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Abstract

We formulate the blended force-based quasicontinuum method for multilattices and

develop rigorous error estimates in terms of the approximation parameters: choice of

atomistic region, blending region, and continuum finite element mesh. Balancing the

approximation parameters yields a convergent atomistic/continuum multiscale method

for multilattices with point defects, including a rigorous convergence rate in terms of

the computational cost. The analysis is illustrated with numerical results for a Stone–

Wales defect in graphene.
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1 Introduction

A full twenty years has passed since the original proposal of the quasicontinuum

method [37] captivated the materials science community with the potential to model

material phenomena spanning vastly different length scales. The quasicontinuum (QC)

method was among the first of the so-called atomistic-to-continuum (AtC) coupling

algorithms which sought to bridge the gap between length scales from the nano- to

micro-scale. A remarkable number of these AtC methods have been proposed since

(see e.g. [28,31,53] for detailed reviews), and recently a mathematical framework

has begun to emerge to analyze and compare several of these methods for defects in

crystalline materials comprised of a Bravais lattice. Indeed, all three of the blended

force-based quasicontinuum method (BQCF), blended energy-based quasicontinuum

(BQCE) method, and blended ghost force correction (BGFC) method have recently

been analyzed in the context of a single defect in a two- or three-dimensional Bravais

lattice [25,42], as has the optimization-based AtC approach of [36]. Analyses in two

and three dimensional Bravais lattices also exist for the AtC method of [26], but this

has not yet been extended to allow for defects. Meanwhile, the methods [30,47,48]

have been shown to be consistent (or free of ghost forces) for pair potential interactions

only.

In the present work, we resolve the long-standing challenge to develop a rigorous

numerical analysis for AtC methods in the context of multilattices, which allows for

more than one atom to be present in the unit cell of the crystal. This description includes

important materials such as hcp metals, diamond structures, and recently discovered

2D materials such as graphene and hexagonal boron nitride.

Concretely, we generalise the formulation and analysis of the blended force-based

quasicontinuum (BQCF) method. Our surprising main result is that, for a point defect in

a homogeneous host crystal, the BQCF method for multilattices exhibits the same rate

of convergence as in the Bravais lattice case. This is in sharp contrast with the blended

energy-based quasicontinuum method for which a significantly reduced convergence

rate is expected in the multilattice setting [42]. We restrict our analysis to point defects

in the present work primarily to limit the amount of notation and technical tools needed

to describe the defect model. However, we see no obstacles to extend the techniques

developed here to more general topological defects (e.g. anti-plane screw dislocations)

with existing analyses for Bravais lattices [25] in order to generalize our work.

The present work thus represents the first analysis that has been undertaken that

remains valid for an AtC method which permits defects in a two or three dimen-

sional multilattice. Even analyses of AtC methods for defect-free multilattices remain

extremely sparse: the homogenized QC method [1,2], for example, only allows for

dead load external forces while the cascading Cauchy–Born method was rigorously

analyzed only in one-dimensional multilattices for phase-transforming materials [13].

As its name entails, the BQCF method is a force-based AtC method where a hybrid

force operator is constructed instead of a hybrid energy functional [5,7,14,26,49,50].

The primary advantage of force-based methods is that the forces can easily be defined

in a way to avoid spurious interface effects (ghost forces); that is, the defect-free

perfect crystal is a true equilibrium configuration of the AtC force operator. The cost

of defining the BQCF method and other force-based methods to be free of ghost
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Force-based a/c blending for multilattices 705

forces is that these force fields are no longer conservative, which creates significant

challenges in their numerical analysis [15,27]. The blended force-based methods,

originally studied in [5,7,23,26], seek to overcome this problem through a smooth

blending between atomistic and continuum forces over a region called the blending,

overlap, or handshake region. Similar force-based blending methods have also been

applied to coupling non-local with local continuum elasticity models [44,46].

An alternative to the force-based paradigm is the energy-based paradigm where a

global, hybrid energy is defined which is some combination of atomistic and contin-

uum energies. This encompasses the original quasicontinuum method and many other

offshoots and ancestors [3,8,12,16,18,37,45,51,54]. The peril of these methods is the

aforementioned ghost forces, and it remains open to construct a general, ghost-force

free, energy-based AtC method for Bravais lattices in two or three dimensions. As

such we do not concern ourselves with an energy-based AtC method for multilattices;

however, see [42] for promising directions.

1.1 Outline

We begin in Sect. 2 by formulating an atomistic model for a multilattice material

describing a single point defect embedded in an infinite homogeneous crystal. This is a

canonical extension of the framework adopted for Bravais lattices in [17,24,25,36,42].

In Sect. 3 we then formulate the BQCF method for this model and state our main

results: (1) existence of a solution to the multilattice BQCF method and (2) a sharp

error estimate. We also convert this error estimate to an estimate in terms of the

computational complexity of the BQCF method in Sect. 3.4 which in particular allows

us to balance approximation parameters to obtain a formulation optimised for the error

/ cost ratio. We present a numerical verification of these rates by testing the method on

a Stone–Wales defect in graphene. The complexity estimates obtained for the BQCF

method for point defects in multilattices match those estimates in [25] for Bravais

lattices.

Finally, Sect. 4 covers the technical details needed to prove our main result, Theo-

rem 4. These technical details can be seen as generalizations of the results of Bravais

lattices, and the primary new component is having to account for shifts between atoms

in the same unit cell.

1.2 Notation

We introduce new notation throughout the paper required to carry out the analysis. For

the convenience of the reader, we have listed many of these in “Appendix A”. Here,

we briefly establish several basic conventions we make throughout. We use d and n to

denote the dimensions of the domain and range respectively, calligraphic fonts (e.g.

L,M) to denote lattices, sans-serif fonts (e.g. F,G) for n × d matrices, the lower case

Greek letters α, β, γ, δ, ι, χ are used as subscripts denoting atomic species, and the

lower case Greek letters ρ, τ, σ denote vectors (bond directions) between lattice sites.

The symbol | · | is used to denote the �2 norm of a single vector in R
m , while ‖ · ‖

is used to denote either an �p or L p norm over a specified set. We use · for the dot
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706 D. Olson et al.

product between two vectors, ⊗ as the tensor product, and : as the inner product on

tensors.

Derivatives of functions f : R
d → R

n are denoted by ∇ f : R
d → R

d×n and

higher-order derivatives by ∇ j f . Given F : X → Y where X and Y are Banach

spaces, we denote Fréchet or Gateaux derivatives by δ j F , j indicating the order. We

will most commonly interpret these derivatives as (multi-)linear forms and use them

when Y = R, in which case we will then write the Gateaux derivatives as

〈δF(x), y〉, x, y ∈ X

〈δ2 F(x)z, y〉, x, y, z ∈ X and so on for higher order derivatives.

We reserve D for specific finite difference operators (defined in (2.4) and (2.5)), and

use BR to denote the ball of radius R about the origin.

We use the modified Vinogradov notation x � y throughout the manuscript to mean

there exists a positive constant C such that x ≤ Cy. Where appropriate, we clarify

what the constant C is allowed to depend on; in particular if there is any dependence

on approximation parameters then it will always be made explicit.

2 Atomistic model

2.1 Defect-freemultilattice

We consider an infinite Bravais lattice, or simply a lattice, L, defined by

L := FZ
d , for some F ∈ R

d×d , det(F) = 1, and d ∈ {2, 3},

where the requirement det(F) = 1 is purely a notational convenience. From a physical

standpoint by taking symmetry into account, it can be shown that there are only 14

unique physical lattices in 3D and five in 2D (see e.g. [53]); however, we consider

the lattice to merely be a mathematical framework. A multilattice is then obtained by

associating a basis of S atoms to each lattice site, and this is also referred to as a crystal

when the Bravais lattice is interpreted as one of the unique physical lattices.

For each site ξ ∈ L, these S atoms are located inside the unit cell of ξ at positions

ξ + pref
α for pref

α ∈ R
d and α = 0, . . . , S − 1. The multilattice is then defined by

M :=
S−1
⋃

α=0

L + pref
α .

We call each L + pref
α a sublattice; here the addition “+” means a translation of the

lattice L by the vector pref
α . Without loss of generality, we further assume pref

0 = 0

(one atom is always located at a lattice site). Furthermore, we make the distinction

between a lattice site, which we use to refer to a site in the Bravais lattice, L, and an

atom which is an element in the multilattice M.
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Force-based a/c blending for multilattices 707

(a) (b)

Fig. 1 Examples of multilattice structures. a 2D graphene: the dashed circles indicate the interaction

neighbourhoods of the highlighted atoms. F1 and F2 indicate Bravais lattice basis vectors and p = pref
1 is

the shift. b 3D rock salt: the interior cube represents a possible choice of unit cell

Two simple examples of multilattices are shown in Fig. 1 including the 2D hexag-

onal lattice (e.g., graphene) for which

L = a0

(√
3

√
3/2

0 3/2

)

Z
2, S = 2, pref

0 =
(

0

0

)

, pref
1 = a0

(√
3/2

1/2

)

, a0 =
√

2

33/4
.

(2.1)

(The a0 =
√

2
33/4 prefactor is due to the normalisation det(F) = 1.)

For each species of atoms, we define the deformation field yα(ξ) as the position of

the atom of species α at site ξ . We note that yα : L → R
n where the range dimension

n ∈ {2, 3} may be different than the domain dimension d to allow, e.g., for out of plane

displacements in 2D. However, we remark that our later assumptions on stability of

the multilattice (Assumption 3) will place a restriction on the out of plane behavior;

for example bending, or rippling, cannot currently be incorporated into the analysis.

We further discuss the issues involved in this in our concluding discussion, Sect. 5.

In the case of these out of plane displacements, we will use ξ ∈ R
2 as both a vector

in R
2 and as the vector

(

ξ

0

)

∈ R
3. (We remark that though we will not consider

dislocations, we could also consider n = 1 for an anti-plane screw dislocation model

by fixing a second coordinate to be constant in this framework.)

The set of all sublattice deformations is denoted by y := (yα)S−1
α=0 and displacements

by u := (uα)S−1
α=0 where uα(ξ) = yα(ξ) − (ξ + pref

α ). Equivalently we can describe

the kinematics of a multilattice by a pair (Y , p) where Y : L → R
n is a deformation

field, and p0, . . . , pS−1 : L → R
n are shift fields. The two descriptions are related by

Y (ξ) = y0(ξ), pα(ξ) = yα(ξ) − y0(ξ); and yα(ξ) = Y (ξ) + pα(ξ), (2.2)

and analogous expressions hold for displacements as well.
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708 D. Olson et al.

We now turn to a description of the energy. We will make the fundamental modeling

assumption that the total potential energy of the system can be written as a sum of site

potentials—that is,

Ê
a
hom( y) :=

∑

ξ∈L

V̂ (D y(ξ)), (2.3)

where the various new symbols introduced are specified in the following. We also note

that this assumption is not restrictive as almost any reasonable classical potential such

as an n-body potential, pair functional, or bond-order potential may be written in this

form. The main restriction is that long-range Coulomb interaction is excluded.

We use D y(ξ) to denote the collection of finite differences (relative atom positions)

needed to compute the energy at site ξ . More precisely, we specify a finite set of triples

R ⊂ L × {0, 1, . . . , S − 1} × {0, 1, . . . , S − 1} \
S−1
⋃

α=0

{(0αα)},

and use

D(ραβ) y(ξ) := yβ(ξ + ρ) − yα(ξ) (2.4)

to denote the relative positions of species β at site ξ + ρ and species α at site ξ. The

collection of finite differences, or finite difference stencils, D y, is then defined by

D y(ξ) :=
(

D(ραβ) y(ξ)
)

(ραβ)∈R
. (2.5)

In terms of (Y , p), this notation becomes

D(ραβ)(Y , p)(ξ) := Y (ξ + ρ) − Y (ξ) + pβ(ξ + ρ) − pα(ξ) and

D(Y , p)(ξ) :=
(

D(ραβ)(Y , p))(ραβ)∈R.

For future reference, we remark that we can write

D(ραβ) y(ξ) = Dρ yβ(ξ) + pβ(ξ) − pα(ξ),

where Dρ f (ξ) := f (ξ + ρ) − f (ξ). Moreover, we define the set of lattice vectors in

R as

R1 := {ρ ∈ L : ∃(ραβ) ∈ R},

and an interaction cut-off radius as

rcut := max{|ρ| : ρ ∈ R1}.

The site potential is then a function V̂ : (Rn)R → R ∪ {+∞}, where +∞ allows for

singularities in the potential (though we will later assume certain smoothness of the

potential for convenience of the analysis).
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Force-based a/c blending for multilattices 709

Since the homogeneous reference configuration, yref , defined by

yref
α (ξ) := ξ + pref

α (2.6)

yields infinite energy in (2.3), (due to an infinite sum over constant values of the site

potential in the reference configuration), we thus will consider an energy difference

functional defined on displacements from the reference state instead of (2.3). For a

displacement u ≡ (U , p) from the reference state yref , let

V (Du(ξ)) = V̂ (D( yref + u)(ξ)),

and then the associated energy difference functional is defined by

E
a
hom(u) :=

∑

ξ∈L

[V (Du(ξ)) − V (0)], (2.7)

where V (0) is a constant which will not affect minimization or force computations,

so for simplicity, we assume without loss of generality that V (0) = 0. In Theorem 1

below, we recall a result of [35] that characterizes for which displacements, u, Ea
hom(u)

is well-defined.

A convenient notation for derivatives of V is the following: if (ραβ), (τγ δ) ∈ R

and g = (g(ραβ))(ραβ)∈R ∈ (Rn)R, we set

[V,(ραβ)(g)]i := ∂V (g)

∂ gi
(ραβ)

, i = 1, . . . , n,

V,(ραβ)(g) := ∂V (g)

∂ g(ραβ)

,

[V,(ραβ)(τγ δ)(g)]i j := ∂2V (g)

∂ g
j

(τγ δ)
∂ gi

(ραβ)

, i, j = 1, . . . , n,

V,(ραβ)(τγ δ)(g) := ∂2V (g)

∂ g(τγ δ)∂ g(ραβ)

,

and note that this can be extended to derivatives of arbitrary order. Furthermore, we

adopt the convention that if (ραβ) /∈ R, then V,(ραβ) = 0.

The following standing assumptions on the interaction range and site potentials are

made.

Assumption 1 (V.1) The interaction range, R, satisfies

For each α ∈ {0, . . . , S − 1}, the set of vectors ρ such that (ραα) ∈ R spans R
d ,

and (0αβ) ∈ R for all α �= β ∈ {0, . . . , S − 1}.

(V.2) V is four times continuously differentiable with uniformly bounded derivatives

and satisfies V (0) = 0 (for simplicity of notation).
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710 D. Olson et al.

We remark that (V.1) may always be met by enlarging the interaction range, R.

On the other hand, (V.2) is made for simplicity of the analysis; it can be weakened to

admit interatomic potentials with typical singularities under collisions of atoms, but

this would introduce several additional technicalities in our analysis.

Next, we specify the function space over which Ea
hom(u) is defined, which can be

achieved in several equivalent ways. A convenient route is by first defining a continu-

ous, piecewise linear interpolant of an atomistic displacement. Let Ta be a simplicial

decomposition of L obtained as in [25]: first let T̂ := conv{0, e1, e2} (where conv rep-

resents the convex hull of a set) be the unit triangle in 2D and T̂1, . . . , T̂6 six congruent

tetrahedra in 3D that subdivide the unit cube (see Figure 1 in [25] for an illustration

in 3D) and then define

Ta =
{

{ξ + FT̂ , ξ − FT̂ : ξ ∈ L}, if d = 2,

{ξ + FT̂i : ξ ∈ L, i = 1, . . . , 6}, if d = 3.

