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Abstract

Big data is ubiquitous in various fields of sciences, engineering, medicine, social sci-

ences, and humanities. It is often accompanied by a large number of variables and

features. While adding much greater flexibility to modeling with enriched feature space,

ultra-high dimensional data analysis poses fundamental challenges to scalable learning

and inference with good statistical efficiency. Sure independence screening is a simple

and effective method to this endeavor. This framework of two-scale statistical learning,

consisting of large-scale screening followed by moderate-scale variable selection intro-

duced in Fan and Lv (2008), has been extensively investigated and extended to various

model settings ranging from parametric to semiparametric and nonparametric for re-

gression, classification, and survival analysis. This article provides an overview on the

developments of sure independence screening over the past decade. These developments

demonstrate the wide applicability of the sure independence screening based learning

and inference for big data analysis with desired scalability and theoretical guarantees.
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1 Introduction

Big data (stat07989) has emerged in recent years as a prominent feature of many ap-

plications from different disciplines of sciences, engineering, medicine, social sciences, and

humanities, enabling more capacity for refined discoveries, recommendations, and policies

[18]. Among many types of big data, ultra-high dimensional data in which the number of

features p can be much larger than the number of observations n is central to a spectrum of

tasks of statistical learning and inference in the past ten years or so. Scalability is a major

challenge of ultra-high dimensional data analysis. Meanwhile it is well known that addi-

tional intrinsic challenges of ultra-high dimensional data analysis include high collinearity,

spurious correlation, and noise accumulation [20, 15, 21, 22]. For example, in the presence

of a large number of noise features high-dimensional classification using all the features can

behave like random guess [15]. To improve scalability and reduce noise accumulation, one

possible approach is reducing the dimensionality of the feature space from a very large scale

to a moderate one in a computationally fast way and implementing refined learning and

inference in the much reduced feature space.

The ideas of feature screening have been widely employed in practice partly for compu-

tational reasons. In addition to the gain in computational efficiency, one can in fact also

expect improved statistical efficiency in estimation and inference due to alleviated noise

accumulation by dimensionality reduction (stat07846). For the aforementioned classifi-

cation problem, one can reduce the number of features by applying two-sample t-test to each

variable and then implement a classification procedure using the selected variables. This

approach is a specific case of the sure independence screening and has high classification

power [15].

To appreciate the point, let us consider a simple simulation example which provides a

prototype for the common goals desired by practitioners analyzing high-dimensional data.

We generate 100 data sets from Gaussian linear model given in (1) with sample size n = 120,

dimensionality p = 1000, design matrix X ∼ N(0, In ⊗ Σ) for Σ = (0.5|j−k|)1≤j,k≤p, and

error vector ε ∼ N(0, σ2In) for σ = 1. The true regression coefficient vector β0 has the first

s = 10 components being nonzero and each nonzero component is selected randomly from

{±1}. For each data set, we apply the model-free knockoffs method introduced in [7] coupled

with the ISEE estimator in [27] to control the false discovery rate (FDR) (stat01950)

[2] for feature selection, where the target FDR level is set as q = 0.2. For sparse model fitting,

we employ Lasso (stat07543.pub2) [49], SCAD (stat07568) [19], and sure independence

screening (SIS) [20] followed by the Lasso and SCAD as variable selectors, referred to as SIS-

Lasso and SIS-SCAD, respectively. With the set of identified covariates Ŝ by the model-free
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knockoffs procedure, we can also construct an estimate for the error standard deviation σ̂.

Table 1 summarizes the simulation results for the FDR, power, and estimated error standard

deviation σ̂ over 100 replications. From Table 1, we see that feature screening using SIS can

also boost the accuracy of large-scale estimation and inference.

