, the nonlinear effect caused by ϕ is weak compared with the linear operator
T . Therefore, it is crucial to show T is invertible, i.e. to give a good lower bound on
‖T−1‖−1

max = inf‖Q‖max=1 ‖T (Q)‖max. Since the norm is not orthogonal-invariant, a subtle
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issue arises when A is not of exact low rank, which will be discussed at the end of the
subsection.

If there is no perturbation (i.e., E = 0), all the iterates Q
t
are simply 0, so V is identical

to V . If the perturbation is not too large, the next lemma shows that the column vectors
of V span the same space as span{ṽ1, . . . , ṽr}.

In other words, with a suitable orthogonal matrix R, the columns of V R are ṽ1, . . . , ṽr.

Lemma 7 Suppose |λr| − ε > max{3τ, 64(1+ rµ)r3/2µ1/2κ}. Then, there exists an orthog-
onal matrix R ∈ R

r×r such that the column vectors of V R are ṽ1, . . . , ṽr.

Proof of Theorem 2 It is easy to check that under the assumption of Theorem 2, the
conditions required in Lemma 5 and Lemma 7 are satisfied. Hence, the two lemmas imply
Theorem 2.

To study the perturbation of individual eigenvectors, we assume, in addition to the con-
dition on |λr|, that λ1, . . . , λr satisfy a uniform gap, (namely δ > ‖E‖2). This additional
assumption is necessary, because otherwise, the perturbation may lead to a change of rel-
ative order of eigenvalues, and we may be unable to match eigenvectors from the order of
eigenvalues. Suppose R ∈ R

r×r is an orthogonal matrix such that V R are eigenvectors of
Ã. Now, under the assumption of Theorem 2, the column vectors of Ṽ and V R are identical
up to sign, so we can rewrite the difference Ṽ − V as

Ṽ − V = V (R− Ir) + (V − V ). (35)

We already provided a bound on ‖V − V ‖max in Lemma 5. By the triangular inequality,
we can derive a bound on ‖V ‖max. If we can prove a bound on ‖R − Ir‖max, it will finally
leads to a bound on ‖Ṽ − V ‖max. In order to do so, we use the Davis-Kahan theorem to
obtain an bound on 〈ṽi, vi〉 for all i ∈ [r]. This will lead to a max-norm bound on R − Ir
(with the price of potentially increasing the bound by a factor of r). The details about the
proof of Theorem 3 are in the appendix.

We remark that the conditions on |λr|−ǫ in Theorem 2 and Theorem 3 are only useful in
cases where |λr| > ‖A−Ar‖∞. Ideally, we would like to have results with assumptions only
involving λr and λr+1, like in the Davis-Kahan theorem. Unfortunately, unlike orthogonal-
invariant norms that only depend on the eigenvalues of a matrix, the max-norm ‖ · ‖max

is not orthogonal-invariant, and thus it also depends on the eigenvectors of a matrix. For
this reason, it is not clear whether we could obtain a lower bound on ‖T−1‖−1

max using only
the eigenvalues λr and λr+1 so that Lemma 6 could be applied. The analysis appears to be
difficult if we do not have a bound on ‖T−1‖−1

max, considering that even in the analysis of
linear equations, we need invertibility and a well-controlled condition number.

5.2 Asymmetric case

Let Ad, Ed be d1 + d2 square matrices defined as

Ad :=

(
0 A
AT 0

)
, Ed :=

(
0 E
ET 0

)
.
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Also denote Ãd := Ad +Ed. This augmentation of an asymmetric matrix into a symmetric
one is called Hermitian dilation. Here the superscript d means the Hermitian dilation. We
also use this notation to denote quantities corresponding to Ad and Ãd.

An important observation is that

(
0 A
AT 0

)(
ui
± vi

)
= ±σi

(
ui
± vi

)
.

From this identity, we know that Ad have nonzero eigenvalues ±σi where 1 ≤ i ≤ rank(A),
and its corresponding eigenvectors are (uTi ,± vTi )

T . For a given r, we stack these (normal-
ized) eigenvectors with indices i ∈ [r] into a matrix V d ∈ R

(d1+d2)×2r:

V d :=
1√
2

(
U U
V −V

)
.

Through the augmented matrices, we can transfer eigenvector results for symmetric matrices
to singular vectors of asymmetric matrices. However, we cannot directly invoke the results
proved for symmetric matrices, due to an issue about the coherence of V d: when d1 and d2
are not comparable, the coherence µ(V d) can be very large even when µ(V ) and µ(U) are
bounded. To understand this, consider the case where r = 1, d1 ≫ d2, and all entries of U
are O(1/

√
d1), and all entries of V are O(1/

√
d2). Then, the coherences µ(U) and µ(V ) are

O(1), but µ(V d) = O((d1 + d2)/d2) ≫ 1.

This unpleasant issue about the coherence, nevertheless, can be tackled if we consider
a different matrix norm. In order to deal with the different scales of d1 and d2, we define
the weighted max-norm for any matrix M with d1 + d2 rows as follows:

‖M‖w :=
∥∥∥
( √

d1Id1 0
0

√
d2Id2

)
M
∥∥∥
max

. (36)

In other words, we rescale the top d1 rows of M by a factor of
√
d1, and rescale the bottom

d2 rows by
√
d2. This weighted norm serves to balance the potential different scales of d1

and d2.