We will often refer to this as the atomistic triangulation or fully refined triangulation.

As noted before, we may always enlarge the interaction range, R, so we may assume

without loss of generality that

if conv{ξ, ξ + ρ} is an edge of Ta, then there exist α, β such that (ραβ) ∈ R.

Given a discrete set of displacement values u : L → R
n , we then denote the

continuous, piecewise linear interpolant of u with respect to Ta by I u ≡ ū. We will

use both notations, I u and ū, depending on which is notationally more convenient.

Subsequently, we define the function space

U :=
{

u = (uα)S−1
α=0 : uα : L → R

n, ‖u‖a < ∞
}

, where

‖u‖2
a :=

S−1
∑

α=0

‖∇ I uα‖2
L2(Rd )

+
∑

α �=β

‖I uα − I uβ‖2
L2(Rd )

.

Clearly, ‖ · ‖a is not a norm on U since ‖u‖a = 0 only implies that each uα(ξ) is

a constant independent of α. However, ‖ · ‖a is a semi-norm on U and hence a true

norm on the quotient space

U := U/R
n :=

{

{(uα + C)S−1
α=0 : C ∈ R

n} : u ∈ U
}

.

Since the atomistic energy is invariant with respect to addition by constants, it is

exactly this quotient space which we utilize as our function space. We also note that u

and (U , p) are two equivalent descriptions for the displacements as seen from (2.2),

and an equivalent norm on this space which will be convenient in terms of the (U , p)

description is

‖(U , p)‖2
a := ‖∇ IU‖2

L2(Rd )
+

S−1
∑

α=1

‖I pα‖2
L2(Rd )

.
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A dense subspace of U that we will use as a test function space is U0 where

U0 := {u ∈ U : supp(∇ I u0) and supp(I uα − I u0) are compact} ,

U0 := U0/R
n .

Lemma 1 [35, Lemma A.1] The quotient space U0 is dense in U .

2.2 Point defect

We now introduce a framework to embed a point defect in a homogeneous multilattice.

This problem has been heavily used in analyzing and comparing different AtC methods

for simple lattices in [25,28,36,42] as it allows for a range of non-trivial benchmark

problems and serves as a first step in analyzing more complicated scenarios such as

interacting defects [21]. Point defects can be thought of as zero-dimensional defects

representing a change to a single site in the lattice. Common examples include vacan-

cies, interstitials, substitutions, and in graphene, the Stone–Wales defect which we use

for our numerical tests.

Our first task is to define an analog of Ea
hom for point defects, which is well-defined

on the function space U . We accomplish this through a site-dependent site potential,

Vξ , which must take into account the defective structure of the lattice near the defect

core, which we assume to be at or near the origin. We then write the atomistic potential

energy as

E
a(u) :=

∑

ξ∈L

Vξ (Du(ξ)). (2.8)

As in Assumption 1, we require certain smoothness of the site-dependent site poten-

tial in addition to homogeneity outside of a defect core.

Assumption 2 (V.3) There exists Rdef > 0 such that Vξ ≡ V for all |ξ | ≥ Rdef .

(V.4) Each Vξ is four times continuously differentiable with uniformly bounded

derivatives.

We now recall from [35, Theorem 2.2] that Ea and Ea
hom are well-defined on U ;

the main idea of the proof is that both are defined on displacements having compact

support, and by the density of U0 in U , they may be uniquely extended by continuity

to all of U .

Theorem 1 [35, Lemma 3.3] Assume the reference configuration yref with yref
α (ξ) =

ξ + pref
α is an equilibrium configuration of the defect free energy meaning that

∑

ξ∈L

∑

(ραβ)∈R

V̂,(ραβ)(D yref(ξ)) · Dv(ξ) = 0, ∀ v ∈ U0. (2.9)

Then Ea
hom(u) and Ea(u) may be uniquely extended to continuous functions on U

which are C3 (three times continuously differentiable) on U .
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Remark 1 The condition (2.9) that the reference configuration be an equilibrium is

equivalent to requiring the shifts are equilibrated within each cell. See [35, Lemma

3.3] for details. Such reference configurations are thus straightforward to generate

numerically.

Since we will eventually be working with a finite domain on which there is no dif-

ference between the original functionals and their extensions, we make no distinction

between an energy and its continuous extension.

We are now able to pose the defect equilibration problem which we wish to approx-

imate with the BQCF method, that is, to find u∞ ∈ U such that

u∞ ∈ arg min
u∈U

E
a(u), (2.10)

where arg min represents the set of local minima of a functional.

While Assumptions 1 and 2 can be readily weakened in various ways, the next

assumption concerning existence and stability of a defect configuration minimizing

Ea is essential for our analysis:

Assumption 3 (Strong Stability) There exists a solution, u∞, to (2.10) and a constant

γa > 0 such that

〈δ2
E

a(u∞)v, v〉 ≥ γa‖v‖2
a ∀v ∈ U0.

Proving Assumption 3 turns out to be notoriously difficult; indeed the only result

of this kind we are aware of is for a special case of a screw dislocation in a simple

lattice [21, Remark 3.2] under anti-plane deformation. Nevertheless, we expect it to

hold for virtually all realistic defects and realistic interatomic potentials. We also

mention that it can be numerically checked a posteriori once the defect configuration

has been computed.

A useful consequence of Assumption 3 is the following regularity result, which

is proven in [35] and extends the analogous simple lattice result [17]. These decay

rates will be an essential component for converting the BQCF error estimates in terms

of solution regularity that are presented in Sect. 3 into complexity estimates that are

numerically verified in Sect. 3.4.

Theorem 2 [35, Theorem 2.5] For ρ = ρ1, . . . , ρk , the defect solution (U∞, p∞)

satisfies

|DρU∞(ξ)| � (1 + |ξ |)1−d−k, for 1 ≤ k ≤ 3,

|Dρ p∞
α (ξ)| � (1 + |ξ |)−d−k, for 0 ≤ k ≤ 2, and all α = 0, . . . , S − 1. (2.11)

The implied constant is allowed to depend on the interaction range through rcut, the

site potential, and γa.

Since we will compare discrete atomistic configurations with continuous finite

element functions, it will be useful to reformulate Theorem 2 in terms of gradients of
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Force-based a/c blending for multilattices 713

smooth interpolants, which we define in the next lemma (see [25] for further details

and the proof).

Lemma 2 [25, Theorem 2.5] Let u : L → R
n , then there exists a unique function

Ĩ u : R
d → R

n with Ĩ u ∈ C2,1(Rd) such that

1. Ĩ u is multiquintic in ξ + F(0, 1)d for each ξ ∈ L.

2. Given any multiindex γ := (γ1, . . . , γd) with |γ | ≤ 2, γi ∈ {0, 1, 2}, and ei the

i th standard basis vector, the interpolant satisfies ∂γ Ĩ u(ξ) = Dnn
γ

u(ξ) where Dnn
γ

are nearest-neighbor finite difference operators,

D
nn,0
i u(ξ) := u(ξ),

D
nn,1
i u(ξ) := 1

2
(u(ξ + Fei ) − u(ξ − Fei )),

D
nn,2
i u(ξ) := u(ξ + Fei ) − 2u(ξ) + u(ξ − Fei ),

Dnn
γ

u(ξ) := D
nn,γ1

1 · · · D
nn,γd

d u(ξ).

We will apply Ĩ to both displacements and shifts using the notation

Ĩ (U , p) = ( ĨU , Ĩ p) = (Ũ , p̃).

Then, combining Theorem 2 and Lemma 2 yields the following result.

Theorem 3 The defect solution (U∞, p∞) satisfies

|∇ j Ũ∞(x)| � (1 + |x |)1−d− j , for j = 1, 2,

|∇ j p̃∞
α (x)| � (1 + |x |)−d− j , for j = 0, 1, 2, and all α = 0, . . . , S − 1,

(2.12)

where the implied constant is again allowed to depend on the interaction range, the

site potential, and γa.

3 BQCFmethod formulation andmain results

Any AtC approximation of the defect problem (2.10) must include the following

ingredients: the atomistic and continuum domains, a coarsened finite element mesh in

the continuum region, a specification of the continuum model, and finally and most

importantly a mechanism for coupling the atomistic and continuum components.

We define the atomistic and continuum domains for the multilattice BQCF method

by making similar choices as in the BQCF method for Bravais lattices [25]. We first give

an intuitive description of the domains involved, but will (re-)define them again below

after introducing the blending function. Choose a computational domain Ω ⊂ R
d to

be a (large) polygonal domain containing the origin (the defect). Fix a “defect core”

region Ωcore such that, if Vξ �≡ V , then ξ ∈ Ωcore. Then take Ωa, the atomistic domain,

to be a polygonal domain with Ωcore ⊂ Ωa ⊂ Ω , and set Ωc, the continuum domain

to be, Ωc = Ω \ Ωcore. In blending methods, the atomistic and continuum domains
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overlap in a blending region Ωb = Ωc ∩ Ωa over which the atomistic and continuum

forces will be blended.

Next, we define a finite element mesh Th over Ω with nodes Nh . For now we only

require that the finite element mesh is fully refined over Ωa, that is, if T ∩ Ωa �= ∅,

then T ∈ Th if and only if T ∈ Ta, but we will state further assumptions in Sect. 3.1.

The continuum model we adopt is the Cauchy–Born model [9,11,37], a nonlinear

hyperelastic model, which is amenable to AtC couplings due to the definition of the

strain energy density function in terms of the atomistic potential V ,

WCB(G, p) := V
(

(Gρ + pβ − pα)(ραβ)∈R

)

for G ∈ R
n×d and p ∈ (Rn)S,

without resorting to any constitutive laws. We note that G here is the deformation

gradient of lattice sites in a unit cell while p are the displacements of shift vectors;

in contrast with typical continuum treatments of multilattices, we maintain the shift

vectors as degrees of freedom in the Cauchy–Born model and do not minimize them

out. Note also that since we have assumed det(F) = 1, we do not need to normalize

by the volume of the unit cell in this energy.

For W 1,∞ displacement fields, U , and L∞ shift fields, p, this leads to a Cauchy–

Born energy functional, formally (for now) defined by

E
c(U , p) :=

∫

Rd

WCB(∇U (x), p(x)) dx =
∫

Rd

V
(

∇(U , p)
)

dx

where

∇(U , p)(x) :=
(

∇(ραβ)(U , p)(x)
)

(ραβ)∈R
:=

(

∇ρU (x) + pβ(x) − pα(x)
)

(ραβ)∈R

is a continuum variant of the atomistic finite difference stencil

D(U , p)(x) =
(

D(ραβ)(U , p)(x)
)

(ραβ)∈R
:=

(

DρU (x)+pβ(x+ρ)−pα(x)
)

(ραβ)∈R
.

The admissible finite element space we consider will be P1 finite elements for both the

displacements and the shifts subject to homogeneous boundary conditions. However,

we will again consider equivalence classes of finite element functions by taking a

quotient space. Thus, we define

Uh :=
{

u ∈ C0(Ω) : u|T ∈ P1(T ), ∀ T ∈ Th

}

,

Uh := Uh/R
n,

Uh,0 :=
{

u ∈ C0(Rd) : u|T ∈ P1(T ), ∀ T ∈ Th, u = 0 on R
d \ Ω

}

,

Uh,0 := Uh,0/R
n,

Ph,0 :=
{

p = (p0, . . . , pS−1) : p0 = 0, and p1, . . . , pS−1 ∈
(

Uh,0

)S−1
}

.
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These spaces are endowed with the norm

‖(U , p)‖2
ml := ‖∇U‖2

L2(Rd )
+

S−1
∑

α=0

‖pα‖2
L2(Rd )

= ‖∇U‖2
L2(Rd )

+ ‖ p‖2
L2(Rd )

,

where ‖ p‖2
L2(Rd )

=
∑S−1

α=0 ‖pα‖2
L2(Rd )

is used for brevity. Along with the finite ele-

ment space, we also introduce the standard piecewise linear finite element interpolant,

Ih , defined as usual through Ihu(ν) = u(ν) for ν ∈ Nh .

The BQCF method is defined by blending forces on each degree of freedom, (ν, α) ∈
Nh × {0, . . . , S − 1}, where the forces are defined by a weighted average of atomistic

and continuum forces:

F
bqcf
ν,α (U , p) := (1 − ϕ(ν))

∂Ea(U , p)

∂uα(ν)
+ ϕ(ν)

∂Ec(U , p)

∂uα(ν)
, (3.1)

where the blending function, ϕ, satisfies ϕ ∈ C2,1(Rd) with ϕ = 0 in Ωcore and

ϕ = 1 in R
d \ Ωa. The BQCF method then seeks to solve F

bqcf
ν,α (U , p) = 0 for all

ν /∈ ∂Ω . Equivalently, we can write the force balance equations in weak form using

the variational operator

〈Fbqcf(U , p), (W , r)〉
:=

∑

ν

∑

α

F
bqcf
ν,α (U , p) · (W + rα) (ν)

=
∑

ν

∑

α

(1 − ϕ(ν))
∂Ea(U , p)

∂uα(ν)
· (W + rα) (ν) + ϕ(ν)

∂Ec(U , p)

∂uα(ν)
· (W + rα) (ν)

= 〈δEa(U , p), ((1 − ϕ)W , (1 − ϕ)r)〉
+ 〈δEc(U , p), (Ih(ϕW ), Ih(ϕr))〉, (3.2)

where the last equal sign comes from direct calculation. The BQCF approximation to

the defect optimization problem (2.10) is then to find (U , p) ∈ Uh,0 ×Ph,0 such that

〈Fbqcf(U , p), (W , r)〉 = 0, ∀(W , r) ∈ Uh,0 × Ph,0. (3.3)

The variational formulation is preferred for the analysis while the force-based for-

mulation (from which the name BQCF is derived) is preferred for implementation.

The pointwise formulation (3.1) was essentially how the original BQCF method was

proposed for Bravais lattices [6], and this was analyzed in a finite-difference frame-

work without defects for Bravais lattices in [23,26]. The variational formulation (3.2)

was introduced in [25] for Bravais lattices, and its subsequent analysis led to one of

the first complete analyses of an AtC method capable of modeling defects.
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3.1 Assumptions on the approximation parameters

We now summarise the precise technical requirements on the approximation param-

eters, ϕ,Ω,Ωa,Ωb,Ωc, Th , which will be analogous to those in [25].

We begin by summarising basic assumptions on the blending function:

1. ϕ ∈ C2,1 and 0 ≤ ϕ ≤ 1.

2. If Vξ �≡ V , then ϕ(ξ) = 0. This means that ϕ vanishes near any defect; hence the

pure atomistic force is employed in those regions.

3. There exists K > 0 such that ϕ(x) = 1 if |x | ≥ K . That is, ϕ is identically one

far away from the defect.

As the second step we specify the computational domain Ω and its corresponding

partition Th . First, we shall require that supp(1 − ϕ) ⊂ Ω always holds. To state the

required properties for Th , we first precisely specify the sub-domains in terms of ϕ

and Ω . Recalling that rcut is the interaction cut-off radius, let rcell be the radius of

the smallest ball circumscribing the unit cell of L, and define rbuff := max{rcut, rcell}.
Then we set

Ωa := supp(1 − ϕ) + B4rbuff , Ωb := supp(∇ϕ) + B4rbuff ,

Ωc := supp(ϕ) ∩ Ω + B4rbuff , Ωcore := Ω \ Ωc.

The size and shape regularity of the various subdomains are parameterized in terms

of inner and outer radii: for t ∈ {a, c, b, core}, we set

rt := sup
r

{r > 0 : Br ⊂ Ωt ∪ Ωcore}, Rt := inf
R

{R > 0 : Ωt ⊂ BR},

where we recall the notation BR to denote the ball of radius R about the origin. The

corresponding outer and inner radii for the complete domain Ω are, respectively,

denoted by Ro and ri:

ri := sup
r

{r > 0 : Br ⊂ Ω}, Ro := inf
R

{R > 0 : Ω ⊂ BR}.

