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Abstract

We formulate the blended force-based quasicontinuum method for multilattices and
develop rigorous error estimates in terms of the approximation parameters: choice of
atomistic region, blending region, and continuum finite element mesh. Balancing the
approximation parameters yields a convergent atomistic/continuum multiscale method
for multilattices with point defects, including a rigorous convergence rate in terms of
the computational cost. The analysis is illustrated with numerical results for a Stone—
Wales defect in graphene.
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1 Introduction

A full twenty years has passed since the original proposal of the quasicontinuum
method [37] captivated the materials science community with the potential to model
material phenomena spanning vastly different length scales. The quasicontinuum (QC)
method was among the first of the so-called atomistic-to-continuum (AtC) coupling
algorithms which sought to bridge the gap between length scales from the nano- to
micro-scale. A remarkable number of these AtC methods have been proposed since
(see e.g. [28,31,53] for detailed reviews), and recently a mathematical framework
has begun to emerge to analyze and compare several of these methods for defects in
crystalline materials comprised of a Bravais lattice. Indeed, all three of the blended
force-based quasicontinuum method (BQCF), blended energy-based quasicontinuum
(BQCE) method, and blended ghost force correction (BGFC) method have recently
been analyzed in the context of a single defect in a two- or three-dimensional Bravais
lattice [25,42], as has the optimization-based AtC approach of [36]. Analyses in two
and three dimensional Bravais lattices also exist for the AtC method of [26], but this
has not yet been extended to allow for defects. Meanwhile, the methods [30,47,48]
have been shown to be consistent (or free of ghost forces) for pair potential interactions
only.

In the present work, we resolve the long-standing challenge to develop a rigorous
numerical analysis for AtC methods in the context of multilattices, which allows for
more than one atom to be present in the unit cell of the crystal. This description includes
important materials such as hcp metals, diamond structures, and recently discovered
2D materials such as graphene and hexagonal boron nitride.

Concretely, we generalise the formulation and analysis of the blended force-based
quasicontinuum (BQCF) method. Our surprising main result is that, for a point defect in
a homogeneous host crystal, the BQCF method for multilattices exhibits the same rate
of convergence as in the Bravais lattice case. This is in sharp contrast with the blended
energy-based quasicontinuum method for which a significantly reduced convergence
rate is expected in the multilattice setting [42]. We restrict our analysis to point defects
in the present work primarily to limit the amount of notation and technical tools needed
to describe the defect model. However, we see no obstacles to extend the techniques
developed here to more general topological defects (e.g. anti-plane screw dislocations)
with existing analyses for Bravais lattices [25] in order to generalize our work.

The present work thus represents the first analysis that has been undertaken that
remains valid for an AtC method which permits defects in a two or three dimen-
sional multilattice. Even analyses of AtC methods for defect-free multilattices remain
extremely sparse: the homogenized QC method [1,2], for example, only allows for
dead load external forces while the cascading Cauchy—Born method was rigorously
analyzed only in one-dimensional multilattices for phase-transforming materials [13].

As its name entails, the BQCF method is a force-based AtC method where a hybrid
force operator is constructed instead of a hybrid energy functional [5,7,14,26,49,50].
The primary advantage of force-based methods is that the forces can easily be defined
in a way to avoid spurious interface effects (ghost forces); that is, the defect-free
perfect crystal is a true equilibrium configuration of the AtC force operator. The cost
of defining the BQCF method and other force-based methods to be free of ghost
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forces is that these force fields are no longer conservative, which creates significant
challenges in their numerical analysis [15,27]. The blended force-based methods,
originally studied in [5,7,23,26], seek to overcome this problem through a smooth
blending between atomistic and continuum forces over a region called the blending,
overlap, or handshake region. Similar force-based blending methods have also been
applied to coupling non-local with local continuum elasticity models [44,46].

An alternative to the force-based paradigm is the energy-based paradigm where a
global, hybrid energy is defined which is some combination of atomistic and contin-
uum energies. This encompasses the original quasicontinuum method and many other
offshoots and ancestors [3,8,12,16,18,37,45,51,54]. The peril of these methods is the
aforementioned ghost forces, and it remains open to construct a general, ghost-force
free, energy-based AtC method for Bravais lattices in two or three dimensions. As
such we do not concern ourselves with an energy-based AtC method for multilattices;
however, see [42] for promising directions.

1.1 Outline

We begin in Sect. 2 by formulating an atomistic model for a multilattice material
describing a single point defect embedded in an infinite homogeneous crystal. This is a
canonical extension of the framework adopted for Bravais lattices in [17,24,25,36,42].

In Sect. 3 we then formulate the BQCF method for this model and state our main
results: (1) existence of a solution to the multilattice BQCF method and (2) a sharp
error estimate. We also convert this error estimate to an estimate in terms of the
computational complexity of the BQCF method in Sect. 3.4 which in particular allows
us to balance approximation parameters to obtain a formulation optimised for the error
/ cost ratio. We present a numerical verification of these rates by testing the method on
a Stone—Wales defect in graphene. The complexity estimates obtained for the BQCF
method for point defects in multilattices match those estimates in [25] for Bravais
lattices.

Finally, Sect. 4 covers the technical details needed to prove our main result, Theo-
rem 4. These technical details can be seen as generalizations of the results of Bravais
lattices, and the primary new component is having to account for shifts between atoms
in the same unit cell.

1.2 Notation

We introduce new notation throughout the paper required to carry out the analysis. For
the convenience of the reader, we have listed many of these in “Appendix A”. Here,
we briefly establish several basic conventions we make throughout. We use d and n to
denote the dimensions of the domain and range respectively, calligraphic fonts (e.g.
L, M) to denote lattices, sans-serif fonts (e.g. F, G) for n x d matrices, the lower case
Greek letters «, B, y, 8, t, x are used as subscripts denoting atomic species, and the
lower case Greek letters p, T, o denote vectors (bond directions) between lattice sites.

The symbol | - | is used to denote the 22 norm of a single vector in R™, while | - ||
is used to denote either an £ or L? norm over a specified set. We use - for the dot
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706 D. Olson et al.

product between two vectors, ® as the tensor product, and : as the inner product on
tensors.

Derivatives of functions f : R¢ — R are denoted by Vf : RY — R4*" and
higher-order derivatives by V/ f. Given F : X — Y where X and Y are Banach
spaces, we denote Fréchet or Gateaux derivatives by 8/ F, j indicating the order. We
will most commonly interpret these derivatives as (multi-)linear forms and use them
when Y = R, in which case we will then write the Gateaux derivatives as

(6F(x),y), x,yeX

(52F(x)z, ¥), x,y,z € X and so on for higher order derivatives.

We reserve D for specific finite difference operators (defined in (2.4) and (2.5)), and
use Bpg to denote the ball of radius R about the origin.

We use the modified Vinogradov notation x < y throughout the manuscript to mean
there exists a positive constant C such that x < Cy. Where appropriate, we clarify
what the constant C is allowed to depend on; in particular if there is any dependence
on approximation parameters then it will always be made explicit.

2 Atomistic model
2.1 Defect-free multilattice

We consider an infinite Bravais lattice, or simply a lattice, L, defined by
L:=FZ forsomeF e R™? det(F)=1, andd € (2,3},

where the requirement det(F) = 1 is purely a notational convenience. From a physical
standpoint by taking symmetry into account, it can be shown that there are only 14
unique physical lattices in 3D and five in 2D (see e.g. [53]); however, we consider
the lattice to merely be a mathematical framework. A multilattice is then obtained by
associating a basis of S atoms to each lattice site, and this is also referred to as a crystal
when the Bravais lattice is interpreted as one of the unique physical lattices.

For each site £ € L, these S atoms are located inside the unit cell of £ at positions
£ + pr for pfff eRYanda =0,..., S — 1. The multilattice is then defined by

o

S—1
M = U L+ pfff.
a=0

We call each £ + pi a sublattice; here the addition “+” means a translation of the
lattice £ by the vector p°'. Without loss of generality, we further assume p{)ef =0
(one atom is always located at a lattice site). Furthermore, we make the distinction
between a lattice site, which we use to refer to a site in the Bravais lattice, £, and an

atom which is an element in the multilattice M.
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(b)

Fig. 1 Examples of multilattice structures. a 2D graphene: the dashed circles indicate the interaction
neighbourhoods of the highlighted atoms. F{ and F; indicate Bravais lattice basis vectors and p = pgef is
the shift. b 3D rock salt: the interior cube represents a possible choice of unit cell

Two simple examples of multilattices are shown in Fig. 1 including the 2D hexag-
onal lattice (e.g., graphene) for which

V332 wf _ (0) e V3/2 V2
/3=ao<0 32 7, §S=2, py' = 0 , P =ap 12 ) %= 337
2.1)

(The ag = 33% prefactor is due to the normalisation det(F) = 1.)

For each species of atoms, we define the deformation field y, (¢) as the position of
the atom of species « at site £&. We note that y, : £ — R” where the range dimension
n € {2, 3} may be different than the domain dimension d to allow, e.g., for out of plane
displacements in 2D. However, we remark that our later assumptions on stability of
the multilattice (Assumption 3) will place a restriction on the out of plane behavior;
for example bending, or rippling, cannot currently be incorporated into the analysis.
We further discuss the issues involved in this in our concluding discussion, Sect. 5.
In the case of these out of plane displacements, we will use & € R? as both a vector

in R? and as the vector <f)> € R3. (We remark that though we will not consider

dislocations, we could also consider n = 1 for an anti-plane screw dislocation model
by fixing a second coordinate to be constant in this framework.)

The set of all sublattice deformations is denoted by y := (y,) 2;(1) and displacements
by u := (ua)z;(l) where uy (&) = yo(§) — (6 + pfff). Equivalently we can describe
the kinematics of a multilattice by a pair (¥, p) where Y : £ — R” is a deformation

field, and po, ..., ps—1 : £ — R are shift fields. The two descriptions are related by

Y () = yo(§), pa(§) =yul§) —yo(§); and yu(§) = Y(§)+ pa(§), (22)
and analogous expressions hold for displacements as well.
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708 D. Olson et al.

We now turn to a description of the energy. We will make the fundamental modeling
assumption that the total potential energy of the system can be written as a sum of site
potentials—that is,

Epm(¥) =Y _V(Dy(&)). 2.3)
Eel

where the various new symbols introduced are specified in the following. We also note
that this assumption is not restrictive as almost any reasonable classical potential such
as an n-body potential, pair functional, or bond-order potential may be written in this
form. The main restriction is that long-range Coulomb interaction is excluded.

We use D y(§) to denote the collection of finite differences (relative atom positions)
needed to compute the energy at site £. More precisely, we specify a finite set of triples

S—1
RcCLx{0,1,....,85—1}x{0,1,...,8 —1}\ U{(Oaa)},
a=0
and use
Dpap)y(§) = yp + p) — (&) 2.4)

to denote the relative positions of species S at site £ + p and species « at site £. The
collection of finite differences, or finite difference stencils, Dy, is then defined by

Dy(E) = (Dap)Y©)) papyer - 2.5)
In terms of (Y, p), this notation becomes

Dpap)(Y, p)(E) =Y (E +p) —Y(E) + pp(§ + p) — pu(§) and
DY, p)(€) := (Dpap) (Y. P))(pap)eR-

For future reference, we remark that we can write
Doap)y(§) = Dpyp(§) + pp(§) — pu(§),

where D, f(§) := f(& + p) — f(§). Moreover, we define the set of lattice vectors in
R as

Ri:={p € L:3(pap) € R},
and an interaction cut-off radius as
rew := max{|p|: p € Ri}.

The site potential is then a function V. (RM® — R U {400}, where +oo allows for

singularities in the potential (though we will later assume certain smoothness of the
potential for convenience of the analysis).

@ Springer
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Since the homogeneous reference configuration, y™, defined by

yorE) =&+ pf (2.6)

yields infinite energy in (2.3), (due to an infinite sum over constant values of the site
potential in the reference configuration), we thus will consider an energy difference
functional defined on displacements from the reference state instead of (2.3). For a
displacement u = (U, p) from the reference state y™!, let

V(Du(§)) = V(D™ +u)()),

and then the associated energy difference functional is defined by

Epom@) =Y [V (Du(§)) — V(0). 2.7)
Eel

where V (0) is a constant which will not affect minimization or force computations,
so for simplicity, we assume without loss of generality that V (0) = 0. In Theorem 1
below, we recall a result of [35] that characterizes for which displacements, u, Eﬁom (u)
is well-defined.

A convenient notation for derivatives of V is the following: if (paf), (ty§) € R

and g = (g (pap)) (pep)eR € (RMR, we set
av(g)
[V (oap)(@)]i = FYTI i=1,...,n,
& (pap)
av(g)
V. (oap)(8) = 5 ,
8 (pap)
*V(g) .
V.papyays)(@)ij = ————— i.j=1....n,
081598 (pap)
9’V (g)
V.(pap)(zys)(8) ' = ————,
98 (ry5)98 (pap)

and note that this can be extended to derivatives of arbitrary order. Furthermore, we
adopt the convention that if (paB) ¢ R, then V (,4p) = 0.