The proofs of theorems in Section 2.2 will be almost the same with those in the symmetric
case, with the major difference being the new matrix norm. Because the derivation is slightly
repetitive, we will provide concise proofs in the appendix . Similar to the decomposition in
(2.1),

Ad =

(
0 Ar

AT
r 0

)
+

(
0 A−Ar

AT −AT
r 0

)
=: Ad

r + (Ad −Ad
r),

where Ad
r is has rank 2r. Equivalently,

Ad
r =

r∑

i=1

σi(u
T
i , v

T
i )

T (uTi , v
T
i )−

r∑

i=1

σi(u
T
i ,−vTi )

T (uTi ,−vTi ).

Analogously, we define notations in (28)–(30) and use d in the superscript to signify
that they are augmented through Hermitian dilation. It is worthwhile to note that
Λd
1 = diag{σ1, . . . , σr,−σr, . . . ,−σ1}, and that min{| ± σi| : i ∈ [r]} = σr (a simi-
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lar quantity as |λr|). Recall µ0 = µ(U) ∨ µ(V ), τ0 =
√
d1/d2‖E‖∞ ∨

√
d2/d1‖E‖1

and ε0 =
√

d1/d2‖A − Ar‖∞ ∨
√
d2/d1‖A − Ar‖1. In the proof, we will also use

κ0 = max{
√
d1 ‖EV ‖max,

√
d2 ‖ETU‖max}, which is a quantity similar to κ.

The next key lemma, which is parallel to Lemma 5, provides a bound on the solution

Q
d
to the quadratic equation

Q
d
L
d
1 − L

d
2Q

d
= Hd −Q

d
(Hd)TQ

d
. (37)

Lemma 8 Suppose σr − ε0 > 16rµ0(τ0 + rκ0). Then, there exists a matrix Qd ∈
R
(d1+d2−2r)×2r such that Q

d
= V d

⊥Q
d ∈ R

(d1+d2)×2r is a solution to the quadratic equa-

tion (37), and Q
d
satisfies ‖Qd‖w ≤ ω0. Moreover, if rω0 < 1/2, the matrix V

d
defined in

(28) satisfies

‖V d − V d‖w ≤ 6
√
µ0 rω0 . (38)

Here, ω0 is defined as ω0 = 8(1 + rµ0)κ0/3(σr − ε0).

In this lemma, the bound (38) bears a similar form to (31): if we consider the max-norm,

the first d1 rows of V
d−V d correspond to the left singular vectors ui’s, and they scale with

1/
√
d1; and the last d2 rows correspond to the right singular vectors vi’s, which scale with

1/
√
d2. Clearly, the weighted max-norm ‖ · ‖w indeed helps to balance the two dimensions.
The rest of the proofs can be found in the appendix.
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A. Proofs for Section 2.1

Denote the column span of a matrix M by span(M). Suppose two matrices M1,M2 ∈ R
n×m

(m ≤ n) have orthonormal column vectors. It is known that (Stewart, 1990)

d(M1,M2) := ‖M1M
T
1 −M2M

T
2 ‖2 = ‖ sinΘ(M1,M2)‖2. (39)

where Θ(M1,M2) are the canonical angles between span(M1) and span(M2). Recall the
notations defined in (27), and also recall κ =

√
d‖EV ‖max, Λ1 = diag{λ1, . . . , λr}, Λ2 =

diag{λr+1, . . . , λn}, L1 = Λ1+E11, L2 = V⊥(Λ2+E22)V
T
⊥ and H = V⊥E21. The first lemma

bounds ‖H‖max.

Lemma 9 We have the following bound on ‖H‖max:

‖H‖max ≤ (1 + rµ)κ/
√
d.

Proof Using the definition E21 = V T
⊥ EV in (27), we can write H = V⊥V

T
⊥ EV . Since the

columns of V and V⊥ form an orthogonal basis in R
d, clearly

V V T + V⊥V
T
⊥ = Id . (40)

By Cauchy-Schwarz inequality and the definition of µ, for any i, j ∈ [d],

|(V V T )ij | =
r∑

k=1

|VikVjk| ≤
( r∑

k=1

V 2
ik

)1/2 ·
( r∑

k=1

V 2
jk

)1/2 ≤ rµ

d
.

Using the identity (40) and the above inequality, we derive

‖H‖max ≤ ‖EV ‖max + ‖V V TEV ‖max

≤ (1 + d‖V V T ‖max) ‖EV ‖max ≤ (1 + rµ)‖EV ‖max ,

which completes the proof.

Lemma 10 If |λr| > κr
√
µ, then L1 is an invertible matrix. Furthermore,

inf
‖Q0‖max=1

‖Q0L1 − L2Q0‖max ≥ |λr| − 3rµ(τ + rκ)− ε , (41)

where Q0 is an d× r matrix.

Proof Let Q0 be any d× r matrix with ‖Q0‖max = 1. Note

Q0L1 − L2Q0 = Q0Λ1 +Q0E11 − L2Q0.