Finally, we define an overlapping exterior domain,

Ωext := R
d \ Bri/2,

which will be used to quantify the far-field error made by truncating to a finite com-

putational domain.

For the sake of completeness, we now restate a crucial condition on the finite

element mesh (Fig. 2):

4. The finite element mesh is fully refined over Ωa, that is, if T ∩ Ωa �= ∅, then

T ∈ Th if and only if T ∈ Ta.

To conclude this discussion we note that only the blending function ϕ and the

finite element mesh Th are free approximation parameters, while the subdomains and
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Rb

Ro

ri

∂Ω
supp(∇ϕ)

Ωcore

(shaded area)

Fig. 2 A diagram showing a selected number of domains and their inner and outer radii

corresponding radii are derived (in particular, Ω =
⋃

Th). In our analysis we will

require bounds on the “shape regularity” of ϕ, Th , and the domains defined above:

Assumption 4 In addition to (1)–(4) there exist constants CTh
, Cϕ > 0, which shall

be fixed throughout, such that

‖∇ jϕ‖L∞ ≤ Cϕ R− j
a for j = 1, 2, 3, and max

T ∈Th

σT

ρT

≤ CTh
,

where σT denotes the radius of the smallest ball circumscribing T and ρT the radius

of the largest ball contained in T . Defining the mesh size function

h(x) := max{σT : T ∈ Th, x ∈ T },

there exists s ≥ 1 such that the mesh satisfies the growth condition

|h(x)| ≤ CTh

( |x |
Ra

)s

, |x | ≥ Ra.

Moreover, there exists Co > 0 and a positive integer λ such that

Ro ≤ Co Rλ
core and

1

4
Ra ≤ Rcore ≤ 3

4
Ra. (3.4)

While Cϕ will feature heavily in our analysis, the parameter CTh
will only enter

implicitly in the form of constants in interpolation error estimates. The condition
1
4

Ra ≤ Rcore ≤ 3
4

Ra greatly simplifies the analysis. It is likely this could be weak-

ened by an extremely refined analysis as can be done in one dimension [23], but the

asymptotic estimates obtained would be unchanged with the exception of an improved

prefactor so we do not pursue this. Moreover, though one can generate blending func-

tions which satisfy these assumptions using splines, we point out that in practical

implementations one can relax the regularity requirements on the blending functions,

and this has provided no loss in performance in simulations carried out for lattices

in [24].
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3.2 Main result

Our main result concerns the existence of a solution to (3.3) and an estimate on the

error committed.

Theorem 4 Suppose that Assumptions 1, 2, and 3 are valid. Then there exists R∗
core such

that, for any approximation parameters satisfying Assumption 4 as well as Rcore ≥
R∗

core, there exists a solution (U bqcf , pbqcf) ∈ Uh,0×Ph,0 to the BQCF equations (3.3)

that satisfies

‖∇ IU∞ − ∇U bqcf‖L2(Rd ) + ‖I p∞ − pbqcf‖L2(Rd ) � γtr

(

‖h∇2 ĨU∞‖L2(Ωc)

+ ‖h∇ Ĩ p∞‖L2(Ωc)
+ ‖∇ ĨU∞‖L2(Ωext)

+ ‖ Ĩ p∞‖L2(Ωext)

)

,

(3.5)

where

γtr :=
{

√

1 + log(Ro/Ra), if d = 2,

1, if d = 3.

The implied constant, as well as R∗
core, may depend on Cϕ and CTh

, the interatomic

potentials, rcut, and the stability constant, γa.

The quantity γtr arises from a trace-type inequality to control a test function on an

annulus (the blending region) by its gradient in the continuum region; more details

can be founded in [23,25]. Section 4 is devoted to proving Theorem 4, but before we

embark on this, we first demonstrate how the error estimate can be combined with the

regularity estimates of Theorem 3 to yield an optimised BQCF scheme with balanced

approximation parameters. This is followed by a numerical test on a Stone–Wales

defect in graphene, validating our theoretical convergence rates.

3.3 Optimal parameter choices

Once we restrict ourselves to a Cauchy–Born energy with P1 discretisation as the

continuum model, the free parameters in the design of the BQCF method are the

blending function, ϕ, and finite element mesh, Th , in the sense that once these are

set according to Sect. 3.1, then the BQCF method (3.3) is fully formulated. Ideally,

these parameters should be chosen in an optimal way so as to obtain the most efficient

method.

The choice of blending function is, in the case of the BQCF method, arbitrary as

long as Assumption 4 is satisfied. There are many choices to make for the blending

function which meets these requirements, see e.g. [29].

The finite element mesh and hence the choice of Ω may, however, be optimized.

The key to choosing the finite element mesh and size of Ω lies in applying the decay

results of Theorem 3 to our error estimate (3.5), [24,28,29]. In obtaining our optimized

parameters, we do not provide rigorous proofs but instead use heuristic assumptions

to arrive at approximate choices which can then be rigorously analyzed numerically.
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To start, we assume that the mesh size function h(x) is radial, i.e., h(x) ≡ h(|x |).
Then, ignoring logarithmic factors in γtr and employing the estimate |1 + r |−1 � r−1

for r ≥ 1, the error estimate (3.5) can be further estimated by

‖∇ IU∞ − ∇U bqcf‖2
L2(Rd )

+ ‖I p∞ − pbqcf‖2
L2(Rd )

�

∫ Rc

rcore

|h(r)|2r−3−d dr +
∫ ∞

1/2ri

r−1−d dr .

Next, we note that from the definitions of Ωc,Ω , and ri, we have ri = Rc + 4rbuff

so that we may make the replacement ri ≈ Rc. Denoting the number of degrees of

freedom by DoF (nodes in the continuum finite element mesh times the number of

species in the multilattice), we can then carry out an optimization problem consisting

of minimizing this error estimate subject to a fixed number of degrees of freedom,

DoF. This problem is exactly the same as for the Bravais lattice and is

min
h∈L2,Rc>rcore

∫ Rc

rcore

|h(r)|2r−3−d dr +
∫ ∞

1/2Rc

r−1−d dr .

This problem is solved in [32] where it is found that there are approximate minimisers

of the form h(r) =
(

r/Ra

)
1+d

1+d/2 . A simplified approximate solution can be obtained

by first minimizing
∫ Rc

rcore
|h(r)|2r−3−d dr with respect to h where the same expression

for h will result, but instead of also minimizing with respect to Rc, one can simply

note that the error then becomes

∫ Rc

rcore

|h(r)|2r−3−d dr +
∫ ∞

1/2Rc

r−1−d dr � r−d−2
core + R−d

c � R−d−2
a + R−d

c . (3.6)

In order to balance the sources of error, one should take Rc = R
2/d+1
a . Finally, by

simply writing the number of degrees of freedom as the sum of those in the atomistic

and continuum regions, it is possible to derive the result that #DoF ≈ Rd
a ; further

details can be found in [25,28,32,33].

After making the estimation γtr ≤ (log DoF)1/2 [25] for d = 2, the main error

estimate, (3.5), currently written in terms of solution regularity, may now be replaced

by an estimate of (3.6) in terms of computational cost since #DoF ≈ Rd
a :

‖∇ IU∞ − ∇U bqcf‖2
L2(Rd )

+ ‖I p∞ − pbqcf‖2
L2(Rd )

�

{

(DoF)−1−2/d log DoF, d = 2,

(DoF)−1−2/d , d = 3,

(3.7)

which exactly matches the rate for the Bravais lattice case [25]. This is due to the fact

that the limiting factor in both error estimates is the P1 finite element approximation.

Remark 2 In the Bravais lattice analysis [25], the expression of Rc in terms of Ra is

incorrect which has led to an error in the expression for the error estimate in terms of
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the degrees of freedom. In that paper, a different mesh scaling is also used, but should

the same mesh scaling be used, the error estimates in terms of the degrees of freedom

would be identical up to a constant prefactor.

3.4 Numerical tests

In addition to providing a means to estimating the computational cost of the BQCF

method, the estimate (3.7) is also convenient to verify numerically. We have carried

this out for a Stone–Wales defect in graphene using both the BQCF method and a

fully atomistic method. For the latter, we simply minimize the full atomistic energy

over displacements that are non-zero only on the computational domain Ω (clamped

boundary conditions). Using the methods discussed in Sect. 4, it is not difficult to show

that the solution, (U Dir, pDir), to this atomistic Galerkin method exists and satisfies

the error estimate

‖∇ IU∞ − ∇U Dir‖L2(Rd ) + ‖I p∞ − pDir‖L2(Rd ) � (DoF)−1/2. (3.8)

We now set the model up for the Stone–Wales defect in graphene, recalling first the

multilattice parameter values given in Sect. 2. We choose a Stillinger–Weber [52] type

interatomic potential with a pair potential and bond angle potential component. The

interaction range we consider is depicted in Fig. 1, where all pairs of atoms in the blue

and red circles interact through a pair potential and all triplets of atoms connected by

two edges interact through a bond-angle potential. In this notation, the site potential

is given by

V̂ (D y) =
∑

(ραβ)∈Rp

1

2
φ(D(ραβ) y(ξ)) +

∑

(ραβ)
(τγ δ)

∈Ra

1

3!ϑ(D(ραβ) y(ξ), D(τγ δ) y(ξ)),

where Rp and Ra represent the pair and bond-angle interaction ranges, φ(r) =
r−12 − 2r−6 is a Lennard-Jones potential, φ(r) =

(

a0
r

)12 − 2
(

a0
r

)6
is a Lennard-

Jones potential with a0 defined in (2.1), and

ϑ(r1, r2) =
( r1 · r2

|r1| |r2|
+ 1/2

)2

is a three-body term that penalizes angles that differ from 2π
3

.

The Stone–Wales defect shown in Fig. 3 is obtained by rotating the bond between

the two carbon atoms at the origin site by ninety degrees about the midpoint of this

bond. One way of incorporating this defect into our framework is to define a reference

configuration (Y0, pref
1 ) where Y0(ξ) = Fξ for all ξ �= 0 with F and pref

1 given by

the graphene parameters in (2.1). At the origin, we set Y0(0) = Rot(0) and p1(0) =
Rot(pref

1 ), where Rot represents the ninety degree rotation about the midpoint of the

segment conv{0, p1}. Then we set Vξ (D(U , p)(ξ)) = V̂ (D(Y0 + U , p1 + p)(ξ)).
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(a) (b)

Fig. 3 Examples of a perfect graphene sheet and a Stone–Wales defect. The dotted lines in the right display

indicate bonds that are broken during the rotation of the highlighted atoms. a A perfect graphene sheet. b

An unrelaxed Stone–Wales defect.

We choose hexagonal domains for Ωcore,Ωa,Ω , etc., and use a blending function

which approximately minimizes the L2 norm of ∇2ϕ on Ωb [29]. We select the inner

width, rcore, of the hexagon Ωcore to be from the range Ra = {8, 12, 16, 20, 24} with

κ = 1/2, and then the remaining domains are chosen as scaled hexagons satisfying the

requirements of Sect. 3 and Theorem 4 (see Fig. 10 in [24] for a representative illus-

tration of this domain decomposition for a Bravais lattice). Finally, our finite element

mesh is graded radially with approximate mesh size h(r) =
(

r
Ra

)3/2
as described ear-

lier in this section with d = 2. The BQCF equations were solved by a preconditioned

nonlinear conjugate gradient algorithm with line-search based on force-orthogonality

only (in BQCF there is no energy functional for which descent can be imposed).

In Fig. 4 we show the error in the displacement gradients and the single graphene

shift vector for the computed BQCF solution versus the number of degrees of freedom.

Both match our theoretical predictions from (3.7) and indeed demonstrate that the

error estimates are sharp (up to logarithms). We also show the error committed by the

atomistic Galerkin method (which is estimated in (3.8)), to demonstrate the practical

gain achieved by the BQCF method.

4 Proofs

The remainder of this paper is devoted to proving our main result, Theorem 4. As

in [25], the abstract framework for the proof is provided by the inverse function

theorem [20,28,38], which we recall for reference and which is used to establish

well-posedness of the nonlinear BQCF variational equation in Theorem 4.

Theorem 5 (Inverse Function Theorem [20,38]) Let X and Y be Banach spaces with

f : X → Y , f ∈ C1(U ) with U ⊂ X an open set containing x0. Suppose that

η > 0, σ > 0, and L > 0 exist such that ‖ f (x0)‖Y < η, δ f (x0) is invertible with

‖δ f (x0)
−1‖L(Y ,X) < σ , B2ησ (x0) ⊂ U, δ f is Lipschitz continuous on B2ησ (x0)

with Lipschitz constant L, and 2Lησ 2 < 1. Then there exists a C1 inverse function
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(a) (b)

Fig. 4 BQCF error plotted against degrees of freedom. We have also plotted the “purely atomistic” error,

denoted by ATM, which is the solution obtained by truncating the infinite dimensional atomistic problem

to a finite domain using homogeneous Dirichlet boundary conditions. a Error in displacement field for

Stone–Wales defect. b Error in shift field for Stone–Wales defect

g : Bη(y0) → B2ησ (x0) and thus an element x̄ ∈ X such that f (x̄) = 0 and

‖x0 − x̄‖X < 2ησ.

The nonlinear operator we consider is the variational BQCF operator FBQCF(U , p),

and the point near which we seek a solution is x0 = (Uh, ph) := Πh(U∞, p∞) where

Πh is a projection operator defined in the following section. In Sect. 4.2 we prove a

consistency estimate on the residual of the FBQCF(Uh, ph) operator:

sup
‖(W ,r)‖ml=1

∣

∣〈FBQCF(Uh, ph), (W , r)〉
∣

∣ � ‖h∇2Ũ∞‖L2(Ωc)
+ ‖h∇ p̃∞‖L2(Ωc)

+ ‖∇Ũ∞‖L2(Ωext)
+ ‖ p̃∞‖L2(Ωext)

.

(4.1)

The invertibility condition on the derivative of Fbqcf is proven as a coercivity condition

in Sect. 4.3 where we show that

〈δFBQCF(Uh, ph)(W , r), (W , r)〉 � ‖(W , r)‖2
ml, ∀(W , r) ∈ Uh,0 × Ph,0, (4.2)

provided that the atomistic region is sufficiently large. In Sect. 4.4 we combine these

two estimates with a Lipschitz estimate on δFbqcf and apply the inverse function

theorem to prove Theorem 4.

Throughout this analysis, we continue to use the modified Vinogradov notation

x � y, where the implied constants are allowed to depend on the shape regularity

constants CTh
, Co (which are defined in Assumption 4 and (3.4)), the interatomic

potentials (and their interaction range), and the stability constant γa.
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4.1 Cauchy–Bornmodeling error

In preparation for the consistency analysis in Sect. 4.2 we first establish several aux-

iliary results about the Cauchy–Born model.

A central technical tool in the analysis of AtC coupling methods is the ability to

compare discrete atomistic displacements which are the natural atomistic kinematic

variables (recall that the atomistic displacements are equivalent to atomistic site dis-

placements plus atomistic shift vectors), and continuous displacement and shift fields

which capture the continuum kinematics. We have already introduced several inter-

polants which serve this task: a micro-interpolant, I ; a finite element interpolant, Ih ;

and a smooth interpolant, Ĩ . We will also introduce a quasi-interpolant in this section

which will allow us to define an analytically convenient atomistic version of stress [41].

We use ζ̄ (x) to denote the nodal basis function associated with the origin for the

atomistic finite element mesh Ta and ζ̄ξ (x) := ζ̄ (x − ξ) to denote the nodal basis

function at site ξ . We may then write the micro-interpolant I u = ū as

ū(x) =
∑

ξ∈L

u(ξ)ζ̄ (x − ξ).