The following standing assumptions on the interaction range and site potentials are
made.

Assumption 1 (V.1) The interaction range, R, satisfies

Foreacho € {0, ..., S — 1}, the set of vectors p such that (pax) € R spans Rd,
and (Oap) €e R foralla #B€{0,...,S—1}.

(V.2) V is four times continuously differentiable with uniformly bounded derivatives
and satisfies V (0) = 0 (for simplicity of notation).
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We remark that (V.1) may always be met by enlarging the interaction range, .
On the other hand, (V.2) is made for simplicity of the analysis; it can be weakened to
admit interatomic potentials with typical singularities under collisions of atoms, but
this would introduce several additional technicalities in our analysis.

Next, we specify the function space over which &} (u) is defined, which can be
achieved in several equivalent ways. A convenient route is by first defining a continu-
ous, piecewise linear interpolant of an atomistic displacement. Let 7, be a simplicial
decomposition of £ obtained as in [25]: first let T:= conv{0, e1, ez} (Where conv rep-
resents the convex hull of a set) be the unit triangle in 2D and f‘l e f“6 six congruent
tetrahedra in 3D that subdivide the unit cube (see Figure 1 in [25] for an illustration

in 3D) and then define

_|E+FTE—FT g e, ifd =2,
T |E+FT kel i=1,...,6}, ifd=23.

a

We will often refer to this as the atomistic triangulation or fully refined triangulation.
As noted before, we may always enlarge the interaction range, R, so we may assume
without loss of generality that

if conv{§, & + p} is an edge of 7,, then there exist «, 8 such that (paB) € R.
Given a discrete set of displacement values u : £L — R”, we then denote the
continuous, piecewise linear interpolant of u with respect to 7, by Tu = u. We will

use both notations, /u and i, depending on which is notationally more convenient.
Subsequently, we define the function space

U= {u = (u“)g;(l) tug L —> R ulla < OO} , where

S—1
2. 2 2
laellg ==Y IV el o gay + D Mt = Tugl7agay-
a=0 a#p
Clearly, || - ||a is not a norm on U since |lu||; = O only implies that each uy(§) is
a constant independent of «. However, || - ||, is @ semi-norm on U/ and hence a true

norm on the quotient space
U:=UR" = {{ug + OS2, : C eR"} t welUd}.

Since the atomistic energy is invariant with respect to addition by constants, it is
exactly this quotient space which we utilize as our function space. We also note that u
and (U, p) are two equivalent descriptions for the displacements as seen from (2.2),
and an equivalent norm on this space which will be convenient in terms of the (U, p)
description is
5—1
U, PIZ = IVTUIG 2 gay + D 1 Pall? -

a=1
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A dense subspace of U/ that we will use as a test function space is Uy where

Uy :={u € U : supp(VIugp) and supp(lu, — lug) are compact},
Uy :=Uy/R".

Lemma 1 [35, Lemma A.1] The quotient space Uy is dense in U.

2.2 Point defect

We now introduce a framework to embed a point defect in a homogeneous multilattice.
This problem has been heavily used in analyzing and comparing different AtC methods
for simple lattices in [25,28,36,42] as it allows for a range of non-trivial benchmark
problems and serves as a first step in analyzing more complicated scenarios such as
interacting defects [21]. Point defects can be thought of as zero-dimensional defects
representing a change to a single site in the lattice. Common examples include vacan-
cies, interstitials, substitutions, and in graphene, the Stone—Wales defect which we use
for our numerical tests.

Our first task is to define an analog of & for point defects, which is well-defined
on the function space U. We accomplish this through a site-dependent site potential,
Ve, which must take into account the defective structure of the lattice near the defect
core, which we assume to be at or near the origin. We then write the atomistic potential
energy as

Eu) = Z Ve (Du(é)). (2.8)
Eel

Asin Assumption 1, we require certain smoothness of the site-dependent site poten-
tial in addition to homogeneity outside of a defect core.

Assumption 2 (V.3) There exists Rger > O such that Ve = V for all |§] > Rger.
(V.4) Each Vg is four times continuously differentiable with uniformly bounded
derivatives.

We now recall from [35, Theorem 2.2] that £% and & = are well-defined on U;
the main idea of the proof is that both are defined on displacements having compact
support, and by the density of U in U, they may be uniquely extended by continuity
to all of U.

Theorem 1 [35, Lemma 3.3] Assume the reference configuration y*' with y‘fff &) =

€ + p™' is an equilibrium configuration of the defect free energy meaning that

YD Viep (DY) - DvE) =0, Vv el (2.9)
geL (pap)eR
Then & (u) and E*(u) may be uniquely extended to continuous functions on U

which are C3 (three times continuously differentiable) on U.
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712 D. Olson et al.

Remark 1 The condition (2.9) that the reference configuration be an equilibrium is
equivalent to requiring the shifts are equilibrated within each cell. See [35, Lemma
3.3] for details. Such reference configurations are thus straightforward to generate
numerically.

Since we will eventually be working with a finite domain on which there is no dif-
ference between the original functionals and their extensions, we make no distinction
between an energy and its continuous extension.

We are now able to pose the defect equilibration problem which we wish to approx-
imate with the BQCF method, that is, to find #®° € U such that

u™ € arg 'Il'[éllzlt E¥uw), (2.10)

where arg min represents the set of local minima of a functional.

While Assumptions 1 and 2 can be readily weakened in various ways, the next
assumption concerning existence and stability of a defect configuration minimizing
£? is essential for our analysis:

Assumption 3 (Strong Stability) There exists a solution, #°°, to (2.10) and a constant
¥a > 0 such that

(8282 @™)v,v) = yalvll; Vo €Uo.

Proving Assumption 3 turns out to be notoriously difficult; indeed the only result
of this kind we are aware of is for a special case of a screw dislocation in a simple
lattice [21, Remark 3.2] under anti-plane deformation. Nevertheless, we expect it to
hold for virtually all realistic defects and realistic interatomic potentials. We also
mention that it can be numerically checked a posteriori once the defect configuration
has been computed.

A useful consequence of Assumption 3 is the following regularity result, which
is proven in [35] and extends the analogous simple lattice result [17]. These decay
rates will be an essential component for converting the BQCF error estimates in terms
of solution regularity that are presented in Sect. 3 into complexity estimates that are
numerically verified in Sect. 3.4.

Theorem 2 [35, Theorem 2.5] For p = py, ..., px, the defect solution (U, p™°)
satisfies

DU @) S A+ IEDTF for1 <k <3,
1D, ) S (A +1ED"4F, for0<k <2, andalla =0,...,5—1. (2.11)

The implied constant is allowed to depend on the interaction range through rey, the
site potential, and y,.

Since we will compare discrete atomistic configurations with continuous finite
element functions, it will be useful to reformulate Theorem 2 in terms of gradients of
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smooth interpolants, which we define in the next lemma (see [25] for further details
and the proof).

I:emma 2 [25, The0r~em 2.5] Let u : L — R", then there exists a unique function
Tu : R4 — R" with [u € C>V(RY) such that

1. Tu is multiquintic in & + F(0, 1) for each & € L.

2. Given any multiindex y = (y1, ..., vq) with |y| <2, yi € {0, 1,2}, and e; the
ith standard basis vector, the interpolant satisfies Tu(§) = D;“u(é ) where D;’,“
are nearest-neighbor finite difference operators,

D™ u(€) = u(®),
1
DI™u(€) = - (& + Fer) = u(§ — Fe),

D™?u(€) = u(E + Fei) — 2u(&) + u(€ — Fe;).

l

Dy u(&) := Dy"" - D" u(®).
We will apply I to both displacements and shifts using the notation
IU.p)=U.Ip) = (U, p).

Then, combining Theorem 2 and Lemma 2 yields the following result.

Theorem 3 The defect solution (U™, p™°) satisfies

IVIO®)| < A4 XD, forj=1,2,

- . 2.12)
IV/p)| < (U4 x4, forj=0,1,2, andalla =0, ..., 8 — 1,
where the implied constant is again allowed to depend on the interaction range, the

site potential, and y,.

3 BQCF method formulation and main results

Any AtC approximation of the defect problem (2.10) must include the following
ingredients: the atomistic and continuum domains, a coarsened finite element mesh in
the continuum region, a specification of the continuum model, and finally and most
importantly a mechanism for coupling the atomistic and continuum components.

We define the atomistic and continuum domains for the multilattice BQCF method
by making similar choices as in the BQCF method for Bravais lattices [25]. We first give
an intuitive description of the domains involved, but will (re-)define them again below
after introducing the blending function. Choose a computational domain £2 C R? to
be a (large) polygonal domain containing the origin (the defect). Fix a “defect core”
region §2core such that, if Vg # V,then& € $2core. Then take £2,, the atomistic domain,
to be a polygonal domain with 2. C §2, C §2, and set £2., the continuum domain
to be, 2. = 2 \ 2¢ore- In blending methods, the atomistic and continuum domains
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714 D.Olson et al.

overlap in a blending region §2, = £2. N §2, over which the atomistic and continuum
forces will be blended.

Next, we define a finite element mesh 7, over 2 with nodes A},. For now we only
require that the finite element mesh is fully refined over £2,, that is, if 7 N £2, # 0,
then T € 7j, if and only if T' € 7,, but we will state further assumptions in Sect. 3.1.

The continuum model we adopt is the Cauchy—Born model [9,11,37], a nonlinear
hyperelastic model, which is amenable to AtC couplings due to the definition of the
strain energy density function in terms of the atomistic potential V,

WeB (G, p) i=V((Gp + pg — Po)paprer) for G € R™@and p € RM),

without resorting to any constitutive laws. We note that G here is the deformation
gradient of lattice sites in a unit cell while p are the displacements of shift vectors;
in contrast with typical continuum treatments of multilattices, we maintain the shift
vectors as degrees of freedom in the Cauchy—Born model and do not minimize them
out. Note also that since we have assumed det(F) = 1, we do not need to normalize
by the volume of the unit cell in this energy.

For Wl displacement fields, U, and L shift fields, p, this leads to a Cauchy—
Born energy functional, formally (for now) defined by

£, p) :=/ wcs(VU(x),p(x»dx:f V(VWU, p)) dx
R4 R4
where

v(U, P)(x) = (V(paﬂ)(U’ p)(x))(paﬂ)eR = (VpU(x) + Pﬂ(x) - Pa(x))(paﬂ)eR

18 a continuum variant of the atomistic finite difference stencil
DU, p)(x) = (Dapy (U PYO)) e = (DU )+ 5 r+0) = Puc()) gy

The admissible finite element space we consider will be P; finite elements for both the
displacements and the shifts subject to homogeneous boundary conditions. However,
we will again consider equivalence classes of finite element functions by taking a
quotient space. Thus, we define

Uy = |u e CO2) 1 uly e PI(T), VT e Th} :

Uy = U, /R",

Upo = {u e CO®RY) : uly € PU(T), VT €T u =00an\s2},
Unpo = Upo/R",

5—1
Pho = {P = (po, ..., ps—1) : po =0, and p1, ..., ps—1 € (Uno) }
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Force-based a/c blending for multilattices 715

These spaces are endowed with the norm

S—1
U, Pl = IVUIZ 2 ay + D IPallagay = IVUIZ 2 ay + 1211720
a=0

where || p/|| g;(l) | Pa ||i2 ®9) is used for brevity. Along with the finite ele-

2 —
L2(R4) —
ment space, V\EC a?lso introduce the standard piecewise linear finite element interpolant,
Iy, defined as usual through Iu(v) = u(v) forv € Nj.