Table 1: The means (standard errors) of different measures by all the methods for the

simulation example in Section 1

Method FDR Power σ̂

Lasso 0.158(0.015) 0.789(0.030) 1.248(0.039)

SCAD 0.150(0.018) 0.711(0.038) 1.224(0.045)

SIS-Lasso 0.167(0.017) 0.841(0.029) 1.173(0.041)

SIS-SCAD 0.147(0.017) 0.903(0.025) 1.033(0.032)

2 Sure independence screening

We now begin the journey of feature screening in ultra-high dimensional feature space. A

common practice for feature screening is using independence learning which treats the fea-

tures as independent and thus applies marginal regression techniques. Yet the theoretical

properties of such computationally expedient procedures were not well understood for a long

while. Motivated by the aforementioned fundamental challenges of ultra-high dimensional

data analysis, the sure independence screening (SIS) was formally introduced and rigorously

justified in [20] to address both issues of scalability and noise accumulation. Let us consider

the linear regression model

y = Xβ + ε, (1)

where y = (y1, · · · , yn)
T is an n-dimensional response vector, X = (x1, · · · ,xp) is an n × p

design matrix consisting of p covariates xj ’s, β = (β1, · · · , βp)
T is a p-dimensional regression

coefficient vector, and ε = (ε1, · · · , εn)
T is an n-dimensional error vector. The focus of [20]

is the ultra-high dimensional setting with log p = O(nα) for some 0 < α < 1. To ensure

model identifiability, the true regression coefficient vector β0 = (β0,1, · · · , β0,p)
T is assumed

to be sparse. The covariates xj ’s with indices in the support M∗ = supp(β0) = {1 ≤ j ≤

p : β0,j 6= 0} are called important variables, while the remaining covariates are referred to as

noise variables.

The SIS is a two-scale learning framework in which large-scale screening is first applied

to reduce the dimensionality from p to a moderate one d, say, below sample size n, and
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moderate-scale learning and inference are then conducted on the much reduced feature space.

In particular, the SIS ranks all the p features using the marginal utilities based on the

marginal correlations ĉorr(xj ,y) of xj ’s with the response y and retains the top d covariates

with the largest absolute correlations collected in the set M̂; that is,

M̂ = {1 ≤ j ≤ p : |ĉorr(xj ,y)| is among the top d largest ones} , (2)

where ĉorr denotes the sample correlation. This achieves the goal of variable screening. The

variable selection step of SIS using features in the reduced set M̂ from the screening step

can be done with any favorite regularization method of user’s choice including Lasso, SCAD,

and Dantzig selector [49, 19, 14, 52, 6, 4, 34, 21, 5, 22, 35]. The SIS ideas can also be

incorporated into large-scale Bayesian estimation and inference, where the marginal utilities

can be replaced by the Bayesian counterpart [44, 29].

The feature screening (2) can be implemented expeditiously. An important question is

whether it contains all the important covariates in the set M∗ with asymptotic probability

one; that is,

P

{
M∗ ⊂ M̂

}
→ 1 (3)

as n → ∞. The property in (3) was termed as the sure screening property in [20] which

is crucial to the second step of refined variable selection. This is a weaker notation than

the model selection consistency and is a more realistic task in high-dimensional inference,

particularly for a screening method. Surprisingly, SIS was shown in [20] to enjoy the sure

screening property under fairly general conditions, with a relatively small size of M̂. Specif-

ically, the p covariates xj ’s are allowed to be correlated with covariance matrix Σ and the

p-dimensional random covariate vector multiplied by Σ−1/2 is assumed to have a spherical

distribution. The sure screening property of SIS depends upon the so-called concentration

property for random design matrix X introduced in [20]; see [30] for similar concentration

phenomenon of large random design matrix.

The concentration property was originally verified for the scenario of Gaussian distribu-

tions, and later established in [45] for a wide class of elliptical distributions as conjectured

previously. With such a property, the sure screening property (3) can hold for d = o(n),

leading to the suggestion of choosing d = n − 1 or [n/(log n)] for SIS in the original paper

[20]. In practice, the parameter d can be chosen by some data-driven methods such as the

cross-validation and generalized information criterion [28]. It can also be selected by a sim-

ple permutation method [17, 53] that controls the false positive rate at a prescribed level

q. Let {(Xi, Yi)}
n
i=1 be the original sample for the covariates and response. One can apply

a random permutation π of {1, · · · , n} to obtain the randomly permuted decoupled data
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{(Xπ(i), Yi)}
n
i=1. This does not change the marginal distributions of {Xi}

n
i=1 and {Yi}

n
i=1,

but makes the associations between covariates and response in {(Xπ(i), Yi)}
n
i=1 vanish. For

the randomly permuted data, denote by r∗ the top qth percentile of the absolute marginal

sample correlation, which has proportion q of false positive rate when applied to the ran-

domly decoupled data. When q = 1, r∗ is merely the largest spurious correlation. Now select

the model

M̂ = {1 ≤ j ≤ p : |ĉorr(xj ,y)| ≥ r∗} . (4)

One can also randomly permute the data multiple times and use the median of r∗ to improve

the stability. This simple permutation idea is applicable to other screening methods discussed

in this article.

