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A QUASI-NONLOCAL COUPLING METHOD FOR NONLOCAL AND

LOCAL DIFFUSION MODELS∗
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Abstract. In this paper, we extend the idea of “geometric reconstruction” to couple a nonlocal
diffusion model directly with the classical local diffusion in one dimensional space. This new coupling
framework removes interfacial inconsistency, ensures the flux balance, and satisfies energy conser-
vation as well as the maximum principle, whereas none of existing coupling methods for nonlocal-
to-local coupling satisfies all of these properties. We establish the well-posedness and provide the
stability analysis of the coupling method. We investigate the difference to the local limiting problem
in terms of the nonlocal interaction range. Furthermore, we propose a first order finite difference
numerical discretization and perform several numerical tests to confirm the theoretical findings. In
particular, we show that the resulting numerical result is free of artifacts near the boundary of the
domain where a classical local boundary condition is used, together with a coupled fully nonlocal
model in the interior of the domain.
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1. Introduction. Nonlocal continuum models have found interesting applica-
tions in a number of important scientific and engineering problems, for example, the
phase transition [2, 14], the nonlocal heat conduction [3], fracture and damage in brit-
tle solids [35]. Meanwhile, they can often be linked to classic local continuum models
where the latter are known to hold [4, 6, 7, 9, 11, 13, 15, 16, 17, 19, 22, 23, 25, 28, 36].

While nonlocal integral-type formulations in a nonlocal continuum model can of-
ten provide a more accurate description of physical systems, especially near defects
and singularities, the nonlocality also increases the computational cost, compared to
classical local models based on partial differential equations (PDEs). As a result, it
is imperative to employ multiscale methods which can retain accuracy around defect
cores while improving efficiency away from singularities through local continuum de-
scriptions. In addition, the nonlocal models usually bring modeling challenges near
the boundary, as volumetric boundary conditions are needed that require additional
calibrations with the physical system. Improper boundary conditions may create un-
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intended modeling error [8, 10, 41]. It is thus interesting to explore alternatives that
enable the use of the usual local boundary conditions.

In the past ten years, a number of strategies have been proposed to couple together
local-to-nonlocal or two nonlocal continuum models with different nonlocality. These
coupling methods include (1) Arlequin-type domain decomposition (see, e.g., [18,
29]); (2) optimal-control-based coupling (see, e.g., [5]); (3) a morphing approach (see,
e.g., [24]); (4) a force-based blending mechanism (see, e.g., [30, 31]); and (5) an
energy-based blending mechanism (see, e.g., [1, 37, 38]); just to name a few. Among
these multiscale models, some exhibit spurious interfacial forces (“ghost forces”) under
uniform strain, while others forgo the need for energy and develop consistent force-
based methods which are nonconservative.

Recently, a new symmetric, consistent, and stable coupling strategy for nonlocal
diffusion problems was developed in [20] that couples two nonlocal operators with
different horizon parameters δ1 and δ2. The crucial step in the formulation is the
idea of “geometric reconstruction” from the quasi-nonlocal atomistic-to-continuum
method for crystalline solids (see, e.g., [12, 21, 26, 27, 32, 34]). In this paper, we
extend the geometric reconstruction idea to couple the nonlocal diffusion directly with
the classical local diffusion in a one dimensional space. This new coupled model enjoys
linear consistency and preserves the maximum principle. Furthermore, well-posedness
of the coupling problem, stability analysis, and error estimates are established in this
work to ensure the validity and reliability of the modeling approach and computational
results.

Let us first review nonlocal diffusion equations associated with a positive number
δ that characterizes the finite range of nonlocal interaction. We refer to [6] for more
detailed studies on nonlocal diffusion equations. Generically, the spatial interactions
in a linear nonlocal diffusion equation are characterized by a linear operator Lδ acting
on a function u = u(x) : Rd → R such that

(1.1) Lδu(x) = 2

∫

Rd

(u(y)− u(x))γδ(x,y)dy ∀x ∈ Ω

for some open domain Ω ⊂ R
d. The kernel γδ is usually nonnegative, symmetric, and

translational invariant for isotropic systems. Often it is chosen as a radial function
with a compact support, i.e., γδ(x,y) = γδ(|x − y|) and supp(γδ) ⊂ Bδ(0), where
Bδ(0) is the d-dimensional ball of radius δ. The constant δ > 0 is often called a
horizon parameter that characterizes the range of nonlocality. We note that the
operator Lδ can be written in the form of Lδ = DγδD

∗, where D and D∗ are some
basic nonlocal operators defined in a nonlocal vector calculus given in [7]. Such a
formulation naturally draws an analogy between the nonlocal operator Lδ and the
local second order elliptic differential operator ∇ · (C∇). Thus the nonlocal diffusion
problems can be studied and compared with the classical diffusion problems. The
nonlocal equations defined on the domain Ω are complemented by the “Dirichlet-type”
boundary conditions, which are constraints on a domain with nonzero d-dimensional
volume. Thus we arrive at the steady-state nonlocal volume-constrained diffusion
problem:

(1.2)

{

−Lδu = f on Ω,

u = 0 on ΩI

for a function u(x) : Rd → R and ΩI being the nonlocal interaction domain of nonzero
d-dimensional volume.
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1388 Q. DU, X. H. LI, J. LU, AND X. TIAN

To make connections of (1.2) with their local differential counterparts, we usually
consider the kernel γδ to be suitably localized as δ → 0. Without being too technical,
this essentially means that we want γδ(|s|)|s|

2 to be approximating the Dirac delta
measure at the origin as δ → 0. Often, a convenient assumption for us to make is
that γδ is a rescaled kernel,

(K)















γδ(|s|) =
1

δd+2
γ

(

|s|

δ

)

, γ is nonnegative and nonincreasing on (0,1),

with supp(γ) ⊂ [0, 1] and

∫

Rd

|s|2γ(|s|)ds = d .

