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Abstract
We prove that the recurrent random walk (RW) in random environment (RE) 
on a strip in bounded potential satisfies the central limit theorem (CLT).

The key ingredients of the proof are the analysis of the invariant measure 
equation  and construction of a linearly growing martingale for walks in 
bounded potential.

Our main result implies a complete classification of recurrent i.i.d. RWRE 
on the strip. Namely the walk either exhibits the Sinai behaviour in the sense 
that Xt/(ln t)2 converges, as t → ∞, to a (random) limit (the Sinai law) or, it 
satisfies the CLT.

Another application of our main result is the CLT for the quasiperiodic 
environments with Diophantine frequencies in the recurrent case. We 
complement this result by proving that in the transient case the CLT holds for 
all uniquely ergodic environments.

We also investigate the algebraic structure of the environments satisfying 
the CLT. In particular, we show that there exists a collection of proper algebraic 
subvarieties in the space of transition probabilities, such that:

 •  If RE is stationary and ergodic and the transition probabilities are con-
centrated on one of subvarieties from our collection then the CLT holds.

 •   If the environment is i.i.d then the above condition is also necessary forthe 
CLT.

All these results are valid for one-dimensional RWRE with bounded jumps 
as a particular case of the strip model.
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1. Introduction
1.1. Brief history of the problem

It is well known that one dimensional random walk (RW) in random environment (RE) exhibit 
features which are very different from those of classical random walks. This fact was first dis-
covered in 1975 by Solomon ([36]) and by Kesten, Kozlov, and Spitzer ([20]) for transient ran-
dom walks on Z for i.i.d. environments with jumps to nearest neighbours. In 1982, Sinai ([34]) 
found one of the most striking manifestations of that: he proved that for recurrent nearest neigh-
bour RW in i.i.d. RE the correct scaling is ln2 t, or, more precisely, that Xt/(ln t)2 converges, as 
t → ∞, to a (random) limit. Below, we call this phenomena the Sinai law or the Sinai behaviour.

Methods used in [34] (as well as in [20, 36]) rely heavily on the fact that the random walk 
is on Z and is allowed to jump only to the nearest sites. Hence the natural question asked by 
Sinai in [34]: would it be possible to extend his (and other) results to more general models 
such as RW on Z with bounded jumps.

In 1984, Key [24] found a recurrence criterion for RWRE on Z for the so called [−l, r] 
model, where r and l are the maximal lengthes of possible jumps of the walk to the right 
and to the left respectively. Key’s criterion was stated in terms of properties of the ‘middle’ 
Lyapunov exponents of products of random matrices constructed from the parameters of the 
environment. This approach was developed by Letchikov [25] who in 1998 obtained a partial 
answer to Sinai’s question. He proved that recurrent RWs on Z with bounded jumps in i.i.d. 
environment exhibit the Sinai behaviour if the probabilities of jumps of length 1 dominate the 
probabilities of other jumps. Further development by Brémont [5–7] of the Key-Letchikov 
type approach lead to a number of interesting results for the [−l, r] model. Comments on the 
relation between the relevant Brémont’s results and the results of this work will be provided 
later.

We turn now to RWRE on a strip. This model was introduced by Bolthausen and Goldsheid 
in [2] who also reduced the study of the RWRE with bounded jumps on Z to that of RW on 
a strip and proved the recurrence and transience criterion for the strip model. The technique 
used in [2] is completely different from that of [5–7, 24, 25].

The approach of [2] was developed in [16] where conditions for the Law of Large Numbers 
(LLN) and the CLT for transient RWs were provided in the quenched setting (for almost all 
environments). Independently, Roitershtein in [33] obtained the LLN and the annealed CLT 
for mixing RE.

A complete answer to Sinai’s question was obtained in [3] where further development 
of methods from [2] and [16] allowed authors to prove that, unless the parameters of the 
environ ment belong to a certain algebraic subvariety, recurrent random walks in i.i.d. environ-
ments obey the Sinai law. The description of this subvariety is quite explicit. In particular, this 
description was used in [3] to show that recurrent finite range RWs in i.i.d. environments on Z 
exhibit either the Sinai behaviour or the CLT behaviour. Moreover, the CLT alternative takes 
place if and only if the walk on Z is a martingale.

