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Abstract. In this paper, we extend the idea of “geometric reconstruction” to couple a nonlocal
diffusion model directly with the classical local diffusion in one dimensional space. This new coupling
framework removes interfacial inconsistency, ensures the flux balance, and satisfies energy conser-
vation as well as the maximum principle, whereas none of existing coupling methods for nonlocal-
to-local coupling satisfies all of these properties. We establish the well-posedness and provide the
stability analysis of the coupling method. We investigate the difference to the local limiting problem
in terms of the nonlocal interaction range. Furthermore, we propose a first order finite difference
numerical discretization and perform several numerical tests to confirm the theoretical findings. In
particular, we show that the resulting numerical result is free of artifacts near the boundary of the
domain where a classical local boundary condition is used, together with a coupled fully nonlocal
model in the interior of the domain.
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1. Introduction. Nonlocal continuum models have found interesting applica-
tions in a number of important scientific and engineering problems, for example, the
phase transition [2, 14], the nonlocal heat conduction [3], fracture and damage in brit-
tle solids [35]. Meanwhile, they can often be linked to classic local continuum models
where the latter are known to hold [4, 6, 7, 9, 11, 13, 15, 16, 17, 19, 22, 23, 25, 28, 36].

While nonlocal integral-type formulations in a nonlocal continuum model can of-
ten provide a more accurate description of physical systems, especially near defects
and singularities, the nonlocality also increases the computational cost, compared to
classical local models based on partial differential equations (PDEs). As a result, it
is imperative to employ multiscale methods which can retain accuracy around defect
cores while improving efficiency away from singularities through local continuum de-
scriptions. In addition, the nonlocal models usually bring modeling challenges near
the boundary, as volumetric boundary conditions are needed that require additional
calibrations with the physical system. Improper boundary conditions may create un-
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intended modeling error [8, 10, 41]. It is thus interesting to explore alternatives that
enable the use of the usual local boundary conditions.

In the past ten years, a number of strategies have been proposed to couple together
local-to-nonlocal or two nonlocal continuum models with different nonlocality. These
coupling methods include (1) Arlequin-type domain decomposition (see, e.g., [18,
29]); (2) optimal-control-based coupling (see, e.g., [5]); (3) a morphing approach (see,
e.g., [24]); (4) a force-based blending mechanism (see, e.g., [30, 31]); and (5) an
energy-based blending mechanism (see, e.g., [1, 37, 38]); just to name a few. Among
these multiscale models, some exhibit spurious interfacial forces (“ghost forces”) under
uniform strain, while others forgo the need for energy and develop consistent force-
based methods which are nonconservative.

Recently, a new symmetric, consistent, and stable coupling strategy for nonlocal
diffusion problems was developed in [20] that couples two nonlocal operators with
different horizon parameters d; and ;. The crucial step in the formulation is the
idea of “geometric reconstruction” from the quasi-nonlocal atomistic-to-continuum
method for crystalline solids (see, e.g., [12, 21, 26, 27, 32, 34]). In this paper, we
extend the geometric reconstruction idea to couple the nonlocal diffusion directly with
the classical local diffusion in a one dimensional space. This new coupled model enjoys
linear consistency and preserves the maximum principle. Furthermore, well-posedness
of the coupling problem, stability analysis, and error estimates are established in this
work to ensure the validity and reliability of the modeling approach and computational
results.

Let us first review nonlocal diffusion equations associated with a positive number
d that characterizes the finite range of nonlocal interaction. We refer to [6] for more
detailed studies on nonlocal diffusion equations. Generically, the spatial interactions
in a linear nonlocal diffusion equation are characterized by a linear operator L5 acting
on a function u = u(x) : R — R such that

(L1) Loulz) =2 / (uly) — ul@)p(e,y)dy Vo e 9

for some open domain  C R?. The kernel vs is usually nonnegative, symmetric, and
translational invariant for isotropic systems. Often it is chosen as a radial function
with a compact support, i.e., vs(x,y) = V(] — y|) and supp(ys) C Bs(0), where
B5(0) is the d-dimensional ball of radius §. The constant § > 0 is often called a
horizon parameter that characterizes the range of nonlocality. We note that the
operator Ls can be written in the form of L5 = D~vsD*, where D and D* are some
basic nonlocal operators defined in a nonlocal vector calculus given in [7]. Such a
formulation naturally draws an analogy between the nonlocal operator L5 and the
local second order elliptic differential operator V - (CV). Thus the nonlocal diffusion
problems can be studied and compared with the classical diffusion problems. The
nonlocal equations defined on the domain 2 are complemented by the “Dirichlet-type”
boundary conditions, which are constraints on a domain with nonzero d-dimensional
volume. Thus we arrive at the steady-state nonlocal volume-constrained diffusion
problem:

(1.2) {—ﬁgu:f on €,

u=20 on Q7

for a function u(x) : RY — R and €27 being the nonlocal interaction domain of nonzero
d-dimensional volume.
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To make connections of (1.2) with their local differential counterparts, we usually
consider the kernel ;5 to be suitably localized as § — 0. Without being too technical,
this essentially means that we want ~s(|s|)|s|? to be approximating the Dirac delta
measure at the origin as § — 0. Often, a convenient assumption for us to make is
that s is a rescaled kernel,

1
vs(|s]) = il (E') , 7 is nonnegative and nonincreasing on (0,1),

(K)
with supp(y) C [0, 1] and /Rd |s|*v(|s|)ds = d.