In this paper, we propose an energy-based coupling method that combines the
nonlocal diffusion equation defined as above with the local classical diffusion equation.
Since the construction of our coupling follows the spirit of the quasi-nonlocal atomistic-
to-continuum coupling methods for crystalline materials (see for example, [12, 21, 26,
27, 32, 34]), we call our method the quasi-nonlocal (QNL) coupling of nonlocal and
local diffusion. We focus on one dimensional problems in this work to better illustrate
the idea. The multidimensional generalizations are possible and will be carried out in
separate works.

More specifically, in section 2 we first define the combined total energy from which
the QNL operator is derived through energy variation, followed by the discussion of
the concerned issue of patch-test consistency. Section 3 contains rigorous arguments
of the well-posedness of the coupled problem. Section 4 further explores the modeling
accuracy of the coupled method compared with the fully local diffusion equation in
terms of small δ, in which the uniform first order accuracy in terms of δ is shown.
Section 5 contains numerical experiments and then the conclusion and discussions are
put in section 6.

2. Consistent coupling of nonlocal and local diffusions. In this section,
we formulate our idea of the QNL coupling in a one dimensional bar. Without loss of
generality, we work on the domain Ω = (−1, 1) throughout the paper. We consider the
nonlocal interaction region to be on the left side of the bar Ω and the local interaction
region to be on the right side with a transition layer in the middle of width δ. Now
that the domain Ω is composed of both nonlocal and local interaction regions, the
Dirichlet boundary condition to impose should be considered as a mixture of nonlocal
and local boundary conditions. Specifically, to the left of the bar Ω there is a nonlocal
boundary (−1− δ,−1) and to the right of the bar a local boundary {1}. In all further
discussions we use Ωδ = (−1 − δ,−1) ∪ {1} as the boundary domain which is mixed
with nonlocal and local boundary. See Figure 1 for the graphical illustration of the
coupled nonlocal and local domain.

pure nonlocal pure local
transitionalnonlocal bdry local bdry

−1 0 δ 1

Fig. 1. Graphical illustration of the one dimensional domain.D
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2.1. The energy space. The QNL coupling method comes from energy varia-
tion of the total energy defined as
(2.1)

Eqnl
δ (u) :=

1

2

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x))
2
dydx+

1

2

∫

x>0

|u′(x)|2ωδ(x) dx ,

where the weight function ωδ is given by

(2.2) ωδ(x) :=

∫ 1

0

dt

∫

|s|< x

t

|s|2γδ(|s|) ds.

From the definition of the kernel γδ in (K), in particular that the second moment of
γδ is equal to d = 1, it is easy to see that ωδ(x) is a nondecreasing function on [0,∞)
with ωδ(0) = 0 and ωδ(x) = 1 for x ≥ δ. Thus the total QNL energy has a transition
from pure nonlocal to pure local through the transitional region (0, δ). We further
characterize the weight function ωδ(x) in the following lemma.

Lemma 1. By the definition of ωδ in (2.2), we have the following equations,

ωδ(x) = 2

∫ x

0

s2γδ(|s|)ds+ 2x

∫ ∞

x

sγδ(|s|)ds,(2.3)

ω′
δ(x) = 2

∫ ∞

x

sγδ(s)ds.(2.4)

Proof. For the first equation,

ωδ(x) =

∫ 1

0

dt

∫

|s|< x

t

s2γδ(|s|)ds = 2

∫ 1

0

dt

∫ x

t

0

s2γδ(|s|)ds

= 2

∫ x

0

s2γδ(|s|)

∫ 1

0

dtds+ 2

∫ ∞

x

s2γδ(|s|)

∫ x

s

0

dtds

= 2

∫ x

0

s2γδ(|s|)ds+ 2x

∫ ∞

x

sγδ(|s|)ds .

Then ω′
δ(x) is obtained by taking derivatives of the expression.

Remark 2.1. For given kernel γ, we could calculate ωδ using the formula (2.3)
given in Lemma 1. We give two examples in the following and the plot of the cor-
responding weight function is shown in Figure 2. These kernels will be used in our
numerical examples too.

(1) γδ(s) =
3

2δ3χ(−δ,δ)(s), then

ωδ(x) =







3x

2δ
−

x3

2δ3
, x ∈ (0, δ),

1, x ≥ δ.

(2) γδ(s) =
1

|s|δ2χ(−δ,δ)(s), then

ωδ(x) =







2x

δ
−

x2

δ2
, x ∈ (0, δ).

1, x ≥ δ.
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x

ωδ(x)

δ

1

Fig. 2. Blue line: weight function for γδ(s) =
3

2δ3
χ(−δ,δ)(s). Red dashed line: weight function

for γδ(s) =
1

|s|δ2
χ(−δ,δ)(s).

The energy defined in (2.1) has a more intuitive interpretation from the geometric
reconstruction formulation [12, 20, 21]. We will show in Proposition 2 that (2.1) is
equivalent to the following:

Eqnl
δ (u) =

1

2

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x))
2
dydx(2.5)

+
1

2

∫∫

x>0 and y>0

dydx γδ(|y − x|)

∫ 1

0

dt|u′(x+ t(y − x))|
2
|y − x|2.