The BQCF method is defined by blending forces on each degree of freedom, (v, @) €
Ni x {0, ..., S — 1}, where the forces are defined by a weighted average of atomistic

and continuum forces:

of 35a U, aé‘C U5
F . py = (1 —w(v))# 4o ) 3.1
g (V) Jug(v)

where the blending function, ¢, satisfies ¢ € C>!'(RY) with ¢ = 0 in 2¢ore and

¢ = 1in R¢ \ £2,. The BQCF method then seeks to solve fb’f'(f f(U , p) = 0 for all

v ¢ 052. Equivalently, we can write the force balance equations in weak form using
the variational operator

(FPN W, p), (W, 1))
=Y N REW. P (Wt ra) )

&4 (U, 9 (U,
= 30— 0P Wy )+ 90 2P gy )

dug (v) dug (v)
= (8&°(U, p), (1 =)W, (1 — @)r))
+(8E°WU, p), Un(eW), In(pr))), (3.2

where the last equal sign comes from direct calculation. The BQCF approximation to
the defect optimization problem (2.10) is then to find (U, p) € Up 0 X Ph.o such that

(FoCf U py, (W, r) =0, Y(W,r) eUpox Pho. (3.3)

The variational formulation is preferred for the analysis while the force-based for-
mulation (from which the name BQCEF is derived) is preferred for implementation.
The pointwise formulation (3.1) was essentially how the original BQCF method was
proposed for Bravais lattices [6], and this was analyzed in a finite-difference frame-
work without defects for Bravais lattices in [23,26]. The variational formulation (3.2)
was introduced in [25] for Bravais lattices, and its subsequent analysis led to one of
the first complete analyses of an AtC method capable of modeling defects.
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3.1 Assumptions on the approximation parameters

We now summarise the precise technical requirements on the approximation param-
eters, ¢, 2, §2,, §2v, $2¢, T, which will be analogous to those in [25].
We begin by summarising basic assumptions on the blending function:
l.oeC>*and0<¢p < 1.
2. If Ve # V, then ¢(§) = 0. This means that ¢ vanishes near any defect; hence the
pure atomistic force is employed in those regions.
3. There exists K > 0 such that ¢(x) = 1 if |x| > K. That is, ¢ is identically one
far away from the defect.

As the second step we specify the computational domain 2 and its corresponding
partition 7. First, we shall require that supp(l — ¢) C £2 always holds. To state the
required properties for 7, we first precisely specify the sub-domains in terms of ¢
and £2. Recalling that rqy is the interaction cut-off radius, let rce; be the radius of
the smallest ball circumscribing the unit cell of £, and define rpyg := max{reyt, reell}-
Then we set

Qa = Supp(l - (P) + B4I‘buff» Qb = SUPP(Vﬁl)) + B4rbuff7
§2. :=supp(p) N 2 + B4Vbuff7 Score = £2\ $2c.

The size and shape regularity of the various subdomains are parameterized in terms
of inner and outer radii: for t € {a, c, b, core}, we set

re:=sup{r > 0: B, C £2{U Q¢ore}, Ri:= ir&f{R > 0: £, C Br},
r

where we recall the notation Bg to denote the ball of radius R about the origin. The
corresponding outer and inner radii for the complete domain §2 are, respectively,
denoted by R, and r;:

ri:=sup{r >0: B, C 22}, R,:= i%f{R > 0: £ C Bgr}.
r

Finally, we define an overlapping exterior domain,
$ext = RY \ B2,

which will be used to quantify the far-field error made by truncating to a finite com-

putational domain.
For the sake of completeness, we now restate a crucial condition on the finite

element mesh (Fig. 2):

4. The finite element mesh is fully refined over £2,, that is, if 7 N £2, # ¢, then
T € Tpifandonly if T € 7.

To conclude this discussion we note that only the blending function ¢ and the
finite element mesh 7, are free approximation parameters, while the subdomains and
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supp(Ve)
(shaded <u?::1) 00 R,

Q(:(n’(‘,

Fig.2 A diagram showing a selected number of domains and their inner and outer radii

corresponding radii are derived (in particular, 2 = | J 75). In our analysis we will
require bounds on the “shape regularity” of ¢, 7}, and the domains defined above:

Assumption 4 In addition to (1)—(4) there exist constants C7,, C, > 0, which shall
be fixed throughout, such that

. . o
IViglle < C,R;/ forj=1,2,3, and max — < Cg,,
T€l, pT

where o7 denotes the radius of the smallest ball circumscribing 7" and pr the radius
of the largest ball contained in 7". Defining the mesh size function

h(x) :=max{or : T € Ty, x € T},

there exists s > 1 such that the mesh satisfies the growth condition

) = e (5

a

s
). =R
Moreover, there exists C, > 0 and a positive integer A such that

Ry < CoRéore and %Ra < Reore < %Ra- (3.4)
While C, will feature heavily in our analysis, the parameter C7, will only enter
implicitly in the form of constants in interpolation error estimates. The condition
%Ra < Reore < iRa greatly simplifies the analysis. It is likely this could be weak-
ened by an extremely refined analysis as can be done in one dimension [23], but the
asymptotic estimates obtained would be unchanged with the exception of an improved
prefactor so we do not pursue this. Moreover, though one can generate blending func-
tions which satisfy these assumptions using splines, we point out that in practical
implementations one can relax the regularity requirements on the blending functions,
and this has provided no loss in performance in simulations carried out for lattices
in [24].
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3.2 Main result

Our main result concerns the existence of a solution to (3.3) and an estimate on the
error committed.

Theorem 4 Suppose that Assumptions 1, 2, and 3 are valid. Then there exists R} . such

that, for any approximation parameters satisfying Assumption 4 as well as Rcore >
R}, there exists a solution (Ubact,| pbacty ¢ Up.0x P otothe BOCF equations (3.3)
that satisfies

IVIU = VU 2oy + 119%™ = p™ 2y S 7e(1BV2TU 20

+ 1BV TP™ 2y + IVTUS N 20 + 1TP% 122 )
(3.5)
where

A% 1 +1og(Ro/Ra), ifd =2,

Yo i = 1, lfd=3

The implied constant, as well as R}, ., may depend on C, and C1,, the interatomic

potentials, rey, and the stability constant, y,.

The quantity y;, arises from a trace-type inequality to control a test function on an
annulus (the blending region) by its gradient in the continuum region; more details
can be founded in [23,25]. Section 4 is devoted to proving Theorem 4, but before we
embark on this, we first demonstrate how the error estimate can be combined with the
regularity estimates of Theorem 3 to yield an optimised BQCF scheme with balanced
approximation parameters. This is followed by a numerical test on a Stone—Wales
defect in graphene, validating our theoretical convergence rates.

3.3 Optimal parameter choices

Once we restrict ourselves to a Cauchy—Born energy with P; discretisation as the
continuum model, the free parameters in the design of the BQCF method are the
blending function, ¢, and finite element mesh, 7;, in the sense that once these are
set according to Sect. 3.1, then the BQCF method (3.3) is fully formulated. Ideally,
these parameters should be chosen in an optimal way so as to obtain the most efficient
method.

The choice of blending function is, in the case of the BQCF method, arbitrary as
long as Assumption 4 is satisfied. There are many choices to make for the blending
function which meets these requirements, see e.g. [29].

The finite element mesh and hence the choice of £2 may, however, be optimized.
The key to choosing the finite element mesh and size of §2 lies in applying the decay
results of Theorem 3 to our error estimate (3.5), [24,28,29]. In obtaining our optimized
parameters, we do not provide rigorous proofs but instead use heuristic assumptions
to arrive at approximate choices which can then be rigorously analyzed numerically.
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To start, we assume that the mesh size function A (x) is radial, i.e., h(x) = h(|x]).
Then, ignoring logarithmic factors in ¥, and employing the estimate |1 +r|~! < r~!
for r > 1, the error estimate (3.5) can be further estimated by

IVIU = VU2, gy + 1P = PPN )

R 00
5/ |h(r)|2r_3_ddr+/ r = gy
Fcore 1/2"i

Next, we note that from the definitions of 2., 2, and r;, we have r; = R. + 4rpuft
so that we may make the replacement r; & R.. Denoting the number of degrees of
freedom by DoF (nodes in the continuum finite element mesh times the number of
species in the multilattice), we can then carry out an optimization problem consisting
of minimizing this error estimate subject to a fixed number of degrees of freedom,
DoF. This problem is exactly the same as for the Bravais lattice and is

o0
min / |h(r)|2r =3~ ddr—i—/ r = dr
hel?, Re>rcore Jreore 1/2R.

This problem is solved in [32] where it is found that there are approximate minimisers
1+d
of the form A (r) = (r /Ry)TF2. A simplified approximate solution can be obtained

by first minimizing f ¢ |h(r)|>r =374 dr with respect to h where the same expression
for A will result, but instead of also minimizing with respect to R, one can simply
note that the error then becomes

R 9]
/ |h(r)|2r’3"ldr+/ rar <rd7P 4 R7TS RI2 4RI (3.6)
Fcore 1/2Rc

In order to balance the sources of error, one should take R, = R2/ d+l . Finally, by

simply writing the number of degrees of freedom as the sum of those in the atomistic
and continuum regions, it is possible to derive the result that #DoF ~ R;’ ; further
details can be found in [25,28,32,33].

After making the estimation y;; < (log DoF)!/2 [25] for d = 2, the main error
estimate, (3.5), currently written in terms of solution regularity, may now be replaced
by an estimate of (3.6) in terms of computational cost since #DoF ~ Rg:

IVIUS = VU2, g+ 11P% — PPN
(DoF)~!'=2/d1ogDoF, d =2, (3.7)
(DoF) 1=/, d=3,

which exactly matches the rate for the Bravais lattice case [25]. This is due to the fact
that the limiting factor in both error estimates is the P finite element approximation.

Remark 2 In the Bravais lattice analysis [25], the expression of R, in terms of R, is
incorrect which has led to an error in the expression for the error estimate in terms of
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the degrees of freedom. In that paper, a different mesh scaling is also used, but should
the same mesh scaling be used, the error estimates in terms of the degrees of freedom
would be identical up to a constant prefactor.

3.4 Numerical tests

In addition to providing a means to estimating the computational cost of the BQCF
method, the estimate (3.7) is also convenient to verify numerically. We have carried
this out for a Stone—Wales defect in graphene using both the BQCF method and a
fully atomistic method. For the latter, we simply minimize the full atomistic energy
over displacements that are non-zero only on the computational domain £2 (clamped
boundary conditions). Using the methods discussed in Sect. 4, it is not difficult to show
that the solution, (UPIr, pDir), to this atomistic Galerkin method exists and satisfies
the error estimate

IVIU® = VUP || 2gay + 1 p™ = pP" 2 ray S (DoF)™V2. (3.8)

We now set the model up for the Stone—Wales defect in graphene, recalling first the
multilattice parameter values given in Sect. 2. We choose a Stillinger—Weber [52] type
interatomic potential with a pair potential and bond angle potential component. The
interaction range we consider is depicted in Fig. 1, where all pairs of atoms in the blue
and red circles interact through a pair potential and all triplets of atoms connected by
two edges interact through a bond-angle potential. In this notation, the site potential
is given by

A 1 1
Dy = Y S6DeapyEN+ Y 39 DepyE), Days ¥ €)),

(paB)ER p E%g;ena

where R, and R, represent the pair and bond-angle interaction ranges, ¢ (r) =
r~12 — 2r% is a Lennard-Jones potential, ¢ (r) = (‘;—0)12 -2 (“r—o)6 is a Lennard-
Jones potential with ag defined in (2.1), and

9(r1. ry) = ( nrn o, 1/2)2

ril 12|

is a three-body term that penalizes angles that differ from ZT”

The Stone—Wales defect shown in Fig. 3 is obtained by rotating the bond between
the two carbon atoms at the origin site by ninety degrees about the midpoint of this
bond. One way of incorporating this defect into our framework is to define a reference
configuration (Y, p{ef) where Yy(§) = F& for all & # 0 with F and p{ef given by
the graphene parameters in (2.1). At the origin, we set Yy(0) = Rot(0) and p;(0) =
Rot( p{ef), where Rot represents the ninety degree rotation about the midpoint of the

segment conv{0, p1}. Then we set Ve (D(U, p)(§)) = V(D(Yo + U, p1 + p)(&)).
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(a) (b)

Fig.3 Examples of a perfect graphene sheet and a Stone—Wales defect. The dotted lines in the right display
indicate bonds that are broken during the rotation of the highlighted atoms. a A perfect graphene sheet. b
An unrelaxed Stone—Wales defect.

We choose hexagonal domains for £2core, §2,, §2, etc., and use a blending function
which approximately minimizes the L norm of V2¢ on £2, [29]. We select the inner
width, rcore, Of the hexagon §2.qr to be from the range R, = {8, 12, 16, 20, 24} with
k = 1/2, and then the remaining domains are chosen as scaled hexagons satisfying the
requirements of Sect. 3 and Theorem 4 (see Fig. 10 in [24] for a representative illus-
tration of this domain decomposition for a Bravais lattice). Finally, our finite element
mesh is graded radially with approximate mesh size i (r) = (RLQ)3/ ? as described ear-
lier in this section with d = 2. The BQCF equations were solved by a preconditioned
nonlinear conjugate gradient algorithm with line-search based on force-orthogonality
only (in BQCEF there is no energy functional for which descent can be imposed).

In Fig. 4 we show the error in the displacement gradients and the single graphene
shift vector for the computed BQCEF solution versus the number of degrees of freedom.
Both match our theoretical predictions from (3.7) and indeed demonstrate that the
error estimates are sharp (up to logarithms). We also show the error committed by the
atomistic Galerkin method (which is estimated in (3.8)), to demonstrate the practical
gain achieved by the BQCF method.