In this paper, we propose an energy-based coupling method that combines the
nonlocal diffusion equation defined as above with the local classical diffusion equation.
Since the construction of our coupling follows the spirit of the quasi-nonlocal atomistic-
to-continuum coupling methods for crystalline materials (see for example, [12, 21, 26,
27, 32, 34]), we call our method the quasi-nonlocal (QNL) coupling of nonlocal and
local diffusion. We focus on one dimensional problems in this work to better illustrate
the idea. The multidimensional generalizations are possible and will be carried out in
separate works.

More specifically, in section 2 we first define the combined total energy from which
the QNL operator is derived through energy variation, followed by the discussion of
the concerned issue of patch-test consistency. Section 3 contains rigorous arguments
of the well-posedness of the coupled problem. Section 4 further explores the modeling
accuracy of the coupled method compared with the fully local diffusion equation in
terms of small J, in which the uniform first order accuracy in terms of § is shown.
Section 5 contains numerical experiments and then the conclusion and discussions are
put in section 6.

2. Consistent coupling of nonlocal and local diffusions. In this section,
we formulate our idea of the QNL coupling in a one dimensional bar. Without loss of
generality, we work on the domain 2 = (—1, 1) throughout the paper. We consider the
nonlocal interaction region to be on the left side of the bar Q and the local interaction
region to be on the right side with a transition layer in the middle of width 6. Now
that the domain € is composed of both nonlocal and local interaction regions, the
Dirichlet boundary condition to impose should be considered as a mixture of nonlocal
and local boundary conditions. Specifically, to the left of the bar ) there is a nonlocal
boundary (—1—4, —1) and to the right of the bar a local boundary {1}. In all further
discussions we use Q5 = (—1 — 0, —1) U {1} as the boundary domain which is mixed
with nonlocal and local boundary. See Figure 1 for the graphical illustration of the
coupled nonlocal and local domain.

pure nonlocal pure local
nonlocal bdry transitional local bdry
XXXXXAAAAAA A A A A A A A A A A = = = X
-1 0 0 1

Fic. 1. Graphical illustration of the one dimensional domain.
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2.1. The energy space. The QNL coupling method comes from energy varia-
tion of the total energy defined as

(2.1)
B =g [ el ) @) dude g [ o)) de

where the weight function w;y is given by

(2.2) ws () ;:/0 dt/|<x 15275 (1s]) ds

From the definition of the kernel s in (K), in particular that the second moment of
vs is equal to d = 1, it is easy to see that ws(z) is a nondecreasing function on [0, c0)
with ws(0) = 0 and ws(x) =1 for z > §. Thus the total QNL energy has a transition
from pure nonlocal to pure local through the transitional region (0,4). We further
characterize the weight function ws(z) in the following lemma.

LEMMA 1. By the definition of ws in (2.2), we have the following equations,
(2.3) ws(x) = 2/ 82’)/5(|S|)d8+2$6/ sv5(|s|)ds
Ooo x
(2.4) wi(x) = 2/ svs5(s)ds.

Proof. For the first equation,

/dt/ sw\\d8—2/dt/8%\\
ls|<%
—2/875||/dtds—|—2/ 5275 s|/ dtds

xT o0
_ / $2y3(|s|)ds + 2z / sv5(]s])ds
0 x

Then wj(z) is obtained by taking derivatives of the expression. |

Remark 2.1. For given kernel -, we could calculate ws using the formula (2.3)
given in Lemma 1. We give two examples in the following and the plot of the cor-
responding weight function is shown in Figure 2. These kernels will be used in our
numerical examples too.

(1) vs5(s) = %X(,M)(s), then

ws(x) =25 200 “ €0
1a €T Z 4.
(2) vs(s) = ‘S|152 X(-5,5)(5), then
2¢ a2
wi(e)=1{ 5 o2 "€
17 x>0
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ws ()

F1G. 2. Blue line: weight function for v5(s) = 2(%)((_5,5)(5). Red dashed line: weight function
for vs5(s) = M%X(—a,a)(s)-

The energy defined in (2.1) has a more intuitive interpretation from the geometric
reconstruction formulation [12, 20, 21]. We will show in Proposition 2 that (2.1) is
equivalent to the following:

@) B =5 [[ syl ()  ulw))® dyda

1 ! 2
= dydas(ly = ) [ deluz + tly - ) Ply — ol
x>0 and y>0 0

To better convey the idea of geometric reconstruction proposed in [20], we first
assume that 2 = Q; U Qs is dominated by two different nonlocal kernels ~;, and ~s,
(62 < 1), respectively. Next, we utilize the interaction kernel s, throughout the
entire domain €2, while in the subregion €9, the displacement of bond (u(y) — u(x))
will be reconstructed so that it only involves x and y pairs that are closer in distance.
More concretely, to link the interaction with kernel ~s, to vs5, where §; = My with
M being an integer, if a bond {z — y} is completely contained in the subregion 2,
then the displacement of this bond (u(y) —u(z)) will be reconstructed by the following
expression:

u(y) —u(z) — (u(m+ %(yfm)) —u(z+ A‘Z(yw))) M for j=0,...,(M—1).