To better convey the idea of geometric reconstruction proposed in [20], we first
assume that Ω = Ω1 t Ω2 is dominated by two different nonlocal kernels γδ1 and γδ2
(δ2 < δ1), respectively. Next, we utilize the interaction kernel γδ1 throughout the
entire domain Ω, while in the subregion Ω2, the displacement of bond (u(y) − u(x))
will be reconstructed so that it only involves x and y pairs that are closer in distance.
More concretely, to link the interaction with kernel γδ2 to γδ1 where δ1 = Mδ2 with
M being an integer, if a bond {x − y} is completely contained in the subregion Ω2,
then the displacement of this bond (u(y)−u(x)) will be reconstructed by the following
expression:

u(y)−u(x) →

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)

M for j = 0, . . . , (M − 1).

Hence, the bond interaction γδ2(|y − x|) (u(y)− u(x))
2
in Ω2 is approximated by

(2.6) γδ1(|y − x|)
1

M

M−1
∑

j=0

((

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)

δ1
δ2

)2

.

Note that if |x− y| ≤ δ1, the difference on the right is evaluated at points with distance
at most δ1

M = δ2; thus, effectively, the difference u(y)−u(x) is reconstructed by a more
local interaction (and hence the idea was referred to as the geometric reconstruction
scheme in [12]). In fact, if such a reconstruction is adopted everywhere in the entire
domain Ω, one will recover the fully nonlocal interactions with kernel γδ2 only [20].
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Notice that when M = δ1
δ2

→ ∞, the summation in (2.6) can be viewed as a Riemann
sum that converges to an integral, that is,

1

M

M−1
∑

j=0

(

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)δ1
δ2

)2

=

M−1
∑

j=0

(

u
(

x+ j+1
M (y − x)

)

− u
(

x+ j
M (y − x)

)

1
M (y − x)

(y − x)

)2
1

M

→

∫ 1

0

|u′(x+ t(y − x))|
2
|y − x|2dt as M → ∞.

The nonlocal bond interaction γδ(|y − x|) (u(y)− u(x))
2
can be reconstructed by its

local continuum approximation:

(2.7) γδ(|y − x|) ·

∫ 1

0

|u′(x+ t(y − x))|
2
|y − x|2dt.

Based on this construction, we arrive at the total coupling energy (2.5).
We will show now that the two ways of writing the QNL total energy are the

same. From the expressions (2.1) and (2.5), it suffices to show that the local con-
tributions to the total energy are equivalent. The two different ways of writing the
local contribution of the energy have their own advantages and we will adopt either
definition at our convenience in the following.

Proposition 2. The following two expressions of local contribution to the total
energy are equivalent:

Eloc
δ (u) =

1

2

∫∫

x>0 and y>0

dxdy γδ(|y − x|) ·

∫ 1

0

dt|u′(x+ t(y − x))|
2
|y − x|2(2.8)

and

Eloc
δ (u) =

1

2

∫

x>0

|u′(x)|2ωδ(x) dx.(2.9)

Proof. We start with recasting the right-hand side of (2.8):

1

2

∫∫

x>0 and y>0

γδ(|y − x|) ·

∫ 1

0

dt|u′(x+ t(y − x))|
2
|y − x|2

=
1

2

∫ 1

0

dt

∫

x>0

dx

∫

z>(1−t)x

dzγδ

(
∣

∣

∣

∣

z − x

t

∣

∣

∣

∣

)

|u′(z)|2
1

t3
|z − x|2

=
1

2

∫ 1

0

dt

∫

z>0

dz|u′(z)|2
∫

0<x< z

1−t

γδ

(∣

∣

∣

∣

x− z

t

∣

∣

∣

∣

)

1

t3
|x− z|2 dx

=
1

2

∫

z>0

dz|u′(z)|2
∫ 1

0

dt

∫

− z

t
<s< z

1−t

γδ (|s|) |s|
2 ds .
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Now since

∫ 1

0

dt

∫

− z

t
<s< z

1−t

|s|2γδ (|s|) ds

=

∫ 1

0

dt

∫

− z

t
<s<0

|s|2γδ (|s|) ds+

∫ 1

0

dt

∫

0<s< z

1−t

|s|2γδ (|s|) ds

=

∫ 1

0

dt

∫

− z

t
<s<0

|s|2γδ (|s|) ds+

∫ 1

0

dt

∫

0<s< z

t

|s|2γδ (|s|) ds ,

we arrive at the definition of Eloc
δ in (2.9) with the weight function ωδ as in (2.2).

Naturally, we seek solutions in the energy space Sqnl
δ (Ω) equipped with norm

‖u‖2
Sqnl

δ
(Ω)

= ‖u‖2L2(Ω∪Ωδ)
+ |u|2

Sqnl

δ
(Ω)

,

where |u|2
Sqnl

δ
(Ω)

:= 2Eqnl
δ (u). Now define Sqnl

δ (Ω) to be the completion of C∞
c (Ω)

under the norm ‖ · ‖Sqnl

δ
(Ω), namely,

Sqnl
δ (Ω) = {u ∈ L2(Ω ∪ Ωδ) : ∃{un} ∈ C∞

c (Ω), ‖un − u‖Sqnl

δ
(Ω) → 0 as n → ∞} .

Then we know first that Sqnl
δ (Ω) is a Hilbert space with inner product (·, ·)Sqnl

δ
(Ω) to

be defined as

(u, v)Sqnl

δ
(Ω) = (u, v)L2(Ω∪Ωδ) + bqnlδ (u, v),

where bqnlδ (u, v) is defined as

bqnlδ (u, v) =

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x)) (v(y)− v(x)) dydx

+

∫

x>0

u′(x)v′(x)ωδ(x) dx.