4 Proofs

The remainder of this paper is devoted to proving our main result, Theorem 4. As
in [25], the abstract framework for the proof is provided by the inverse function
theorem [20,28,38], which we recall for reference and which is used to establish
well-posedness of the nonlinear BQCEF variational equation in Theorem 4.

Theorem 5 (Inverse Function Theorem [20,38]) Let X and Y be Banach spaces with
f:X =Y, f e ClU) withU C X an open set containing xq. Suppose that
n > 0,0 >0, and L > 0 exist such that || f (xo)lly < n, 6f(xo) is invertible with
||8f(x0)*1 lcr.xy < o, Baye(xo) C U, §f is Lipschitz continuous on Bays (x0)
with Lipschitz constant L, and 2Lno? < 1. Then there exists a C! inverse function
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Convergence rates for Stone-Wales: displacement Covergence rates for Stone-Wales: shift

DoF~1/2

DoF~1/2

[[VUac = VUa|| 12

©ATM DoF~! —-ATM
,| l=-Bacr | [7=BQCF
DoF DoF
(a) (b)

Fig. 4 BQCEF error plotted against degrees of freedom. We have also plotted the “purely atomistic” error,
denoted by ATM, which is the solution obtained by truncating the infinite dimensional atomistic problem
to a finite domain using homogeneous Dirichlet boundary conditions. a Error in displacement field for
Stone—Wales defect. b Error in shift field for Stone—Wales defect

g : By(y0) = Bajyo (x0) and thus an element x € X such that f(x) = 0 and
llxo —*llx < 2no.

The nonlinear operator we consider is the variational BQCF operator FEQCF (U, p),
and the point near which we seek a solution is xo = (Up, py,) := (U™, p*°) where
IT;, is a projection operator defined in the following section. In Sect. 4.2 we prove a
consistency estimate on the residual of the FBQCF (y,,, p),) operator:

sup  [(FBEWy, pp), (W, )| S IAVEO® 200, + 10V DZN 1202,
W) lm=1

HIVO® 2000 + 157 120200
@1

The invertibility condition on the derivative of 74! is proven as a coercivity condition
in Sect. 4.3 where we show that

BFEXF Wy, p)(W. 1), (W, 1)) 2 (W, )2, YW, 1) € Uno x Pho. (4.2)

provided that the atomistic region is sufficiently large. In Sect. 4.4 we combine these
two estimates with a Lipschitz estimate on 84" and apply the inverse function
theorem to prove Theorem 4.

Throughout this analysis, we continue to use the modified Vinogradov notation
x <y, where the implied constants are allowed to depend on the shape regularity
constants C7,, Co, (which are defined in Assumption 4 and (3.4)), the interatomic
potentials (and their interaction range), and the stability constant y,.
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4.1 Cauchy-Born modeling error

In preparation for the consistency analysis in Sect. 4.2 we first establish several aux-
iliary results about the Cauchy—Born model.

A central technical tool in the analysis of AtC coupling methods is the ability to
compare discrete atomistic displacements which are the natural atomistic kinematic
variables (recall that the atomistic displacements are equivalent to atomistic site dis-
placements plus atomistic shift vectors), and continuous displacement and shift fields
which capture the continuum kinematics. We have already introduced several inter-
polants which serve this task: a micro-interpolant, /; a finite element interpolant, 7j;
and a smooth interpolant, I. We will also introduce a quasi-interpolant in this section
which will allow us to define an analytically convenient atomistic version of stress [41].

We use ¢ (x) to denote the nodal basis function associated with the origin for the
atomistic finite element mesh 7, and ;_‘5 (x) 1= ¢(x — &) to denote the nodal basis
function at site £. We may then write the micro-interpolant /u = u as

i(x) =y u@E?Zx —§).
sel

The quasi-interpolant of u is then defined by a convolution with ¢

w*(x) = (¢ i) (x). 4.3)

It will later be important that this convolution operation is invertible and stable.
This is a consequence of [39, Lemma 5], which we state here for reference.

Lemma 3 [39, Lemma 5] For a given atomistic d_isplgcement, u, there exists a unique
atomistic displacement u with the property that ¢ * (&) = u(§) forall € € L.

One of the primary uses of the ™ interpolant will be the development of an atomistic
stress function which can be compared to the continuum stress in the Cauchy—Born
model [41]. The first variation of the continuum model may be written in terms of a
stress tensor,

(EW.q), (W, ) = /d > Vipapy (VU @) - Vipap) (W, r) dx

R (oap)
- [d Z Vipap)y(VU,q) @ p: VW dx
(pap)
T /IAW Z V,(paﬁ)(V(U, Q)) . (r,g — ra) dx
(pap)

= A%d D ISSWU. ) (x)lg : VW dx + A%d D ISSU, ) ()lap - (rp — 1) dx.
B .p

4.4)
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From (4.4), we defined the continuum stress tensors:

Z Vipapy(V(U, q)(x)) ® p,
o,p:
(paB)eR @5)

[SSU, )] =Y Vipup) (YU, @)(x)).
peRL

To compare the atomistic and continuum models, we now construct an analogous
atomistic stress tensor. Its definition will make it clear why we introduced the seem-
ingly unnecessary sum over B in the first group in (4.4). The basic idea is to extend
the construction of [41]: the argument V (U, ¢)(x) in (4.5) will be replaced by a local
averaging of first order finite difference approximations D(U, q)(§) for & near x.

Lemma4 For (U, q) € U, we define the atomistic stress tensors

[S§U. W= D> > (Viwap) (DU, ) ® p)wp(§ — ),

@p el
(pap)eR (4.6)
[S2U. )@)ap = Y D> Vipap) (DU, )(E)) w0 (& — x),
peER E€L
where
1 -
wp(X) ::/ C(x +1p)dt. “@.7)
0
Then,

(8&hom (U @), (W, 1)) = / {Z[S WU.q)lg: (VW + Vrp)
4.8)

+ Z[Sg(U, Plap - (Fg — fa)}dx
o.p

where W* and r* are defined through (4.3).

Proof We start by computing the first variation of
(W=, r):

hOm(U q) with the test pair
(BEkm (U, @), (W*, 7))
=Y Y Vi (DW.0®) - (D, W E) + Dyrs€) +r5®) - ri(®)).

&eLl (pap)eR
4.9)
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Arguing as in [41, Eq. (2.4)] we obtain

D,W*(&) + Dpri(§) = /Rd wp(E —x) (VoW + V,ig) dx  and (4.10)

rEE) — i) = /Rd wo(§ — x) (Fg — Fr) dx. A.11)

Substituting (4.10) and (4.11) into (4.9), and recalling the definitions of the atomistic
stress tensors from (4.6) yields the stated claim. O

We refer to the error between the continuum and atomistic stress functions as
the Cauchy—Born modeling error and quantify it in the next lemma; see [41] for an
analogous result for Bravais lattices.

Lemma5 Assume that U € C>'(R?;R") and q, € CVY(R?, R") for each . Fix
x € R? and set

Vx 1= By, (%).
1. If VU and q are constant in vy, then

[Sa(U, @) (x)]p = [Sq(U, ¢)(x)]p and [S¢(U, )(x)]ap = [S5(U, ) (x)]agp-
(4.12)
2. In general,

S3(U, @) ()1g = [S5U, )g| S IV Ul + 1Vl Loy,
[[S2(U, @) () ap — [SSU, @) (D ap| S IV2U Loy + 1V L0 0r)s

with the implied constant depending only on the interatomic potential V.

Proof 1. The identity (4.12) is an immediate consequence of the definitions (4.5), (4.6)

and of
> wpE—x) =1
3

2. We define an auxiliary homogeneous displacement (U", g") with VU = VU (x)
and ¢" = g(x). Then we have

[S3(U, @)(x)1p — [S5(U, )(x)1g = [S5(U, @)(x)1g — [SIUD, g™ (x)1.
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Since we assumed that V is twice continuously differentiable, with globally bounded
second derivatives, we obtain

S5V, )()1p — [S§U. 1(x)p| = [[SIU. @) (x)]p — [SLU", ™) (x0)15]
|3 Y (Vs (DW 0E) = Vi (DU, 4" ))] © Py € = )]
apr  Eel
(pap)eR
> Y |DW.g)E) - DU, ¢")E)|w, € - x)
ap:  EeLl
(pap)eR
S|VU = VU 1o + g = 41wy + IV U o, + 1Vl o0y
SIVUIlL*@) + 1Vg o).

A

where in obtaining the last two inequalities we have used a Taylor expansion of the
finite differences and the fact that w, (§ — x) as defined in (4.7) vanishes off of v,. The
proof for the comparison of the “shift” stress tensors is nearly identical so is omitted.

O

With this pointwise estimate, and using the fact that U is piecewise polynomial, it
is straightforward to deduce the following Cauchy—Born modeling error estimate over
£2.

Corollary 1 For the atomistic and continuum stress tensors defined in (4.6) and (4.5),

[S3(0%. %) = S4T*. 3] 120,y S IV20%N 1200 + 1VE® 1200

and
[S2T>,3%) =SS0, )| 120 S 1VZT¥N 20y + IVEF 1200

Remark 3 The stress estimates for a multilattice are one order lower in terms of deriva-
tives than the corresponding Bravais lattice estimates. A refined analysis shows that
this estimate cannot be improved without an underlying point symmetry for the mul-
tilattice. When this symmetry is present in multilattices, it is possible to define a
symmetrized Cauchy—Born energy with an improved estimate [22].

4.2 Consistency

Our first task in completing the residual estimate (4.1) is to define the projection
from atomistic functions to finite element functions satisfying the Dirichlet boundary
conditions so we first truncate the solution to a finite domain. For that, let n be a smooth
“bump function” with support in B1(0) and equal to one on B3/4(0). Let Ag be an
“annular region” containing the support of V(In(x/R)), i.e, AR := BRr42r,,;(0) \
B3/4R2rpyr O supp(V(In(x/R))) and define the truncation operator by

Truy(x) = n(x/R)(Iua — L / Iuodx).
IARIA

@ Springer



Force-based a/c blending for multilattices 727

Further, let S;, be the Scott—Zhang quasi-interpolation operator [43] onto the finite
element mesh 7;. We then define the projection operator by

Mg = Sp(Trug), My = {[Thua)sZ),

o
My pe i= My (ug —uo), IMyp:= {Mpo}SZy, MU, p) = (IT,U, [y p).
(4.13)

(Recall that r; is the radius of the largest ball inscribed in §2.) Note that VIT,u, as
well as

Hyuy — Hpug = Sh[n(x/ri)(lua — Iuﬂ)]

have support contained in 2. We also have the following approximation results.

Lemma 6 Take (U, p) =u € U. Then

IVU = VLU || 2 ey + | Py — Tnpell12rey
S MBVPU®N 20 + 1BV 5N 1200 + IVU 20000 + 181120000
IVU = VLUl 200, + | Po — TThPell 1220
N ”hV2000”L2(.QC) + 1AVl 20 + IVU 2 @uune) + 1P 22(@00nee)-

The proofis similar to the proof of Lemma 1 (with only additional estimates required
for the finite element interpolants) and therefore omitted. See also [36, Lemma 1.8] for
similar estimates, the main difference being the usage of the Scott—Zhang interpolant
which allows for L2 interpolation bounds on H ! functions, see [10,43].

We can now prove the bound (4.1).

Theorem 6 (BQCF Consistency) Define (U, p;,) := [T (U, p*>) where (U™, p*°)
satisfies Assumption 3. If Assumptions 1 and 2 are valid also and if the blending func-

tion, @, and finite element mesh, 1, satisfy the requirements of Sect. 3, then the BOCF
consistency error is bounded by

| Wi, p). W) S 7 (10920 W20 + AV B2,
+ ”Vl}”LZ(QeX[) + ”ﬁ”LZ(QeM)) W, ) llm, YW, r) € Upo X Pho,
and yy is defined in Theorem 4.

Before beginning the proof, we make some preliminary remarks. First, we observe
that, since the Scott—Zhang interpolation operator is a projection it follows that

D(pap)Un (&) = Dpap)U(§)  for & € L7,
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where £ := £ N (supp(l — ¢) + R1). Furthermore, since §E* (U, p*°) = 0, the
residual error in the BQCF variational operator defined in (3.2) is equivalent to

(FE W, py), (W, 1)) = (SEX U™, p™), (U, )

= (SEXU™, p*), (1 = )(W, 1)) + (8E°(Un, pp), (In(@W), In(pr)))
—(8EX U™, p™). U, q)), (4.14)

where (W, r) € Up 0 x Phpo is an arbitrary given pair of test functions in the finite
element test function space, while (U, g) € U x P is a test pair that we are free to
choose. The obvious candidate choice is (U, g) = (W, r) in which case we would
have

(FPU Uy, py), (W, 1)) — (SEX WU, p™), (U, 9))
= —(BENU™, p™), @)W, 1) + BEWUh, p1), (In(@W), Tn(gr)).