Hence, the bond interaction s, (Jy — #|) (u(y) — u(z))? in € is approximated by

M—1 ) ; 2
(2.6) s, (ly fx|)% > (<u(x+ %(y*x)) —u(z+ ]\34@96))> g;) .

Jj=0

Note that if |z — y| < 41, the difference on the right is evaluated at points with distance
at most 91 = d,; thus, effectively, the difference u(y) —u(z) is reconstructed by a more
local interaction (and hence the idea was referred to as the geometric reconstruction
scheme in [12]). In fact, if such a reconstruction is adopted everywhere in the entire
domain , one will recover the fully nonlocal interactions with kernel s, only [20].
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Notice that when M = g—; — 00, the summation in (2.6) can be viewed as a Riemann
sum that converges to an integral, that is,

1
—>/ W/ (z + t(y — )|y — z2dt as M — .
0

The nonlocal bond interaction vs(|y — z|) (u(y) — u(z))? can be reconstructed by its
local continuum approximation:

(2.7) vs(ly — ) - / o (z + t(y — 2))ly — 2.

Based on this construction, we arrive at the total coupling energy (2.5).

We will show now that the two ways of writing the QNL total energy are the
same. From the expressions (2.1) and (2.5), it suffices to show that the local con-
tributions to the total energy are equivalent. The two different ways of writing the
local contribution of the energy have their own advantages and we will adopt either
definition at our convenience in the following.

PROPOSITION 2. The following two expressions of local contribution to the total
energy are equivalent:

1 1
28) EFw=; [f dodys(ly =) [ dtlu o+ ey — )y of
>0 and y>0 0

and

1

(2.9) EF°(u) = 3 />0 [u' () |Pws (z) d.

Proof. We start with recasting the right-hand side of (2.8):

1 ! 2
5/ aly = ol) - [ dth' (o + g =)y - P
>0 and y>0 0

1 /1 / / ('z —x ) , gl )
— [ dt dx dzvs |u'(2)]* =]z — |

2 0 x>0 z>(1-t)z 3 t3

1! — 1

7/ dt/ dz|u'(z)|2/ Vs < S > =z —2|* dx
2 Jo z>0 0<z< 52 t

t
1—t

1 1
= 5/ dz|u’(z)|2/ dt/ vs (|s]) |s|* ds .
z>0 0 —i<s<iE
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Now since

1
/w/ 1525 (|s) ds
0 —E<s<1E
1 1
a/ﬁ/ |¥wwDMf/ﬁ/ 15 (Is]) ds
0 —£<s<0 0 0<s<1Z

1 1
5/&/ |¥wwomf/ﬁ/ 152 (Js]) ds.
0 —5<s<0 0 0<s<%

we arrive at the definition of E°° in (2.9) with the weight function ws as in (2.2). O

Naturally, we seek solutions in the energy space S;lnl(ﬂ) equipped with norm
2 _ 2 2
”U‘HS?M(Q) - ||u||L2(QU95) + |u‘3;3nl(9)7

where |u‘«29§“1(9) = 2B (u). Now define S(Q) to be the completion of C°(Q2)

under the norm || - || S (g namely,

S((Slnl(ﬂ) ={uec L*(QUQs) : Hu,} € C(Q), |Jun — u||ng(Q) —0asn — oo}.

Then we know first that Sgnl(Q) is a Hilbert space with inner product (-, ')33“1(9) to
be defined as

(u,v) gamt 2y = (15 0) L2 (200) + 3™ (u, ),

where 3™ (u,v) is defined as

b3 (u,v) = vs(ly = z|) (u(y) — u(z)) (v(y) — v(z)) dydz
(2.10) ’ //ZL’<0 or y<0

+ /x>0 o (2)v' (2)ws (2) dx.

Moreover, a Poincaré-type inequality holds on the space S?nl(Q) that is crucial in
showing the well-posedness of the variational problem.

PROPOSITION 3 (Poincaré inequality). For u € S?HI(Q), we have the following
Poincaré-type inequality,

(2-11) ||UHL2(Q) < C|u|$g“1(g) )

where C' is independent of u.