We will derive upper bounds on Q0E11 and L2Q0, and a lower bound on Q0Λ1. Since
E11 = V TEV by definition, we expand Q0E11 and use a trivial inequality to derive

‖Q0E11‖max ≤ d ‖Q0V
T ‖max‖EV ‖max . (42)

27



Fan, Wang and Zhong

By Cauchy-Schwarz inequality and the definition of µ in (3), for i, j ∈ [d],

|(Q0V
T )ij | ≤

r∑

k=1

|(Q0)ikVjk| ≤
( r∑

k=1

(Q0)
2
ik

)1/2 ( r∑

k=1

V 2
jk

)1/2 ≤
√
r ·
√

rµ

d
,

Substituting ‖EV ‖max = κ/
√
d into (42), we obtain an upper bound:

‖Q0E11‖max ≤ κr
√
µ . (43)

To bound L2Q0 = (V⊥E22V
T
⊥ + (A−Ar))Q0, we use the identity (40) and write

V⊥E22V
T
⊥ Q0 = V⊥V

T
⊥ EV⊥V

T
⊥ Q0 = (Id − V V T )E(Id − V V T )Q0 .

Using two trivial inequalities ‖EQ0‖max ≤ ‖E‖∞‖Q0‖max = ‖E‖∞ and ‖V TQ0‖max ≤
‖V T ‖∞‖Q0‖max ≤

√
d, we have

‖E(Id − V V T )Q0‖max ≤ ‖EQ0‖max + r‖EV ‖max‖V TQ0‖max

≤ ‖E‖∞ + r
√
d ‖EV ‖max = τ + rκ .

In the proof of Lemma 9, we showed ‖V V T ‖max ≤ rµ/d. Thus,

‖V⊥E22V
T
⊥ Q0‖max ≤ (1 + d ‖V V T ‖max) · ‖E(Id − V V T )Q0‖max ≤ (1 + rµ)(τ + rκ) .

Moreover, ‖(A−Ar)Q0‖max ≤ ‖A−Ar‖∞‖Q0‖max = ε. Combining the two bounds,

‖L2Q0‖max ≤ (1 + rµ)(τ + rκ) + ε. (44)

It is straightforward to obtain a lower bound on ‖Q0Λ1‖max: since there is an entry of Q0,
say (Q0)ij , that has an absolute value of 1, we have

‖Q0Λ1‖max ≥ |(Q0)ijλj | ≥ |λr|. (45)

To show L1 is invertible, we use (42) and (45) to obtain

‖Q0L1‖max ≥ ‖Q0Λ1‖max − ‖Q0E11‖max ≥ |λr| − κr
√
µ .

When |λr| − κr
√
µ > 0, L1 must have full rank, because otherwise we can choose an

appropriate Q0 in the null space of L
T
1 so that Q0L1 = 0, which is a contradiction. To prove

the second claim of the lemma, we combine the lower bound (45) with upper bounds (43)
and (44) to derive

‖Q0L1 − L2Q0‖max ≥ ‖Q0L1‖max − ‖Q0E11‖max − ‖L2Q0‖max

≥ |λr| − κr
√
µ− (1 + rµ)(τ + rκ)− ε

≥ |λr| − 3rµ(τ + rκ)− ε ,

which is exactly the desired inequality.
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Next we prove Lemma 6. This lemma follows from Stewart (1990), with minor changes
that involves B0. We provide a proof for the sake of completeness.

Proof of Lemma 6 Let us write α = ‖y‖ for shorthand and recall β = ‖T−1‖−1. As
the first step, we show that the sequence {xk}∞k=0 is bounded. By construction in (34), we
bound ‖xk+1‖ using ‖xk‖:

‖xk+1‖ ≤ ‖T−1‖(‖y‖+ ‖ϕ(xk)‖) ≤
α

β
+

η

β
‖xk‖2.

We use this inequality to derive an upper bound on {xk} for all k. We define ξ0 = 0 and

ξk+1 =
α

β
+

η

β
ξ2k, k ≥ 0,

then clearly ‖xk‖ ≤ ξk (which can be shown by induction). It is easy to check (by induction)
that the sequence {ξk}∞k=1 is increasing. Moreover, since 4αη < β2, the quadratic function

φ(ξ) =
α

β
+

η

β
ξ2,

has two fixed points (namely solutions to φ(ξ) = ξ), and the smaller one satisfies

ξ⋆ =
2α

β +
√
β2 − 4ηα

<
2α

β
.

If ξk < ξ⋆, then ξk+1 = φ(ξk) ≤ φ(ξ⋆) = ξ⋆. Thus, by induction, all ξk are bounded by ξ⋆.
This implies ‖xk‖ ≤ ξ⋆ < 2α/β. The next step is to show that the sequence {xk} converges.
Using the recursive definition (34) again, we derive

‖xk+1 − xk‖ ≤ ‖T−1‖‖ϕ(xk)− ϕ(xk−1)‖
≤ 2β−1ηmax{‖xk‖, ‖xk−1‖}‖xk − xk−1‖

≤ 4αη

β2
‖xk − xk−1‖.

Since 4αη/β2 < 1, the sequence {xk}∞k=0 is a Cauchy sequence, and convergence is secured.
Let x⋆ ∈ B be the limit. It is clear by assumption that xk ∈ B0 implies xk+1 ∈ B0, so
x⋆ ∈ B0 and ‖x⋆‖ ≤ 2α/β by continuity.

The final step is to show x⋆ is a solution to Tx = y + φ(x). Because {xk}∞k=0 is
bounded and φ satisfies (33), the sequence {φ(xk)}∞k=0 converges to φ(x⋆) by continuity
and compactness. The linear operator T is also continuous, so we can take limits on both
sides of Txk+1 = y + φ(xk), we conclude that x⋆ is a solution to Tx = y + φ(x).