The resulting residual error is concentrated only over §2. due to V¢ having support in
£2.. The issue in estimating this quantity is that when we convert the atomistic residual
into the atomistic-stress format, the test function appears as a piecewise linear function
with respect to the atomistic mesh 7,, whereas the test function is piecewise linear
with respect to the graded mesh 7, in the continuum portion. For this reason, we shall
add correction terms to our previous candidate choice (U, q) = (W, r) via

U=W+(Z"—oW), gu=ro+ @) —9re), a=1,...,5—1, (4.15)

where (Z, z) € U x P will be chosen to satisfy certain approximation estimates as
stated in Lemma 7 below. The reason we use Z* and z instead of merely Z and z,
is that we shall eventually make use of the atomistic stress representation from (4.8).
The BQCEF residual error from (4.14) then becomes

(FOXT (WU, py), (W, 1)) = (BEX WU, p), (W +(Z* = W), r + (&* = 9r))
= (8EWUn, pp)» (In(@W), In(pr))) — (SEX U, p™), (Z*, z")).
(4.16)
Moreover, since we are blending by site and using P; elements for the shifts, we may
use the same form for Z and z as obtained in the simple lattice case [25] for both
displacements and shifts.

Lemma7 Suppose W € Uy 0 and r € Py o. Define Zy, Z, 2pq and zo by

(C* I(@W))(E) (T * Zn)(§)

Zp = In(eW), Z(§) = Jex—&dx — [idx

and

(€ * In(era))€) _ (€ * 2na) ()
J et —&)dx Jedx

Zhy = In(pre), zo(§) =
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Then for f € WlOC (Rd)

/ FZ — Zidx < 1V Fllizon - 19 Znll 200, @17
2

/Q £ Gha = Z) dx S 1V Fllizan - Iohall 2. 4.18)

1Zn = Zl 200 S 1V Zll2 ) (4.19)

lzha — Z(x”LZ(QC) S ”Zha”LZ(QC)9 (4.20)

IVZill 22 S el VW20 (4.21)

Izhallz2(20) S Mrall22)- (4.22)

Proof We begin by letting wg := supp({(x —£))and C := {£ € L : wg C $2:}. Then
we observe that Z; and Z are constant on any patch wg with & ¢ C, and furthermore
Zy = Z. Intuitively, this should hold because if £ ¢ C, then either £ is near the defect
core where ¢ = 0 and hence Z;, = 0 and Z = 0; or & is near the exterior to the
boundary of £2 where Zj, is constant. For this to rigorously hold, we need to recall the
buffer, Bapyfr, in the definition of 2. which then makes proving the statement possible.
Moreover, Z, = Z on any patch wg with & ¢ C due to the normalization factor in the

definition of Z. For f € WIOC (Rd ) we then have

/ f(Z = Zp)dx = Z/ FENZE) = Zp(0)) (x = §)dx

gel w;N$2e
Z f(x) Z(&) — Zh(x))f(x — &)dx since Z, =Z is constant for & ¢ C
e @s
wiC?Zc
—Z / (f(x) ][ f)(Z(E) — Zi(0))L (x — £)dx
Hf 1Z(€) = Znll 2wy
EeC wé L2 ()
S MVl IV Z0l 120
teC
S IVl @IV Zill20.)- (4.23)

This proves (4.17). Proving (4.18) is analogous:

/ o Gha —2a)dx S IV Fll2ey 1 Vznall 2o S IV flli2gy - 12he 22y
2

where in obtaining the final inequality we have used that for T’ € 7,,
IVzrll 2oy S Brlizallzay S lznllp2 -
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For these choices, we also have the following norm estimates (4.19) and (4.20):

1Zh = Zl 220 S IV Zll12¢20

Izha = Zallz2() S I2hallzz(2e)-

To obtain the first of these, we simply take f = Z — Zj, in (4.17) yielding

1Zh = Z13 20, S IVZh = VZIl2@) IV Zill 2020 S IVZ0lIZ2q,) + 1V 21135 q,)
S MVZilGa g, + IV ZIGa 0, S IVZ0lI32 g, + 1V Z0I2 g,

where we have applied Young’s inequality to deduce the estimate

2
IVZI32 0, = IVZI32@a) =

(£ % VZp)
(2¢) H T rdy

[ ¢dx
< IVZil 2y 1151 gay S 1V Znl72g,-

L2(Rd)

For the second of these, we simply have

Izhe — Zallz22y < Nznalliziey + 1Zelli2@y S 1zhalli2(2y) + Nzalli2(20)

S Nznallzzey) + 1zhallr2@q)-

where we have again used Young’s inequality for convolutions. Next, upon recalling
the definition

V1 +Ilog(Ro/Ry), ifd =2,
=, ifd =3,
we have (4.21) and (4.22):

IVZill 22 S Vel VW22

zha 220y S Nrellizie,)-

The first of these is a consequence of [25, Lemma 7]. The second is a result of 0 <
p <1

”Zha”LZ(QC) = ||Ih((pra)”L2(,Qc) = ||1h(rot)”L2(Qc) = ”rot”Lz(_Qc)-

We are now ready to prove Theorem 6.
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Proof (Theorem 6) Since Tu interpolates u at £ € £, we may replace discrete U with
continuous /U = U in (4.16) which leaves us with estimating

(FPC Uy, p), (W, ) = (FPN Uy, py), (W, 1)) — (8EX U™, p™), (U, @)

= (8E(WUn, pp). (In(@W), I(pr))) — (SEXT™, p*), (Z*, 2%)).
(4.24)
Recalling that Zj, := I, (W), zj := I,(¢r), and the atomistic and continuum stress
representations of (4.6) and (4.5), we split this into three terms using simple algebraic
manipulations as

(8EWUn, pp)> (In(@W), In(pr))) — (SEXU™, p™), (Z*,2)))

/ Z [SSWUn, pi)1p = VZi — IS5, p™)]p = V ]’

+ ‘ /R , ;;[SS(Uh,pmaﬁ (Zhe — Znp) — ;;[sz(ﬁm, P°)ap - Za —zm‘

+‘/Rd2ﬁ:[sd(U L P™)p: Vig

=T} + T, + T} (4.25)

Next, we analyze these terms separately.

Term le: The Td1 term is identical to the simple lattice case after accounting for
the additional approximation of the shifts. Following the ideas from the simple lattice
case [25], we break down le into three additional terms as in Section 6.4.1 of [25] (the
difference being that we do not consider a quadrature error), and apply the estimates
of stress differences from Corollary 1 and the approximating estimates from Lemma 6
and (4.21). This produces

Ty < ‘/Rd;{[sﬁ((]h,Ph)]ﬁ —[S§(0>, p™)p} : VZydx

+ ‘/ [SS(T, p)p} : (VZ) — VZ)dx

‘/ Z [SS(U>, p™)p — [S5U>, p™)g} : VZ dx

s ytr(nhv 0%l 2020 + IRV B¥ 20

HIVT ¥ 2 + 1Bl 2220 1YWl 2
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Term Ts: For the shift term 75, we have

Ts S ‘ /Rd QZ’;[SS(U;,, P)lap - Zha — 7np) — Z[SE(UOO, P ap + (zhe — Zhﬂ)‘

o.p
+ /Rd Z[Sﬁ(ﬁ‘”, P ap - (zZha — 2np — Za — Zﬁ))‘
a.p
" /Rd Z[Sg(ﬁw, P)ap - Za —2p) — Z[SS(U"O, P ap - (2o — Zﬂ)‘
a’ﬂ

a’ﬁ
=151+ TS,2 + Ts,3~

Using Lipschitz continuity of §V (in the definition of S%) and the fact that z is
supported in §2. followed by an application of the test function estimate (4.22), we
obtain

ITsal S (||V17hU = VUl 200, + HThp — i’||L2(QC))||Zh||L2(Rd)

S (VU = V0120 + 1P = B2y ) 171 2

Using the stress estimate, Corollary 1, followed by the application of the test function
norm estimates (4.20) and (4.22), we get

T3l S (IV20 U2 + 19B 1 220 ) 121 22y

< (192012020 + 1981220 ) Il 22

Finally, to treat z, — z inside T5», we use (4.18) of Lemma 7 with f =
[SS(U°, p™)]ap followed by an application of (4.22), the chain rule, and (4.5):

T2l 5 Hv(sg(f]"", i’oo)) | 202l 2y
5 ||VS‘S:(0OO, ﬁoo) . V(Vﬁoo + i’oo)”LZ(QC)”r”LZ(Rd).

Combining our estimates for T 1, 75 2, and T 3 and appealing to Lemma 6 to estimate
T;.1 along with the crude estimate & 2 1 gives

TS (120200 + 1AVB 1200,

+ VTN 220y + 1Pl 2200 ) I 22520
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Term sz: Finally, to estimate sz we split it into

2 _ a 1700 ~oo =
|Td|—‘fRd2ﬁj[sd<U PO Vi

S ‘/]Rdz( U, p™)p — [S§U™, p™)1p) : Vg
5

+'/Rd;[sd<u L P)p Vg

L2 2
= Tq + T,

To estimate Td 1» we note that it is similar to T1 in that V,zg is zero off £2. (which
is due to the support of the blending function and the definition of £2.; see the proof
of Lemma 7 for further explanation) so we utilize the stress estimate in Corollary 1
along with the bound

IVZell < llzgll < lrgll

which follows from

1Zsll S llznpllr2e,) by (4.20)
< ”rﬁ”LZ(QC) by (4.22).

This produces

771 S (V0N 2000 + 1V B 1200 ) IVE N 12 ey
< (V20N 2. + IVE™ 20 Pl 22 gy -

Meanwhile, we may integrate Td22 by parts and use the aforementioned fact that
lzgll < llrgll to obtain

r2ee IMl2@):

13,5 D |div (1550, 5)1)
B
Applying the chain rule to div ([Sﬁ((}oo, p °°)],3> (just like for 75 2), we get

T3l S T3y + Tiy S (V0N 2000 + IVB™ Nl 2000 171l 2 Re)
S (120N 2y + 1RV BN 200 17| 2 ra) -

Combining our estimates for le, T, and sz yields the stated result. O
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4.3 Stability

The second key ingredient in our proof of Theorem 4 is the stability estimate (4.2);
this in turn implies a bound on the inverse of the linearised BQCF operator, which we
will use in a quantitative version of the inverse function theorem to establish existence
of the solution to our BQCF equations. Conceptually, the proof of stability is similar
to that of the simple lattice case presented in [25].

Theorem 7 (Stability of BQCF) Suppose that Assumptions 1, 2, and 3 hold. There
exists a critical size, RY .., of the atomistic region such that, for all shape regular
meshes and blending functions meeting the requirements of Sect. 3 and Rcore > R
and for all (W,r) € Up0 X Ph.o,

*
core’

< (SFCTT, (U™, p®) (W, r), (W, r)).

Y:
5*‘||<W,r>||ﬁ1l

As an intermediate step we also prove stability of the reference state.

Theorem 8 (Stability of BQCF at Reference State) Suppose that Assumptions 1, 2,
and 3 hold. There exists a critical size R, of the atomistic region such that, for

all meshes having shape regularity constant bounded below by Cz, and blending

Sfunctions meeting the requirements of Sect. 3 and Rcore > RY e,

hom

3
ZralW.nliy < BRI OV W, ), (W, r), ¥ (W, r)eUgx Pho.

Before we present the proofs of these results in Sects. 4.5 and 4.6 we apply them
to complete the proof of our main result, Theorem 4.

4.4 Proof of the main result

Proof (Theorem 4) We apply the inverse function theorem, Theorem 5, to the BQCF
variational operator FPf at the linearization point IT,(U°, p). The parameters 7
and o defined in Theorem 5 are

1= ve(IhV2Ull 2 + 1AV Bl 200 + IVl 120200
1Pl 200.0) - MW, Pllmi. YW, r) € Uno x Pho,

which is the consistency error from Theorem (6), and

which is the coercivity constant from Theorem 7 that exists if Reore > R .., Where
R} is furnished by Theorem 7. (The requirement Reore > R}, means the domain
decomposition procedure meets the requirements stated in Theorem 4.) The Lipschitz

estimate on 8 F% is a direct result of the assumptions made on the site potential
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in Assumption 1. Applying the inverse function theorem with these parameters gives
existence of (U 9! pPach) and the stated error estimate, (3.5), follows from the inverse
function theorem and the approximation lemma, Lemma 6. O

The remainder of the paper is devoted to proving Theorems 7 and 8.

4.5 Stability of BQCF at defect-free reference state

We first prove Theorem 8, that is, coercivity of the homogeneous BQCF operator,

BRI O)W, 1), (W, 1)) = (8265 mO) (1 — @)W, (1 — @)r), (W, r))
+ (82ES0) (I (W), In(gr)), (W, r)).