Proof. From Proposition 7 which will be shown later in section 3, we know that the
QNL energy |u| s3(Q) is bounded from below by a purely nonlocal energy defined on
the entire domain €2. Thus by the nonlocal Poincaré inequality established previously
in early works (e.g., [6, 25]), (2.11) is true. Indeed, [25] shows that for a given small
number € there exists dg(€) such that for all § < dy the lemma holds with C'(dg) = A+e,
where A is the classical local Poincaré constant for the domain €. O
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2.2. The QNL operator. We will derive the QNL operator denoted as Lgnl
from energy variation. We take the first variation of Egnl(u) in (2.5) with any test

function v € C°(Q), and get
(2.12)

(dEF™ (u), v)

EM™(u + ev) — B (u)

= lim =
e—0 €

- / / (1 — ) (uly) — u(@)) (v() — v(z)) dydz + / wa(@) (@) (@) da
<0 or y<0

x>0

=3 = ] (uty) — @) @)y ~ / (sl (@) ()

where the last equality comes from integration by parts and the fact that ws(0) = 0.
The force formalism Eg“lu(x) is negative to the first variation of total energy, and it
splits into three cases:

e Case I (nonlocal region): for z <0,

(213) £ute) =2 [ iy = o) (uty) — u(e) dy.
e Case II (transitional region): for 0 < z <4,
(2.14) L3 u(r) =2 /<O Vs(ly — ) (u(y) — u(@)) dy + (ws(2)u’(x))".

e Case III (local region): for x > §, and since ws(x) = 1 for x > §,
(2.15) LIMu(z) =(ws(z)u (x)) = u"(z).

Remark 2.2. Since the QNL operator L‘gnl is defined through the first variation
of total energy, Lg‘nl is self-adjoint, that is, from a physical point of view, the force
acting on = from y is equal to the force acting on y from x. This symmetry in acting
forces guarantees the balance of linear momentum. In addition, this QNL framework
ensures the flux balance and satisfies energy conservation.

2.3. Consistency at the interface. We will show in this part that the QNL
coupling is consistent at the interface (in the language of atomistic-to-continuum
coupling, it is free of ghost force), namely, for a linear displacement u""(z) = Fz + a,
the force equals zero. For this matter, we only need to worry about the values of
Egnlu“n in the interfacial region, since it is obviously zero in the pure nonlocal and
local regions as given by Cases I and IIT in (2.13) and (2.15). For a more general
consideration that will also be useful in the next sections, we give the following lemma
that involves the operator Egnl acting on smooth functions in the interfacial region.
The lemma states that if § is small, the QNL diffusion is approximately a local diffusion
with effective diffusion constant a(z).

LEMMA 4. For any smooth function v,

(2.16) LIMy(z) = a(z)v" (z) + 0G| ||c0), 0<z <4,
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where a is given by

0

6
(2.17) a(x) = 17/ 5275(|S|)d5+2:17/ svs(|s])ds .

Proof. For x € (0,6), by the expressions of ws and wj§ in Lemma 1, we have

EgIIIU(I)

2/< Yo (ly — zl) (v(y) — v(@)) dy + (ws(x)v' (2))’

0

I
O

/_f V5(s) (Sv'(x) + %32“//(55) + O(|S|3|UWHCO)>

—4
+ ws(2)v" () + wi(z)v' ()
)
= </ 5275(|8|)d8> V" () + ws(z)v" (x) + O(8[v""]| o)
) )
_ <1_/ 3275(|s|)ds+2x/ s*y§(|s|)ds) V(@) + O] || o) -
Thus, we proved this lemma. ]

Remark 2.3. We can further quantify a(z) as follows.
1. One can show that 3 < a(z) < 2 for z € (0,6) and a(6) = 1. Indeed,

) )
1
mm21—/swmwwzl—/SWme=5
x 0
and
)

5 5
3
a(z) <1 —/ s2y5(|s])ds + 2/ s2y5(|s))ds < 1 +/ s2y5(|s|)ds = 7
T T 0

Finally, a(6) = 1 is obvious.
2. For the two examples that 75(s) = %X(_M)(s) and ~s5(s) = |s‘152 X(-5,6)(5),

we could calculate a(x) explicitly through (2.17):

L3 T o s(9) = s (9)
apy=d2 B P 243 (=3O

1+2ﬁ_% for (S):L (s)

275 282 % [s[a2 X (-80S

We remark that although the effective local diffusion coefficient a(z) is not
equal to a constant one for 0 < x < 4, we have in the two cases

/()6a(x)dx—§.