With all the preparations, we are now ready to present the key lemma. As discussed in
Section 5, we set

B0 := {Q ∈ R
d×r : Q = V⊥Q for some Q ∈ R

(d−r)×r}.
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which is a subspace of B = R
d×r. Consider the matrix max-norm ‖ · ‖max in B.

Lemma 11 Suppose |λr| − ε > 4rµ(τ + 2rκ). Then there exists a solution Q ∈ B0 to the
equation (30) with

‖Q‖max ≤ 8(1 + rµ)κ(
|λr| − ε

)√
d
.

Proof We will invoke Lemma 6 and apply it to the quadratic equation (30). To do so, we
first check the conditions required in Lemma 6.

Let the linear operator T be T Q = QL1−L2Q. By Lemma 10, T has a bounded inverse,
and β := ‖T −1‖−1

max is bounded from below:

β ≥ |λr| − 3rµ(τ + rκ)− ε . (46)

Let us define ϕ by ϕ(Q) = QHTQ. To check the inequalities in (33), observe that

‖ϕ(Q)‖max ≤ rd‖Q‖max‖H‖max‖Q‖max ≤ (1 + rµ)κr
√
d ‖Q‖2max

where we used Lemma 9. We also observe

‖ϕ(Q1)− ϕ(Q2)‖max = ‖Q1H
T (Q1 −Q2) + (Q1 −Q2)H

TQ2‖max

≤ rd‖Q1‖max‖H‖max‖Q1 −Q2‖max + rd‖Q1 −Q2‖max‖H‖max‖Q2‖max

≤ 2(1 + rµ)κr
√
d max{‖Q1‖max, ‖Q2‖max}‖Q1 −Q2‖max.

Thus, if we set η = (1 + rµ)κr
√
d, then inequalities required in (33) are satisfied. For any

Q with Q = V⊥Q ∈ B0, obviously ϕ(Q) = V⊥QHTQ ∈ B0. To show T −1(Q) ∈ B0, let
Q0 = T −1(Q) and observe that

Q0L1 − L2Q0 = Q ∈ B0.

By definition, we know L2Q0 = V⊥(E22 + Λ2)V
T
⊥ Q0 ∈ B0, so we deduce Q0L1 ∈ B0. Our

assumption implies |λr| > κr
√
µ, so by Lemma 10, the matrix L1 is invertible, and thus

Q0 ∈ B0. The last condition we check is 4η‖H‖max < β2. By Lemma 9 and (46), this is
true if

4(1 + rµ)2κ2r <
[
|λr| − 3rµ(τ + rκ)− ε

]2
.

The above inequality holds when |λr| > 4rµ(V )(τ + 2rκ) + ε. Under this condition, we
have, by Lemma 6,

‖Q‖max ≤ 2(1 + rµ)κ(
|λr| − 3rµ(τ + rκ)− ε

)√
d
≤ 8(1 + rµ)κ

(|λr| − ε)
√
d
,

where, the second inequality is due to 3rµ(τ + rκ) ≤ 3(|λr| − ε)/4.

The next lemma is a consequence of Lemma 11. We define, as in Lemma 5, that
ω = 8(1 + rµ)κ/(|λr| − ε).
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Lemma 12 If rω2 < 1/2, then

‖(Ir +Q
T
Q)−1/2 − Ir‖max ≤ rω2, ‖(Ir +Q

T
Q)−1/2‖max ≤ 3

2
.

Proof By the triangular inequality, the second inequality is immediate from the first one.

To prove the first inequality, suppose the spectral decomposition of Q
T
Q is Q

T
Q = U ΣU

T
,

where Σ = diag{λ1, . . . , λr} where λ1 ≥ . . . ≥ λr, and U = [u1, u2, . . . , ur] where u1, . . . , ur

are orthonormal vectors in R
r. Since Q

T
Q has nonnegative eigenvalues, we have λr ≥ 0.

Using these notations, we can rewrite the matrix as

(Ir +Q
T
Q)−1/2 − Ir =

r∑

i=1

(
(1 + λi)

−1/2 − 1
)
uiu

T
i .

Note that λ1 ≤ ‖QT
Q‖ ≤ rd‖Q‖2max ≤ rω2, which implies λ1 < 1/2. It is easy to check that

1+|x| ≥ (1+x)−1/2 ≥ 1−|x| whenever |x| < 1/2. From this fact, we know |(1+λi)
−1/2−1| ≤

λi ≤ rω2. Using Cauchy-Schwarz inequality, we deduce that for any j, k ∈ [d],

∣∣[(Ir +Q
T
Q)−1/2 − Ir]jk

∣∣ ≤
r∑

i=1

∣∣(1 + λi)
−1/2 − 1

∣∣ ·
∣∣U jiUki

∣∣

≤ rω2 ·
( r∑

i=1

U
2
ji

)1/2( r∑

i=1

U
2
ki

)1/2

≤ rω2.

This leads to the desired max-norm bound.