Quasiperiodic environments form another class of environments where the CLT behav-
iour is observed. The first CLT in the nearest neighbour quasiperiodic setting (under the 
Diophantine conditions) is due to [1] in the transient case and due to [35] in the recurrent 
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case. Extensions of the above results to the [−l, r] model were obtained in [7]. We note that 
the results of [16] imply the CLT for hitting times for uniquely ergodic transient walks on the 
strip.

In section 1.2 we describe how our results allow us to obtain a complete classification of 
possible regimes in both i.i.d. and quasiperiodic Diophantine environments.

We remark that the papers cited above are only those closely related to our setting. In par-
ticular, since the recurrent random walks are the main subject of this work, we have mentioned 
only those papers on the transient case which are related to our approach to the problem. A 
comprehensive overview of earlier development of the subject can be found in [4, 37]. More 
recent results on the transient walks are contained in [9, 10, 13–16, 29, 31–33].

1.2. Motivation, goal, results, techniques

The main motivation and goal of this paper is to answer the following question: does the Sinai/
CLT alternative mentioned above hold for recurrent walks on a strip? 

The principle difference between the [−l, r] model and the general strip model is that, 
unlike in the [−l, r] model, the fact that the RW in an i.i.d. RE on a strip does not obey the 
Sinai behaviour does not, generally, imply that this walk is a martingale. However, it does 
imply ([3]) that the potential of the environment is bounded (see (3.5) for the definition of the 
potential).

This boundedness of the potential is the main assumption under which the main result of 
the present work (theorem 3.1) holds. It states that:

 • Random walks in stationary ergodic environments with bounded potentials satisfy the 
CLT.

   (The precise formulations of this and other results we discuss in this Introduction 
require some preparation and will be given later.)

   It is important that this theorem does not use the i.i.d. property of the environment.
   The main technical advance of this work is lemma 4.4 which is the crucial ingredient 

in the proof of theorem 3.1. This lemma provides a construction of an asymptotically 
linear solution to a martingale equation. This requires new technique which is developed 
in section 7.

   Having said that, we should add that we use widely a number of both technical and 
principal results obtained in [2, 3, 10, 16]. Most of these results are listed in section 2 
which, on the one hand, is just necessary and on the other makes this paper more self-
contained.

   The above CLT criterion implies the following corollary (and answers the question 
which has motivated this work):

 • In recurrent i.i.d. environments on a strip there is an alternative: either the walk exhibits 
the Sinai behaviour or it satisfies the classical central limit theorem.

   This statement largely completes the classification of possible limiting distributions 
in i.i.d. environments of the RWRE on the strip (complementing the results obtained in  
[2, 3, 10, 16, 32, 33]).

   This criterion also allows us to show that:
 • Recurrent RWs in Diophantine quasi-periodic random environments generated by  

sufficiently smooth functions satisfy the CLT.
   Using a different method, we complement this statement by extending to the strip 

model the result which was proved in [15] for walks on Z with nearest neighbour jumps 
by proving that
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 • transient RWs on a strip in environments generated by continuous uniquely ergodic trans-
formations of a compact metric space always satisfy the CLT with positive drift.

   Note that the last two statements provide complete classification of the walks in 
Diophantine quasi-periodic environments. We would like to emphasize that in the tran-
sient case no smoothness of the uniquely ergodic transformation is required (in contrast 
to the recurrent case).

   Finally as in [3], also here there is the algebraic side of the problem. We prove that 
there exists a collection of proper algebraic subvarieties in the space of transition  
probabilities such that:

 • If the RE is stationary and ergodic and the transition probabilities are concentrated on 
one of subvarieties from our collection then the CLT holds.

 • If the environment is i.i.d then the above algebraic condition is also necessary for the 
CLT.

2. Definition of the model and some preparatory facts

The following notations and definitions are used throughout the paper.
1 is a column vector whose components are all equal to 1.
For a vector x  =  (xi) and a matrix A = (a(i, j)) we set

�x� def
= max

i
|xi| which implies �A� = sup

�x�=1
�Ax� = max

i

�

j

|a(i, j)|.

We say that A is strictly positive (and write A  >  0), if all its matrix elements satisfy a(i, j) > 0. 
A is called non-negative (and we write A � 0), if all a(i, j) are non negative. A similar conven-
tion applies to vectors. Note that if A is a non-negative matrix then �A� = �A1�.