In other words, the spatial averaged diffusion coefficient for 0 < x < § is equal
to one.
Lemma 4 shows the expansion of Eéqnlv(x) in the interfacial region using the
second and higher derivatives of v. Thus it is obvious that for a linear function u'™,
E?nluh“ = 0. In other words, the QNL coupling passes the patch test.
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COROLLARY 5 (patch-test consistency). For a linear function u"*(z) = Fz + a,

L&Mylin = 0.
Proof. This directly follows from (2.13), (2.14), and (2.15) using Lemma 4. |

3. Stability and well-posedness. In this section, our goal is to show that
the bilinear form b3™(-,-) : SF'(Q) x SF(Q) — R defined by (3.4) is bounded and
coercive, thus the well-posedness of the variational problem can be followed. The

boundedness of the bilinear norm is obvious since Sgnl(Q) is a Hilbert space and

bgnl(-7 -) is part of its inner product. The coercivity is from the Poincaré inequality

(2.11), and the essential step is proved in Proposition 7. Now let us define the local
contribution of the bilinear form as

¢ (4, v) 1= ' (2)v (2)ws(x) dz.
(3.1 () = [ @ @pes(e) d

We can see the lower bound of bi°®(u,u) in the following lemma.
LEMMA 6. For by°(u,v) defined in (3.1), we have

ocC 2
(32) bt = [ 15(]y — o) (u(y) — u())? dady.
x>0 and y>0
Proof. The right-hand side of (3.2) can be recast as

/ 1y = 2 (u(y) — u(@))” dady
x>0 and y>0

~ [ e[t <t<1du(x+t<y—x>)r

>0
:/podm/wodyva(ly—xl) Uol(y—x) '“’(x+t(y_x))dt]

1
(3.3) < / L / iy =iy - / (4 t(y — )Pt

2

where the last expression is exactly 2E%¢(u) = b°°(u, u) as shown in Proposition 2. 0O

Lemma 6 immediately leads to the stability property as compared to the fully nonlocal
bilinear operator.

PROPOSITION 7. For b{™ (u,v) defined in (3.1), we have
(3.4 ) = [ sy =l (ul) — u(e))* dyd.
T,YyEe

Proof. Recall the definition of bgnl(u7 u) and using the conclusion of Lemma 6, we
immediately get

b(gnl(u,u) :/<0 <0 76(@ - 1'|) (U(y) — U(l‘))2 dxdy + b}SOC(u; U)
= /,<0 <076(|y—x|) (u(y) — u(x))® dzdy

+/>0 d >0%(|y_m|)(“(y)—u(l‘))2 dxdy . 0
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Now from the Poincaré inequality, Proposition 3, we conclude that b3™'(-,-) is
bounded and coercive, thus leading to the well-posedness of the QNL model.

THEOREM 8. The QNL diffusion equation given by

(3.5) LI (z) = f(x) forz e Q,
‘ us(x) =0 for x € Qj,

is well-posed, where L'gnl is defined in subsection 2.2.
Proof. Well-posedness follows immediately from the Lax—Milgram theorem. 0O

4. Convergence to the local diffusion as § — 0. We consider in this section
the modeling error estimate of the QNL coupling equation (3.5) as § — 0 to the local
differential equation

(1) —ui(x) = f(x), e,
) ug(—1) = up(1) = 0.

In this section we assume that ug has a smooth zero extension into (—1—4§, —1) to
avoid discussions on the effect of the nonlocal boundary condition there. We denote
the error between the solutions to (3.5) and (4.1) to be es(z) = ug" ™ g (z). With
this extension and both local and nonlocal homogeneous Dirichlet conditions imposed
on ugnl on the interval (=1 — §, —1) and the right endpoint 1 of §2, respectively, we

see that es(z) =0 for x € Q5.

Truncation error. Let the truncation error be Ts(z) = qnl o(z) — “0 /(x). Then
Ts(x) = T3 (x) + T3 (x), where Ty (2) = Ti(2)x(-1,0)( )aﬂd T5( ) = T5(2)x(0.6)(@)-
According to the calculations in section 2.3, we know that T3 (z) = O(6?) for = €

(—1,0) and TZ(z) = O(1) for = € (0,6). Notice that from Lemma 4, for = € (0,4),

T3 (x) = L5 uo(2) — ug () = alz)ug (@) — ug (z) + O(6)
= (a(z) — Dug (z) + O(5).

Since 1 < a(z) < 2 by Remark 2.3, we have
1
(42) 13 (2)] < 5C" +00),
where C* = ||ug||c2. Now that —Les(x) = —LIud (2) + LI ug(2z) = Ts(z), we
1

have eg(z) = (—L3) 71T (x) + (—LP)71T2(x) = el(z) + e2(x), where e}(z) and
e?(z) are defined as

3 H

(43) { (2) = (~LF") 7' T} (@),

;
e3(z) = (—L3") TR ().

We are going to show next that |e}(z)| = O(6?%) and |eZ(z)| = O(d). Thus the total
error is of order O(d). The main ingredients are the maximum principle and barrier
functions.