Proof of Lemma 5 The first claim of the lemma (the existence of Q and its max-norm
bound) follows directly from Lemma 11. To prove the second claim, we split V − V into
two parts:

V − V = V
(
(Ir +QTQ)−1/2 − Ir

)
+ V⊥Q(Ir +QTQ)−1/2

= V
(
(Ir +Q

T
Q)−1/2 − Ir

)
+Q(Ir +Q

T
Q)−1/2, (47)

where we used identity V T
⊥ V⊥ = Id−r. Note that rω < 1/2 implies rω2 = (rω)2/r <

1/(4r) < 1/2. Thus, we can use Lemma 12 and derive

∥∥∥V
(
(Ir +Q

T
Q)−1/2 − Ir

)∥∥∥
max

≤
√

r2µ

d
‖(Ir +Q

T
Q)−1/2 − Ir‖max ≤

√
µ

d
r2ω2.
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where we used Cauchy-Schwarz inequality. Using the above inequality and the bound on
‖Q‖max (namely, the first claim in the lemma),

‖V − V ‖max ≤
√

µ

d
r2ω2 + r‖Q‖max‖(Ir +Q

T
Q)−1/2‖max

≤ (
√
µω2r2 + 3ωr/2)/

√
d.

Simplifying the bound using rω ≤ 1/2 and a trivial bound µ ≥ 1, we obtain (31).

Proof of Lemma 7 Using the identity in (39), it follows from Davis-Kahan sinΘ theorem
(Davis and Kahan, 1970) and Weyl’s inequality that

d(Ṽ , V ) ≤ ‖E‖2
δr − ‖E‖2

,

when δr > ‖E‖2, where δr = |λr| − |λr+1|. Since λr+1 ≤ ‖A− Ar‖2 ≤ ε and ‖E‖2 ≤ τ , the
condition |λr| − ε > 3τ implies δr > 3‖E‖2. Hence, we have d(Ṽ , V ) < 1/2. Moreover,

d(V , V ) = ‖V V
T − V V T ‖2 ≤ ‖V (V − V )T ‖2 + ‖(V − V )V T ‖2

≤ 2‖V − V ‖2 ≤ 2
√
rd ‖V − V ‖max

≤ 4r3/2
√
µω,

where we used a trivial inequality ‖M‖2 ≤ ‖M‖F ≤
√
rd ‖M‖max for any M ∈ R

d×r. Under
the condition |λr|−ǫ > 64(1+rµ)r3/2µ1/2κ, it is easy to check that 4r3/2

√
µω ≤ 1/2. Thus,

we obtain d(V , V ) < 1/2. By the triangular inequality,

d(Ṽ , V ) ≤ d(Ṽ , V ) + d(V , V ) < 1.

Since (V , V ⊥)
T Ã(V , V ⊥) is a block diagonal matrix, span(V ) is the same as the subspace

spanned by r eigenvectors of Ã. We claim that span(V ) = span(ṽ1, . . . , ṽr). Otherwise, there
exists an eigenvector u ∈ span(V ) whose associated eigenvalue is distinct from λ̃1, . . . , λ̃r

(since δr > 3‖E‖2), and thus u is orthogonal to ṽ1, . . . , ṽr. Therefore,

‖(Ṽ Ṽ T − V V
T
)u‖2 = ‖V V

T
u‖2 = ‖u‖2.

This implies d(Ṽ , V ) ≥ 1, which is a contradiction.

Proof of Theorem 3 We split Ṽ − V into two parts—see (35). In the following, we first
obtain a bound on ‖R− Ir‖max, which then results in a bound on ‖Ṽ − V ‖max.

Under the assumption of the theorem, rω < 1/2, so

‖V ‖max ≤ ‖V − V ‖max + ‖V ‖max ≤ (2
√
µ rω)/

√
d+

√
rµ/

√
d ≤ 2

√
rµ/d . (48)
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To bound ‖R− Ir‖max, we rewrite R as R = V
T
V R = V

T
Ṽ . Expand V according to (28),

R = (Ir +Q
T
Q)−1/2(V +Q)T Ṽ .

Let us make a few observations: (a) ‖QT
Ṽ ‖max ≤

√
d‖Q‖max ≤ ω by Cauchy-Schwarz in-

equality; (b) ‖Ṽ TV ‖max ≤ 1 by Cauchy-Schwarz inequality again; and (c) ‖(Ir+Q
T
Q)−1/2−

Ir‖max ≤ rω2 by Lemma 12. Using these inequalities, we have

‖R− (V +Q)T Ṽ ‖max ≤ r‖(Ir +Q
T
Q)−1/2 − Ir‖max ‖(V +Q)T Ṽ ‖max

≤ r2ω2(1 + ω) . (49)

Furthermore, by Davis-Kahn sinΘ theorem (Davis and Kahan, 1970) and Weyl’s inequality,
for any i ∈ [r],

sin θ(vi, ṽi) =
√
1− 〈vi, ṽi〉2 ≤

‖E‖2
δ − ‖E‖2

. (50)

when δ > ‖E‖2 (δ is defined in Theorem 3). This leads to the bound sin θ(vi, ṽi) ≤ 2‖E‖2/δ
(which is a simplified bound). This is because when δ ≥ 2‖E‖2, the bound is implied by
(50); when δ < 2‖E‖2, the bound trivially follows from sin θ(vi, ṽi) ≤ 1. We obtain, up to
sign, for i ≤ r,

√
1− 〈vi, ṽi〉 ≤

√
1− 〈vi, ṽi〉2 ≤

2‖E‖2
δ

. (51)

In other words, each diagonal entry of Ir−V T Ṽ , namely 1−〈vi, ṽi〉, is bounded by 4‖E‖22/δ2.
Since {ṽi}ri=1 are orthonormal vectors, we have 1− 〈vi, ṽi〉2 ≥∑i′ 6=i〈vi, ṽi′〉2 ≥ 〈vi, ṽj〉2 for

any i 6= j, which leads to bounds on off-diagonal entries of V T Ṽ − Ir. We will combine the
two bounds. Note that when δ ≥ 2‖E‖2,