2.1. The model

We recall the definition of the RWRE on a strip from [2]. Consider a strip S = Z× {1, . . . , m} 
and a random walk on S. Let Ln = {(n, i) : 1 � i � m} be layer n of the strip. In our 
model, the walk is allowed to jump from any point (n, i) ∈ Ln only to points in Ln−1, or 
Ln, or Ln+1. To define the corresponding transition kernel consider a sequence of triples 
(Pn, Qn, Rn), −∞ < n < ∞, of m × m non-negative matrices such that for all n ∈ Z the sum 
Pn + Qn + Rn  is a stochastic matrix. That is,

(Pn + Qn + Rn)1 = 1. (2.1)

The matrix elements of Pn are denoted Pn(i,j), 1 � i, j � m, and similar notations are used for 
Qn and Rn. We now set ω = (ωn)

∞
n=−∞ = ((Pn, Qn, Rn))

∞
n=−∞ and define

Qω(z, z1)
def
=





Pn(i, j) if z = (n, i), z1 = (n + 1, j),
Rn(i, j) if z = (n, i), z1 = (n, j),
Qn(i, j) if z = (n, i), z1 = (n − 1, j),
0 otherwise.

 (2.2)

For a given ω, a random walk ξt = (Xt, Yt), t � 0, on S with transition kernel Qω(·, ·) is defined 
as follows: for any starting point z = (n, i) ∈ S the law Pω,z for the Markov chain ξ is given by

Pω,z (ξ1 = z1, . . . , ξt = zt)
def
= Qω(z, z1)Qω(z1, z2) · · · Qω(zt−1, zt). (2.3)
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From now on we suppose that each such sequence is a realization of a strictly stationary 
ergodic process and let (Ω,F ,P, T) be the corresponding dynamical system with Ω denoting 
the space of all sequences ω = (ωn)

∞
n=−∞ = ((Pn, Qn, Rn))

∞
n=−∞ of triples described above, 

F  being the corresponding natural σ-algebra, P denoting the probability measure on (Ω,F), 
and T being the shift operator on Ω defined by (Tω)n = ωn+1.

We call ω the environment or the random environment on the strip S. Denote by Ξz the set 
of trajectories ξ starting at z. Pω,z is the so called quenched probability measure on Ξz. The 
semi-direct product P(dω)Pω,z(dξ) of P and Pω,z is defined on the direct product Ω× Ξz and 
is called the annealed measure. The corresponding mathematical expectations are denoted by 
E and Eω,z.

Remark 2.1. The study of one-dimensional RW with bounded jumps in a RE on Z can be 
reduced to the study of the above model. The explanation of this fact was given in [2] and later 
in [16] and [3] and shall not be repeated here.

Denote by J  the following set of triples of m × m matrices:

J def
= {(P, Q, R) : P � 0, Q � 0, R � 0 and (P + Q + R)1 = 1} .

Let J0 = J0(P) ⊂ J  be the support of the probability distribution of the random triple 
(Pn, Qn, Rn) defined above (obviously, this support does not depend on n).

Since Ω = J Z, it can be endowed by a metric (in many ways). We shall make use of the 
following metric. For ω� = {(P�

n, Q�
n, R�

n)}, ω�� = {(P��
n , Q��

n , R��
n )} set

d(ω�,ω��) =
�

n∈Z

�P�
n − P��

n �+ �Q�
n − Q��

n �+ �R�
n − R��

n �
2|n|

. (2.4)

Below, whenever we say that a function defined on Ω is continuous we mean that it is con-
tinuous with respect to the topology induced on Ω by the metric d(·, ·).

The following two assumptions C1 and C2 listed below will be referred to as Condition C 
and are supposed to be satisfied throughout the paper.

Condition C: 
  C1:  (Pn, Qn, Rn), −∞ < n < ∞, is an ergodic sequence (equivalently, T is an ergodic 

transformation of Ω).
  C2:  there is an ε > 0 and a positive integer number k0 < ∞ such that for any (P, Q, R) ∈ J0 

and all i, j ∈ [1, m]

||Rk0 || � 1 − ε, ((I − R)−1P)(i, j) � ε, ((I − R)−1Q)(i, j) � ε. (2.5)

Observe that ((I − Rn)
−1Pn)(i, j) is the probability that the walker starting from (n, i) arrives 

to (n + 1, j) at her first exit from the layer Ln. The meaning of ((I − Rn)
−1Qn)(i, j) is similar.