3 Iterative and conditional sure independence screening

Since the marginal utilities are employed to rank the importance of features, SIS can suffer

from some potential issues associated with independence learning. First, some noise covari-

ates strongly correlated with the important ones can have higher marginal utilities than

other important ones (false positive). Second, some important covariates that are jointly

correlated but marginally uncorrelated with the response can be missed after the screening

step (false negative). To address these issues, [20] further introduced an extension of the SIS

method, called the iterative SIS. The main idea is to iteratively update the estimated set of

important variables using SIS conditional on the estimated set of variables from the previous

step. Intuitively, such an iterative procedure can help recruit important covariates that have

very weak or no marginal associations with the response in the presence of other important

ones identified from earlier steps. The method of iterative SIS was extended in [23] to the

pseudo-likelihood framework beyond the linear model with more general loss functions. [23]

also introduced a sample splitting strategy to reduce the false positive rate, where some

exchangeability conditions were invoked.

When there is some additional knowledge about the importance of a certain set of co-

variates, it is helpful to utilize this prior information and rank the importance of features by

replacing simple marginal correlations with the marginal correlations conditional on such a

set of variables. This approach of conditional SIS was introduced and justified in [1]. It also

intends to provide understandings on the iterative SIS.
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4 Sure independence screening for generalized linear models

and classification

When the response is discrete, it is more suitable to consider the fitting of models beyond

the linear one. The generalized linear model (GLM) provides a natural extension of the

linear model for both continuous and discrete responses. The GLM with a canonical link

assumes that the conditional distribution of response y given design matrix X belongs to

the canonical exponential family, having the following density function with respect to some

fixed measure

fn(y;X,β) ≡

n∏

i=1

f0(yi; θi) =

n∏

i=1

{
c(yi) exp

[
yiθi − b(θi)

φ

]}
, (5)

where {f0(y; θ) : θ ∈ R} is a family of distributions in the regular exponential family with

dispersion parameter φ ∈ (0,∞), (θ1, · · · , θn)
T = Xβ, b(·) and c(·) are some known functions,

and the remaining notation is the same as in model (1). Different choices of function b(θ)

in (5) give rise to different GLMs including the linear regression, logistic regression, and

Poisson regression for continuous, binary, and count data of responses, respectively.

Since the GLMs are widely used in applications, [24] extended the SIS idea to this more

general class of models. Specifically, two measures of feature importance were considered.

The first one is the magnitude of the maximum marginal likelihood estimator (MMLE) β̂M
j

which is defined as the maximizer of the quasi-likelihood function ℓ(βj) = log fn(y;xj , βj)

from marginal regression, assuming the covariate xj has been standardized. Then one can

construct the reduced model M̂ as in (2) with β̂M
j in place of ĉorr(xj ,y). The second one is

the marginal likelihood ratio test statistic L̂j for testing the significance of each covariate xj

separately. It was shown in [24] that with both marginal utilities |β̂M
j | and L̂j , the SIS for

the GLM can continue to enjoy the sure screening property (3) when dimensionality p grows

as high as nonpolynomially with sample size n. In addition, a specific bound was established

on the size of the reduced model. The random decoupling method in (4) can be employed

here to choose the threshold values.

For the binary response, there is a huge literature on classification beyond logistic regres-

sion [16, 34, 8]. The idea of independence learning used in SIS has also been exploited widely

for feature screening and selection in high-dimensional classification. For the classical two-

class Gaussian classification problem with common covariance matrixΣ, the optimal Fisher’s

linear discriminant function depends on the inverse of the unknown covariance matrix Σ. It

is well known that estimating high-dimensional covariance matrix is challenging. One choice

is to replace the covariance matrix Σ by its diagonal matrix diag{Σ}, leading to the inde-
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pendence rule or naive Bayes method which pretends that the features were independent [3].