‖V T Ṽ − Ir‖max ≤ max
{4‖E‖22

δ2
,
2‖E‖2

δ

}
=

2‖E‖2
δ

;

and when δ < 2‖E‖2, ‖V T Ṽ −Ir‖max is trivially bounded by 1 (up to sign), which is trivially
bounded by 2‖E‖2/δ. In either case, we deduce

‖V T Ṽ − Ir‖max ≤ 2‖E‖2
δ

. (52)

Using the bounds in (49) and (52) and ‖QT
Ṽ ‖max ≤ ω, we obtain

‖R− Ir‖max ≤ ‖R− (V +Q)T Ṽ ‖max + ‖V T Ṽ − Ir‖max + ‖QT
Ṽ ‖max

≤ r2ω2(1 + ω) +
2‖E‖2

δ
+ ω .
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We use the inequality rω < 1/2 to simplify the above bound:

‖R− Ir‖max ≤ r2ω2(1 + ω) + ω + 2‖E‖2/δ ≤ (
1

2
+

1

4
+ 1)rω + 2‖E‖2/δ

≤ 2rω + 2‖E‖2/δ . (53)

We are now ready to bound ‖Ṽ − V ‖max. In (35), we use the bounds (48), (53), (31) to
obtain

‖Ṽ − V ‖max = ‖V (R− Ir) + (V − V )‖max ≤ r‖V ‖max‖R− Ir‖max + ‖V − V ‖max

≤ 2r
√

rµ/d (2rω + 2‖E‖2/δ) + 2r
√
µω/

√
d

≤ (4r5/2µ1/2 + 2rµ1/2)ω√
d

+
4r3/2µ1/2‖E‖2

δ
√
d

≤ 48(1 + rµ)r5/2µ1/2κ

(|λr| − ε)
√
d

+
4r3/2µ1/2‖E‖2

δ
√
d

.

Using a trivial inequality κ ≤ √
rµ τ , the above bound leads to

‖Ṽ − V ‖max = O
( r4µ2τ

(|λr| − ε)
√
d
+

r3/2µ1/2‖E‖2
δ
√
d

)
.

B. Proofs for Section 2.2

Recall the definitions of µ0, τ0, κ0 and ε0 in Section 5.2. Similar to the symmetric case, we
will use the following easily verifiable inequalities.

κ0 ≤
√
rµ0 τ0, ‖E‖2 ≤

(√
d1/d2 ‖E‖∞ ·

√
d2/d1 ‖E‖1

)1/2
≤ τ0. (54)

Lemma 13 Parallel to Lemma 9, we have

‖Hd‖w ≤ (1 + rµ0)κ0 ,

where κ0 =
√
d1 ‖EV ‖max ∨

√
d2‖ETU‖max as defined.

Proof Recall Hd = V d
⊥(V

d
⊥)

TEdV d = EdV d − V d(V d)TEdV d. Note V d(V d)T =
diag(UUT , V V T ) and ‖UUT ‖max ≤ rµ(U)/d1, ‖V V T ‖max ≤ rµ(V )/d2. Thus,

‖Hd‖w ≤ ‖EdV d‖w + ‖V d(V d)TEdV d‖w
≤ (1 + d1‖UUT ‖max ∨ d2‖V V T ‖max) ‖EdV d‖w ≤ (1 + rµ0)κ0 .
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Lemma 14 Parallel to Lemma 10, if σr > 2κ0r
√
µ0, then L

d
1 is a non-degenerate matrix.

Furthermore, we have the following bound

inf
‖Qd

0
‖w=1

‖Qd
0L

d
1 − L

d
2Q

d
0‖w ≥ σr − 4rµ0(τ0 + rκ0)− ε0 , (55)

where Qd
0 ∈ R

(d1+d2)×2r.

Proof Following similar derivations with Lemma 10, we have ‖Qd
0E

d
11‖w ≤ 2κ0r

√
µ0, and

for any matrix Qd
0 ∈ R

(d1+d2)×2r with ‖Qd
0‖w = 1,

‖Ld
2Q

d
0‖w = ‖(Ad −Ad

r)Q
d
0 + V d

⊥(V
d
⊥)

TEdV d
⊥(V

d
⊥)

TQd
0‖w ≤ ε0 + (1 + rµ0)(τ0 + rκ0).

This can be checked by expressing Qd
0 as a block matrix and expand the matrix mul-

tiplication. In particular, one can verify that (i) ‖(Ad − Ad
r)Q

d
0‖w ≤ ε0; (ii) For any

matrix M with d1 + d2 rows, ‖V d(V d)TM‖w ≤ rµ0‖M‖w; (iii) ‖EdQd
0‖w ≤ τ0; (iv)

‖EdV d(V d)TQd
0‖w ≤ rκ0. Moreover, ‖Qd

0Λ
d
1‖w ≥ σr‖Qd

0‖w ≥ σr. Thus,

inf
‖Qd

0
‖w=1

‖Qd
0L

d
1 − L

d
2Q

d
0‖w ≥ σr − 4rµ0(τ0 + rκ0)− ε0 ,

which is the desired inequality in the lemma. In addition, L
d
1 is non-degenerate if

σr > 2κ0r
√
µ0 > 0.