(2.10)

Moreover, a Poincaré-type inequality holds on the space Sqnl
δ (Ω) that is crucial in

showing the well-posedness of the variational problem.

Proposition 3 (Poincaré inequality). For u ∈ Sqnl
δ (Ω), we have the following

Poincaré-type inequality,

(2.11) ‖u‖L2(Ω) ≤ C|u|Sqnl

δ
(Ω) ,

where C is independent of u.

Proof. From Proposition 7 which will be shown later in section 3, we know that the
QNL energy |u|Sqnl

δ
(Ω) is bounded from below by a purely nonlocal energy defined on

the entire domain Ω. Thus by the nonlocal Poincaré inequality established previously
in early works (e.g., [6, 25]), (2.11) is true. Indeed, [25] shows that for a given small
number ε there exists δ0(ε) such that for all δ < δ0 the lemma holds with C(δ0) = A+ε,
where A is the classical local Poincaré constant for the domain Ω.
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2.2. The QNL operator. We will derive the QNL operator denoted as Lqnl
δ

from energy variation. We take the first variation of Eqnl
δ (u) in (2.5) with any test

function v ∈ C∞
c (Ω), and get

(2.12)

〈dEqnl
δ (u), v〉

:= lim
ε→0

Eqnl
δ (u+ εv)− Eqnl

δ (u)

ε

=

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x)) (v(y)− v(x)) dydx+

∫

x>0

ωδ(x)u
′(x)v′(x)dx

= −2

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x)) v(x)dydx−

∫

x>0

(ωδ(x)u
′(x))′v(x)dx,

where the last equality comes from integration by parts and the fact that ωδ(0) = 0.

The force formalism Lqnl
δ u(x) is negative to the first variation of total energy, and it

splits into three cases:
• Case I (nonlocal region): for x ≤ 0,

Lqnl
δ u(x) =2

∫

y∈R

γδ(|y − x|) (u(y)− u(x)) dy.(2.13)

• Case II (transitional region): for 0 < x ≤ δ,

Lqnl
δ u(x) =2

∫

y<0

γδ(|y − x|) (u(y)− u(x)) dy + (ωδ(x)u
′(x))′ .(2.14)

• Case III (local region): for x > δ, and since ωδ(x) = 1 for x ≥ δ,

Lqnl
δ u(x) =(ωδ(x)u

′(x))′ = u′′(x) .(2.15)

Remark 2.2. Since the QNL operator Lqnl
δ is defined through the first variation

of total energy, Lqnl
δ is self-adjoint, that is, from a physical point of view, the force

acting on x from y is equal to the force acting on y from x. This symmetry in acting
forces guarantees the balance of linear momentum. In addition, this QNL framework
ensures the flux balance and satisfies energy conservation.

2.3. Consistency at the interface. We will show in this part that the QNL
coupling is consistent at the interface (in the language of atomistic-to-continuum
coupling, it is free of ghost force), namely, for a linear displacement ulin(x) = Fx+ a,
the force equals zero. For this matter, we only need to worry about the values of
Lqnl
δ ulin in the interfacial region, since it is obviously zero in the pure nonlocal and

local regions as given by Cases I and III in (2.13) and (2.15). For a more general
consideration that will also be useful in the next sections, we give the following lemma
that involves the operator Lqnl

δ acting on smooth functions in the interfacial region.
The lemma states that if δ is small, the QNL diffusion is approximately a local diffusion
with effective diffusion constant a(x).

Lemma 4. For any smooth function v,

(2.16) Lqnl
δ v(x) = a(x)v′′(x) +O(δ‖v′′′‖C0), 0 < x < δ ,
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where a is given by

(2.17) a(x) = 1−

∫ δ

x

s2γδ(|s|)ds+ 2x

∫ δ

x

sγδ(|s|)ds .

Proof. For x ∈ (0, δ), by the expressions of ωδ and ω′
δ in Lemma 1, we have

Lqnl
δ v(x) = 2

∫

y<0

γδ(|y − x|) (v(y)− v(x)) dy + (ωδ(x)v
′(x))′

= 2

∫ −x

−δ

γδ(s)

(

sv′(x) +
1

2
s2v′′(x) +O(|s|3‖v′′′‖C0)

)

+ ωδ(x)v
′′(x) + ω′

δ(x)v
′(x)

=

(

∫ δ

x

s2γδ(|s|)ds

)

v′′(x) + ωδ(x)v
′′(x) +O(δ‖v′′′‖C0)

=

(

1−

∫ δ

x

s2γδ(|s|)ds+ 2x

∫ δ

x

sγδ(|s|)ds

)

v′′(x) +O(δ‖v′′′‖C0) .

Thus, we proved this lemma.

Remark 2.3. We can further quantify a(x) as follows.
1. One can show that 1

2 ≤ a(x) ≤ 3
2 for x ∈ (0, δ) and a(δ) = 1. Indeed,

a(x) ≥ 1−

∫ δ

x

s2γδ(|s|)ds ≥ 1−

∫ δ

0

s2γδ(|s|)ds =
1

2

and

a(x) ≤ 1−

∫ δ

x

s2γδ(|s|)ds+ 2

∫ δ

x

s2γδ(|s|)ds ≤ 1 +

∫ δ

0

s2γδ(|s|)ds =
3

2
.

