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Abstract

Big data is ubiquitous in various fields of sciences, engineering, medicine, social sci-
ences, and humanities. It is often accompanied by a large number of variables and
features. While adding much greater flexibility to modeling with enriched feature space,
ultra-high dimensional data analysis poses fundamental challenges to scalable learning
and inference with good statistical efficiency. Sure independence screening is a simple
and effective method to this endeavor. This framework of two-scale statistical learning,
consisting of large-scale screening followed by moderate-scale variable selection intro-
duced in Fan and Lv (2008), has been extensively investigated and extended to various
model settings ranging from parametric to semiparametric and nonparametric for re-
gression, classification, and survival analysis. This article provides an overview on the
developments of sure independence screening over the past decade. These developments
demonstrate the wide applicability of the sure independence screening based learning

and inference for big data analysis with desired scalability and theoretical guarantees.
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1 Introduction

Big data (stat07989) has emerged in recent years as a prominent feature of many ap-
plications from different disciplines of sciences, engineering, medicine, social sciences, and
humanities, enabling more capacity for refined discoveries, recommendations, and policies
[18]. Among many types of big data, ultra-high dimensional data in which the number of
features p can be much larger than the number of observations n is central to a spectrum of
tasks of statistical learning and inference in the past ten years or so. Scalability is a major
challenge of ultra-high dimensional data analysis. Meanwhile it is well known that addi-
tional intrinsic challenges of ultra-high dimensional data analysis include high collinearity,
spurious correlation, and noise accumulation [20, 15, 21, 22]. For example, in the presence
of a large number of noise features high-dimensional classification using all the features can
behave like random guess [15]. To improve scalability and reduce noise accumulation, one
possible approach is reducing the dimensionality of the feature space from a very large scale
to a moderate one in a computationally fast way and implementing refined learning and
inference in the much reduced feature space.

The ideas of feature screening have been widely employed in practice partly for compu-
tational reasons. In addition to the gain in computational efficiency, one can in fact also
expect improved statistical efficiency in estimation and inference due to alleviated noise
accumulation by dimensionality reduction (stat07846). For the aforementioned classifi-
cation problem, one can reduce the number of features by applying two-sample t-test to each
variable and then implement a classification procedure using the selected variables. This
approach is a specific case of the sure independence screening and has high classification
power [15].

To appreciate the point, let us consider a simple simulation example which provides a
prototype for the common goals desired by practitioners analyzing high-dimensional data.
We generate 100 data sets from Gaussian linear model given in (1) with sample size n = 120,
dimensionality p = 1000, design matrix X ~ N(0,I, ® ¥) for & = (0.5V 7)., ;. and
error vector € ~ N(0,021,) for o0 = 1. The true regression coefficient vector 3, has the first
s = 10 components being nonzero and each nonzero component is selected randomly from
{£1}. For each data set, we apply the model-free knockoffs method introduced in [7] coupled
with the ISEE estimator in [27] to control the false discovery rate (FDR) (stat01950)
[2] for feature selection, where the target FDR level is set as ¢ = 0.2. For sparse model fitting,
we employ Lasso (stat07543.pub2) [49], SCAD (stat07568) [19], and sure independence
screening (SIS) [20] followed by the Lasso and SCAD as variable selectors, referred to as SIS-
Lasso and SIS-SCAD, respectively. With the set of identified covariates S by the model-free



knockoffs procedure, we can also construct an estimate for the error standard deviation &.
Table 1 summarizes the simulation results for the FDR, power, and estimated error standard
deviation & over 100 replications. From Table 1, we see that feature screening using SIS can

also boost the accuracy of large-scale estimation and inference.