Lemma 15 Parallel to Lemma 11, there is a solution Q
d ∈ B0 to the system (37) such that

if σr − ε0 > 16rµ0(τ0 + rκ0), then

‖Qd‖w ≤ 8(1 + rµ0)κ0
3(σr − ε0)

.

Proof We again invoke Lemma 6. Let B be the space R
(d1+d2)×2r equipped with the

weighted max-norm ‖ · ‖w. We also define B0 as a subspace of B consisting of matrices
of the form V d

⊥Q
d where Qd has size (d1 + d2 − 2r) × 2r. Let the linear operator T d be

T dQ
d
:= Q

d
L
d
1−L

d
2Q

d
. First notice from Lemma 14, T d is a linear operator with bounded

inverse, i.e., β := ‖(T d)−1‖−1
w is bounded from below by

β ≥ σr − 4rµ0(τ0 + rκ0)− ε0 .

Let ϕ be a map given by ϕ(Q
d
) = Q

d
(Hd)TQ

d
. Note that Hd ∈ B. Using the (easily

verifiable) inequality

‖M1M
T
2 M3‖w ≤ 2r‖M1‖w‖MT

2 M3‖max ≤ 4r‖M1‖w‖M2‖w‖M3‖w ∀M1,M2,M3 ∈ B,
(56)

we derive, by the bound on ‖Hd‖w (Lemma 13), that

‖ϕ(Qd
)‖w ≤ 4r‖Hd‖w‖Qd‖2w ≤ 4r(1 + rµ0)κ0 ‖Qd‖2w .
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Moreover, using the inequality (56) and the bound on ‖Hd‖w (Lemma 13),

‖ϕ(Qd
1)− ϕ(Q

d
2)‖w ≤ 4r‖Qd

1‖w‖Hd‖w‖Qd
1 −Q

d
2‖w + 4r‖Qd

1 −Q
d
2‖w‖Hd‖w‖Qd

2‖w
≤ 8r(1 + rµ0)κ0 max{‖Qd

1‖w, ‖Q
d
2‖w}‖Q

d
1 −Q

d
2‖w.

Thus, we can choose η = 4r(1 + rµ0)κ0, and the condition (33) in Lemma 6 is satisfied. To
ensure 4η‖Hd‖w < β2, it suffices to require (again by Lemma 13),

16r(1 + rµ0)
2κ20 <

[
σr − 4rµ0(τ0 + rκ0)− ε0

]2
.

It is easily checkable that the above inequality holds when σr−ε0 > 16rµ0(τ0+rκ0). Under
this condition, by Lemma 6,

‖Qd‖w ≤ 2‖Hd‖w
β

≤ 2(1 + rµ0)κ0
σr − 4rµ(τ0 + rκ0)− ε0

≤ 2(1 + rµ0)κ0
σr − ε0 − (σr − ε0)/4

≤ 8(1 + rµ0)κ0
3(σr − ε0)

,

which completes the proof.

Proof of Lemma 8 The first claim of the lemma (existence of Q
d
and its max-norm bound)

follows from Lemma 15. To prove the second claim, we split V
d − V d into two parts:

V
d − V d = V d

(
(I2r + (Q

d
)T Q

d
)−1/2 − I2r

)
+Q

d
(I2r + (Q

d
)T Q

d
)−1/2, (57)

Note κ0 ≤ τ0
√
rµ0 (see (54)). It can be checked that the condition σr−ε0 > 16rµ0(τ0+rκ0)

implies rω0 < 1/3. Since ‖(Qd
)TQ

d‖max ≤ 2ω2
0 and ‖(Qd

)TQ
d‖2 ≤ 2r‖(Qd

)TQ
d‖max ≤

4rω2
0 < 1/2, similar to Lemma 12, we have

‖(I2r + (Q
d
)TQ

d
)−1/2 − I2r‖max ≤ 4rω2

0, (58)

‖(I2r + (Q
d
)TQ

d
)−1/2‖max ≤ 3/2.

This yields

‖V d − V d‖w = ‖V d
(
(I2r + (Q

d
)TQ

d
)−1/2 − I2r

)
‖w + ‖Qd

(I2r + (Q
d
)TQ

d
)−1/2‖w

≤
√
2r2µ0 4rω2

0 + 2r · 3/2 · ‖Qd‖w ≤ 8
√
µ0 ω

2
0r

2 + 3ω0r (59)

≤ 8
√
µ0 ω0r/3 + 3

√
µ0 ω0r ≤ 6

√
µ0 rω0. (60)

Lemma 16 Suppose σr − ε0 > max{16rµ0(τ0 + rκ0), 64r
3/2µ

1/2
0 (1 + rµ0)κ0}. Then, there

exists an orthogonal matrix RV ∈ R
r×r (or RU ) such that the column vectors of V RV (and

URU ) are the top r right (and left) singular vectors of Ã.
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Proof Similar to the proof of Lemma 7, we will prove d(V , V ) < 1/2 and d(Ṽ , V ) ≤ 1/2,
which would then imply that V and Ṽ are the same only up to an orthogonal transformation.
The same is true for U and Ũ , and we will leave out its proof.

By Weyl’s inequality for singular values (also known as Mirsky’s theorem (Mirsky,
1960)), for any i, |σ̃i − σi| ≤ ‖E‖. By Wedin’s perturbation bounds for singular vectors
(Wedin, 1972),

d(Ṽ , V ) ≤ ‖E‖2
σr − ‖E‖2

.