Throughout, we will omit the argument of V, (y48)(rys)(-) When evaluated at the refer-
ence state and employ the notation

Vipapyeys) () 1 v w = w'[Vpapyeys () v Yo.w e R",

C:DW,q):D(Z,r)i= Y Viapars) : Dipapy(W. @) : Days)(Z, 1),
AR
C:V(WW,q):V(Z,r) = Z V.pap)ays) - VW, q)) : (V(Z, 1)),

(pap)
a5 <R

in order to make the formulas more readable.
To prove coercivity, we want to show that, for sufficiently large Rcore,

0 < Zyan(w, Pl < (6 Fpam O)(W, 1), (W, ). (4.26)
The proof via contradiction is involved; hence we first outline and motivate the pro-
cedure and then give a number of technical results required to prove the theorem at
the end of this section. The main idea is that the linearized BQCEF operator consists of
an atomistic second variation and a continuum second variation. Each of these can be
individually shown to be coercive so intuitively, we would expect this linearized oper-
ator to be coercive for any test pair (W, r) with support concentrated near the origin (in
which case the blending function is zero) and for (W, r) with support concentrated far
from the origin (in which case the blending function would be one). Thus, we expect
the only possible instabilities to occur with test pairs having some support over the
blending region. Since there is no defect in the homogeneous case, any such instability
should also occur for any geometric setup, i.e., we can consider the BQCF method for
a sequence of growing atomistic domain sizes and should still have an unstable mode.
Thus we shall consider such a sequence and then rescale this sequence so that the
atomistic region in each case is contained in a ball of fixed radius about the origin and
such that these unstable modes converge (in a sense to be made precise momentarily)
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to some continuum limit. We then consider evaluating the suitably rescaled linearized
BQCEF operator on this sequence and show using the aforementioned stability of the
atomistic and continuum components and convergence of the test pairs (W, r) that
this leads to a contradiction. One of the main technical difficulties encountered here
is that due to blending by forces, the individual atomistic/continuum components and
hence the linearized BQCF operator is not a symmetric bilinear form. Thus we must
take some care in converting the force-based formulation to a form suitable to using
the existing coercivity estimates on the atomistic and continuum Hessians.

The negation of (4.26) is: for all atomistic region sizes R,, there exists a blend-
ing function ¢ and a mesh 7, compatible with the assumptions of Sect. 3.1 (and in
particular Assumption 4), as well as a test pair, (W, r) with norm scaled to one, such

that

3
Z)/a . (SquCf

hom (W, r), (W, r)). (4.27)
Thus, for contradiction, suppose that there exists a sequence R, , — oo with associ-
ated meshes 7}, ,,, blending functions ¢, finite element spaces MZ 0 X ’PZ.O, and test
pairs (Wy, r,) € U} , x P} , with norm one such that

3
7%= 2 Ci D =g Wa, (1= g)rn) : D(Wo, 1)

el (4.28)
+ /d C:VUn(@n(Wy, 12))) : V(Wp, 1) dx,
R

where [, is now the piecewise linear interpolant on 7j, .

We now rescale the space in (4.27) and derive a continuum scaling limit, from
which we will be able to obtain a contradiction. To that end, let ¢, = 1/R, ,, and
define the set of scaled parameters

én =¢€,&
Xy = €pX
Fa(Gn) = €0 P ra(Ra/€n) (4.29)

2 A 1-d/2 ~
Wi (Xp) = €, / Wi (Xn/€n)

On(Xp) = @n(Xn/€n).

In terms of these rescaled quantities, we define A €, v, = V3, (when the subscript
n is clear we use @) and then have

~ 2
|€nv)2,,rn|| = [|Vyry

Ve, Wall 2y = 1V Wall 7 2 gay» | 1) 175 s

Aoy 2 2
”r;?”LZ(]Rd) = ”r:”LZ(Rd):
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and the rescaled BQCF operator is

BFEL () (W, 7 (Was 7))

hom,n
=el Y C:Du((1 = @)Wy, ) 1 Dy(Wo, #)(E)

Eee, L

(4.30)

+ I(C : %(Ih,n((pan(wns f'n))) : @(an fn)dfn,
R(

where [}, , is the piecewise linear interpolant on €, 7}, , and

Dn(W’ ?) = (D(,O()lﬂ),n(Wa ;‘))(,00513)67?,’

WE + enp) + enfh G +€np) — W(E) — e,7%(E)
€n

D(paﬁ),n(W, f‘)(é) =

The rescaling of the shifts 7¢ is one order lower than the rescaling of displacements,
which is due to the fact that shifts are already discrete gradients.

We also define an interpolant onto the scaled lattice €, £ by I,,, a projection operator
from the scaled lattice to finite element spaces u’;l,o X ’PZ’O on 7p, by Iy, =
Sn.n Ty, » and the scaled finite element basis function

L (%) 1= €,9C (x/€).

Since VW, is bounded in L? and since each 7¢ is also bounded (both having
norm less than one), we may extract weakly convergent subsequences. Furthermore,
e,ﬁf"‘ is also bounded in L? so we may take it to be weakly convergent as well.
By replacing the original sequences with these weakly convergent subsequences (for
notational convenience), we have VW, =V W, 7¢—78, and €, VFi¥—R in L?(R?)
for some functions Wo, ro, and R(")‘ for each «. However, since 7 is bounded in L?
and €,7Y — 0in L2, ﬁg =0.

Next, we choose explicit equivalence representatives for W, namely, we choose W,
such that fB o Wn = = 0. For this choice, we have ||W 228,00y = IIVW 2B, 0))>

and as H' is compactly embedded i in L?, there exists a strongly convergent subse-
quence, which we again denote by Wn, such that W — Wo strongly in Lz(Bl(O))
We also note here that W,,—\Wo in the space

-1
H'(RY,R") = {f € HL (R R /R : |V fll 2y < oo},

and so Wo € Hl(Rd, R™) as well [40]. .
The purpose of these subsequences is to use the pairs (W,, F,) to test with

f . .
8.7:}?3;1 »(0). However, as these test pairs only consist of weakly convergent sequences

and since the inner product of two weakly convergent sequences is not necessarily
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convergent, we further split W, and #,, into the sum of a strongly convergent sequence
and a sequence weakly convergent to zero.
This splitting is accomplished by setting

Xy o= Myu(nj, * Wo), 35 = Iy u(nj, * 75). (4.31)

where 7 is a standard mollifier, n; (x) = j ~dy(x/j),and j, — O sufficiently slowly to
ensure that the sequences X, and §¢ are strongly convergent to, respectively, Wo and
7 - We will impose several further properties on the sequence j, in Lemma 8 below,
but for the remainder of the present section, we make the following conventions for
notational convenience.

Remark 4 To simplify and lessen the notations hereafter, we drop the hat notation on
the sequences X, Z,, S, t, as well as on their derivatives, and so forth.

We also define

Yn i =1— gy,

and note Vs, and V>, are uniformly bounded on the compact set supp(y,) C
€,BR,,(0) = B1(0) by the assumptions on the blending function in Assumption 4
and the definition of €,,. Thus, by Arzela-Ascoli and by replacing the original sequence
by a subsequence if necessary, we may assume without loss of generality that ¥, — g
in C! for some vy € C'(B;(0)), which also implies ¢, — 1 — 9 =: @p.

We summarize the convergence results of this section and several others in the next
lemma.

Lemma 8 There exists Yy € C! such that Y, converges to Y in CL(By(0)). Fur-
thermore, there exists a sequence j, — 0 such that the sequences defined by X, sy,
in(4.31)and Z,, := W, — X, and t% = ry — sy satisfy the following convergence
properties, where — and — denote respectively strong and weak L (R?) convergence:

VW,— VW, ri—r§, € Vry—0, VX, —> VW, s — rg,
Vs, - 0, VZ,—~0, 17—0, €,Vty—0,
W, = Woin L*(B1(0)), X, — Wqin L>*(B1(0)), Z, — 0in L*(B;(0)).
(4.32)
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Moreover, let I denote the identity and upon defining the quantities
RA () = R (¢n) (30)

e [
=il X Viuiern O Dy (VX)) © £ /O ColE +1p — x)dt,

Eee L (pap)
(tyé)

R () 1= R (1) ()

= GZ Z Z V (0ap)(ty8)(0) D(zysy.n(YnXn, %Sn)é:n(é —Xx),

Eee L (pap)
(tyé)

St () = Ry (1) (), S () := R (1) (),
Sinnner(x)

= 63 Z Z V,(potﬁ)(ry&) : D(paﬁ),n(d’nxns wnsn) : D(Tyé),n(xn: sn),

teen L (pap)
(ty3d)

the sequence j, may further be chosen so that

S (x) — Z Vioap) (78 (0)V(rys5) (Wo, $0),
(pap)
(tyd)

SYT ) = Y Vipap)ers) ) Virys) (Wo. s0),
(oaB)
(tyd)

Rdef

9@ > D Va8 (0) Vieys) (o Wo. Yos0), (433)

(pap)
(tyd)

RSN () — Z V. (pap)(xy5) () V(zys) (Yo Wo, ¥oso),

(pap)
(tyé)

Simner (x) — /Rd Z V. oapyeys) - (Vipap) Wo(Wo, 50))) : (Vieys)(Wo, s0))dx,

(pap)
(Tyd)

with convergence being in L*(R?).

Proof The key fact in proving this result is that j, may be chosen to tend to zero
sufficiently slowly such that any one of these properties holds individually, and by
appropriately selecting subsequences using a diagonalization argument, they may be
chosen so that all hold simultaneously.

The convergence properties in (4.32) are all immediately apparent if j, may be
chosen such that X;, and s, as defined in (4.31) are strongly convergent to Wy and
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ro respectively. This can be seen by first approximating the smooth functions, 7n;, *
Wy, by smooth functions with compact support and then using standard interpolation
for smooth functions on finite domains (and similarly for the shifts). The second
convergence properties of (4.33) are more involved and can be found in the extended
preprint [34, Lemma 17] with more details in the proof. O

We now state a convergence result for “cross-terms” of strongly and weakly con-
vergent sequences which appear in 6]—"&3:11 (0). A full proof is given in the Appendix
of the preprint [34, Lemma 18].

Lemma9 With Z,, X,, t,, and s, as defined in Lemma 8,

€' > C: Dy(WnZn. Yutn) : Du(Xp.50) > 0, and (4.34)
Eee, L

€' Y C: Dy Xn, Yusn) : Du(Zy, ty) — 0. (4.35)
geerlﬁ

Proof To prove the first convergence result, we note that we may convert the summation
to an integral by using Lemma 3 to write 1, Z, and v, ¢, as convolutions. The first
convergence result can then be obtained by using the convergence properties of (4.33)
along with [25, Lemma 9, Step 3]. The second convergence result may be proven in
a similar manner. In both cases, the basic idea is that on a continuous level (Z,,, ¢,)
is weakly convergent while (X, s,,) is strongly convergent so the “inner product” of
these sequences should converge to the inner product of the limit. The full technical
details which account for the discreteness in these expressions are available in the
preprint [34, Lemma 18]. O

The next lemma manipulates the product of two weakly convergent sequences.
The idea is that we may shift the function ¥, = 1 — ¢, in a way to use coercivity
of the atomistic and continuum Hessians. The proof is accomplished by using the
product rule for finite differences, weak convergence of VZ, and ¢, in LZ(R" ), and
strong convergence of Z, on B1(0) from Lemma 8. Full details may be found in the
preprint [34, Lemma 19], and similar calculations are also used for the BQCF method
for simple lattices [25].

Lemma 10 [34, Lemma 19] Let Z,, t,,60, = /Y, and 8y = /Yo be as defined

above in Lemma 8. Then
nli)ﬂgo Gg Z C: Dn(g,%znv 9,3tn) : Dp(Zp, ty)
tee, L
= lim € Y C:Dy(0nZn.Ontn) : Dy(OnZy. Outn).
n— o0
tee, L
We are now positioned to prove Theorem 8.