The quasi-interpolant of u is then defined by a convolution with ζ̄

u∗(x) := (ζ̄ ∗ ū)(x). (4.3)

It will later be important that this convolution operation is invertible and stable.

This is a consequence of [39, Lemma 5], which we state here for reference.

Lemma 3 [39, Lemma 5] For a given atomistic displacement, u, there exists a unique

atomistic displacement ú with the property that ζ̄ ∗ ¯́u(ξ) = u(ξ) for all ξ ∈ L.

One of the primary uses of the u∗ interpolant will be the development of an atomistic

stress function which can be compared to the continuum stress in the Cauchy–Born

model [41]. The first variation of the continuum model may be written in terms of a

stress tensor,

〈δEc(U , q), (W , r)〉 =
∫

Rd

∑

(ραβ)

V,(ραβ)(∇(U , q)) · ∇(ραβ)(W , r) dx

=
∫

Rd

∑

(ραβ)

V,(ραβ)(∇(U , q)) ⊗ ρ : ∇W dx

+
∫

Rd

∑

(ραβ)

V,(ραβ)(∇(U , q)) ·
(

rβ − rα

)

dx

=
∫

Rd

∑

β

[Sc
d(U , q)(x)]β : ∇W dx +

∫

Rd

∑

α,β

[Sc
s(U , q)(x)]αβ · (rβ − rα) dx .

(4.4)
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From (4.4), we defined the continuum stress tensors:

β :=
∑

α,ρ:
(ραβ)∈R

V,(ραβ)(∇(U , q)(x)) ⊗ ρ,

[Sc
s(U , q)(x)]αβ :=

∑

ρ∈R1

V,(ραβ)(∇(U , q)(x)).

(4.5)

To compare the atomistic and continuum models, we now construct an analogous

atomistic stress tensor. Its definition will make it clear why we introduced the seem-

ingly unnecessary sum over β in the first group in (4.4). The basic idea is to extend

the construction of [41]: the argument ∇(U , q)(x) in (4.5) will be replaced by a local

averaging of first order finite difference approximations D(U , q)(ξ) for ξ near x .

Lemma 4 For (U , q) ∈ U , we define the atomistic stress tensors

[ Sa
d(U , q)(x)]β :=

∑

α,ρ:
(ραβ)∈R

∑

ξ∈L

(

V,(ραβ)

(

D(U , q)(ξ)
)

⊗ ρ
)

ωρ(ξ − x),

[ Sa
s (U , q)(x)]αβ :=

∑

ρ∈R1

∑

ξ∈L

V,(ραβ)

(

D(U , q)(ξ)
)

ω0(ξ − x),

(4.6)

where

ωρ(x) :=
∫ 1

0

ζ̄ (x + tρ) dt . (4.7)

Then,

〈

δEa
hom(U , q), (W ∗, r∗)

〉

=
∫

Rd

{

∑

β

[ Sa
d(U , q)]β :

(

∇W̄ + ∇r̄β

)

+
∑

α,β

[ Sa
s (U , q)]αβ · (r̄β − r̄α)

}

dx,

(4.8)

where W ∗ and r∗ are defined through (4.3).

Proof We start by computing the first variation of Ea
hom(U , q) with the test pair

(W ∗, r∗):

〈δEa
hom(U , q), (W ∗, r∗)〉

=
∑

ξ∈L

∑

(ραβ)∈R

V,(ραβ)

(

D(U , q)(ξ)
)

·
(

DρW ∗(ξ) + Dρr∗
β(ξ) + r∗

β(ξ) − r∗
α(ξ)

)

.

(4.9)
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Arguing as in [41, Eq. (2.4)] we obtain

DρW ∗(ξ) + Dρr∗
β(ξ) =

∫

Rd

ωρ(ξ − x)
(

∇ρW̄ + ∇ρ r̄β

)

dx and (4.10)

r∗
β(ξ) − r∗

α(ξ) =
∫

Rd

ω0(ξ − x)
(

r̄β − r̄α

)

dx . (4.11)

Substituting (4.10) and (4.11) into (4.9), and recalling the definitions of the atomistic

stress tensors from (4.6) yields the stated claim. ��

We refer to the error between the continuum and atomistic stress functions as

the Cauchy–Born modeling error and quantify it in the next lemma; see [41] for an

analogous result for Bravais lattices.

Lemma 5 Assume that U ∈ C2,1(Rd ; R
n) and qα ∈ C1,1(Rd , R

n) for each α. Fix

x ∈ R
d and set

νx := B2rcut (x).

1. If ∇U and q are constant in νx , then

[Sa
d(U , q)(x)]β = [Sc

d(U , q)(x)]β and [Sa
s (U , q)(x)]αβ = [Sc

s(U , q)(x)]αβ .

(4.12)

2. In general,

∣

∣[Sa
d(U , q)(x)]β − [Sc

d(U , q)(x)]β
∣

∣ � ‖∇2U‖L∞(νx ) + ‖∇q‖L∞(νx ),
∣

∣[Sa
s (U , q)(x)]αβ − [Sc

s (U , q)(x)]αβ

∣

∣ � ‖∇2U‖L∞(νx ) + ‖∇q‖L∞(νx ),

with the implied constant depending only on the interatomic potential V .

Proof 1. The identity (4.12) is an immediate consequence of the definitions (4.5), (4.6)

and of
∑

ξ

ωρ(ξ − x) = 1.

2. We define an auxiliary homogeneous displacement (U h, qh)with∇U h ≡ ∇U (x)

and qh ≡ q(x). Then we have

[Sa
d(U , q)(x)]β − [Sc

d(U , q)(x)]β = [Sa
d(U , q)(x)]β − [Sa

d(U
h, qh)(x)]β .
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726 D. Olson et al.

Since we assumed that V is twice continuously differentiable, with globally bounded
second derivatives, we obtain

∣

∣[Sa
d(U , q)(x)]β − [Sc

d(U , q)](x)β
∣

∣ =
∣

∣[Sa
d(U , q)(x)]β − [Sa

d(U
h, qh)(x)]β

∣

∣

=
∣

∣

∣

∑

α,ρ:
(ραβ)∈R

∑

ξ∈L

([

V,(ραβ)

(

D(U , q)(ξ)
)

− V,(ραβ)

(

D(U h, qh)(ξ)
)]

⊗ ρ
)

ωρ(ξ − x)

∣

∣

∣

�
∑

α,ρ:
(ραβ)∈R

∑

ξ∈L

∣

∣D(U , q)(ξ) − D(U h, qh)(ξ)
∣

∣ωρ(ξ − x)

�
∥

∥∇U − ∇U h‖L∞(νx ) +
∥

∥q − qh‖L∞(νx ) + ‖∇2U‖L∞(νx ) + ‖∇q‖L∞(νx )

� ‖∇2U‖L∞(νx ) + ‖∇q‖L∞(νx ),

where in obtaining the last two inequalities we have used a Taylor expansion of the

finite differences and the fact that ωρ(ξ − x) as defined in (4.7) vanishes off of νx . The

proof for the comparison of the “shift” stress tensors is nearly identical so is omitted.

��
With this pointwise estimate, and using the fact that Ũ is piecewise polynomial, it

is straightforward to deduce the following Cauchy–Born modeling error estimate over

Ωc.

Corollary 1 For the atomistic and continuum stress tensors defined in (4.6) and (4.5),

∥

∥Sa
d(Ũ

∞, q̃∞) − Sc
d(Ũ

∞, q̃∞)
∥

∥

L2(Ωc)
� ‖∇2Ũ∞‖L2(Ωc)

+ ‖∇ q̃∞‖L2(Ωc)
,

and

∥

∥Sa
s (Ũ

∞, q̃∞) − Sc
s(Ũ

∞, q̃∞)
∥

∥

L2(Ωc)
� ‖∇2Ũ∞‖L2(Ωc)

+ ‖∇ q̃∞‖L2(Ωc)
.

Remark 3 The stress estimates for a multilattice are one order lower in terms of deriva-

tives than the corresponding Bravais lattice estimates. A refined analysis shows that

this estimate cannot be improved without an underlying point symmetry for the mul-

tilattice. When this symmetry is present in multilattices, it is possible to define a

symmetrized Cauchy–Born energy with an improved estimate [22].

4.2 Consistency

Our first task in completing the residual estimate (4.1) is to define the projection

from atomistic functions to finite element functions satisfying the Dirichlet boundary

conditions so we first truncate the solution to a finite domain. For that, let η be a smooth

“bump function” with support in B1(0) and equal to one on B3/4(0). Let AR be an

“annular region” containing the support of ∇(Iη(x/R)), i.e, AR := BR+2rbuff (0) \
B3/4R−2rbuff ⊃ supp(∇(Iη(x/R))) and define the truncation operator by

TRuα(x) = η(x/R)

(

I uα − 1

|AR |

∫

AR

I u0 dx

)

.
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Further, let Sh be the Scott–Zhang quasi-interpolation operator [43] onto the finite

element mesh Th . We then define the projection operator by

Πhuα := Sh(Tri uα), Πh u := {Πhuα}S−1
α=0 ,

Πh pα := Πh(uα − u0), Πh p := {Πh pα}S−1
α=0 , Πh(U , p) := (ΠhU ,Πh p).

(4.13)

(Recall that ri is the radius of the largest ball inscribed in Ω .) Note that ∇Πhuα as

well as

Πhuα − Πhuβ = Sh

[

η(x/ri)
(

I uα − I uβ

)]

have support contained in Ω . We also have the following approximation results.

Lemma 6 Take (U , p) = u ∈ U . Then

‖∇Ū − ∇ΠhU‖L2(Rd ) + ‖ p̄α − Πh pα‖L2(Rd )

� ‖h∇2Ũ∞‖L2(Ωc)
+ ‖h∇ p̃∞‖L2(Ωc)

+ ‖∇Ũ‖L2(Ωext)
+ ‖ p̃‖L2(Ωext)

,

‖∇Ũ − ∇ΠhU‖L2(Ωc)
+ ‖ p̃α − Πh pα‖L2(Ωc)

� ‖h∇2Ũ∞‖L2(Ωc)
+ ‖h∇ p̃∞‖L2(Ωc)

+ ‖∇Ũ‖L2(Ωext∩Ωc)
+ ‖ p̃‖L2(Ωext∩Ωc)

.

The proof is similar to the proof of Lemma 1 (with only additional estimates required

for the finite element interpolants) and therefore omitted. See also [36, Lemma 1.8] for

similar estimates, the main difference being the usage of the Scott–Zhang interpolant

which allows for L2 interpolation bounds on H1 functions, see [10,43].

We can now prove the bound (4.1).

Theorem 6 (BQCF Consistency) Define (Uh, ph) := Πh(U∞, p∞)where (U∞, p∞)

satisfies Assumption 3. If Assumptions 1 and 2 are valid also and if the blending func-

tion, ϕ, and finite element mesh, Th , satisfy the requirements of Sect. 3, then the BQCF

consistency error is bounded by

∣

∣〈Fbqcf(Uh, ph), (W , r)〉
∣

∣ � γtr

(

‖h∇2Ũ‖L2(Ωc)
+ ‖h∇ p̃‖L2(Ωc)

+ ‖∇Ũ‖L2(Ωext)
+ ‖ p̃‖L2(Ωext)

)

· ‖(W , r)‖ml, ∀(W , r) ∈ Uh,0 × Ph,0,

and γtr is defined in Theorem 4.

Before beginning the proof, we make some preliminary remarks. First, we observe

that, since the Scott–Zhang interpolation operator is a projection it follows that

D(ραβ)Uh(ξ) = D(ραβ)U
∞(ξ) for ξ ∈ L

a,
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where La := L ∩ (supp(1 − ϕ) + R1). Furthermore, since δEa(U∞, p∞) = 0, the

residual error in the BQCF variational operator defined in (3.2) is equivalent to

〈Fbqcf(Uh, ph), (W , r)〉 − 〈δEa(U∞, p∞), (U , q)〉
= 〈δEa(U∞, p∞), (1 − ϕ)(W , r)〉 + 〈δEc(Uh, ph),

(

Ih(ϕW ), Ih(ϕr)
)

〉
− 〈δEa(U∞, p∞), (U , q)〉, (4.14)

where (W , r) ∈ Uh,0 × Ph,0 is an arbitrary given pair of test functions in the finite

element test function space, while (U , q) ∈ U × P is a test pair that we are free to

choose. The obvious candidate choice is (U , q) = (W , r) in which case we would

have

〈Fbqcf(Uh, ph), (W , r)〉 − 〈δEa(U∞, p∞), (U , q)〉
= −〈δEa(U∞, p∞), (ϕ)(W , r)〉 + 〈δEc(Uh, ph),

(

Ih(ϕW ), Ih(ϕr)
)

〉.

The resulting residual error is concentrated only over Ωc due to ∇ϕ having support in

Ωc. The issue in estimating this quantity is that when we convert the atomistic residual

into the atomistic-stress format, the test function appears as a piecewise linear function

with respect to the atomistic mesh Ta, whereas the test function is piecewise linear

with respect to the graded mesh Th in the continuum portion. For this reason, we shall

add correction terms to our previous candidate choice (U , q) = (W , r) via

U = W + (Z∗ − ϕW ), qα = rα + (z∗
α − ϕrα), α = 1, . . . , S − 1, (4.15)

where (Z , z) ∈ U × P will be chosen to satisfy certain approximation estimates as

stated in Lemma 7 below. The reason we use Z∗ and z∗
α instead of merely Z and zα

is that we shall eventually make use of the atomistic stress representation from (4.8).

The BQCF residual error from (4.14) then becomes

〈Fbqcf(Uh, ph), (W , r)〉 − 〈δEa(U∞, p∞), (W + (Z∗ − ϕW ), r + (z∗ − ϕr))〉
= 〈δEc(Uh, ph),

(

Ih(ϕW ), Ih(ϕr)
)

〉 − 〈δEa(U∞, p∞), (Z∗, z∗)〉.
(4.16)

Moreover, since we are blending by site and using P1 elements for the shifts, we may

use the same form for Z and z as obtained in the simple lattice case [25] for both

displacements and shifts.

Lemma 7 Suppose W ∈ Uh,0 and r ∈ Ph,0. Define Zh, Z , zhα and zα by

Zh := Ih(ϕW ), Z(ξ) =
(

ζ̄ ∗ Ih(ϕW )
)

(ξ)
∫

ζ̄ (x − ξ)dx
= (ζ̄ ∗ Zh)(ξ)

∫

ζ̄dx
,

and

zhα := Ih(ϕrα), zα(ξ) =
(

ζ̄ ∗ Ih(ϕrα)
)

(ξ)
∫

ζ̄ (x − ξ)dx
= (ζ̄ ∗ zhα)(ξ)

∫

ζ̄dx
.
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Then for f ∈ W
1,2
loc (Rd)

∫

Ωc

f (Z̄ − Zh)dx � ‖∇ f ‖L2(Ωc)
· ‖∇Zh‖L2(Ωc)

, (4.17)

∫

Ωc

f · (zhα − z̄α) dx � ‖∇ f ‖L2(Ωc)
· ‖zhα‖L2(Ωc)

, (4.18)

‖Zh − Z̄‖L2(Ωc)
� ‖∇Zh‖L2(Ωc)

, (4.19)

‖zhα − z̄α‖L2(Ωc)
� ‖zhα‖L2(Ωc)

, (4.20)

‖∇Zh‖L2(Ωc)
� γtr‖∇W‖L2(Ωc)

, (4.21)

‖zhα‖L2(Ωc)
� ‖rα‖L2(Ωc)

. (4.22)

Proof We begin by letting ωξ := supp(ζ̄ (x − ξ)) and C := {ξ ∈ L : ωξ ⊂ Ωc}. Then

we observe that Zh and Z̄ are constant on any patch ωξ with ξ /∈ C, and furthermore

Zh = Z̄ . Intuitively, this should hold because if ξ /∈ C, then either ξ is near the defect

core where ϕ = 0 and hence Zh = 0 and Z̄ = 0; or ξ is near the exterior to the

boundary of Ω where Zh is constant. For this to rigorously hold, we need to recall the

buffer, B4buff , in the definition of Ωc which then makes proving the statement possible.