Note that ‖E‖2 ≤ τ0 (see (54)) Under the assumption in the lemma, clearly σr − ε0 > 3τ0,

and we have d(Ṽ , V ) ≤ 1/2. Moreover, by Lemma 8, we have ‖V d − V d‖w ≤ 6rω0
√
µ0.

Note that each column vector of V d and V
d
are (d1 + d2)-dimensional. Looking at the last

d2 dimensions, we have ‖V − V ‖max ≤ 6rω0

√
µ0/d1.

d(V , V ) ≤ 2‖V − V ‖ ≤ 2
√
rd1‖V − V ‖max ≤ 12r3/2µ

1/2
0 ω0.

Under the assumption of the lemma, d(V , V ) ≤ 1/2. Therefore, we deduce d(Ṽ , V ) = 0,
and conclude that there exists an orthogonal matrix RV ∈ R

r×r such that Ṽ = V RV .

Proof of Theorem 4 Lemma 8, together with Lemma 16, implies Theorem 4.

Proof of Theorem 5 Similar to the proof of Theorem 3, we first split the difference
Ṽ d − V d:

Ṽ d − V d = V
d
(Rd − I2r) + (V

d − V d). (61)

To bound the first term, note that under our assumption, rω0 < 1/3 (derived in the proof

of Lemma 8), it is easy to check ‖V d‖w ≤ 3
√
rµ0. We rewrite the matrix Rd as

Rd = (I2r + (Q
d
)TQ

d
)−1/2(V d +Q

d
)T Ṽ d .

Notice that ‖(Qd
)T Ṽ d‖max ≤

√
2‖Qd‖w ≤

√
2ω0, ‖(Ṽ d)TV d‖max ≤ 1 and

‖Rd − (V d +Q
d
)T Ṽ d‖max ≤ 2r‖(I2r + (Q

d
)TQ

d
)−1/2 − I2r‖max ‖(V d +Q

d
)T Ṽ d‖max

≤ 8r2ω2
0(1 +

√
2ω0) .

where we used (58). Following the same derivations as in the proof of Theorem 3, and using
the (easily verifiable) fact ‖Ed‖2 = ‖E‖2, we can bound ‖(V d)T Ṽ d − I2r‖max by 2‖E‖2/δ0.
Thus, using rω0 ≤ 1/3, under δ0 > 2‖E‖2, we have

‖Rd − I2r‖max ≤ ‖Rd − (V d +Q
d
)T Ṽ d‖max + ‖(V d)T Ṽ d − I2r‖max + ‖(Qd

)T Ṽ d‖max

≤ 8r2ω2
0(1 +

√
2ω0) +

2‖E‖2
δ0

+
√
2ω0 < 4

√
2 rω0 +

2‖E‖2
δ0

. (62)
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Finally, in order to bound ‖Ṽ d − V d‖w, we use (60), (61) and (62), and derive

‖Ṽ d − V d‖w = ‖V d
(Rd − I2r) + (V

d − V d)‖w ≤ 2r‖V d‖w‖Rd − I2r‖max + ‖V d − V d‖w

≤ 6r
√
rµ0

(
4
√
2 rω0 +

2‖E‖2
δ0

)
+ 6r

√
µ0 ω0 ≤

(
40r5/2 ω0 + 12r3/2

‖E‖2
δ0

)
· √µ0

≤ 107r5/2µ
1/2
0 (1 + rµ0)κ0
σr − ε0

+
12r3/2µ

1/2
0 ‖E‖2
δ0

= O
( r4µ2

0τ0
σr − ε0

+
r3/2µ

1/2
0 ‖E‖2
δ0

)
.

This completes the proof.

C. Proofs for Section 3

Proof of Proposition 3 Note first by Weyl’s inequality, |λi − λi| ≤ ‖Σu‖ ≤ C. So this
implies that λi = λi(B

TB) ≍ d if and only if λi = λi(Σ) ≍ d for i ≤ r. And furthermore
the eigenvalues of BTB/d are distinct if and only if min1≤i 6=j≤r |λi(Σ)− λj(Σ)|/λj(Σ) > 0.

To prove the equivalency of bounded ‖B‖max and bounded coherence. We first prove
the necessary condition. Again from Weyl’s inequality, λi(Σ) ≤ C for i ≥ r + 1. If µ(V ) is
bounded, Σii must also be bounded, since Σii ≤

∑r
j=1 v

2
ijλj(Σ) + λr+1(Σ) ≤ C(µ(V ) + 1).

Therefore ‖bi‖2 ≤ ‖bi‖2 + (Σu)ii = Σii implies ‖B‖max is bounded. Namely, the factors are
pervasive.

On the contrary, if pervasiveness holds, we need to prove that µ(V ) is bounded. Let
B = (̃b1, . . . , b̃r). Obviously λi = ‖b̃i‖2 ≍ d and vi = b̃i/‖b̃i‖. Without loss of generality,
assume λ̄i’s are decreasing. So ‖vi‖∞ ≤ ‖B‖max/‖b̃i‖ ≤ C/

√
d and µ(V ) ≤ C where

V = (v1, . . . , vr). By Theorem 3,

‖vi − vi‖∞ ≤ C
‖Σu‖∞
γ
√
d

,

where γ = min{λi − λi+1 : 1 ≤ i ≤ r} ≍ d with the convention λr+1 = 0. Hence, we have
‖vi‖∞ ≤ C/

√
d, which implies bounded coherence µ(V ).
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