In the following, we will show the maximum principle for solutions of (3.5) that
may have a discontinuity at 0. We need such a result for error estimate because the
truncation error Ty has been decomposed into two piecewise smooth functions such
that e% and e§ might be discontinuous at 0.
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LEMMA 9 (maximum principle). The operator Lgnl satisfies the mazimum prin-
ciple, namely, if u € C([—1 — 6,0]) N C%([0,1]), then —LIu(z) < 0 in Q implies
that

max u(x) < max u(z).
2€QUQ, weQs
Proof. First, from —£3u(z) < 0 in (0,1) we can show that

4.4 max u(x) < max u(x),

(4.4) 2€(0,1) () < ze{0+JU{1} (@)

where u(0") = lim, 0 z>0 w(x). Indeed, if we assume the opposite is true, namely, if
Z € (0,1) is an isolated maximum point, then we must have u/(z) = 0 and «/(Z) < 0.
From the expressions of £&* in (2.14) and (2.15), we have immediately —£3" u(#) > 0,
which contradicts the assumption. Second, from —Egnlu(x) < 0 in [-1,0] we could
show

(4.5) () < (x).

max u max u
2€(—1—0,8) z€(—1-6,—1)U(0,8)

The argument is the following. Assume the opposition is true, namely,

(x) > (),

max u max u
2€(—1—46,8) 2€(—1-6,—1)U(0,)

then we could find z* € [~1,0] such that u(z*) = max,¢ 1,0y u(z) and

0
—£g"u(w?) = = [ (i) (uta” )~ u(e))ds > 0

which gives us a contradiction. So u has to satisfy (4.5).

Now combine the result of (4.4) and (4.5), we only need to show u(0") <
max,cq, (). Assume the opposite, namely, u(0") > u(x) for any z € [-1—6§,07]U
(0,1]. Then since u(0") > u(0~), we have fy<0 vs(ly — z|) (u(y) — u(z))dy < 0 for
sufficiently small > 0. Considering also that u/(0") < 0 (since u(0") > u(z) for any
x> 0) and ws(07) = 0, we see that for small enough = > 0,

—L3Mu(w) = -2 /<O Vs(ly = ) (u(y) — u(@)) dy — ws(2)u” (2) — ws(z)u'(x) >0,

which gives us a contradiction.
Hence, we proved the lemma. ]

THEOREM 10. Suppose ugnl and uy are strong solutions to (3.5) and (4.1), re-
spectively. Assume that ug € C3(Q U Qs), then

ud™ (z) — uo(@)|| = () = O(3).

Proof. We will construct barrier functions of nonnegative values on 2 U Q5 and
then estimate e}(z) and e2(x) defined by (4.3). The first barrier function is a simple
quadratic function. Take ®(x) = —cx? + 4c, then from the calculations in section
2.3 we know that —£3 (6@, (z)) > ¢d. For up € C3(QUQ;), we know that T} (z) is
at least of order O(J), so by choosing ¢ large enough we could have ¢§ > T} (z). Now
from Lemma 9 we conclude that

1 _ < 1 — <
JLax (e5(x) — 001(2)) < max(ej(x) — 021(2)) <0,
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so we have e}(z) < §®;(z) < 4¢d. Applying the same arguments to —e}(x) we also
have —e}(z) < 4¢d. Thus |e}(x)| = O(9).

The second barrier function ®o(z) is more carefully designed in order to get the
estimate of e?(z). The key is to define ®5(x) such that ®, € C([—1—4,0])NC?([0,1])
(so as to use the maximum principle) and it is linearly decaying to zero outside the
interfacial region. We define the barrier function ®4(z) to be

Sz +8+6% zxe(-1-460)),
1 3 1
4.6 Bo(x) =4 —a3_ g2 4 = 2
(4.6) 2(2) 2t~ 1% +25x+6—|—(5, x € 10,24],

—0x +0+20%, xe[251).

One could check that ®, € C([~1 — 4,0]) N C%([0,1]) and —LI™(®y(z)) > 0 for
z € (—1,1). In particular, for z € (0,0), after taking the Taylor-expansion, we can
write

£ @) = — )@ 2 [ sl (és%;"mds)
3z 3 1 3 [°
=—a(x) (4(5 2) 31 /—6 5775 (s)ds
é
>3a()+ 45 [ s)ds 2 5

where the last inequality comes from the fact that a(x) > % Then by the expression of
TZ(z) in (4.2), we could take a & > 0 large enough such that — L (é®s(z)) > T2(x);
then from the maximum principle we conclude that

2(x) — ¢ < 2(x) —¢ <0.

JLax (e5(x) — ca(2)) < max(e5(x) — cP2(x)) <0
So we have e%(z) < ¢®o(x) < &(6+ 62). Using the same arguments for —e%(x) we also
have —eZ(z) < &(0 + 62). Thus |e?(z)| = O(9). |

5. Numerical discretization and numerical examples. In this section, we
will develop a finite difference discretization and consider several benchmark problems
to check the accuracy and stability performance of the numerical scheme. The patch-
test consistency, symmetry, and positive definiteness of the finite difference matrix
are validated numerically.

5.1. Numerical scheme. We use finite difference for spatial discretization. The
domain Q = (—1, 1) is divided into 2N uniform subintervals with equal length h = 1/N
and grid points —1 = xg < 1 < --- < 2oy = 1 so the interface grid point is zx = 0.
Homogeneous Dirichlet boundary condition u = 0 is assumed on the boundary domain
Qs = (=6 —1,-1) U {1}. We use the scaling invariance of second moments of v and
local diffusion and approximate the QNL diffusion operator Egnl in the three regimes.
The finite difference scheme we use is not only convergent to the QNL problem with
fixed ¢, but also convergent to the local differential equation with fixed ratio between
§ and h, thus an asymptotically compatible scheme, a notion developed in [39, 40].