Proof (Theorem 8, Stability of BQCF at Reference State) We use the scaling (4.30) and
substitute (from Lemma 8) the quantities W), = Z, + X, ryy =t 450, Yn = 1 — ¢,
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and 6, = /1 — ¢,. We divide the proof into three steps: (1) we derive an expression
bqcf
f

for the atomistic portion of §F 1,

(0) in the liminf as n — o0, (2) we derive an

expression for the continuum component of § .ﬂ?gg ,,(0), and (3) we combine the results

and use stability of the individual atomistic and continuum components to derive a
contradiction. et
Step 1: The first variation, thgri)n(O), computed in (4.30) is a sum of an atomistic

and continuum component. The discrete, atomistic contribution is

(szgﬁom,n(o)(l — )Wy, rp), Wy, ry))
=l " C:Du(O Wy, 07r,) : Dy(Wy, 1)

Eece, L

=€l > C: DO Zn+ 07 Xn, 07tn + 075,) - Du(Zn + Xos t + 50)
Eecey L

= Y c: [Dn(e,fzn,e,ftn) - Dy(Zy. ty) + Du(62Zp, 62tn) : Dy (X, $)
Ecen L

+ D07 X0, 0250) 5 DuZs ) + D62 X, 6250)  DuXos) | (4.36)

This final expression consists of four different pairings of the form D, (-, -) : D, (-, -);
upon taking liminf as n — 0o, we use Lemma 10 on the first pairing, Lemma 9 on
the second and third pairings, and the final convergence property of S (x) from
Lemma 8 on the fourth pairing to arrive at the following expression for the atomistic
contribution:

lim inf (525§0m n(o)(] - §0)(Wn» rn)s (Wns rn))
n—o00 ’

= liminfel Y C: Dy(0nZn.Ontn) : Da(OnZn. Ont)

n—>00 e (4.37)

+/ C: V(65 Wo, 6310) : V(Wo, ro) dx.
Rd

Step 2: Meanwhile, the continuum component of Bfﬁggi ,(0) from (4.30) is

(82EC(0) I (00 Wi @urn)s (W, 1))

(4.38)
= [1\%4 C: V(Ih,n(‘Pan), Ih,n((pnrn)) V(W ry)dx.

Using standard P;-nodal interpolation error estimates and the fact that each Vg, has

support on By, it is straightforward to prove that (c.f. [34, Lemma 21])

n]Ln;o ”V[h,n((pn Wn) - v(‘ann)”Lz(Rd) = Os
, (4.39)
Tim [ gnr) = @urll 2 = 0.
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Thus, taking the lim inf of (4.38) and applying (4.39) we obtain

lim inf (§2£(0) I (9 Wa. @7n), (Wn, ')
n—oo

(4.40)
= liminf C: V(uWy, @ury) : VW, r) dx.

n—oo Rd
Substituting the decomposition (W,, ry,) := (Z, + Xu, ty + s,) into (4.40) yields

tim inf (5°E°(0) In.n (@ Wa. 7). (Wi 1)

n— o0

= 1iminf/d C: [V((ann, Ontn) :V(Zy, ty) + V(onZy, onty) : V(Xy, Sp)
R

-V (nXors @u$0) Y Zs )+ V(n Xors @) V(X 52 | .

(4.41)
This final expression again gives four pairings just as in step one but now of the
form V(:, ) : V(., ). The first pairing we momentarily leave alone, the second and
third pairings both converge to zero by virtue of strong convergence of VX,,, s, and
weak convergence of VZ,,, t, to 0 from Lemma 8, and the final pairing converges to
V(poWo, poro) : V(Wy, ro) again as a result of the strong convergence properties of
VX, s, from Lemma 8. These facts simplify (4.41) to

lim inf (82€°(0) I (9 Wi, @), (Win, 7))
n—oo

n—o0

= lim inf/ [(C NV(onZy, onty) - V(Z,, ty) (4.42)
R4
+ C : V(goWo, goro) : V(Wo, ro)]dx.
As in the atomistic case, our goal is again to think of ¢, as a square, ¢, = , /(,0,,2 and

to shift one factor of , /¢, to each component of the duality pairing. Using an argument
similar to that in the proof of Lemma 10 (which we therefore omit) we obtain

lim inf C:V(onZn, outy) : V(Zy, ty)

n—o0o Jpa
= linn—l>io%f/d C:V(/OnZn, JOutn) : V(SO Zn, /Ontn).
R

Inserting the last result into (4.42), we obtain
lim inf (82£(0) I, n (p Wi 97n). (Wa, 1))
n—oo

— liminf / €V Za Vot VT, it 44D
R

n—o0

+ C: V(poWo. goro) : V(Wo, ro)] dx.
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Step 3: Upon adding the atomistic components from (4.37) to the continuum contri-

butions (4.43) and recalling that 6’3 = 1 — ¢p, we have the following expression for

bqcf .
8 Fpom.n (0):

lim g%f(af"q“f 0) (Wi, 1), (Wi, 7))

hom,n
= lgig(‘)f[‘éd [(C VWO Zns Nontn) - V(S OuZny /Ontn)

+ C: V(Wo, ro) : V(Wo, ro)]dx

+ G:,i Z C: Dn(\/l — OnZny, \/1 — Onty) : Dn(\/l — OnZny, \/l - (pntn)]~
Eee, L

(4.44)
Next, using stability of the homogeneous atomistic model in this scaling,

(828 mn OV Wy, 1)y (W, 7)) = al (Wa 1) |12,

(which can easily be proven (c.f. [17,35]) due to Assumption 3) and the fact that
atomistic stability implies Cauchy—Born Stability [35, Theorem 3.6], that is,

(82ECOY Wy, ), (W, 1)) = vall (W, )12,
we hence have from (4.44) that

tim inf (8 Fr, , () (W, 7), (Wi, F)

= liminf [(8°€°(VouZu, /Putn)s (VonZn, /Putn)) + (87E°(Wo. o), (Wo, ro))
+ (G omn V1= 0nZn V1= @utn). 1= uZn. 1= out))]

> lim inf ya[nwmzn)uiz(Rd) + I@ntnll 72 gay + IVWoll7 2 gay + 1701172 ga

VLT = 0aZ) 172 gy + 1 (/1 = qontn)niz(Rd)]. (4.45)

Similar to (4.39) (c.f. [34, Lemma 21]), standard nodal interpolation error estimates
imply that

nlggo IVL,(vV1 —¢nZy) — V(/1 = (PnZn)”LZ(]Rd) =0, and

nlggo ”In(\/ I —outy) — (V1 — ‘Pntn)”LZ(]Rd) =0.
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Thus, (4.45) becomes

lim inf (8 Fer , (O) (W, 7), (W, 1)

C 2 2 2
> liminf ya[||V(\/—<pnzn)||Lz(Rd) + I@atall 2@y + IV Woll 2 g,
2 2 2
17012 gty + IV T= 00 Z0) gy + VT = bl |
= liminf ya[nvu/—gonzn)niw) FIVWT =0 Z) 172 gay + 1Eall7 2 ga,

+ IV Woll 72 ga, + ||ro||iz(Rd)]. (4.46)
Next observe

IV (V@n Z) 12 gay + IV /1= @nZu) 35 ga,
- / [IV(M) ® Zu + ouVZu|
VT ® Zy + VT 902 [ d
= [ 29 ® 20 s VBV 2+ 9 © 22 + a1V 2
+/ [2v(M) ® Zn : 1= 0uVZi + V1= 0n) ® Zu|?

+(1— (pn)|VZn|2] dx. (4.47)

Since Z, converges strongly to zero in L*(supp(V(y/T —¢,))) by Lemma 8
(supp(V(v/T = ¢,)) C B1(0)), it follows from (4.47) that

i inf |V (y/9n Zu) 172 gay + IV /T = 00 Z0) 17250,

) (4.48)
= liminf | VZ,[?,
n—0o0o

R4y
Substituting (4.48) into (4.46) produces

liminf (8FIT (0) (W, 1), (Wi, 7))
n— 00

hom,n

> timinf 7o [ 1921320z, + 10013 ga) + 1V Wol2a gy + 170122 g |

P e 2 2 2 2
= timinf ya 1V 2022 g0, + 1003 gty + 19 X012 00, + 5122 5|
= liminf ya[IVWall 72 gay + I7all72ga)] = vas (4.49)
which contradicts our assumption in (4.28). m]
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4.6 Reference stability implies defect stability

Having established stability of the homogeneous BQCF operator, we next obtain
stability of SquCf(Hh’n(U . p*)), i.e. Theorem 7, as a relatively straightforward
consequence. Before entering into the proof we remark that we now no longer employ
the rescalings of Sect. 4.5. The basic idea of the proof is that the linearized homo-
geneous BQCF operator and linearized BQCF operator agree for any (W, r) which
is zero in a large enough neighborhood about the origin. Thus, to prove stability of
the true linearized BQCF operator, we again consider the possibility of a sequence,
(W, rp), of unstable modes whose support is contained in larger and larger balls about
the origin. We will then split each (W,,, r,) into components concentrated near the
origin (where we can use atomistic stability) and correction terms supported far from
the origin where we use stability of the linearized homogeneous operator. As before,
the main difficulty is converting the atomistic component of the BQCF operator to a
form where we may utilize atomistic coercivity.

Proof (Theorem 7) We prove this result by contradiction as well. Therefore suppose,
as in the proof of Theorem 8, that there exists R,, — oo with associated meshes
Th n, blending functions ¢,, and test pairs (W,, r,) € ug,o X PZ,O with norm scaled
to one, such that

Vi
5= 22 2 Vitpap)eys)(PUn) : Digpap) (1= 40) (W 7)) = Diaysy (W, 1)

geL (pap)
(Tyd)

+ /d Z V,(paﬁ)(ry&)(VUn) : Vpaﬁ(lh,n(Qan(Wny ry))): V(ry&)(Wn’ ry)dx
R (oap)
(tyd)

= S W) Wa 1), (W 1)), (4.50)

where, for notational simplicity we have defined U, := I}, ,(U°, p*>°) and redefined

S.F,t,)qu from the previous section without a scaling by ¢,,.

Upon extracting a subsequence, we may assume without loss of generality that
VW,—~VW, for Wy € Hl and r,—ro € L2. For each Ran, W, and r,, are piecewise
linear with respect to the mesh 7; on £2, ,. Hence the convergence is strong on any
finite collection of elements on 7, since weak convergence implies strong convergence
on finite dimensional spaces. It also follows from the full refinement of the mesh
assumption on 2, , that Wy and r are also piecewise linear with respect to 7,.

Having established these basic facts, we will yet again split (W,,, r,) into the sum
of a strongly convergent sequence and weakly convergent sequence as in [25, Lemma
4.8]. For each n, we take 7, (x) to be a smooth bump function satisfying 1, (x) = 1 on
B(1/2)rcore o (0) and 1, (x) has support contained in B (0). Similar to the definition
of IT;,, we then set

Fcore,n

An = Brc()re.n \ B(l/z)rcorc,n + Bzrbuff
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746 D. Olson et al.

and
X =1, (m,Wo) — In(nn)][ Wodx, Z,:= W, —X,,
Ap 4.51)
Sp = Ly(maro), t, :=r,; —Sy.
Similar to Lemma 6, we have, with these definitions,
VX, —> VWy, and VZ,—0 inL*(R%) (4.52)
and
sy = ro, and t,—0 in L>(RY). (4.53)

Then we note that the discrete norm defined by

IU. p)IZ, =Y _IDW. p)E)*. where
Eel

IDW, pEF = Y |DpapyU, p)E)N
(pap)eR

is equivalent to the continuous | - ||, norm on U by [35, Lemma 2.1]. Thus, since we
are dealing with functions which are P! with respect to 7, on a growing atomistic
region, then the continuous convergence results (4.52) and (4.53) imply corresponding
discrete convergence results:

D(X,, sp) = D(Wy,ro) and D(Z,,t,)—0 in3(L). (4.54)
We now substitute the test pair (W,,, r,) = (X, + Z,, Sp + ¢) from (4.51) into

BFNW ) Was 1), (W, 7))

bqcf
= <5fnqc U)Xy +Zy,sp+ 1), ( Xy +Zy, s, + )

= BFNWU,) X s0). KXo s0)) + SF W) X 50). (Za, 1))

+ BFNT WU (Zns 1), (X s0)) + BT W) (Z, 1), (Zns ). (4.55)
Also recall the definition of 8]—',],3 qu, which is

SF W) W, 1), (Was 7))
= (282U ) ((1 = @) W, 1))y (Wa, 1))
+ (82 WU ) (@0 (Wn, 1)), (Wi, ).
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Since D(X,, s,) each have support where ¢, = 0 and IT, ,(U,) = (U,) there, we
can rewrite the first three terms of (4.55) without the blending function as

BTN W D)X+ Zus Sn 4 tn)s (X + Zns S + 1))
= (824U, (X, $0)» (Xs $0)) + (7€ W) (Xon, $0), (Zn, 1))

+ (BPE WU (Zns t), (X s0)) + OF W) (Zu. ), (Zno t)). (4.56)

Moreover, D(Z,, t,) has support only where Ve = V and so from the convergence
properties (4.54), it follows that (8253(U,,)(X,,, $n), (Zy, ty))and (825a(Un)(Zn, ty),
(Xn, 8,)) both go to zero as n — o0.
For the first term in (4.56), using the atomistic stability assumption, Assumption 3,
we obtain
(82EX WU )Xo $0), Xns ) = Vall (X, $0) 17y (4.57)

Taking the lim inf as n — oo in (4.56) then yields

liminf (8F2 (U, (X + Zns s+ t0), (Xn 4 Zns Sn + £0))
e . et (4.58)
= T inf ya | (X, 50|13 + m inf (07,9 U (Za, ta), (Za, ta)).