We note that condition (2.5) is trivially satisfied if for all (i, j) we have

P(i, j) � ε, Q(i, j) � ε, R(i, j) � ε. (2.6)

However (2.6) never holds for the environments on a strip generated by one dimensional walks 
with bounded jumps while (2.5) holds in that case under mild non-degeneracy  conditions. We 
refer to [3] for a more detailed discussion.
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2.2. Matrices ζn, An, αn and some related quantities

We recall the definitions of several objects most of which were first introduced and studied in 
[2, 3]. In these papers, they arise naturally in the context of studying/solving equations related 
to different aspects of the asymptotic behaviour of the RWRE on a strip; they will play a cru-
cial role also in this work.

For a given ω ∈ Ω, define a sequence of m × m stochastic matrices ζn as follows. Fix an 
integer a and a stochastic matrix ψ. For n � a define matrices ψn as follows. Put ψa = ψ and 
for n  >  a define recursively

ψn = ψn(a,ψ) = (I − Rn − Qnψn−1)
−1Pn, n = a + 1, a + 2, . . . . (2.7)

It is easy to show (see [2], lemma 2) that matrices ψn are stochastic. Next, for a fixed n define

ζn = lim
a→−∞

ψn. (2.8)

As shown in [2, theorem 1] the limit (2.8) exists and is independent of the choice of the initial 
matrix ψ.

Next, we define probability row-vectors σn = σn(ω) = (σn(ω, 1), . . . ,σn(ω, m)) which are 
associated with the matrices ζn. Let σ̃a  be an arbitrary probability row-vector (by which we 
mean that σ̃a � 0 and 

�m
i=1 σ̃a(i) = 1). Set

σn
def
= lim

a→−∞
σ̃aζa . . . ζn−1. (2.9)

By the standard contraction property of the product of stochastic matrices, this limit exists and does 
not depend on the choice of the sequence σ̃a (see [16, lemma 1]). Vectors σn could be equivalently 
defined as the unique sequence of probability vectors satisfying the infinite system of equations

σn = σn−1ζn−1, n ∈ Z. (2.10)

Combining (2.9) with standard contracting properties of stochastic matrices ζ we obtain for 
k  >  n that

ζn . . . ζk−1 = (σk(1)1, . . . ,σk(m)1) +O
�
θk−n� , (2.11)

where 0 � θ < 1 and the implicit constant in the O(·) term depend only on the width of the 
strip m, and the constants ε and k0 from (2.5).

Define

αn = Qn+1(I − Rn − Qnζn−1)
−1, An = (I − Rn − Qnζn−1)

−1Qn. (2.12)

Note that αnPn = Qn+1ζn and hence

αn = Qn+1(I − Rn − αn−1Pn−1)
−1. (2.13)

Remark 2.2. The above definitions imply that when b  >  n we have

αb−1αb−2...αn = QbAb−1Ab−2...An+1(I − Rn − Qnζn−1)
−1. (2.14)

Products of matrices An and αn arise naturally in the analysis of, respectively, the martingale 
equation  (section 7) and the invariant measure equation  (section 6). Even though relation 
(2.14) shows that their asymptotic behaviour is essentially the same, an attempt to use just 
A’s or α’s would make many of our calculations much more cumbersome. This is the main 
reason for introducing both of them. It should be noted that, under ellipticity conditions (2.5), 
matrices A have good contracting properties (see lemma 2.3). This may not be so for α’s but 
their products can be controlled via products of A’s.
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The following is a slightly modified version of lemmas 2 and 4 from [3].

Lemma 2.3. Suppose that matrices (P, Q, R) satisfy (2.5), ζ is a stochastic matrix, and set 
a = I − R − Qζ  and A = a−1Q. Then

(a) �a−1� � k0m−1ε−2, (b) A(i, j) � ε for all i, j, (c) ||A|| � (mε)−1. (2.15)

Proof. Notice that (I − R)−1Q + (I − R)−1P is a stochastic matrix and hence, due to (2.5), 
one has ||(I − R)−1Q|| � 1 − mε. Hence also

||(I − R)−1Qζ|| = ||(I − R)−1Qζ1|| = ||(I − R)−1Q1|| � 1 − mε.