Finally, a(δ) = 1 is obvious.
2. For the two examples that γδ(s) =

3
2δ3χ(−δ,δ)(s) and γδ(s) =

1
|s|δ2χ(−δ,δ)(s),

we could calculate a(x) explicitly through (2.17):

a(x) =















1

2
+

3x

2δ
−

x3

δ3
for γδ(s) =

3

2δ3
χ(−δ,δ)(s) ,

1

2
+

2x

δ
−

3x2

2δ2
for γδ(s) =

1

|s|δ2
χ(−δ,δ)(s) .

We remark that although the effective local diffusion coefficient a(x) is not
equal to a constant one for 0 < x < δ, we have in the two cases

∫ δ

0

a(x)dx = δ .

In other words, the spatial averaged diffusion coefficient for 0 < x < δ is equal
to one.

Lemma 4 shows the expansion of Lqnl
δ v(x) in the interfacial region using the

second and higher derivatives of v. Thus it is obvious that for a linear function ulin,
Lqnl
δ ulin = 0. In other words, the QNL coupling passes the patch test.
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Corollary 5 (patch-test consistency). For a linear function ulin(x) = Fx+ a,

Lqnl
δ ulin = 0 .

Proof. This directly follows from (2.13), (2.14), and (2.15) using Lemma 4.

3. Stability and well-posedness. In this section, our goal is to show that
the bilinear form bqnlδ (·, ·) : Sqnl

δ (Ω) × Sqnl
δ (Ω) → R defined by (3.4) is bounded and

coercive, thus the well-posedness of the variational problem can be followed. The
boundedness of the bilinear norm is obvious since Sqnl

δ (Ω) is a Hilbert space and

bqnlδ (·, ·) is part of its inner product. The coercivity is from the Poincaré inequality
(2.11), and the essential step is proved in Proposition 7. Now let us define the local
contribution of the bilinear form as

(3.1) blocδ (u, v) :=

∫

x>0

u′(x)v′(x)ωδ(x) dx.

We can see the lower bound of blocδ (u, u) in the following lemma.

Lemma 6. For blocδ (u, v) defined in (3.1), we have

(3.2) blocδ (u, u) ≥

∫∫

x>0 and y>0

γδ(|y − x|)
(

u(y)− u(x)
)2

dxdy.

Proof. The right-hand side of (3.2) can be recast as
∫

x>0 and y>0

γδ(|y − x|)
(

u(y)− u(x)
)2

dxdy

=

∫

x>0

dx

∫

y>0

dyγδ(|y − x|)

[
∫

0<t<1

du
(

x+ t(y − x)
)

]2

=

∫

x>0

dx

∫

y>0

dyγδ(|y − x|)

[
∫ 1

0

(y − x) · u′
(

x+ t(y − x)
)

dt

]2

≤

∫

x>0

dx

∫

y>0

dyγδ(|y − x|)(y − x)2
∫ 1

0

|u′
(

x+ t(y − x)
)

|2dt ,(3.3)

where the last expression is exactly 2Eloc
δ (u) = blocδ (u, u) as shown in Proposition 2.

Lemma 6 immediately leads to the stability property as compared to the fully nonlocal
bilinear operator.

Proposition 7. For bqnlδ (u, v) defined in (3.1), we have

(3.4) bqnlδ (u, u) ≥

∫∫

x,y∈R

γδ(|y − x|) (u(y)− u(x))
2
dydx.

Proof. Recall the definition of bqnlδ (u, u) and using the conclusion of Lemma 6, we
immediately get

bqnlδ (u, u) =

∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x))
2
dxdy + blocδ (u, u)

≥

∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x))
2
dxdy

+

∫

x>0 and y>0

γδ(|y − x|)
(

u(y)− u(x)
)2

dxdy .
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Now from the Poincaré inequality, Proposition 3, we conclude that bqnlδ (·, ·) is
bounded and coercive, thus leading to the well-posedness of the QNL model.

Theorem 8. The QNL diffusion equation given by

(3.5)

{

−Lqnl
δ uqnl

δ (x) = f(x) for x ∈ Ω,

uδ(x) = 0 for x ∈ Ωδ,

is well-posed, where Lqnl
δ is defined in subsection 2.2.

Proof. Well-posedness follows immediately from the Lax–Milgram theorem.

4. Convergence to the local diffusion as δ → 0. We consider in this section
the modeling error estimate of the QNL coupling equation (3.5) as δ → 0 to the local
differential equation

(4.1)

{

−u′′
0(x) = f(x), x ∈ Ω ,

u0(−1) = u0(1) = 0 .

In this section we assume that u0 has a smooth zero extension into (−1−δ,−1) to
avoid discussions on the effect of the nonlocal boundary condition there. We denote
the error between the solutions to (3.5) and (4.1) to be eδ(x) = uqnl

δ − u0(x). With
this extension and both local and nonlocal homogeneous Dirichlet conditions imposed
on uqnl

δ on the interval (−1 − δ,−1) and the right endpoint 1 of Ω, respectively, we
see that eδ(x) = 0 for x ∈ Ωδ.

Truncation error. Let the truncation error be Tδ(x) = Lqnl
δ u0(x) − u′′

0(x). Then
Tδ(x) = T 1

δ (x) + T 2
δ (x), where T 1

δ (x) = Tδ(x)χ(−1,0)(x) and T 2
δ (x) = Tδ(x)χ(0,δ)(x).

According to the calculations in section 2.3, we know that T 1
δ (x) = O(δ2) for x ∈

(−1, 0) and T 2
δ (x) = O(1) for x ∈ (0, δ). Notice that from Lemma 4, for x ∈ (0, δ),

T 2
δ (x) = Lqnl

δ u0(x)− u′′
0(x) = a(x)u′′

0(x)− u′′
0(x) +O(δ)

= (a(x)− 1)u′′
0(x) +O(δ) .