For simplicity of discussion, we always assume that 6/h = r with r being an
integer in the following. We discuss in order the discretization scheme in the nonlocal
region, transitional region, and local region, respectively. Special treatment is used in
the transitional region for the scheme to be asymptotically compatible.
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e Case I (nonlocal region): for i € {0,1,..., N},
5

L3 (z;) = 2 / (s 5) = () (5)ds
J i +8) —2u(x;) +u(x; — s 9
(5.1) :2/0 (““’* )2l ol ))sws)czs
o ((ul@igg) = 2u(m) +u(ziy) [P $2vs(s)ds
NQ;( (jh)? >/(j1)h Ta(s)ds

e Case II (transitional region): for i € {N +1,N +2,...,N +r},
5 §
Egnlu(xi) = 2/ ~v5(|s]) (w(z; — 8) — u(x;)) ds + 2 </ s*yg(s)ds) en!

T4 i

(5.2) ‘ s
+ (2/ 52%(|s|)d8+2xi/ 8’)/5(8)d8> u" ().
0 x5
Now we split the nonlocal integral term into a diffusion part and a convection
part:
5
2 [ 95(1l) (uls = ) — ulzo) ds
1 5
= [ lsD) Cutai + 5) = 2us) + (s - ) ds
o
— / s (w(z; + s) —u(z; — s))ds.
From here we derive the discretization for £3"u(a;):
(5.3)
r i) = 2u(x) + u(ziy) [
L3y (z) ~ Uis) - = / s2ys(s)ds
o Z (7h)? (j—1)h

" ’LL(J?z j)—u(xi,j) ik
Sy Ml /( s75(s)ds

j=zi/h i=Dh

0 ir1) — u(z;
+ 2 </ sw(s)ds) M

z; 9 w(@iny) — 2ule: o
+ (2/0 5276(|$|)ds+2x1-/. s'yé(s)d8> (Ti41) — 2u(x;) + u( )

h2

i

e Case IIT (local region): for i € {N +r+1,...,2N},

w(zipr) — 2u(z;) + ul(xi—q)
B2

Remark 5.1. The finite difference discretization described above is a first order

scheme with respect to h for fixed horizon ¢ to the QNL equation (3.5), as well as a

first order scheme for fixed ratio r between ¢ and h to the local equation (4.1). We split

the convection and diffusion parts in (5.2) to balance the convection from nonlocal and

local contributions. The resulting discretized expression (5.3) will be asymptotically

(5.4) LMu(z) =u" (2;) =
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(a) Solution error versus h (b) Gradient error versus h (¢) Gradient plots

Fic. 3. Plots of the nonlocal-local coupling model (3.5) with external force (5.5) and interface
x* = 1/2 computed by the direct method and the compatible scheme (5.3), respectively. Kernel
function is chosen to be v5(x) = 6+mx(_575)(x). The ratio between 6 and h is fized to be 6 = 3h.

The ezact gradient is not zero at the interface x* = 1/2, hence, the artificial convection due to direct
discretization leads to divergence in the computations.

compatible to the local equation. Otherwise, direct discretization of (5.2) will lead to
artificial convention terms and thus it will cause numerical inconsistency and insta-
bility on the interfacial regions. To demonstrate this, we compute the nonlocal-local
coupling model (3.5) with external force (5.5) and interface * = 1/2 by the direct
discretization and the compatible scheme (5.3), respectively. The results are plotted
in Figure 3. Notice that the exact gradient is not zero at the interface z* = 1/2,
and thus the artificial convection due to direct discretization causes divergence in the
computations.

Remark 5.2. For the general case that the interface is at * # 0, we have the fol-
lowing formulas in replace of equation (5.2). If z* is at the left side of the transitional
region, then (5.2) is replaced by

5 5
£ u(w) =2 [ sl (ulas = 5) = u(ei)) ds + 2 < | sw(sms) e
T, —x* S
+ <2/o s2ys(|s|)ds + 2(x; — ™) /’_ ) 5”/5(|S|)d8> u’ (x;) .

If «* is at the right side of the transitional region, then (5.2) is replaced by

5

L *—x;

§
Egnlu(gci) :2/ vs(Is]) (u(z; + 8) —u(x;))ds — 2 </ 375(5)d5> u' ()

¥ —x; )
+ <2/0 s2y5(|s])ds + 2(x* — xz)/ 5"/5(|8|)d8> u' (x;) .

* g

5.2. Numerical experiments. We solve the QNL problem (3.5) with right-
hand side f to be

(5.5) f(z) = —122% + 4.
The exact solution for the limiting local diffusion problem (4.1) is
(5.6) up = (1 —2)*(1 +2)? for x € Q.