Since

�(I − R)−1� �
∞�

k=0

�R�k =

∞�

k=0

k0−1�

i=0

�R�kk0+i � k0

∞�

k=0

�R�kk0 � k0

∞�

k=0

(1 − ε)k = k0ε
−1

and a−1 = (I − (I − R)−1Qζ)−1(I − R)−1 =
�∞

k=0

�
(I − R)−1Qζ

�
k(I − R)−1, we obtain

||a−1|| �
∞�

k=0

�
�
(I − R)−1Qζ

�k � �(I − R)−1� � k0ε
−1

∞�

k=0

(1 − mε)k = k0m−1ε−2

which proves (2.15) (a). Next, (2.15) (b) follows from

A =

� ∞�

k=0

�
(I − R)−1Qζ

�k
�
(I − R)−1Q � (I − R)−1Q.

Finally, �A� �
�∞

k=0 �(I − R)−1Qζ�k �
�∞

k=0(1 − mε)k = (mε)−1. □ 

Since matrices An have properties (2.15) (b), (c), we can set

vn = lim
a→−∞

AnAn−1 . . .Aa+1ṽa

�AnAn−1 . . .Aa+1ṽa�
. (2.16)

As explained in [3, theorem 4] this limit exists and does not depend on the choice of the 
sequence of vectors ṽa � 0, ||ṽa|| = 1.

Remark 2.4. The components of vectors vn are strictly positive. Moreover, vn � mε21. 
Indeed if a vector v � 0, ||v|| = 1 and a matrix A has properties (2.15) then

mini(Av)i

�Av� =
mini
�

j A(i, j)vj

maxi
�

j A(i, j)vj
�

ε
�

j vj

�A��j vj
=

ε

�A� � mε2.

Next, for any sequence of row-vectors l̃b � 0, �̃lb� = 1 such that l̃bQb �= 0, define

ln = lim
b→∞

l̃bαb−1 . . . αn���̃lbαb−1 . . . αn

���
. (2.17)

Once again, the limit in (2.17) exists and does not depend on the choice of the sequence l̃b. 
Vectors ln and vn play important roles in sections 6 and 7.
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Set

λk = �Akvk−1� and λ̃k = �lk+1αk�. (2.18)

Then obviously

lk+1αk = λ̃klk, Akvk−1 = λkvk (2.19)

and for any n � k we have

�AnAn−1 . . .Akvk−1� = λn . . . λk, �ln+1αnαn−1 . . . αk� = λ̃n . . . λ̃k. (2.20)

Corollary 2.5. If a sequence of triples (Pn, Qn, Rn)−∞<n<∞ satisfies (2.5) then

�AnAn−1 . . .Ak� � Constλn . . . λk, (2.21)

where Const = 1/(mε2).

Proof. By remark 2.4 and (2.20), �An . . .Ak� = �An . . .Ak1� � �An . . .Ak(Const vk−1)� =

Constλn . . . λk. □ 

Remark 2.6. It should be emphasized that the proof provided in [2, 3] of the existence of 
the limits (2.8) and (2.16) in fact works for all (and not just almost all) sequences ω satisfying 
(2.5). If we define

ζ(ω) = ζ0(ω), A(ω) = A0(ω), α(ω) = α0(ω), σ(ω) = σ0(ω)

v(ω) = v0(ω), l(ω) = l0(ω) λ(ω) = λ0(ω), λ̃(ω) = λ̃0(ω)
 

(2.22)

then

ζn = ζ(Tnω), An = A(Tnω), αn = α(Tnω), σn(ω) = σ(Tnω),

vn = v(Tnω), ln = l(Tnω), λn = λ(Tnω), λ̃n = λ̃(Tnω).
 

(2.23)

Moreover, the functions ζ(·), v(·), l(·) are continuous in ω. The continuity of all other func-
tions is implied by the continuity of ζ, v, and l. In fact, we have a stronger result, namely the 
above functions are Hölder with respect to the metric d defined by (2.4), see lemma A.2. This 
regularity plays important role in our analysis.

Remark 2.7. Note that m  =  1 corresponds to the random walks on Z with jumps to the 
nearest neighbours. In this case pn = Pω(ξt+1 = n + 1|ξt = n) and qn = 1 − pn. The above 
formulae now become very simple, namely

ψn = ζn = 1, vn = ln = 1, An = λn =
qn

pn
, αn = λ̃n =

qn+1

pn
.

Remark 2.8. Let us describe the probabilistic meaning of some of the matrices introduced 
above. For simplicity, we restrict ourselves to the recurrent case, referring to [2] for the dis-
cussion of the transient regime. The statements we make within this remark are not used in 
the sequel and because of that we only briefly explain their proofs. We believe however that 
they provide some intuition concerned with the behaviour of the RW in a RE with a bounded 
potential. 