Since 1
2 ≤ a(x) ≤ 3

2 by Remark 2.3, we have

(4.2) |T 2
δ (x)| ≤

1

2
C∗ +O(δ) ,

where C∗ = ‖u0‖C2 . Now that −Lqnl
δ eδ(x) = −Lqnl

δ uqnl
δ (x) + Lqnl

δ u0(x) = Tδ(x), we

have eδ(x) = (−Lqnl
δ )−1T 1

δ (x) + (−Lqnl
δ )−1T 2

δ (x) = e1δ(x) + e2δ(x), where e1δ(x) and
e2δ(x) are defined as

(4.3)

{

e1δ(x) = (−Lqnl
δ )−1T 1

δ (x),

e2δ(x) = (−Lqnl
δ )−1T 2

δ (x) .

We are going to show next that |e1δ(x)| = O(δ2) and |e2δ(x)| = O(δ). Thus the total
error is of order O(δ). The main ingredients are the maximum principle and barrier
functions.

In the following, we will show the maximum principle for solutions of (3.5) that
may have a discontinuity at 0. We need such a result for error estimate because the
truncation error Tδ has been decomposed into two piecewise smooth functions such
that e1δ and e2δ might be discontinuous at 0.
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Lemma 9 (maximum principle). The operator Lqnl
δ satisfies the maximum prin-

ciple, namely, if u ∈ C([−1 − δ, 0]) ∩ C2([0, 1]), then −Lqnl
δ u(x) ≤ 0 in Ω implies

that
max

x∈Ω∪Ωδ

u(x) ≤ max
x∈Ωδ

u(x).

Proof. First, from −Lqnl
δ u(x) ≤ 0 in (0, 1) we can show that

(4.4) max
x∈(0,1)

u(x) ≤ max
x∈{0+}∪{1}

u(x) ,

where u(0+) = limx→0,x>0 u(x). Indeed, if we assume the opposite is true, namely, if
x̃ ∈ (0, 1) is an isolated maximum point, then we must have u′(x̃) = 0 and u′(x̃) < 0.

From the expressions of Lqnl
δ in (2.14) and (2.15), we have immediately −Lqnl

δ u(x̃) > 0,

which contradicts the assumption. Second, from −Lqnl
δ u(x) ≤ 0 in [−1, 0] we could

show

(4.5) max
x∈(−1−δ,δ)

u(x) ≤ max
x∈(−1−δ,−1)∪(0,δ)

u(x) .

The argument is the following. Assume the opposition is true, namely,

max
x∈(−1−δ,δ)

u(x) > max
x∈(−1−δ,−1)∪(0,δ)

u(x),

then we could find x∗ ∈ [−1, 0] such that u(x∗) = maxx∈(−1,0) u(x) and

−Lqnl
δ u(x∗) = −

∫ δ

−δ

γδ(|s|)(u(x
∗ + s)− u(x∗))ds > 0,

which gives us a contradiction. So u has to satisfy (4.5).
Now combine the result of (4.4) and (4.5), we only need to show u(0+) ≤

maxx∈Ωδ
u(x). Assume the opposite, namely, u(0+) > u(x) for any x ∈ [−1− δ, 0−]∪

(0, 1]. Then since u(0+) > u(0−), we have
∫

y<0
γδ(|y − x|) (u(y)− u(x)) dy < 0 for

sufficiently small x > 0. Considering also that u′(0+) ≤ 0 (since u(0+) > u(x) for any
x > 0) and ωδ(0

+) = 0, we see that for small enough x > 0,

−Lqnl
δ u(x) = −2

∫

y<0

γδ(|y − x|) (u(y)− u(x)) dy − ωδ(x)u
′′(x)− ω′

δ(x)u
′(x) > 0 ,

which gives us a contradiction.
Hence, we proved the lemma.

Theorem 10. Suppose uqnl
δ and u0 are strong solutions to (3.5) and (4.1), re-

spectively. Assume that u0 ∈ C3(Ω ∪ Ωδ), then

‖uqnl
δ (x)− u0(x)‖L∞(Ω) = O(δ) .

Proof. We will construct barrier functions of nonnegative values on Ω ∪ Ωδ and
then estimate e1δ(x) and e2δ(x) defined by (4.3). The first barrier function is a simple
quadratic function. Take Φ1(x) = −cx2 + 4c, then from the calculations in section

2.3 we know that −Lqnl
δ (δΦ1(x)) ≥ cδ. For u0 ∈ C3(Ω ∪ Ωδ), we know that T 1

δ (x) is
at least of order O(δ), so by choosing c large enough we could have cδ ≥ T 1

δ (x). Now
from Lemma 9 we conclude that

max
x∈Ω∪Ωδ

(e1δ(x)− δΦ1(x)) ≤ max
x∈Ωδ

(e1δ(x)− δΦ1(x)) ≤ 0 ,
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so we have e1δ(x) ≤ δΦ1(x) ≤ 4cδ. Applying the same arguments to −e1δ(x) we also
have −e1δ(x) ≤ 4cδ. Thus |e1δ(x)| = O(δ).

The second barrier function Φ2(x) is more carefully designed in order to get the
estimate of e2δ(x). The key is to define Φ2(x) such that Φ2 ∈ C([−1−δ, 0])∩C2([0, 1])
(so as to use the maximum principle) and it is linearly decaying to zero outside the
interfacial region. We define the barrier function Φ2(x) to be

(4.6) Φ2(x) =















δx+ δ + δ2, x ∈ (−1− δ, 0) ,

1

8δ
x3 −

3

4
x2 +

1

2
δx+ δ + δ2, x ∈ [0, 2δ] ,

− δx+ δ + 2δ2, x ∈ [2δ, 1) .