Moreover, Zh = Z̄ on any patch ωξ with ξ /∈ C due to the normalization factor in the

definition of Z . For f ∈ W
1,2
loc (Rd) we then have

∫

Ωc

f (Z̄ − Zh)dx =
∑

ξ∈L

∫

ωξ ∩Ωc

f (x)
(

Z(ξ) − Zh(x)
)

ζ̄ (x − ξ)dx

=
∑

ξ∈L:
ωξ ⊂Ωc

∫

ωξ

f (x)
(

Z(ξ) − Zh(x)
)

ζ̄ (x − ξ)dx since Zh = Z is constant for ξ /∈ C

=
∑

ξ∈C

∫

ωξ

(

f (x) − −
∫

ωξ

f

)

(

Z(ξ) − Zh(x)
)

ζ̄ (x − ξ)dx

≤
∑

ξ∈C

∥

∥

∥

∥

f − −
∫

ωξ

f

∥

∥

∥

∥

L2(ωξ )

‖Z(ξ) − Zh‖L2(ωξ )

�
∑

ξ∈C

‖∇ f ‖L2(ωξ )‖∇Zh‖L2(ωξ )

� ‖∇ f ‖L2(Ωc)
‖∇Zh‖L2(Ωc)

. (4.23)

This proves (4.17). Proving (4.18) is analogous:

∫

Ωc

f · (zhα − z̄α) dx � ‖∇ f ‖L2(Ωc)
· ‖∇zhα‖L2(Ωc)

� ‖∇ f ‖L2(Ωc)
· ‖zhα‖L2(Ωc)

,

where in obtaining the final inequality we have used that for T ∈ Ta,

‖∇zh‖L2(T ) � hT ‖zh‖L2(T ) � ‖zh‖L2(T ).
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For these choices, we also have the following norm estimates (4.19) and (4.20):

‖Zh − Z̄‖L2(Ωc)
� ‖∇Zh‖L2(Ωc)

,

‖zhα − z̄α‖L2(Ωc)
� ‖zhα‖L2(Ωc)

.

To obtain the first of these, we simply take f = Z̄ − Zh in (4.17) yielding

‖Zh − Z̄‖2
L2(Ωc)

� ‖∇Zh − ∇ Z̄‖L2(Ωc)
‖∇Zh‖L2(Ωc)

� ‖∇Zh‖2
L2(Ωc)

+ ‖∇ Z̄‖2
L2(Ωc)

� ‖∇Zh‖2
L2(Ωc)

+ ‖∇Z‖2
L2(Ωc)

� ‖∇Zh‖2
L2(Ωc)

+ ‖∇Zh‖2
L2(Ωc)

,

where we have applied Young’s inequality to deduce the estimate

‖∇Z‖2
L2(Ωc)

= ‖∇Z‖2
L2(Rd )

=
∥

∥

∥

(ζ̄ ∗ ∇Zh)
∫

ζ̄dx

∥

∥

∥

2

L2(Rd )

≤ ‖∇Zh‖2
L2(Rd )

‖ζ̄‖2
L1(Rd )

� ‖∇Zh‖2
L2(Ωc)

.

For the second of these, we simply have

‖zhα − z̄α‖L2(Ωc)
≤ ‖zhα‖L2(Ωc)

+ ‖z̄α‖L2(Ωc)
� ‖zhα‖L2(Ωc)

+ ‖zα‖L2(Ωc)

� ‖zhα‖L2(Ωc)
+ ‖zhα‖L2(Ωc)

,

where we have again used Young’s inequality for convolutions. Next, upon recalling

the definition

γtr =
{

√

1 + log(Ro/Ra), if d = 2,

1, if d = 3,

we have (4.21) and (4.22):

‖∇Zh‖L2(Ωc)
� γtr‖∇W‖L2(Ωc)

,

‖zhα‖L2(Ωc)
� ‖rα‖L2(Ωc)

.

The first of these is a consequence of [25, Lemma 7]. The second is a result of 0 ≤
ϕ ≤ 1:

‖zhα‖L2(Ωc)
= ‖Ih(ϕrα)‖L2(Ωc)

≤ ‖Ih(rα)‖L2(Ωc)
= ‖rα‖L2(Ωc)

.

��

We are now ready to prove Theorem 6.
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Proof (Theorem 6) Since Ĩ u interpolates u at ξ ∈ L, we may replace discrete U∞ with

continuous ĨU = Ũ∞ in (4.16) which leaves us with estimating

〈Fbqcf(Uh, ph), (W , r)〉 = 〈Fbqcf(Uh, ph), (W , r)〉 − 〈δEa(U∞, p∞), (U , q)〉
= 〈δEc(Uh, ph),

(

Ih(ϕW ), Ih(ϕr)
)

〉 − 〈δEa(Ũ∞, p̃∞), (Z∗, z∗)〉.
(4.24)

Recalling that Zh := Ih(ϕW ), zh := Ih(ϕr), and the atomistic and continuum stress

representations of (4.6) and (4.5), we split this into three terms using simple algebraic

manipulations as

〈δEc(Uh, ph),
(

Ih(ϕW ), Ih(ϕr)
)

〉 − 〈δEa(Ũ∞, p̃∞), (Z∗, z∗)〉〉

≤
∣

∣

∣

∣

∫

Rd

∑

β

[

[Sc
d(Uh, ph)]β : ∇Zh − [Sa

d(Ũ
∞, p̃∞)]β : ∇ Z̄

]

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

∑

α,β

[Sc
s(Uh, ph)]αβ · (zhα − zhβ) −

∑

α,β

[Sa
s (Ũ

∞, p̃∞)]αβ · (z̄α − z̄β)

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

∑

β

[Sa
d(Ũ

∞, p̃∞)]β : ∇ z̄β

∣

∣

∣

∣

=: T 1
d + Ts + T 2

d . (4.25)

Next, we analyze these terms separately.

Term T 1
d : The T 1

d term is identical to the simple lattice case after accounting for

the additional approximation of the shifts. Following the ideas from the simple lattice

case [25], we break down T 1
d into three additional terms as in Section 6.4.1 of [25] (the

difference being that we do not consider a quadrature error), and apply the estimates

of stress differences from Corollary 1 and the approximating estimates from Lemma 6

and (4.21). This produces

T 1
d �

∣

∣

∣

∣

∫

Rd

∑

β

{

[Sc
d(Uh, ph)]β − [Sc

d(Ũ
∞, p̃∞)]β

}

: ∇Zh dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

[Sc
d(Ũ

∞, p̃∞)]β
}

: (∇Zh − ∇ Z̄) dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

∑

β

{

[Sc
d(Ũ

∞, p̃∞)]β − [Sa
d(Ũ

∞, p̃∞)]β
}

: ∇ Z̄ dx

∣

∣

∣

∣

� γtr

(

‖h∇2Ũ∞‖L2(Ωc)
+ ‖h∇ p̃∞‖L2(Ωc)

+ ‖∇Ũ∞‖L2(Ωext)
+ ‖ p̃‖L2(Ωext)

)

· ‖∇W‖L2(Rd ).
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Term Ts: For the shift term Ts, we have

Ts �

∣

∣

∣

∣

∫

Rd

∑

α,β

[Sc
s(Uh, ph)]αβ · (zhα − zhβ) −

∑

α,β

[Sc
s(Ũ

∞, p̃∞)]αβ · (zhα − zhβ)

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

∑

α,β

[Sc
s(Ũ

∞, p̃∞)]αβ · (zhα − zhβ − (z̄α − z̄β))

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

∑

α,β

[Sc
s(Ũ

∞, p̃∞)]αβ · (z̄α − z̄β) −
∑

α,β

[Sa
s (Ũ

∞, p̃∞)]αβ · (z̄α − z̄β)

∣

∣

∣

∣

=: Ts,1 + Ts,2 + Ts,3.

Using Lipschitz continuity of δV (in the definition of Sc
s) and the fact that zh is

supported in Ωc followed by an application of the test function estimate (4.22), we

obtain

|Ts,1| �
(

‖∇ΠhU − ∇Ũ‖L2(Ωc)
+ ‖Πh p − p̃‖L2(Ωc)

)

‖zh‖L2(Rd )

�
(

‖∇ΠhU − ∇Ũ‖L2(Ωc)
+ ‖Πh p − p̃‖L2(Ωc)

)

‖r‖L2(Rd ).

Using the stress estimate, Corollary 1, followed by the application of the test function

norm estimates (4.20) and (4.22), we get

|Ts,3| �
(

‖∇2Ũ‖L2(Ωc)
+ ‖∇ p̃‖L2(Ωc)

)

‖ z̄‖L2(Rd )

�
(

‖∇2Ũ‖L2(Ωc)
+ ‖∇ p̃‖L2(Ωc)

)

‖r‖L2(Rd ).

Finally, to treat zh − z̄ inside Ts,2, we use (4.18) of Lemma 7 with f =
[Sc

s (Ũ
∞, p̃∞)]αβ followed by an application of (4.22), the chain rule, and (4.5):

|Ts,2| �
∥

∥∇
(

Sc
s

(

Ũ∞, p̃∞)

)

∥

∥

L2(Ωc)
‖zh‖L2(Rd )

� ‖∇Sc
s

(

Ũ∞, p̃∞)

· ∇
(

∇Ũ∞ + p̃∞)

‖L2(Ωc)
‖r‖L2(Rd ).

Combining our estimates for Ts,1, Ts,2, and Ts,3 and appealing to Lemma 6 to estimate

Ts,1 along with the crude estimate h � 1 gives

|Ts| �
(

‖h∇2Ũ∞‖L2(Ωc)
+ ‖h∇ p̃∞‖L2(Ωc)

+ ‖∇Ũ∞‖L2(Ωext)
+ ‖ p̃‖L2(Ωext)

)

‖r‖L2(Rd ).
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Term T 2
d : Finally, to estimate T 2

d we split it into

|T 2
d | =

∣

∣

∣

∣

∫

Rd

∑

β

[Sa
d(Ũ

∞, p̃∞)]β : ∇ z̄β

∣

∣

∣

∣

�

∣

∣

∣

∣

∫

Rd

∑

β

(

Sc
d(Ũ

∞, p̃∞)]β − [Sa
d(Ũ

∞, p̃∞)]β
)

: ∇ z̄β

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

∑

β

[Sc
d(Ũ

∞, p̃∞)]β : ∇ z̄β

∣

∣

∣

∣

=: T 2
d,1 + T 2

d,2.

To estimate T 2
d,1, we note that it is similar to T 1

d in that ∇ρzβ is zero off Ωc (which

is due to the support of the blending function and the definition of Ωc; see the proof

of Lemma 7 for further explanation) so we utilize the stress estimate in Corollary 1

along with the bound

‖∇ z̄β‖ � ‖z̄β‖ � ‖rβ‖

which follows from

‖z̄β‖ � ‖zhβ‖L2(Ωc)
by (4.20)

� ‖rβ‖L2(Ωc)
by (4.22).

This produces

T 2
d,1 �

(

‖∇2Ũ∞‖L2(Ωc)
+ ‖∇ p̃∞‖L2(Ωc)

)

‖∇ z̄‖L2(Rd )

�
(

‖∇2Ũ∞‖L2(Ωc)
+ ‖∇ p̃∞‖L2(Ωc)

)

‖r‖L2(Rd ).

Meanwhile, we may integrate T 2
d,2 by parts and use the aforementioned fact that

‖z̄β‖ � ‖rβ‖ to obtain

T 2
d,2 �

∑

β

∥

∥

∥
div

(

[Sc
d(Ũ

∞, p̃∞)]β
)∥

∥

∥

L2(Ωc)
· ‖r‖L2(Rd ).

Applying the chain rule to div
(

[Sc
d(Ũ

∞, p̃∞)]β
)

(just like for Ts,2), we get

|T 2
d | � T 2

d,1 + T 2
d,2 �

(

‖∇2Ũ∞‖L2(Ωc)
+ ‖∇ p̃∞‖L2(Ωc)

)

‖r‖L2(Rd )

�
(

‖h∇2Ũ∞‖L2(Ωc)
+ ‖h∇ p̃∞‖L2(Ωc)

)

‖r‖L2(Rd ).

Combining our estimates for T 1
d , Ts, and T 2

d yields the stated result. ��
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4.3 Stability

The second key ingredient in our proof of Theorem 4 is the stability estimate (4.2);

this in turn implies a bound on the inverse of the linearised BQCF operator, which we

will use in a quantitative version of the inverse function theorem to establish existence

of the solution to our BQCF equations. Conceptually, the proof of stability is similar

to that of the simple lattice case presented in [25].

Theorem 7 (Stability of BQCF) Suppose that Assumptions 1, 2, and 3 hold. There

exists a critical size, R∗
core, of the atomistic region such that, for all shape regular

meshes and blending functions meeting the requirements of Sect. 3 and Rcore ≥ R∗
core,

and for all (W , r) ∈ Uh,0 × Ph,0,

γa

2
‖(W , r)‖2

ml ≤ 〈δFbqcf(Πh(U∞, p∞))(W , r), (W , r)〉.

As an intermediate step we also prove stability of the reference state.

Theorem 8 (Stability of BQCF at Reference State) Suppose that Assumptions 1, 2,

and 3 hold. There exists a critical size R∗
core of the atomistic region such that, for

all meshes having shape regularity constant bounded below by CTh
and blending

functions meeting the requirements of Sect. 3 and Rcore ≥ R∗
core,

3

4
γa‖(W , r)‖2

ml ≤ 〈δFbqcf
hom (0)(W , r), (W , r)〉, ∀ (W , r) ∈ Uh,0 × Ph,0.

Before we present the proofs of these results in Sects. 4.5 and 4.6 we apply them

to complete the proof of our main result, Theorem 4.

4.4 Proof of themain result

Proof (Theorem 4) We apply the inverse function theorem, Theorem 5, to the BQCF

variational operator Fbqcf at the linearization point Πh(U∞, p∞). The parameters η

and σ defined in Theorem 5 are

η := γtr

(

‖h∇2Ũ‖L2(Ωc)
+ ‖h∇ p̃‖L2(Ωc)

+ ‖∇Ũ‖L2(Ωext)

+ ‖ p̃‖L2(Ωext)

)

· ‖(W , r)‖ml, ∀(W , r) ∈ Uh,0 × Ph,0,

which is the consistency error from Theorem (6), and

σ−1 := γa

2
,

which is the coercivity constant from Theorem 7 that exists if Rcore ≥ R∗
core, where

R∗
core is furnished by Theorem 7. (The requirement Rcore ≥ R∗

core means the domain

decomposition procedure meets the requirements stated in Theorem 4.) The Lipschitz

estimate on δFbqcf is a direct result of the assumptions made on the site potential
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in Assumption 1. Applying the inverse function theorem with these parameters gives

existence of (U bqcf , pbqcf) and the stated error estimate, (3.5), follows from the inverse

function theorem and the approximation lemma, Lemma 6. ��

The remainder of the paper is devoted to proving Theorems 7 and 8.

4.5 Stability of BQCF at defect-free reference state

We first prove Theorem 8, that is, coercivity of the homogeneous BQCF operator,

〈δFbqcf
hom (0)(W , r), (W , r)〉 = 〈δ2

E
a
hom(0)((1 − ϕ)W , (1 − ϕ)r), (W , r)〉

+ 〈δ2
E

c(0)(Ih(ϕW ), Ih(ϕr)), (W , r)〉.