Table 1:  The means (standard errors) of different measures by all the methods for the

simulation example in Section 1

Method FDR Power o

Lasso 0.158(0.015)  0.789(0.030)  1.248(0.039)
SCAD 0.150(0.018)  0.711(0.038)  1.224(0.045)
SIS-Lasso  0.167(0.017)  0.841(0.029)  1.173(0.041)
SIS-SCAD 0.147(0.017) 0.903(0.025) 1.033(0.032)

2 Sure independence screening

We now begin the journey of feature screening in ultra-high dimensional feature space. A
common practice for feature screening is using independence learning which treats the fea-
tures as independent and thus applies marginal regression techniques. Yet the theoretical
properties of such computationally expedient procedures were not well understood for a long
while. Motivated by the aforementioned fundamental challenges of ultra-high dimensional
data analysis, the sure independence screening (SIS) was formally introduced and rigorously
justified in [20] to address both issues of scalability and noise accumulation. Let us consider
the linear regression model
y=XB+e, (1)
where y = (y1, - ,yn)? is an n-dimensional response vector, X = (x1,-++,X,) is an n x p
design matrix consisting of p covariates x;’s, 8 = (81, -, Bp)T is a p-dimensional regression
coefficient vector, and € = (eq,- - - ,En)T is an n-dimensional error vector. The focus of [20]
is the ultra-high dimensional setting with logp = O(n®) for some 0 < o < 1. To ensure
model identifiability, the true regression coefficient vector By = (8o 1, ,604,)T is assumed
to be sparse. The covariates x;’s with indices in the support M, = supp(8y) = {1 < j <
p: Po,j # 0} are called important variables, while the remaining covariates are referred to as
noise variables.
The SIS is a two-scale learning framework in which large-scale screening is first applied

to reduce the dimensionality from p to a moderate one d, say, below sample size n, and



moderate-scale learning and inference are then conducted on the much reduced feature space.
In particular, the SIS ranks all the p features using the marginal utilities based on the
marginal correlations corr(x;,y) of x;’s with the response y and retains the top d covariates

with the largest absolute correlations collected in the set M ; that is,
M={1<j<p: |corr(x;,y)| is among the top d largest ones}, (2)

where corr denotes the sample correlation. This achieves the goal of variable screening. The
variable selection step of SIS using features in the reduced set M from the screening step
can be done with any favorite regularization method of user’s choice including Lasso, SCAD,
and Dantzig selector [49, 19, 14, 52, 6, 4, 34, 21, 5, 22, 35]. The SIS ideas can also be
incorporated into large-scale Bayesian estimation and inference, where the marginal utilities
can be replaced by the Bayesian counterpart [44, 29].

The feature screening (2) can be implemented expeditiously. An important question is
whether it contains all the important covariates in the set M, with asymptotic probability
one; that is,

P{M*Cﬂ}%l (3)

as n — oo. The property in (3) was termed as the sure screening property in [20] which
is crucial to the second step of refined variable selection. This is a weaker notation than
the model selection consistency and is a more realistic task in high-dimensional inference,
particularly for a screening method. Surprisingly, SIS was shown in [20] to enjoy the sure
screening property under fairly general conditions, with a relatively small size of M. Specif-
ically, the p covariates x;’s are allowed to be correlated with covariance matrix 3 and the

p-dimensional random covariate vector multiplied by X—1/2

is assumed to have a spherical
distribution. The sure screening property of SIS depends upon the so-called concentration
property for random design matrix X introduced in [20]; see [30] for similar concentration
phenomenon of large random design matrix.

The concentration property was originally verified for the scenario of Gaussian distribu-
tions, and later established in [45] for a wide class of elliptical distributions as conjectured
previously. With such a property, the sure screening property (3) can hold for d = o(n),
leading to the suggestion of choosing d = n — 1 or [n/(logn)] for SIS in the original paper
[20]. In practice, the parameter d can be chosen by some data-driven methods such as the
cross-validation and generalized information criterion [28]. It can also be selected by a sim-
ple permutation method [17, 53] that controls the false positive rate at a prescribed level
q. Let {(X;,Y;)}"; be the original sample for the covariates and response. One can apply

a random permutation m of {1,---,n} to obtain the randomly permuted decoupled data



{(Xx(i), Yi)}iey- This does not change the marginal distributions of {X;}?; and {Y;}{_,,
but makes the associations between covariates and response in {(Xy;),Y;)}i-; vanish. For
the randomly permuted data, denote by r* the top gth percentile of the absolute marginal
sample correlation, which has proportion ¢ of false positive rate when applied to the ran-
domly decoupled data. When g = 1, r* is merely the largest spurious correlation. Now select
the model

M={1<j<p:|onx,y) =}, (4)

One can also randomly permute the data multiple times and use the median of r* to improve
the stability. This simple permutation idea is applicable to other screening methods discussed

in this article.