One could check that Φ2 ∈ C([−1 − δ, 0]) ∩ C2([0, 1]) and −Lqnl
δ (Φ2(x)) ≥ 0 for

x ∈ (−1, 1). In particular, for x ∈ (0, δ), after taking the Taylor-expansion, we can
write

−Lqnl
δ (Φ2(x)) =− a(x)Φ′′

2(x)− 2

∫ −x

−δ

γδ(s)

(

1

6
s3Φ′′′

2 (x)ds

)

=− a(x)

(

3

4

x

δ
−

3

2

)

−
1

3
·
3

4δ

∫ −x

−δ

s3γδ(s)ds

≥
3

4
a(x) +

1

4δ

∫ δ

x

s3γδ(s)ds ≥
3

8
,

where the last inequality comes from the fact that a(x) ≥ 1
2 . Then by the expression of

T 2
δ (x) in (4.2), we could take a c̃ > 0 large enough such that −Lqnl

δ (c̃Φ2(x)) ≥ T 2
δ (x);

then from the maximum principle we conclude that

max
x∈Ω∪Ωδ

(e2δ(x)− c̃Φ2(x)) ≤ max
x∈Ωδ

(e2δ(x)− c̃Φ2(x)) ≤ 0 .

So we have e2δ(x) ≤ c̃Φ2(x) ≤ c̃(δ+ δ2). Using the same arguments for −e2δ(x) we also
have −e2δ(x) ≤ c̃(δ + δ2). Thus |e2δ(x)| = O(δ).

5. Numerical discretization and numerical examples. In this section, we
will develop a finite difference discretization and consider several benchmark problems
to check the accuracy and stability performance of the numerical scheme. The patch-
test consistency, symmetry, and positive definiteness of the finite difference matrix
are validated numerically.

5.1. Numerical scheme. We use finite difference for spatial discretization. The
domain Ω = (−1, 1) is divided into 2N uniform subintervals with equal length h = 1/N
and grid points −1 = x0 < x1 < · · · < x2N = 1 so the interface grid point is xN = 0.
Homogeneous Dirichlet boundary condition u = 0 is assumed on the boundary domain
Ωδ = (−δ − 1,−1) ∪ {1}. We use the scaling invariance of second moments of γδ and

local diffusion and approximate the QNL diffusion operator Lqnl
δ in the three regimes.

The finite difference scheme we use is not only convergent to the QNL problem with
fixed δ, but also convergent to the local differential equation with fixed ratio between
δ and h, thus an asymptotically compatible scheme, a notion developed in [39, 40].

For simplicity of discussion, we always assume that δ/h = r with r being an
integer in the following. We discuss in order the discretization scheme in the nonlocal
region, transitional region, and local region, respectively. Special treatment is used in
the transitional region for the scheme to be asymptotically compatible.
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• Case I (nonlocal region): for i ∈ {0, 1, . . . , N},

Lqnl
δ u(xi) = 2

∫ δ

−δ

(u(xi + s)− u(xi)) γδ(s)ds

= 2

∫ δ

0

(

u(xi + s)− 2u(xi) + u(xi − s)

s2

)

s2γδ(s)ds

≈ 2

r
∑

j=1

(

u(xi+j)− 2u(xi) + u(xi−j)

(jh)2

)
∫ jh

(j−1)h

s2γδ(s)ds .

(5.1)

• Case II (transitional region): for i ∈ {N + 1, N + 2, . . . , N + r},

Lqnl
δ u(xi) = 2

∫ δ

xi

γδ(|s|) (u(xi − s)− u(xi)) ds+ 2

(

∫ δ

xi

sγδ(s)ds

)

u′(xi)

+

(

2

∫ xi

0

s2γδ(|s|)ds+ 2xi

∫ δ

xi

sγδ(|s|)ds

)

u′′(xi).

(5.2)

Now we split the nonlocal integral term into a diffusion part and a convection
part:

2

∫ δ

xi

γδ(|s|) (u(xi − s)− u(xi)) ds

=

∫ δ

xi

γδ(|s|) (u(xi + s)− 2u(xi) + u(xi − s)) ds

−

∫ δ

xi

γδ (u(xi + s)− u(xi − s)) ds .

From here we derive the discretization for Lqnl
δ u(xi):

Lqnl
δ u(xi) ≈

r
∑

j=xi/h

u(xi+j)− 2u(xi) + u(xi−j)

(jh)2

∫ jh

(j−1)h

s2γδ(s)ds

−

r
∑

j=xi/h

u(xi+j)− u(xi−j)

jh

∫ jh

(j−1)h

sγδ(s)ds

+ 2

(

∫ δ

xi

sγδ(s)ds

)

u(xi+1)− u(xi)

h

+

(

2

∫ xi

0

s2γδ(|s|)ds+ 2xi

∫ δ

xi

sγδ(|s|)ds

)

u(xi+1)− 2u(xi) + u(xi−1)

h2
.