We adopt the discretization scheme described in section 5.1 and compute the
QNL solution with the ratio between § and spatial step size h to be fixed. Two types
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TABLE 1

anl 4, uo and their gradients. We fix 6 = 3h and the kernel

L differences of solutions ug
Sunction is vs(z) = %x(,(m)(m).

h ||ufsllﬂl — up||poe | Order H(ug"I —ug)'||pee | Order
1/50 1.56e-2 - 1.91e-2 -
1/100 8.07e-3 0.95 9.61e-3 0.99
1/200 4.10e-3 0.98 4.82e-3 0.99
1/400 2.06e-3 0.99 2.42e-3 1.00
1/800 1.04e-3 0.99 1.21e-3 1.00
TABLE 2

L differences of solutions ugnl to up and their gradients. We fiz 6 = 3h and the kernel
function is vs(x) = %mx(,(g’(;)(x).

h ||u§n1 —ugl|pee | Order H(ugnl —up)'||Lee | Order
1/50 1.19e-2 — 1.80e-2 —
1/100 6.19e-3 0.95 9.13e-3 0.98
1/200 3.14e-3 0.97 4.59e-3 0.99
1/400 1.59e-3 0.99 2.30e-3 1.00
1/800 7.97e-4 0.99 1.15e-3 1.00

of kernels are used with one being vs(z) = 535 X(—s.5) (%) and another being vs(z) =
ﬁ X(-5,6)(x). We compute first the L>° difference between the QNL solution and the
local solution and then the L°° difference of the gradients which are approximated by
second order central finite difference at the mesh points. First order convergences with
respect to h are observed in both cases. The results are listed in Tables 1 and 2. More
careful studies on errors in other norms and more effective gradient recovery tech-
niques, like those proposed in [10] for nonlocal problems, will be studied in the future.

5.3. Local-nonlocal-local coupling. Volumetric constraints for nonlocal mod-
els often cause nonphysical boundary layer issues, as shown in Figure 4(a). We could
fix the boundary layer problem by coupling the nonlocal models with local models
and remove the volume constraints completely. Figure 4(b) shows the solution of the
local-nonlocal-local coupling with interfaces at z% = _71 and zb = % We see that the
coupling method removes the artificial boundary layer caused by volume constraints
with classical local Dirichlet boundary conditions imposed.

Next we consider the following singular external forces:

1-2)1+2%)
(5.7) fz) = P , x*=h/2.
The solutions for fully nonlocal, local-nonlocal-local coupling, and classical local mod-
els are plotted in Figure 5. We can see that the local-nonlocal-local coupling not only
captures the singular behavior of the nonlocal solution at x*, but also matches with
the local solution at two sides of the bar (—1,1).

6. Conclusion. By extending the idea of geometric reconstruction proposed
in [12, 20], we developed a top-down QNL coupling method to study the nonlocal-
to-local diffusion problem in a one dimensional space. This new coupling framework
removes interfacial inconsistency and maintains all physical properties at local contin-
uum PDE levels, whereas none of the existing coupling methods for nonlocal-to-local
problems satisfies all of these properties. We proved the well-posedness of the cou-
pling problem by a QNL version of the Poincaré inequality and established a rigorous
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(a) Nonlocal-local coupling model (b) Local-nonlocal-local coupling model

Fi1G. 4. Plots of solutions to the monlocal-local coupling model, local-nonlocal-local coupling
model, and fully local local model with homogeneous Dirichlet boundary condition and right-hand
side f = 1. Kernel function is chosen to be vs(x) = %x(,éyg)(a:). The nonlocal-local coupling
model has an interface at x = 0. The local-nonlocal-local coupling model has an interface at x® = _71

and z® = L. The mesh size is h = 1/800, the horizon size of nonlocal interaction is § = 0.2. The

nonlocal-local coupling model displays a nonphysical boundary layer at the nonlocal side, whereas the
result of the local-nonlocal-local model removes the boundary layer.

18- —— L-N-L coupling
fully nonlocal
16 - - - fully local

F1G. 5. The solutions are plotted with mesh size h = 1/800 and horizon size § = 0.2. We fix
the local-nonlocal-local coupling with interfaces at @ = %1 and z® = % Kernel function is chosen

to be vs(z) = %X(fls,(;)(x)'

estimate of the modeling error by the maximum principle. Furthermore, we proposed
a first order finite difference numerical discretization and confirmed the analysis by
several numerical tests. The coupling formulation also removes artificial boundary
effects caused by the fully nonlocal model when only classical Dirichlet boundary
conditions are imposed. Although our discussions here have focused on the scalar one
dimensional model problems, it is natural to investigate whether similar ideas can
be developed for systems of equations and for problems defined in multi-dimensions.
Such generalization is indeed possible, partly because of the fact that the nonlocal
diffusion models considered here are based on pairwise interactions, the cases that
have been explored in the atomistic-to-continuum coupling methods; see, for exam-
ple, [32, 33]. Further investigations will be carried out in our follow-up works along
this direction and for nonlocal problems possibly involving more general interactions.
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