3 Iterative and conditional sure independence screening

Since the marginal utilities are employed to rank the importance of features, SIS can suffer
from some potential issues associated with independence learning. First, some noise covari-
ates strongly correlated with the important ones can have higher marginal utilities than
other important ones (false positive). Second, some important covariates that are jointly
correlated but marginally uncorrelated with the response can be missed after the screening
step (false negative). To address these issues, [20] further introduced an extension of the SIS
method, called the iterative SIS. The main idea is to iteratively update the estimated set of
important variables using SIS conditional on the estimated set of variables from the previous
step. Intuitively, such an iterative procedure can help recruit important covariates that have
very weak or no marginal associations with the response in the presence of other important
ones identified from earlier steps. The method of iterative SIS was extended in [23] to the
pseudo-likelihood framework beyond the linear model with more general loss functions. [23]
also introduced a sample splitting strategy to reduce the false positive rate, where some
exchangeability conditions were invoked.

When there is some additional knowledge about the importance of a certain set of co-
variates, it is helpful to utilize this prior information and rank the importance of features by
replacing simple marginal correlations with the marginal correlations conditional on such a
set of variables. This approach of conditional SIS was introduced and justified in [1]. It also

intends to provide understandings on the iterative SIS.



4 Sure independence screening for generalized linear models

and classification

When the response is discrete, it is more suitable to consider the fitting of models beyond
the linear one. The generalized linear model (GLM) provides a natural extension of the
linear model for both continuous and discrete responses. The GLM with a canonical link
assumes that the conditional distribution of response y given design matrix X belongs to
the canonical exponential family, having the following density function with respect to some

fixed measure

n n

owi%.8) = [T fooss0n) = T {etmrep | 222, 5)
i=1 i=1

where {fo(y;0) : 0 € R} is a family of distributions in the regular exponential family with

dispersion parameter ¢ € (0,00), (61,---,60,)T = X3, b(-) and ¢(-) are some known functions,

and the remaining notation is the same as in model (1). Different choices of function b(0)

in (5) give rise to different GLMs including the linear regression, logistic regression, and

Poisson regression for continuous, binary, and count data of responses, respectively.

Since the GLMs are widely used in applications, [24] extended the SIS idea to this more
general class of models. Specifically, two measures of feature importance were considered.
The first one is the magnitude of the maximum marginal likelihood estimator (MMLE) BJM
which is defined as the maximizer of the quasi-likelihood function ¢(5;) = log fn(y;X;j, 55)
from marginal regression, assuming the covariate z; has been standardized. Then one can
construct the reduced model M as in (2) with E]M in place of corr(x;,y). The second one is
the marginal likelihood ratio test statistic L; for testing the significance of each covariate x;
separately. It was shown in [24] that with both marginal utilities | BJM | and Ej, the SIS for
the GLM can continue to enjoy the sure screening property (3) when dimensionality p grows
as high as nonpolynomially with sample size n. In addition, a specific bound was established
on the size of the reduced model. The random decoupling method in (4) can be employed
here to choose the threshold values.

For the binary response, there is a huge literature on classification beyond logistic regres-
sion [16, 34, 8]. The idea of independence learning used in SIS has also been exploited widely
for feature screening and selection in high-dimensional classification. For the classical two-
class Gaussian classification problem with common covariance matrix 32, the optimal Fisher’s
linear discriminant function depends on the inverse of the unknown covariance matrix 3. It
is well known that estimating high-dimensional covariance matrix is challenging. One choice

is to replace the covariance matrix 3 by its diagonal matrix diag{X}, leading to the inde-



pendence rule or naive Bayes method which pretends that the features were independent [3].
[15] formally characterized the phenomenon of noise accumulation in high-dimensional clas-
sification which reveals that the independence rule using all the features can perform as bad
as random guess when there are a large number of noise features having no discriminative
power; see also [32] for the scenario of asymptotically perfect classification. To reduce the
noise accumulation, [15] further introduced the features annealed independence rule (FAIR)
based on feature selection using the two-sample ¢ test [50], which was shown to possess an
oracle property with explicit classification error rate. The main ideas of FAIR share the same
spirit as SIS in that marginal utilities are exploited to rank the importance of features and the
two-scale learning framework is formally introduced and justified for ultra-high dimensional

regression and classification.