Throughout, we will omit the argument of V,(ραβ)(τγ δ)(·) when evaluated at the refer-

ence state and employ the notation

V,(ραβ)(τγ δ)

(

·
)

: v : w := w�[

V,(ραβ)(τγ δ)

(

·
)]

v ∀v,w ∈ R
n,

C : D(W , q) : D(Z , r) :=
∑

(ραβ)
(τγ δ)

∈R

V,(ραβ)(τγ δ) : D(ραβ)(W , q) : D(τγ δ)(Z , r),

C : ∇(W , q) : ∇(Z , r) :=
∑

(ραβ)
(τγ δ)

∈R

V,(ραβ)(τγ δ) : (∇(W , q)) : (∇(Z , r)),

in order to make the formulas more readable.

To prove coercivity, we want to show that, for sufficiently large Rcore,

0 <
3

4
γa‖(W , r)‖2

ml ≤ 〈δFbqcf
hom (0)(W , r), (W , r)〉. (4.26)

The proof via contradiction is involved; hence we first outline and motivate the pro-

cedure and then give a number of technical results required to prove the theorem at

the end of this section. The main idea is that the linearized BQCF operator consists of

an atomistic second variation and a continuum second variation. Each of these can be

individually shown to be coercive so intuitively, we would expect this linearized oper-

ator to be coercive for any test pair (W , r) with support concentrated near the origin (in

which case the blending function is zero) and for (W , r) with support concentrated far

from the origin (in which case the blending function would be one). Thus, we expect

the only possible instabilities to occur with test pairs having some support over the

blending region. Since there is no defect in the homogeneous case, any such instability

should also occur for any geometric setup, i.e., we can consider the BQCF method for

a sequence of growing atomistic domain sizes and should still have an unstable mode.

Thus we shall consider such a sequence and then rescale this sequence so that the

atomistic region in each case is contained in a ball of fixed radius about the origin and

such that these unstable modes converge (in a sense to be made precise momentarily)
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to some continuum limit. We then consider evaluating the suitably rescaled linearized

BQCF operator on this sequence and show using the aforementioned stability of the

atomistic and continuum components and convergence of the test pairs (W , r) that

this leads to a contradiction. One of the main technical difficulties encountered here

is that due to blending by forces, the individual atomistic/continuum components and

hence the linearized BQCF operator is not a symmetric bilinear form. Thus we must

take some care in converting the force-based formulation to a form suitable to using

the existing coercivity estimates on the atomistic and continuum Hessians.

The negation of (4.26) is: for all atomistic region sizes Ra, there exists a blend-

ing function ϕ and a mesh Th compatible with the assumptions of Sect. 3.1 (and in

particular Assumption 4), as well as a test pair, (W , r) with norm scaled to one, such

that
3

4
γa > 〈δFbqcf

hom (0)(W , r), (W , r)〉. (4.27)

Thus, for contradiction, suppose that there exists a sequence Ra,n → ∞ with associ-

ated meshes Th,n , blending functions ϕn , finite element spaces U
n
h,0 × P

n
h,0, and test

pairs (Wn, rn) ∈ U
n
h,0 × P

n
h,0 with norm one such that

3

4
γa >

∑

ξ∈L

C : D((1 − ϕn)Wn, (1 − ϕn)rn) : D(Wn, rn)

+
∫

Rd

C : ∇(Ih(ϕn(Wn, rn))) : ∇(Wn, rn) dx,

(4.28)

where Ih is now the piecewise linear interpolant on Th,n .

We now rescale the space in (4.27) and derive a continuum scaling limit, from

which we will be able to obtain a contradiction. To that end, let εn = 1/Ra,n , and

define the set of scaled parameters

ξ̂n = εnξ

x̂n = εn x

r̂n(x̂n) = ε
−d/2
n rn(x̂n/εn)

Ŵn(x̂n) = ε
1−d/2
n Wn(x̂n/εn)

ϕ̂n(x̂n) = ϕn(x̂n/εn).

(4.29)

In terms of these rescaled quantities, we define ∇̂ := ε−1
n ∇x = ∇x̂n

(when the subscript

n is clear we use ∇̂) and then have

‖∇x̂n
Ŵn‖2

L2(Rd )
= ‖∇x Wn‖2

L2(Rd )
, ‖εn∇x̂n

r̂n‖2
L2(Rd )

= ‖∇xrn‖2
L2(Rd )

,

‖r̂α
n ‖2

L2(Rd )
= ‖rα

n ‖2
L2(Rd )

,
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and the rescaled BQCF operator is

〈δFbqcf
hom,n(0)(Ŵn, r̂n), (Ŵn, r̂n)〉

:= εd
n

∑

ξ̂∈εnL

C : Dn((1 − ϕ̂n)(Ŵn, r̂n)) : Dn(Ŵn, r̂n)(ξ̂ )

+
∫

Rd

C : ∇̂(Ih,n(ϕ̂n(Ŵn, r̂n))) : ∇̂(Ŵn, r̂n) dx̂n,

(4.30)

where Ih,n is the piecewise linear interpolant on εnTh,n and

Dn(Ŵ , r̂) :=
(

D(ραβ),n(Ŵ , r̂)
)

(ραβ)∈R
,

D(ραβ),n(Ŵ , r̂)(ξ̂ ) := Ŵ (ξ̂ + εnρ) + εn r̂
β
n (ξ̂ + εnρ) − Ŵ (ξ̂ ) − εn r̂α

n (ξ̂ )

εn

.

The rescaling of the shifts r̂α
n is one order lower than the rescaling of displacements,

which is due to the fact that shifts are already discrete gradients.

We also define an interpolant onto the scaled lattice εnL by In , a projection operator

from the scaled lattice to finite element spaces U
n
h,0 × P

n
h,0 on Th,n by Πh,n :=

Sh,nTri,n , and the scaled finite element basis function

ζ̄n(x) := ε−d
n ζ̄ (x/εn).

Since ∇̂Ŵn is bounded in L2 and since each r̂α
n is also bounded (both having

norm less than one), we may extract weakly convergent subsequences. Furthermore,

εn∇̂r̂α
n is also bounded in L2 so we may take it to be weakly convergent as well.

By replacing the original sequences with these weakly convergent subsequences (for

notational convenience), we have ∇̂Ŵn⇀∇̂Ŵ0, r̂α
n ⇀r̂α

0 , and εn∇̂r̂α
n ⇀R̂α

0 in L2(Rd)

for some functions Ŵ0, r̂α
0 , and R̂α

0 for each α. However, since r̂α
n is bounded in L2

and εn r̂α
n → 0 in L2, R̂α

0 = 0.

Next, we choose explicit equivalence representatives for Ŵn ; namely, we choose Ŵn

such that
∫

B1(0)
Ŵn = 0. For this choice, we have ‖Ŵn‖L2(B1(0)) � ‖∇̂Ŵn‖L2(B1(0)),

and as H1 is compactly embedded in L2, there exists a strongly convergent subse-

quence, which we again denote by Ŵn , such that Ŵn → Ŵ0 strongly in L2(B1(0)).

We also note here that Ŵn⇀Ŵ0 in the space

Ḣ
1
(Rd , R

n) :=
{

f ∈ H1
loc(R

d , R
n)/R

n : ‖∇ f ‖L2(Rd ) < ∞
}

,

and so Ŵ0 ∈ Ḣ
1
(Rd , R

n) as well [40].

The purpose of these subsequences is to use the pairs (Ŵn, r̂n) to test with

δF
bqcf
hom,n(0). However, as these test pairs only consist of weakly convergent sequences

and since the inner product of two weakly convergent sequences is not necessarily
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convergent, we further split Ŵn and r̂n into the sum of a strongly convergent sequence

and a sequence weakly convergent to zero.

This splitting is accomplished by setting

X̂n := Πh,n(η jn ∗ Ŵ0), ŝα
n := Πh,n(η jn ∗ r̂α

0 ), (4.31)

where η is a standard mollifier, η j (x) = j−dη(x/ j), and jn → 0 sufficiently slowly to

ensure that the sequences X̂n and ŝα
n are strongly convergent to, respectively, Ŵ0 and

r̂α
0 . We will impose several further properties on the sequence jn in Lemma 8 below,

but for the remainder of the present section, we make the following conventions for

notational convenience.

Remark 4 To simplify and lessen the notations hereafter, we drop the hat notation on

the sequences Xn, Zn, sn, tn as well as on their derivatives, and so forth.

We also define

ψn := 1 − ϕn,

and note ∇ψn and ∇2ψn are uniformly bounded on the compact set supp(ψn) ⊂
εn BRa,n (0) = B1(0) by the assumptions on the blending function in Assumption 4

and the definition of εn . Thus, by Arzela-Ascoli and by replacing the original sequence

by a subsequence if necessary, we may assume without loss of generality that ψn → ψ0

in C1 for some ψ0 ∈ C1(B1(0)), which also implies ϕn → 1 − ψ0 =: ϕ0.

We summarize the convergence results of this section and several others in the next

lemma.

Lemma 8 There exists ψ0 ∈ C1 such that ψn converges to ψ0 in C1(B1(0)). Fur-

thermore, there exists a sequence jn → 0 such that the sequences defined by Xn, sn

in (4.31) and Zn := Wn − Xn and tαn := rα
n − sα

n satisfy the following convergence

properties, where → and ⇀ denote respectively strong and weak L2(Rd) convergence:

∇Wn⇀ ∇W0, rα
n ⇀ rα

0 , εn∇rα
n ⇀0, ∇ Xn → ∇W0, sα

n → rα
0 ,

εn∇sα
n → 0, ∇Zn⇀ 0, tαn ⇀ 0, εn∇tαn ⇀ 0,

Wn → W0 in L2(B1(0)), Xn → W0 in L2(B1(0)), Zn → 0 in L2(B1(0)).

(4.32)
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Moreover, let I denote the identity and upon defining the quantities

Rdef
n (x) := Rdef

n (ψn) (x)

= εd
n

∑

ξ∈εnL

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ)(0)D(τγ δ),n(ψn(Xn, sn)) ⊗ ρ

εn

∫ εn

0

ζn(ξ + tρ − x) dt,

Rshift
n (x) := Rshift

n (ψn) (x)

= εd
n

∑

ξ∈εnL

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ)(0)D(τγ δ),n(ψn Xn, ψnsn)ζ̄n(ξ − x),

Sdef
n (x) := Rdef

n (I ) (x), Sshift
n (x) := Rshift

n (I ) (x),

Sinner
n (x)

:= εd
n

∑

ξ∈εnL

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ) : D(ραβ),n(ψn Xn, ψn sn) : D(τγ δ),n(Xn, sn),

the sequence jn may further be chosen so that

Sdef
n (x) →

∑

(ραβ)
(τγ δ)

V(ραβ)(τγ δ)(0)∇(τγ δ)(W0, s0),

Sshift
n (x) →

∑

(ραβ)
(τγ δ)

V(ραβ)(τγ δ)(0)∇(τγ δ)(W0, s0),

Rdef
n (x) →

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ)(0)∇(τγ δ)(ψ0W0, ψ0s0), (4.33)

Rshift
n (x) →

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ)(0)∇(τγ δ)(ψ0W0, ψ0s0),

Sinner
n (x) →

∫

Rd

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ) :
(

∇(ραβ)(ψ0(W0, s0))
)

:
(

∇(τγ δ)(W0, s0)
)

dx,

with convergence being in L2(Rd).

Proof The key fact in proving this result is that jn may be chosen to tend to zero

sufficiently slowly such that any one of these properties holds individually, and by

appropriately selecting subsequences using a diagonalization argument, they may be

chosen so that all hold simultaneously.

The convergence properties in (4.32) are all immediately apparent if jn may be

chosen such that Xn and sn as defined in (4.31) are strongly convergent to W0 and

123



740 D. Olson et al.

r0 respectively. This can be seen by first approximating the smooth functions, η jn ∗
W0, by smooth functions with compact support and then using standard interpolation

for smooth functions on finite domains (and similarly for the shifts). The second

convergence properties of (4.33) are more involved and can be found in the extended

preprint [34, Lemma 17] with more details in the proof. ��

We now state a convergence result for “cross-terms” of strongly and weakly con-

vergent sequences which appear in δF
bqcf
hom,n(0). A full proof is given in the Appendix

of the preprint [34, Lemma 18].

Lemma 9 With Zn, Xn, tn , and sn as defined in Lemma 8,

εd
∑

ξ∈εnL

C : Dn(ψn Zn, ψn tn) : Dn(Xn, sn) → 0, and (4.34)

εd
∑

ξ∈εnL

C : Dn(ψn Xn, ψn sn) : Dn(Zn, tn) → 0. (4.35)

Proof To prove the first convergence result, we note that we may convert the summation

to an integral by using Lemma 3 to write ψn Zn and ψn tn as convolutions. The first

convergence result can then be obtained by using the convergence properties of (4.33)

along with [25, Lemma 9, Step 3]. The second convergence result may be proven in

a similar manner. In both cases, the basic idea is that on a continuous level (Zn, tn)

is weakly convergent while (Xn, sn) is strongly convergent so the “inner product” of

these sequences should converge to the inner product of the limit. The full technical

details which account for the discreteness in these expressions are available in the

preprint [34, Lemma 18]. ��

The next lemma manipulates the product of two weakly convergent sequences.

The idea is that we may shift the function ψn = 1 − ϕn in a way to use coercivity

of the atomistic and continuum Hessians. The proof is accomplished by using the

product rule for finite differences, weak convergence of ∇Zn and tn in L2(Rd), and

strong convergence of Zn on B1(0) from Lemma 8. Full details may be found in the

preprint [34, Lemma 19], and similar calculations are also used for the BQCF method

for simple lattices [25].

Lemma 10 [34, Lemma 19] Let Zn, tn, θn = √
ψn , and θ0 = √

ψ0 be as defined

above in Lemma 8. Then

lim
n→∞

εd
n

∑

ξ∈εnL

C : Dn(θ2
n Zn, θ2

n tn) : Dn(Zn, tn)

= lim
n→∞

εd
n

∑

ξ∈εnL

C : Dn(θn Zn, θn tn) : Dn(θn Zn, θn tn).

We are now positioned to prove Theorem 8.

Proof (Theorem 8, Stability of BQCF at Reference State) We use the scaling (4.30) and

substitute (from Lemma 8) the quantities Wn = Zn + Xn , rα
n = tαn + sα

n , ψn = 1−ϕn ,
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and θn =
√

1 − ϕn . We divide the proof into three steps: (1) we derive an expression

for the atomistic portion of δF
bqcf
hom,n(0) in the lim inf as n → ∞, (2) we derive an

expression for the continuum component of δF
bqcf
hom,n(0), and (3) we combine the results

and use stability of the individual atomistic and continuum components to derive a

contradiction.