Thus, we are only left to treat (5.7, quf(U Y(Zn, ty), (Z,,t,)), the far-field contribu-

tion, with Z,, and ¢, defined in (4.51). The strategy here is that far from the defect

core, we may replace 8]-',?qu(U ») with 6 F, ]l;g;f ,(0) and then apply Theorem 8. Thus,
we first estimate,

chf

OFn™ (Un)(Zn, tn), (Zn, tn))

BT U Zns t). (Zns 1))
(0 F et 1 (O)(Zus ta), (Zn, ) (4.59)

+([8F et (Un) = 8 Fpaet  (O)](Zn tn). (Zu. t))

3
= Dl Za )5 + ([ Fodet (Un) — 8Tt ()] (Zns t)s (Zn, 1)),

where we applied Theorem 8 in the final step. (Note that there is a slight notational
discrepancy in that our .7-'h , 18 indexed by n here while there is no index in Theo-
rem 8. However, we may still use this theorem since Rcore,, — OO SO We may assume
Reore,n > R in the statement of that theorem.)
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Next, we estimate the remaining group in (4.59),

([8F o (Un) = 6 Fpo o O] (Zuss ). (Zs 1)
< [{[6%EmUn) = 8%Em O] (1 = @) (Zn. tn). (Zu. t0))]
+ [[82€5U ) — 82O Thon(@n(Zu. t0)). (Zu. 1))
= Z IV.(pap)xys) (DUn) = V. (pap)rys) (Ol e (supp(D(Z,. 1))

(pap)
(tyé)

WD papy (1 = @u)(Zn, t)) 2wy | Dy sy (Zn, tn)ll 2 (ra)
+ Y IV.ouprers) (VU = Vi) r9) Ol L supp(¥ (zy,t0)

(paB)
(tyd)

Vo) (1 = @) (Zn, e L2Re) 1V 2y 8) (Zns E) | 12 (R

From Lemma 6 and the decay rates from Theorem 3 we have

IV.(0ap) (v ) (DUn) =V, (pap)(zy8) (Ol e (supp(D(Z,,1,0) = 0, and

(4.60)
IV.oap)xy$) (VUR) = V. (pap)(rys) (O L2 supp(v(Zy.t2)) = O-
Consequently,
b f bqcf

<[ h(()]rcn n(U ) — 5‘;rh(()lr(1:1 n(O)](Zn, ty), (Zy, tn)) — 0,
and from (4.59),

A bqcf 3

lim inf (87,4 (Un)(Zn. tn). (Zu. tn)) = S ¥all(Zn. ) |3y (4.61)

n— oo 4

Combining (4.58) and (4.61), we can therefore conclude that

bqcf

11H11nf<3f (Hh,n(Un))(Xn +Zy, sy +tn), Xy + Zy,sp + 1))

> liminf [vall X, s2) Il + )/aII(Zn, tn) o]

L3 2 2 2
= hnn_l>lor<1)f ZVa[”VXn ”LZ(Rd) + ”sl‘l ||L2(Rd) + ”Vzn “Lz(Rd) + ”tn ||L2(Rd)]'
(4.62)

Notice that we have

IV Wl 72 gay = (VWa, VW) = (V(Xp + Zy), V(X + Z0))

= IVXul 32 gay + 20V X0, VZ0) + 1V Z 172 -

RY)
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so we get

F IV Zal2 2 iy = IVWal? 2VX,, VZ,).

”VXH ||iz LZ(Rd) LZ(Rd) -

(RY)
Applying the same treatments to ||r,,||?, we have from (4.62) that
Hm inf (87, % (I, (U)X + Zus S+ 1) (X + Zus S+ 1)

.. 3 2 2
> tim inf 2y [ IV W 32y = 209 Z0, VX0 200y + D 178 2
o
— Z 2(Sg, tV(lx)Lz(Rd)jI
o

.. 3Va 2 2 3
> timinf =2 [IVWal 22 oy + Y0 1781 2 | = T

which is a contradiction to (4.50). In attaining the last equality, we have used (-, -);2
to denote the L2 inner product, and we have again used the fact that the inner prod-
uct of the strongly convergent sequence V X, and weakly convergent sequence VZ,

(c.f. Lemma 8) converges to zero and similarly for the inner product of the strongly
convergent s,, and weakly convergent ¢,,. O

5 Discussion

We presented the first complete error analysis of an atomistic-to-continuum coupling
method for multilattices capable of incorporating defects in the analysis. Our results for
the blended force-based quasicontinuum method extend the existing results for Bravais
lattices [25], with the striking conclusion that the convergence rates in the simple and
multi-lattice cases coincide for the optimal mesh coarsening. Our computational results
for a Stone-Wales defect in graphene confirm our theoretical predictions.

We have concerned ourselves here with the case of point defects, though we see
no conceptually challenging obstacles to include dislocations in the analysis so long
as there is an analogous decay result to Theorem 2. However, as previously men-
tioned, we are still limited in our ability to model physical effects such as bending or
rippling in two-dimensional materials such as graphene due to several factors. First,
our assumption concerning stability of the multilattice, Assumption 3 uses a norm,
IVIU| 2+ |l pll 2, which does not take any bending energy into account and so we
do not guarantee our lattice is stable in this situation. We could have of course for-
mulated a different assumption using a discrete variant of | V2Us|| + |V p3ll (where
Uz represents the out of plane displacement and p; the out of plane shift), but it is
a very challenging question to extend the BQCF method and its analysis to such a
situation. The next issue that must be answered is what continuum model to use since
the Cauchy—Born model used herein is not adequate to model such effects. Possible
alternatives would be to use higher-order Cauchy—Born rules [19,55] which rely on
higher-order strain gradients, or the so-called exponential Cauchy—Born rule [4]. In
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either of these cases, to use a similar analysis to what we have presented, one would
have to establish new stress estimates akin to Corollary 1 as well as ensuring that the
continuum model chosen is stable provided the atomistic model is. We are also con-
fronted with the problem of choosing a finite element space capable of approximating
H? functions, which likewise challenges the analysis as well as the implementation.

Finally, we remark that extensions to charged defects in ionic crystals, which rep-
resent a wide class of important multilattice crystals, represent yet another difficult
challenge, largely due to the long-range nature of the interatomic forces.

A Notation

This appendix summarizes notation used in the manuscript.

— L—a Bravais lattice
— M—a multilattice
= {0, ..., S — 1}—the index set of atomic species
— &—an element of L or €L for € > 0.
- «, B,v,6,t, x—indexes denoting atomic species
- p, 1,0 € L—vectors between lattice sites
— R—an interaction range whose elements are triples of the form (paf) € LXS xS
={p € L: 3(papf) € R}—projection of R onto lattice direction
— conv—mnotation for the convex hull of a set
— reut := max{|p| : p € R1}—a finite cut-off distance for interaction range
— vy = By, (0)—buff region up to twice interaction range
— reell—the radius of the smallest ball inscribing the unit cell of £
— Tpuff = mMax{reut, reell}
—u= (ua)s (1) vector of displacements of all species of atoms
— (U, p)—displacement/shift description defined by U = ug and p, = uy — uo
— y™ and p"f—the reference deformation and shifts
- D<pa,s>u(s) = up(E +p) — a(§). Dipapy(U. p) = U(E + p) — U(€) + pp(& +
p) — pa(§)
- Du(é) = (D(paﬁ)u(é))(p(xﬂ)eR’ DU, P)(S) = (D(paﬂ)(U’ P)(E))(paﬁ)eR

- ‘A/E(D y(§)) and Vg (Du)—site potentials defined on deformations and displace-
ments, respectively

— E*u) and €& hom (u)—energy difference functionals for defective and defect free
lattice.

— 7T,—atomistic scale finite element mesh of triangles in 2D and tetrahedra in 3D

— £ (x), & (x) = ¢ (x —&)—nodal basis function of 7, associated with the origin and
& respectively

- wp(x) = fol ¢ (x + tp)dt—an auxiliary function

-1 [, 1U,1 [ po OF iy, U, Po—a piecewise linear interpolant with respect to 7,

— Tug, IU, Ipa or iy, U, Pa—a C>! interpolant with respect to 7,

—u*(x) = ({ * Uit)(x)—quasi-interpolant of u defined through convolution
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| - |—meaning depends on context: | - | is £2 norm of a vector, matrix, higher order
tensor, or finite difference stencil. |T| is area or volume of element 7 in a finite
element partition, |y | is the order of a multiindex.

- M2 A)_g2 norm over aset A. If f : A — R? is a vector-valued function,

||f||eZ(A) = (ZO(EA |f(0l)|2)1/2-

I |la—norm on admissible displacements defined by || u ||§ = || Viug|?

L2(RY)
+ Zo{;ﬁﬁ 1 Tue — I“ﬂ”Lz(Rd)
U —space of admissible displacements defined by
U= {u= @iy ue: £ R, Jully < o) /R"
Uy —space of test displacements defined by
{(U, p) : supp(VIU), po =0, andsupp(Ip,) are compact} /R”"
§2—a finite polygonal domain
¢ —the blending function
§2, := supp(l — ¢) + Bo, —the atomistic domain
§2y = supp(Ve) + By, —the blending region
¢ := supp(¢) N 2 + Byy,,—the continuum region
Qcore := $§2\ 2.—the defect core region
Tr,—the (coarse) finite element mesh on 2
h(x) := maxp.,cr Diam(7T)—the mesh size function
R¢ :=infp{R > 0 : £, C Bg(0)}—an exterior measure of a domain £2;
re :=sup,{r > 0: B,(0) C £2{}—an interior measure of a domain £2;
Ry ;= infgr{R > 0 : £ C Bg(0)} —an exterior measurement of £2
ri == sup,{r > 0: B,(0) C §2}—an interior measurement of 2
Qext ;= RY \ By,/2(0)—exterior of £2
I,— the standard piecewise linear nodal interpolant on 7,
Sp—the Scott-Zhang quasi-interpolant on 7.
We (U, p)—Cauchy—Born strain energy density function
EC(U, p)—Cauchy-Born energy functional
Uy = {u e CY%2) :ulr € PI(T), VT e ’Z},}—a finite element space
Uy, == Up/R" space of admissible finite element displacements
Uno == fueC'®R) :uly e PI(T), VT € Tp,u=0onR?\ 2}—finite

element space satisfying homogeneous boundary conditions
U0 := Uy, o/R"—finite element quotient space
Phro = {0} x U, 0)5 ~I_finite element space for shifts
1. IR, = VU2 gy + E020 1PallZa gy = IVU 122 gy + 1212 0, —
norm on finite element spaces
5—1 5—1
Iplze = Y528 pallr. IVPILe i= Y520 1V pallr
n(x)—a smooth bump function or standard mollifying function depending on the
context

Truy(x) =n(x/R) (Iuo, — ﬁ f Tug dx)—a truncation operator
AR
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— Iyugy = Sy (T uq)—an projection operator from discrete displacements to finite
element displacements

— Iy py := I} (uy — up) —- a projection operator on shifts

- [Sﬁ(U, q)(x)1g and [SS(U, ¢q)(x)]oup— continuum stress function associated with
displacements and shifts

- [S§U, g)(x)]p and [ SZ(U, q)(x)]ap —atomistic stress function associated with
displacements and shifts

= Vipapyays) () v iw = w' [Vigepyaps(-)]v Yo, w e R

- C:DW,q):D(Z,r) = ngam V.oap)xy8) : Dipap)(W. q) : Dizys)(Z, 1)

TYy4)
—C:VW.q) : V(Z,r) := Y pap) Vipaprys) © (VoW +4p — qo) : (Vo Z +
(Tyd)
rg —rq)
— ¢@p—a sequence of blending functions
—Yn=1—¢n
— On =V

— B, B,(x)—Ball of radius r about the origin or ball of radius r about x.

— supp(f)—support of a function f.

— Diam(U)—diameter of the set U measured with the Euclidean norm.

— (R")R—direct product of vectors with |R| terms.

— T—transpose of a matrix.

— ®—tensor product.

— VJ/— jth derivative of a function defined on R?.

— d,—multiindex notation for derivatives.

— L?(U)—Standard Lebesgue spaces.

— W*P(U)—Standard Sobolev spaces.

- WEPW)={f:U - RY: f e WoP(V)VV cC UY.

— HYU) = Wk2(U), Hy(U) = { f € H*(U) : Trace(f) =0 on U }.

— Ck—space of k times continuously differentiable functions.

— €k _—space of functions having continuous derivatives up to order k, and whose
k-th partial derivatives are Lipschitz continuous.

- fU f dx—average value of f over U.
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