5 Nonparametric and robust sure independence screening

When there exist nonlinear relationships between the covariates and the response, one can use
measures of nonlinear correlations in place of the Pearson correlation for linear association.
One of such measures is the generalized correlation supy,cq, corr(h(Z1), Z3) introduced in [31],
where (Z1, Z9) is a pair of random variables and H standards for the vector space generated
by a given set of functions such as the polynomials or spline bases.

Nonparametric models (stat07553) provide flexible alternatives to parametric ones.
In particular, the additive model has been widely used for high-dimensional data analysis to
alleviate the well-known curse of dimensionality associated with fully nonparametric models.

This model assumes that

y =) mj(x)) +e, (6)
j=1

where m;(0) = (m;(01),--- ,m;(0,))T for @ = (61,---,0,)T, m;(-)’s are some unknown
smooth functions, and the rest of notation is the same as in model (1). [17] extended
the SIS method to high-dimensional additive model (6) and introduced the nonparametric
independence screening (NIS). For each covariate x;, marginal nonparametric regression is
employed to provide an estimated function f]() using a B-spline basis. Then the empirical
norms HJ/”; ||ln’s are adopted as the marginal utilities to rank the importance of features, where
||J?j||% =n 130, f](:p”)2 and x; = (215, -+ ,2n;)T. The reduced model M from feature
screening can be constructed similarly to (2) with the nonparametric marginal utilities. It
was established in [17] that NIS can enjoy the sure screening property even in ultra-high
dimensions with limited false selection rate. The SIS has also been generalized to other

nonparametric and semiparametric settings [10, 9, 11].



Model misspecification can easily happen in real applications when we specify the wrong
family of distributions or miss some important covariates [51, 13, 46]. Thus it is important
to design statistical learning and inference procedures that are robust to a certain level of
model misspecification. In particular, the Pearson correlation is known to be sensitive to
the presence of outliers and not robust for heavy-tailed data. To address the robustness
issue, [41] extended the SIS method by replacing the Pearson correlation with the Kendall
T correlation coefficient, which is a robust measure of correlation in a nonparametric sense
[38, 39]. To capture the nonlinear associations between the covariates and response, [42]
exploited the distance correlation in [48] to rank the marginal importance of features. There

is a growing literature on robust feature screening in ultra-high dimensions [54, 47, 12].

6 Multivariate sure independence screening and the beyond

The computational expediency of the SIS comes from the use of marginal screening. To
address the potential drawbacks of independence learning, it would be helpful to exploit
the joint information among the covariates in the two-scale learning framework. However,
naively considering k-dimensional submodels of {1,--- ,p} involves the screening in a space
of size (7];') = O(p"*) whose computational complexity grows rapidly even for a small k.
A computationally tractable multivariate screening method, called the covariate assisted
screening and estimation (CASE), was introduced in [37] under the Gaussian linear model
(1). The key assumption is that the Gram matrix G = XX is nonsparse but sparsifiable
in the sense that there exists some p x p linear filtering matrix D such that the matrix DG
is sparse. Then the Gaussian linear model y = X3 + € can be linearly transformed into
d = DX”y = DGB + DX’¢, and a graph-assisted m-variate x2-screening can be applied
to the p-dimensional vector d. [27] also suggested a way to exploit the joint information
among the covariates while using marginal screening ideas, where the features are linearly
transformed by the innovated transformation. These new features can be used for ranking
the importance of original features. Certainly the area of multivariate sure independence
screening awaits further developments.

The ideas of feature screening with SIS have also been applied and adapted to a wide range
of large-scale statistical learning problems such as ultra-large Gaussian graphical models
[27] and large interaction network screening and detection [33, 36, 26, 25, 40]. There are
many other extensions of the general framework of sure independence screening for scalable
statistical learning and inference. See, for example, [43] for additional references on feature

screening for ultra-high dimensional data.
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