Step 1: The first variation, δF
bqcf
hom,n(0), computed in (4.30) is a sum of an atomistic

and continuum component. The discrete, atomistic contribution is

〈

δ2
E

a
hom,n(0)(1 − ϕn)(Wn, rn), (Wn, rn)〉

= εd
n

∑

ξ∈εnL

C : Dn(θ
2
n Wn, θ2

n rn) : Dn(Wn, rn)

= εd
n

∑

ξ∈εnL

C : Dn(θ
2
n Zn + θ2

n Xn, θ2
n tn + θ2

n sn) : Dn(Zn + Xn, tn + sn)

= εd
n

∑

ξ∈εnL

C :
[

Dn(θ
2
n Zn, θ2

n tn) : Dn(Zn, tn) + Dn(θ2
n Zn, θ2

n tn) : Dn(Xn, sn)

+ Dn(θ
2
n Xn, θ2

n sn) : Dn(Zn, tn) + Dn(θ
2
n Xn, θ2

n sn) : Dn(Xn, sn)
]

. (4.36)

This final expression consists of four different pairings of the form Dn(·, ·) : Dn(·, ·);
upon taking lim inf as n → ∞, we use Lemma 10 on the first pairing, Lemma 9 on

the second and third pairings, and the final convergence property of Sinner
n (x) from

Lemma 8 on the fourth pairing to arrive at the following expression for the atomistic

contribution:

lim inf
n→∞

〈

δ2
E

a
hom,n(0)(1 − ϕ)(Wn, rn), (Wn, rn)〉

= lim inf
n→∞

εd
n

∑

ξ∈εnL

C : Dn(θn Zn, θn tn) : Dn(θn Zn, θn tn)

+
∫

Rd

C : ∇(θ2
0 W0, θ

2
0 r0) : ∇(W0, r0) dx .

(4.37)

Step 2: Meanwhile, the continuum component of δF
bqcf
hom,n(0) from (4.30) is

〈

δ2
E

c(0)Ih,n(ϕnWn, ϕn rn), (Wn, rn)
〉

=
∫

Rd

C : ∇
(

Ih,n(ϕnWn), Ih,n(ϕn rn)
)

: ∇(Wn, rn) dx .
(4.38)

Using standard P1-nodal interpolation error estimates and the fact that each ∇ϕn has

support on B1, it is straightforward to prove that (c.f. [34, Lemma 21])

lim
n→∞

‖∇ Ih,n(ϕnWn) − ∇(ϕn Wn)‖L2(Rd ) = 0,

lim
n→∞

‖Ih,n(ϕnrα
n ) − (ϕnrα

n )‖L2(Rd ) = 0.
(4.39)
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742 D. Olson et al.

Thus, taking the lim inf of (4.38) and applying (4.39) we obtain

lim inf
n→∞

〈

δ2
E

c(0)Ih,n(ϕWn, ϕrn), (Wn, rn)
〉

= lim inf
n→∞

∫

Rd

C : ∇(ϕnWn, ϕn rn) : ∇(Wn, rn) dx .
(4.40)

Substituting the decomposition (Wn, rn) := (Zn + Xn, tn + sn) into (4.40) yields

lim inf
n→∞

〈

δ2
E

c(0)Ih,n(ϕWn, ϕrn), (Wn, rn)
〉

= lim inf
n→∞

∫

Rd

C :
[

∇(ϕn Zn, ϕn tn) : ∇(Zn, tn) + ∇(ϕn Zn, ϕn tn) : ∇(Xn, sn)

+ ∇(ϕn Xn, ϕn sn) : ∇(Zn, tn) + ∇(ϕn Xn, ϕn sn) : ∇(Xn, sn)
]

dx .

(4.41)

This final expression again gives four pairings just as in step one but now of the

form ∇(·, ·) : ∇(·, ·). The first pairing we momentarily leave alone, the second and

third pairings both converge to zero by virtue of strong convergence of ∇ Xn, sn and

weak convergence of ∇Zn, tn to 0 from Lemma 8, and the final pairing converges to

∇(ϕ0W0, ϕ0r0) : ∇(W0, r0) again as a result of the strong convergence properties of

∇ Xn, sn from Lemma 8. These facts simplify (4.41) to

lim inf
n→∞

〈

δ2
E

c(0)Ih,n(ϕWn, ϕrn), (Wn, rn)
〉

= lim inf
n→∞

∫

Rd

[

C : ∇(ϕn Zn, ϕn tn) : ∇(Zn, tn)

+ C : ∇(ϕ0W0, ϕ0r0) : ∇(W0, r0)
]

dx .

(4.42)

As in the atomistic case, our goal is again to think of ϕn as a square, ϕn := √
ϕn

2 and

to shift one factor of
√

ϕn to each component of the duality pairing. Using an argument

similar to that in the proof of Lemma 10 (which we therefore omit) we obtain

lim inf
n→∞

∫

Rd

C : ∇(ϕn Zn, ϕn tn) : ∇(Zn, tn)

= lim inf
n→∞

∫

Rd

C : ∇(
√

ϕn Zn,
√

ϕn tn) : ∇(
√

ϕn Zn,
√

ϕn tn).

Inserting the last result into (4.42), we obtain

lim inf
n→∞

〈

δ2
E

c(0)Ih,n(ϕWn, ϕrn), (Wn, rn)
〉

= lim inf
n→∞

∫

Rd

[

C : ∇(
√

ϕn Zn,
√

ϕn tn) : ∇(
√

ϕn Zn,
√

ϕn tn)

+ C : ∇(ϕ0W0, ϕ0r0) : ∇(W0, r0)
]

dx .

(4.43)
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Step 3: Upon adding the atomistic components from (4.37) to the continuum contri-

butions (4.43) and recalling that θ2
0 = 1 − ϕ0, we have the following expression for

δF
bqcf
hom,n(0):

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)〉

= lim inf
n→∞

[

∫

Rd

[

C : ∇(
√

ϕn Zn,
√

ϕn tn) : ∇(
√

ϕn Zn,
√

ϕn tn)

+ C : ∇(W0, r0) : ∇(W0, r0)
]

dx

+ εd
n

∑

ξ∈εnL

C : Dn(
√

1 − ϕn Zn,
√

1 − ϕn tn) : Dn(
√

1 − ϕn Zn,
√

1 − ϕn tn)
]

.

(4.44)

Next, using stability of the homogeneous atomistic model in this scaling,

〈δ2
E

a
hom,n(0)(Wn, rn), (Wn, rn)〉 ≥ γa‖(Wn, rn)‖2

a,

(which can easily be proven (c.f. [17,35]) due to Assumption 3) and the fact that

atomistic stability implies Cauchy–Born Stability [35, Theorem 3.6], that is,

〈δ2
E

c(0)(Wn, rn), (Wn, rn)〉 ≥ γa‖(W , r)‖2
ml,

we hence have from (4.44) that

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)

= lim inf
n→∞

[

〈δ2
E

c(
√

ϕn Zn,
√

ϕn tn), (
√

ϕn Zn,
√

ϕn tn)〉 + 〈δ2
E

c(W0, r0), (W0, r0)〉

+ 〈δ2
E

a
hom,n(

√

1 − ϕn Zn,
√

1 − ϕn tn), (
√

1 − ϕn Zn,
√

1 − ϕn tn)〉
]

≥ lim inf
n→∞

γa

[

‖∇(
√

ϕn Zn)‖2
L2(Rd )

+ ‖√ϕn tn‖2
L2(Rd )

+ ‖∇W0‖2
L2(Rd )

+ ‖r0‖2
L2(Rd )

+ ‖∇ In(
√

1 − ϕn Zn)‖2
L2(Rd )

+ ‖In(
√

1 − ϕn tn)‖2
L2(Rd )

]

. (4.45)

Similar to (4.39) (c.f. [34, Lemma 21]), standard nodal interpolation error estimates

imply that

lim
n→∞

‖∇ In(
√

1 − ϕn Zn) − ∇(
√

1 − ϕn Zn)‖L2(Rd ) = 0, and

lim
n→∞

‖In(
√

1 − ϕn tn) − (
√

1 − ϕn tn)‖L2(Rd ) = 0.
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Thus, (4.45) becomes

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)

≥ lim inf
n→∞

γa

[

‖∇(
√

ϕn Zn)‖2
L2(Rd )

+ ‖√ϕn tn‖2
L2(Rd )

+ ‖∇W0‖2
L2(Rd )

+ ‖r0‖2
L2(Rd )

+ ‖∇(
√

1 − ϕn Zn)‖2
L2(Rd )

+ ‖
√

1 − ϕn tn‖2
L2(Rd )

]

= lim inf
n→∞

γa

[

‖∇(
√

ϕn Zn)‖2
L2(Rd )

+ ‖∇(
√

1 − ϕn Zn)‖2
L2(Rd )

+ ‖tn‖2
L2(Rd )

+ ‖∇W0‖2
L2(Rd )

+ ‖r0‖2
L2(Rd )

]

. (4.46)

Next observe

‖∇(
√

ϕn Zn)‖2
L2(Rd )

+ ‖∇(
√

1 − ϕn Zn)‖2
L2(Rd )

=
∫

[

∣

∣∇(
√

ϕn) ⊗ Zn + √
ϕn∇Zn

∣

∣

2

+
∣

∣∇(
√

1 − ϕn) ⊗ Zn +
√

1 − ϕn∇Zn

∣

∣

2
]

dx

=
∫

[

2∇(
√

ϕn) ⊗ Zn : √
ϕn∇Zn + |∇(

√
ϕn) ⊗ Zn|2 + ϕn|∇Zn|2

]

dx

+
∫

[

2∇(
√

1 − ϕn) ⊗ Zn :
√

1 − ϕn∇Zn + |∇(
√

1 − ϕn) ⊗ Zn|2

+ (1 − ϕn)|∇Zn|2
]

dx . (4.47)

Since Zn converges strongly to zero in L2(supp(∇(
√

1 − ϕn))) by Lemma 8

(supp(∇(
√

1 − ϕn)) ⊂ B1(0)), it follows from (4.47) that

lim inf
n→∞

‖∇(
√

ϕn Zn)‖2
L2(Rd )

+ ‖∇(
√

1 − ϕn Zn)‖2
L2(Rd )

= lim inf
n→∞

‖∇Zn‖2
L2(Rd )

.
(4.48)

Substituting (4.48) into (4.46) produces

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)〉

≥ lim inf
n→∞

γa

[

‖∇Zn‖2
L2(Rd )

+ ‖tn‖2
L2(Rd )

+ ‖∇W0‖2
L2(Rd )

+ ‖r0‖2
L2(Rd )

]

≥ lim inf
n→∞

γa

[

‖∇Zn‖2
L2(Rd )

+ ‖tn‖2
L2(Rd )

+ ‖∇ Xn‖2
L2(Rd )

+ ‖sn‖2
L2(Rd )

]

= lim inf
n→∞

γa

[

‖∇Wn‖2
L2(Rd )

+ ‖rn‖2
L2(Rd )

]

= γa, (4.49)

which contradicts our assumption in (4.28). ��
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Force-based a/c blending for multilattices 745

4.6 Reference stability implies defect stability

Having established stability of the homogeneous BQCF operator, we next obtain

stability of δFbqcf(Πh,n(U∞, p∞)), i.e. Theorem 7, as a relatively straightforward

consequence. Before entering into the proof we remark that we now no longer employ

the rescalings of Sect. 4.5. The basic idea of the proof is that the linearized homo-

geneous BQCF operator and linearized BQCF operator agree for any (W , r) which

is zero in a large enough neighborhood about the origin. Thus, to prove stability of

the true linearized BQCF operator, we again consider the possibility of a sequence,

(Wn, rn), of unstable modes whose support is contained in larger and larger balls about

the origin. We will then split each (Wn, rn) into components concentrated near the

origin (where we can use atomistic stability) and correction terms supported far from

the origin where we use stability of the linearized homogeneous operator. As before,

the main difficulty is converting the atomistic component of the BQCF operator to a

form where we may utilize atomistic coercivity.

Proof (Theorem 7) We prove this result by contradiction as well. Therefore suppose,

as in the proof of Theorem 8, that there exists Ra,n → ∞ with associated meshes

Th,n , blending functions ϕn , and test pairs (Wn, rn) ∈ U
n
h,0 × P

n
h,0 with norm scaled

to one, such that

γa

2
>

∑

ξ∈L

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ)(DUn) : D(ραβ)((1 − ϕn)(Wn, rn)) : D(τγ δ)(Wn, rn)

+
∫

Rd

∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ)(∇Un) : ∇ραβ(Ih,n(ϕn(Wn, rn))) : ∇(τγ δ)(Wn, rn) dx

=: 〈δFbqcf
n (Un)(Wn, rn), (Wn, rn)〉, (4.50)

where, for notational simplicity we have defined Un := Πh,n(U∞, p∞) and redefined

δF
bqcf
n from the previous section without a scaling by εn .

Upon extracting a subsequence, we may assume without loss of generality that

∇Wn⇀∇W0 for W0 ∈ Ḣ
1

and rn⇀r0 ∈ L2. For each Ra,n , Wn and rn are piecewise

linear with respect to the mesh Ta on Ωa,n . Hence the convergence is strong on any

finite collection of elements on Ta since weak convergence implies strong convergence

on finite dimensional spaces. It also follows from the full refinement of the mesh

assumption on Ωa,n that W0 and r0 are also piecewise linear with respect to Ta.

Having established these basic facts, we will yet again split (Wn, rn) into the sum

of a strongly convergent sequence and weakly convergent sequence as in [25, Lemma

4.8]. For each n, we take ηn(x) to be a smooth bump function satisfying ηn(x) = 1 on

B(1/2)rcore,n (0) and ηn(x) has support contained in Brcore,n (0). Similar to the definition

of Πh , we then set

An := Brcore,n \ B(1/2)rcore,n + B2rbuff
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746 D. Olson et al.

and

Xn := In(ηnW0) − In(ηn)−
∫

An

W0 dx, Zn := Wn − Xn,

sn := In(ηn r0), tn := rn − sn .

(4.51)

Similar to Lemma 6, we have, with these definitions,

∇ Xn → ∇W0, and ∇Zn⇀0 in L2(Rd) (4.52)

and

sn → r0, and tn⇀0 in L2(Rd). (4.53)

Then we note that the discrete norm defined by

‖(U , p)‖2
a1

:=
∑

ξ∈L

|D(U , p)(ξ)|2, where

|D(U , p)(ξ)|2 :=
∑

(ραβ)∈R

|D(ραβ)(U , p)(ξ)|2

is equivalent to the continuous ‖ · ‖a norm on U by [35, Lemma 2.1]. Thus, since we

are dealing with functions which are P1 with respect to Ta on a growing atomistic

region, then the continuous convergence results (4.52) and (4.53) imply corresponding

discrete convergence results:

D(Xn, sn) → D(W0, r0) and D(Zn, tn)⇀0 in �2(L). (4.54)

We now substitute the test pair (Wn, rn) = (Xn + Zn, sn + tn) from (4.51) into

〈δFbqcf
n (Un)(Wn, rn), (Wn, rn)〉

= 〈δFbqcf
n (Un)(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

= 〈δFbqcf
n (Un)(Xn, sn), (Xn, sn)〉 + 〈δFbqcf

n (Un)(Xn, sn), (Zn, tn)〉
+ 〈δFbqcf

n (Un)(Zn, tn), (Xn, sn)〉 + 〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉. (4.55)

Also recall the definition of δF
bqcf
n , which is

〈δFbqcf
n (Un)(Wn, rn), (Wn, rn)〉

= 〈δ2
E

a(Un)
(

(1 − ϕn)(Wn, rn)
)

, (Wn, rn)〉
+ 〈δ2

E
c(Un)

(

ϕn(Wn, rn)
)

, (Wn, rn)〉.
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Since D(Xn, sn) each have support where ϕn = 0 and Πh,n(Un) = (Un) there, we

can rewrite the first three terms of (4.55) without the blending function as

〈δFbqcf
n (Un)(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

= 〈δ2
E

a(Un)(Xn, sn), (Xn, sn)〉 + 〈δ2
E

a(Un)(Xn, sn), (Zn, tn)〉
+ 〈δ2

E
a(Un)(Zn, tn), (Xn, sn)〉 + 〈δFbqcf

n (Un)(Zn, tn), (Zn, tn)〉. (4.56)

Moreover, D(Zn, tn) has support only where Vξ ≡ V and so from the convergence

properties (4.54), it follows that 〈δ2Ea(Un)(Xn, sn), (Zn, tn)〉 and 〈δ2Ea(Un)(Zn, tn),

(Xn, sn)〉 both go to zero as n → ∞.