(5.3)

• Case III (local region): for i ∈ {N + r + 1, . . . , 2N},

Lqnl
δ u(xi) =u′′(xi) ≈

u(xi+1)− 2u(xi) + u(xi−1)

h2
.(5.4)

Remark 5.1. The finite difference discretization described above is a first order
scheme with respect to h for fixed horizon δ to the QNL equation (3.5), as well as a
first order scheme for fixed ratio r between δ and h to the local equation (4.1). We split
the convection and diffusion parts in (5.2) to balance the convection from nonlocal and
local contributions. The resulting discretized expression (5.3) will be asymptotically
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Table 1

L∞ differences of solutions uqnl
δ

to u0 and their gradients. We fix δ = 3h and the kernel

function is γδ(x) =
3

2δ3
χ(−δ,δ)(x).

h ‖uqnl
δ

− u0‖L∞ Order ‖(uqnl
δ

− u0)′‖L∞ Order
1/50 1.56e-2 − 1.91e-2 −
1/100 8.07e-3 0.95 9.61e-3 0.99
1/200 4.10e-3 0.98 4.82e-3 0.99
1/400 2.06e-3 0.99 2.42e-3 1.00
1/800 1.04e-3 0.99 1.21e-3 1.00

Table 2

L∞ differences of solutions uqnl
δ

to u0 and their gradients. We fix δ = 3h and the kernel

function is γδ(x) =
1

δ2|x|
χ(−δ,δ)(x).

h ‖uqnl
δ

− u0‖L∞ Order ‖(uqnl
δ

− u0)′‖L∞ Order
1/50 1.19e-2 − 1.80e-2 −
1/100 6.19e-3 0.95 9.13e-3 0.98
1/200 3.14e-3 0.97 4.59e-3 0.99
1/400 1.59e-3 0.99 2.30e-3 1.00
1/800 7.97e-4 0.99 1.15e-3 1.00

of kernels are used with one being γδ(x) =
3

2δ3χ(−δ,δ)(x) and another being γδ(x) =
1

δ2|x|χ(−δ,δ)(x). We compute first the L∞ difference between the QNL solution and the

local solution and then the L∞ difference of the gradients which are approximated by
second order central finite difference at the mesh points. First order convergences with
respect to h are observed in both cases. The results are listed in Tables 1 and 2. More
careful studies on errors in other norms and more effective gradient recovery tech-
niques, like those proposed in [10] for nonlocal problems, will be studied in the future.

5.3. Local-nonlocal-local coupling. Volumetric constraints for nonlocal mod-
els often cause nonphysical boundary layer issues, as shown in Figure 4(a). We could
fix the boundary layer problem by coupling the nonlocal models with local models
and remove the volume constraints completely. Figure 4(b) shows the solution of the
local-nonlocal-local coupling with interfaces at xa = −1

2 and xb = 1
2 . We see that the

coupling method removes the artificial boundary layer caused by volume constraints
with classical local Dirichlet boundary conditions imposed.

Next we consider the following singular external forces:

(5.7) f(x) =
(1− x2)(1 + x2)

|x− x∗|
, x∗ = h/2.

The solutions for fully nonlocal, local-nonlocal-local coupling, and classical local mod-
els are plotted in Figure 5. We can see that the local-nonlocal-local coupling not only
captures the singular behavior of the nonlocal solution at x∗, but also matches with
the local solution at two sides of the bar (−1, 1).

6. Conclusion. By extending the idea of geometric reconstruction proposed
in [12, 20], we developed a top-down QNL coupling method to study the nonlocal-
to-local diffusion problem in a one dimensional space. This new coupling framework
removes interfacial inconsistency and maintains all physical properties at local contin-
uum PDE levels, whereas none of the existing coupling methods for nonlocal-to-local
problems satisfies all of these properties. We proved the well-posedness of the cou-
pling problem by a QNL version of the Poincaré inequality and established a rigorous
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N-L coupling
Exact fully local

(a) Nonlocal-local coupling model

-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
L-N-L coupling
Exact fully local

(b) Local-nonlocal-local coupling model

Fig. 4. Plots of solutions to the nonlocal-local coupling model, local-nonlocal-local coupling
model, and fully local local model with homogeneous Dirichlet boundary condition and right-hand
side f ≡ 1. Kernel function is chosen to be γδ(x) = 3

2δ3
χ(−δ,δ)(x). The nonlocal-local coupling

model has an interface at x = 0. The local-nonlocal-local coupling model has an interface at xa = −1
2

and xb = 1
2
. The mesh size is h = 1/800, the horizon size of nonlocal interaction is δ = 0.2. The

nonlocal-local coupling model displays a nonphysical boundary layer at the nonlocal side, whereas the
result of the local-nonlocal-local model removes the boundary layer.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0
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20

 

 

L−N−L coupling

fully nonlocal

fully local

−0.04 −0.02 0 0.02 0.04

8

10

12

14

16

18

 

 

Fig. 5. The solutions are plotted with mesh size h = 1/800 and horizon size δ = 0.2. We fix
the local-nonlocal-local coupling with interfaces at xa = −1

2
and xb = 1

2
. Kernel function is chosen

to be γδ(x) =
3

2δ3
χ(−δ,δ)(x).

estimate of the modeling error by the maximum principle. Furthermore, we proposed
a first order finite difference numerical discretization and confirmed the analysis by
several numerical tests. The coupling formulation also removes artificial boundary
effects caused by the fully nonlocal model when only classical Dirichlet boundary
conditions are imposed. Although our discussions here have focused on the scalar one
dimensional model problems, it is natural to investigate whether similar ideas can
be developed for systems of equations and for problems defined in multi-dimensions.
Such generalization is indeed possible, partly because of the fact that the nonlocal
diffusion models considered here are based on pairwise interactions, the cases that
have been explored in the atomistic-to-continuum coupling methods; see, for exam-
ple, [32, 33]. Further investigations will be carried out in our follow-up works along
this direction and for nonlocal problems possibly involving more general interactions.
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