[15] formally characterized the phenomenon of noise accumulation in high-dimensional clas-

sification which reveals that the independence rule using all the features can perform as bad

as random guess when there are a large number of noise features having no discriminative

power; see also [32] for the scenario of asymptotically perfect classification. To reduce the

noise accumulation, [15] further introduced the features annealed independence rule (FAIR)

based on feature selection using the two-sample t test [50], which was shown to possess an

oracle property with explicit classification error rate. The main ideas of FAIR share the same

spirit as SIS in that marginal utilities are exploited to rank the importance of features and the

two-scale learning framework is formally introduced and justified for ultra-high dimensional

regression and classification.

5 Nonparametric and robust sure independence screening

When there exist nonlinear relationships between the covariates and the response, one can use

measures of nonlinear correlations in place of the Pearson correlation for linear association.

One of such measures is the generalized correlation suph∈H corr(h(Z1), Z2) introduced in [31],

where (Z1, Z2) is a pair of random variables and H standards for the vector space generated

by a given set of functions such as the polynomials or spline bases.

Nonparametric models (stat07553) provide flexible alternatives to parametric ones.

In particular, the additive model has been widely used for high-dimensional data analysis to

alleviate the well-known curse of dimensionality associated with fully nonparametric models.

This model assumes that

y =

p∑

j=1

mj(xj) + ε, (6)

where mj(θ) = (mj(θ1), · · · ,mj(θn))
T for θ = (θ1, · · · , θn)

T , mj(·)’s are some unknown

smooth functions, and the rest of notation is the same as in model (1). [17] extended

the SIS method to high-dimensional additive model (6) and introduced the nonparametric

independence screening (NIS). For each covariate xj , marginal nonparametric regression is

employed to provide an estimated function f̂j(·) using a B-spline basis. Then the empirical

norms ‖f̂j‖n’s are adopted as the marginal utilities to rank the importance of features, where

‖f̂j‖
2
n = n−1

∑n
i=1 f̂j(xij)

2 and xj = (x1j , · · · , xnj)
T . The reduced model M̂ from feature

screening can be constructed similarly to (2) with the nonparametric marginal utilities. It

was established in [17] that NIS can enjoy the sure screening property even in ultra-high

dimensions with limited false selection rate. The SIS has also been generalized to other

nonparametric and semiparametric settings [10, 9, 11].
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Model misspecification can easily happen in real applications when we specify the wrong

family of distributions or miss some important covariates [51, 13, 46]. Thus it is important

to design statistical learning and inference procedures that are robust to a certain level of

model misspecification. In particular, the Pearson correlation is known to be sensitive to

the presence of outliers and not robust for heavy-tailed data. To address the robustness

issue, [41] extended the SIS method by replacing the Pearson correlation with the Kendall

τ correlation coefficient, which is a robust measure of correlation in a nonparametric sense

[38, 39]. To capture the nonlinear associations between the covariates and response, [42]

exploited the distance correlation in [48] to rank the marginal importance of features. There

is a growing literature on robust feature screening in ultra-high dimensions [54, 47, 12].

6 Multivariate sure independence screening and the beyond

The computational expediency of the SIS comes from the use of marginal screening. To

address the potential drawbacks of independence learning, it would be helpful to exploit

the joint information among the covariates in the two-scale learning framework. However,

naively considering k-dimensional submodels of {1, · · · , p} involves the screening in a space

of size
(
p
k

)
= O(pk) whose computational complexity grows rapidly even for a small k.

A computationally tractable multivariate screening method, called the covariate assisted

screening and estimation (CASE), was introduced in [37] under the Gaussian linear model

(1). The key assumption is that the Gram matrix G = XTX is nonsparse but sparsifiable

in the sense that there exists some p× p linear filtering matrix D such that the matrix DG

is sparse. Then the Gaussian linear model y = Xβ + ε can be linearly transformed into

d = DXTy = DGβ + DXTε, and a graph-assisted m-variate χ2-screening can be applied

to the p-dimensional vector d. [27] also suggested a way to exploit the joint information

among the covariates while using marginal screening ideas, where the features are linearly

transformed by the innovated transformation. These new features can be used for ranking

the importance of original features. Certainly the area of multivariate sure independence

screening awaits further developments.

The ideas of feature screening with SIS have also been applied and adapted to a wide range

of large-scale statistical learning problems such as ultra-large Gaussian graphical models

[27] and large interaction network screening and detection [33, 36, 26, 25, 40]. There are

many other extensions of the general framework of sure independence screening for scalable

statistical learning and inference. See, for example, [43] for additional references on feature

screening for ultra-high dimensional data.
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