For the first term in (4.56), using the atomistic stability assumption, Assumption 3,

we obtain

〈δ2
E

a(Un)(Xn, sn), (Xn, sn)〉 ≥ γa‖(Xn, sn)‖2
ml. (4.57)

Taking the lim inf as n → ∞ in (4.56) then yields

lim inf
n→∞

〈δFbqcf
n (Un)(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

≥ lim inf
n→∞

γa‖(Xn, sn)‖2
ml + lim inf

n→∞
〈δFbqcf

n (Un)(Zn, tn), (Zn, tn)〉.
(4.58)

Thus, we are only left to treat 〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉, the far-field contribu-

tion, with Zn and tn defined in (4.51). The strategy here is that far from the defect

core, we may replace δF
bqcf
n (Un) with δF

bqcf
hom,n(0) and then apply Theorem 8. Thus,

we first estimate,

〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉

= 〈δFbqcf
hom,n(Un)(Zn, tn), (Zn, tn)〉

= 〈δFbqcf
hom,n(0)(Zn, tn), (Zn, tn)〉

+
〈[

δF
bqcf
hom,n(Un) − δF

bqcf
hom,n(0)

]

(Zn, tn), (Zn, tn)
〉

≥ 3

4
γa‖(Zn, tn)‖2

ml +
〈[

δF
bqcf
hom,n(Un) − δF

bqcf
hom,n(0)

]

(Zn, tn), (Zn, tn)
〉

,

(4.59)

where we applied Theorem 8 in the final step. (Note that there is a slight notational

discrepancy in that our F
bqcf
hom,n is indexed by n here while there is no index in Theo-

rem 8. However, we may still use this theorem since Rcore,n → ∞ so we may assume

Rcore,n ≥ R∗
core in the statement of that theorem.)
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Next, we estimate the remaining group in (4.59),

〈[

δF
bqcf
hom,n(Un) − δF

bqcf
hom,n(0)

]

(Zn, tn), (Zn, tn)
〉

≤
∣

∣

〈[

δ2
E

a
hom(Un) − δ2

E
a
hom(0)

]

(1 − ϕn)(Zn, tn), (Zn, tn)〉
∣

∣

+
∣

∣

〈[

δ2
E

c(Un) − δ2
E

c(0)
]

Ih,n(ϕn(Zn, tn)), (Zn, tn)
〉∣

∣

≤
∑

(ραβ)
(τγ δ)

‖V,(ραβ)(τγ δ)(DUn) − V,(ραβ)(τγ δ)(0)‖�∞(supp(D(Zn ,tn))

· ‖D(ραβ)((1 − ϕn)(Zn, tn))‖�2(Rd )‖D(τγ δ)(Zn, tn)‖�2(Rd )

+
∑

(ραβ)
(τγ δ)

‖V,(ραβ)(τγ δ)

(

∇Un) − V,(ραβ)(τγ δ)(0)‖L∞(supp(∇(Zn ,tn))

· ‖∇(ραβ)((1 − ϕn)(Zn, tn))‖L2(Rd )‖∇(τγ δ)(Zn, tn)‖L2(Rd ).

From Lemma 6 and the decay rates from Theorem 3 we have

‖V,(ραβ)(τγ δ)(DUn) − V,(ραβ)(τγ δ)(0)‖�∞(supp(D(Zn ,tn)) → 0, and

‖V,(ραβ)(τγ δ)(∇Un) − V,(ραβ)(τγ δ)(0)‖L∞(supp(∇(Zn ,tn)) → 0.
(4.60)

Consequently,

〈[

δF
bqcf
hom,n(Un) − δF

bqcf
hom,n(0)

]

(Zn, tn), (Zn, tn)
〉

→ 0,

and from (4.59),

lim inf
n→∞

〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉 ≥ 3

4
γa‖(Zn, tn)‖2

ml. (4.61)

Combining (4.58) and (4.61), we can therefore conclude that

lim inf
n→∞

〈δFbqcf
n (Πh,n(Un))(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

≥ lim inf
n→∞

[

γa‖(Xn, sn)‖2
ml + 3

4
γa‖(Zn, tn)‖2

ml

]

≥ lim inf
n→∞

3

4
γa

[

‖∇ Xn‖2
L2(Rd )

+ ‖sn‖2
L2(Rd )

+ ‖∇Zn‖2
L2(Rd )

+ ‖tn‖2
L2(Rd )

]

.

(4.62)

Notice that we have

‖∇Wn‖2
L2(Rd )

= 〈∇Wn,∇Wn〉 = 〈∇(Xn + Zn),∇(Xn + Zn)〉
= ‖∇ Xn‖2

L2(Rd )
+ 2〈∇ Xn,∇Zn〉 + ‖∇Zn‖2

L2(Rd )
,
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so we get

‖∇ Xn‖2
L2(Rd )

+ ‖∇Zn‖2
L2(Rd )

= ‖∇Wn‖2
L2(Rd )

− 2〈∇ Xn,∇Zn〉.

Applying the same treatments to ‖rn‖2, we have from (4.62) that

lim inf
n→∞

〈δFbqcf
n (Πh,n(Un))(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

≥ lim inf
n→∞

3

4
γa

[

‖∇Wn‖2
L2(Rd )

− 2(∇Zn,∇ Xn)L2(Rd ) +
∑

α

‖rα
n ‖2

L2(Rd )

−
∑

α

2(sα
n , tαn )L2(Rd )

]

≥ lim inf
n→∞

3γa

4

[

‖∇Wn‖2
L2(Rd )

+
∑

‖rα
n ‖2

L2(Rd )

]

= 3

4
γa,

which is a contradiction to (4.50). In attaining the last equality, we have used (·, ·)L2

to denote the L2 inner product, and we have again used the fact that the inner prod-

uct of the strongly convergent sequence ∇ Xn and weakly convergent sequence ∇Zn

(c.f. Lemma 8) converges to zero and similarly for the inner product of the strongly

convergent sn and weakly convergent tn . ��

5 Discussion

We presented the first complete error analysis of an atomistic-to-continuum coupling

method for multilattices capable of incorporating defects in the analysis. Our results for

the blended force-based quasicontinuum method extend the existing results for Bravais

lattices [25], with the striking conclusion that the convergence rates in the simple and

multi-lattice cases coincide for the optimal mesh coarsening. Our computational results

for a Stone-Wales defect in graphene confirm our theoretical predictions.

We have concerned ourselves here with the case of point defects, though we see

no conceptually challenging obstacles to include dislocations in the analysis so long

as there is an analogous decay result to Theorem 2. However, as previously men-

tioned, we are still limited in our ability to model physical effects such as bending or

rippling in two-dimensional materials such as graphene due to several factors. First,

our assumption concerning stability of the multilattice, Assumption 3 uses a norm,

‖∇ IU‖L2 +‖I p‖L2 , which does not take any bending energy into account and so we

do not guarantee our lattice is stable in this situation. We could have of course for-

mulated a different assumption using a discrete variant of ‖∇2U3‖ + ‖∇ p3‖ (where

U3 represents the out of plane displacement and p3 the out of plane shift), but it is

a very challenging question to extend the BQCF method and its analysis to such a

situation. The next issue that must be answered is what continuum model to use since

the Cauchy–Born model used herein is not adequate to model such effects. Possible

alternatives would be to use higher-order Cauchy–Born rules [19,55] which rely on

higher-order strain gradients, or the so-called exponential Cauchy–Born rule [4]. In

123



750 D. Olson et al.

either of these cases, to use a similar analysis to what we have presented, one would

have to establish new stress estimates akin to Corollary 1 as well as ensuring that the

continuum model chosen is stable provided the atomistic model is. We are also con-

fronted with the problem of choosing a finite element space capable of approximating

H2 functions, which likewise challenges the analysis as well as the implementation.

Finally, we remark that extensions to charged defects in ionic crystals, which rep-

resent a wide class of important multilattice crystals, represent yet another difficult

challenge, largely due to the long-range nature of the interatomic forces.

A Notation

This appendix summarizes notation used in the manuscript.

– L—a Bravais lattice

– M—a multilattice

– S = {0, . . . , S − 1}—the index set of atomic species

– ξ—an element of L or εL for ε > 0.

– α, β, γ, δ, ι, χ—indexes denoting atomic species

– ρ, τ, σ ∈ L—vectors between lattice sites

– R—an interaction range whose elements are triples of the form (ραβ) ∈ L×S×S

– R1 := {ρ ∈ L : ∃(ραβ) ∈ R}—projection of R onto lattice direction

– conv—notation for the convex hull of a set

– rcut := max{|ρ| : ρ ∈ R1}—a finite cut-off distance for interaction range

– νx := B2rcut (0)—buff region up to twice interaction range

– rcell—the radius of the smallest ball inscribing the unit cell of L

– rbuff := max{rcut, rcell}
– u =

(

uα

)S−1

α=0
—vector of displacements of all species of atoms

– (U , p)—displacement/shift description defined by U = u0 and pα = uα − u0

– yref and pref —the reference deformation and shifts

– D(ραβ)u(ξ) = uβ(ξ + ρ) − uα(ξ), D(ραβ)(U , p) = U (ξ + ρ) − U (ξ) + pβ(ξ +
ρ) − pα(ξ)

– Du(ξ) =
(

D(ραβ)u(ξ)
)

(ραβ)∈R
, D(U , p)(ξ) =

(

D(ραβ)(U , p)(ξ)
)

(ραβ)∈R

– V̂ξ (D y(ξ)) and Vξ (Du)—site potentials defined on deformations and displace-

ments, respectively

– Ea(u) and Ea
hom(u)—energy difference functionals for defective and defect free

lattice.

– Ta—atomistic scale finite element mesh of triangles in 2D and tetrahedra in 3D

– ζ̄ (x), ζ̄ξ (x) = ζ̄ (x −ξ)—nodal basis function of Ta associated with the origin and

ξ respectively

– ωρ(x) :=
∫ 1

0 ζ̄ (x + tρ)dt—an auxiliary function

– I uα, IU , I pα or ūα, Ū , p̄α—a piecewise linear interpolant with respect to Ta

– Ĩ uα, ĨU , Ĩ pα or ũα, Ũ , p̃α—a C2,1 interpolant with respect to Ta

– u∗(x) := (ζ̄ ∗ ū)(x)—quasi-interpolant of u defined through convolution

123



Force-based a/c blending for multilattices 751

– | · |—meaning depends on context: | · | is �2 norm of a vector, matrix, higher order

tensor, or finite difference stencil. |T | is area or volume of element T in a finite

element partition, |γ | is the order of a multiindex.

– ‖ · ‖�2(A)—�2 norm over a set A. If f : A → R
d is a vector-valued function,

‖ f ‖�2(A) = (
∑

α∈A | f (α)|2)1/2.

– ‖·‖a—norm on admissible displacements defined by‖u‖2
a :=

∑S−1
α=0 ‖∇ I uα‖2

L2(Rd )

+
∑

α �=β ‖I uα − I uβ‖2
L2(Rd )

.

– U —space of admissible displacements defined by

U :=
{

u = (uα)S−1
α=0 : uα : L → R

n, ‖u‖a < ∞
}

/R
n

– U0 —space of test displacements defined by

{(U , p) : supp(∇ IU ), p0 ≡ 0, and supp(I pα) are compact} /R
n

– Ω—a finite polygonal domain

– ϕ —the blending function

– Ωa := supp(1 − ϕ) + B2rbuff —the atomistic domain

– Ωb := supp(∇ϕ) + B2rbuff —the blending region

– Ωc := supp(ϕ) ∩ Ω + B2rbuff —the continuum region

– Ωcore := Ω \ Ωc—the defect core region

– Th—the (coarse) finite element mesh on Ω

– h(x) := maxT :x∈T Diam(T )—the mesh size function

– Rt := inf R{R > 0 : Ωt ⊂ BR(0)}—an exterior measure of a domain Ωt

– rt := supr {r > 0 : Br (0) ⊂ Ωt}—an interior measure of a domain Ωt

– Ro := inf R{R > 0 : Ω ⊂ BR(0)} —an exterior measurement of Ω

– ri := supr {r > 0 : Br (0) ⊂ Ω}—an interior measurement of Ω

– Ωext := R
d \ Bri/2(0)—exterior of Ω

– Ih— the standard piecewise linear nodal interpolant on Th

– Sh—the Scott-Zhang quasi-interpolant on Th .

– WCB(U , p)—Cauchy–Born strain energy density function

– Ec(U , p)—Cauchy–Born energy functional

– Uh :=
{

u ∈ C0(Ω) : u|T ∈ P1(T ), ∀ T ∈ Th

}

—a finite element space

– Uh := Uh/R
n space of admissible finite element displacements

– Uh,0 :=
{

u ∈ C0(Rd) : u|T ∈ P1(T ), ∀ T ∈ Th, u = 0 on R
d \ Ω

}

—finite

element space satisfying homogeneous boundary conditions

– Uh,0 := Uh,0/R
n—finite element quotient space

– Ph,0 := {0} × (Uh,0)
S−1—finite element space for shifts

– ‖(U , p)‖2
ml := ‖∇U‖2

L2(Rd )
+

∑S−1
α=0 ‖pα‖2

L2(Rd )
= ‖∇U‖2

L2(Rd )
+ ‖ p‖2

L2(Rd )
—

norm on finite element spaces

– ‖ p‖L p :=
∑S−1

α=0 ‖pα‖L p , ‖∇ p‖L p :=
∑S−1

α=0 ‖∇ pα‖L p

– η(x)—a smooth bump function or standard mollifying function depending on the

context

– TRuα(x) = η(x/R)

(

I uα − 1
|AR |

∫

AR

I u0 dx

)

—a truncation operator
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– Πhuα := Sh(Tri uα)—an projection operator from discrete displacements to finite

element displacements

– Πh pα := Πh(uα − u0) —- a projection operator on shifts

– [Sc
d(U , q)(x)]β and [Sc

s(U , q)(x)]αβ— continuum stress function associated with

displacements and shifts

– [ Sa
d(U , q)(x)]β and [ Sa

s (U , q)(x)]αβ —atomistic stress function associated with

displacements and shifts

– V,(ραβ)(τγ δ)

(

·
)

: v : w := w�[

V,(ραβ)(τγ δ)

(

·
)]

v ∀v,w ∈ R
n

– C : D(W , q) : D(Z , r) :=
∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ) : D(ραβ)(W , q) : D(τγ δ)(Z , r)

– C : ∇(W , q) : ∇(Z , r) :=
∑

(ραβ)
(τγ δ)

V,(ραβ)(τγ δ) : (∇ρW + qβ − qα) : (∇τ Z +

rβ − rα)

– ϕn—a sequence of blending functions

– ψn := 1 − ϕn

– θn := √
ψn

– Br , Br (x)—Ball of radius r about the origin or ball of radius r about x .

– supp( f )—support of a function f .

– Diam(U )—diameter of the set U measured with the Euclidean norm.

– (Rn)R—direct product of vectors with |R| terms.

– �—transpose of a matrix.

– ⊗—tensor product.

– ∇ j — j th derivative of a function defined on R
d .

– ∂γ —multiindex notation for derivatives.

– L p(U )—Standard Lebesgue spaces.

– W k,p(U )—Standard Sobolev spaces.

– W
k,p
loc (U ) =

{

f : U → R
d : f ∈ W k,p(V )∀V ⊂⊂ U

}

.

– H k(U ) = W k,2(U ), H1
0 (U ) =

{

f ∈ H k(U ) : Trace( f ) = 0 on ∂U
}

.

– Ck—space of k times continuously differentiable functions.

– Ck,1—space of functions having continuous derivatives up to order k, and whose

k-th partial derivatives are Lipschitz continuous.

– −
∫

U
f dx—average value of f over U .
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