Denote tn = min{t > 0 : ξt ∈ Ln}. Then
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ζn(i, j) = Pω(ξtn+1 = (n + 1, j)| ξ0 = (n, i)).

Thus

σn( j) = lim
a→−∞

Pω(ξtn = (n, j)| ξ0 = (a, i)).

That is, σn( j) is the probability that the walk first enters level n at site (n, j) ‘provided that it 
starts from −∞’. This follows from definition (2.9) and the just mentioned meaning of ζ’s.

Next, denote R̃n = Rn + Qnζn−1 and let t(k)
n  be the kth hitting time of Ln. Note that

�
Qn+1R̃k

n

�
(i, j) = Pω

�
ξ
t
(k)
n

= (n, j) and Xt � n for all t � t(k)
n

�� ξ0 = (n + 1, i)
�

.

Then the formula αn = Qn+1
�∞

k=0 R̃k
n shows that

αn(i, j) = Eω( number of visits to (n, j) before tn+1| ξ0 = (n + 1, i)). (2.24)

The probabilistic meaning of matrices A is similar to α but it is slightly more cumbersome so 
we will not provide it here.

Applying (2.24) twice we get

Eω(number of visits to (n − 1, j) before tn+1| ξ0 = (n + 1, i))

=
m�

k=1

[Eω(number of visits to (n, k) before tn+1| ξ0 = (n + 1, i))

× Eω(number of visits to (n − 1, j) before tn| ξ0 = (n, k))]

=(αnαn−1)(i, j).

A similar argument shows that

(αnαn−1 . . . αn−l)(i, j)

= Eω(number of visits to (n − l, j) before tn+1| ξ0 = (n + 1, i)).
 

(2.25)

In this paper we study walks in a bounded potential (see below definition 3.5 of the potential). 
If the potential Pn is bounded then (2.14) and lemma 2.3 imply that also ln �αnαn−1 . . . αn−l� 
is bounded. Relation (2.25) now shows that the walks in bounded potentials are characterized 
by the condition that there is a constant K̄ > 1 such that for each z1, z2 ∈ S the following 
property holds:

If the walk starts from z1 then the expected number of visits to z2 before the first return to z1 

is between 1/K̄  and K̄.
This provides some intuition about the walks studied here.

2.3. Recurrence and transience criteria

The following recurrence and transience criteria were proved in [2].

Theorem 2.9 ([2], theorem 2). Suppose that Condition C is satisfied. Then for P-almost 
all ω the following holds:

RW is recurrent, that is Pω,z(lim inf t→∞ Xt = −∞ and lim supt→∞ Xt = ∞) = 1, iff 
E(lnλ) = 0
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RW is transient to the right, that is Pω,z(Xt → +∞ as t → ∞) = 1, iff E(lnλ) < 0,
RW is transient to the left, that is Pω,z(Xt → −∞ as t → ∞) = 1, iff E(lnλ) > 0.

3. Statement of results

3.1. The central limit theorem

We shall now state sufficient conditions under which the asymptotic behaviour of a recurrent 
RW on a strip is described by the CLT. As far as we are aware of, the only result of this kind 
was previously established by Brémont in [5] for the [−l, 1] model which is a particular case 
of the [−l, r] model and the latter, in turn, reduces to the strip model (as has already been men-
tioned in the introduction).

Theorem 3.1. Consider an ergodic environment satisfying (2.5). Assume that there exists a 
function β : Ω → R such that

λ(ω) =
β(Tω)
β(ω)

and E(β3 + β−3) < ∞. (3.1)

Then there is a constant D  >  0 such that for P-almost all environments

Xn√
n
⇒ N (0, D).

Conditions (3.1) is related to matrices An. It will be convenient to have an equivalent condi-
tion related to matrices αn. Namely, we shall prove the following

Lemma 3.2. For ergodic environments satisfying (2.5) condition (3.1) is equivalent to the 
following one: there exists a function β̃ : Ω → R such that

λ̃(ω) =
β̃(Tω)

β̃(ω)
and E(β̃3 + β̃−3) < ∞. (3.2)

Moreover, the functions β, β̃  can be chosen so that for some constant c  >  0

c−1β̃(ω) � β(ω) � cβ̃(ω). (3.3)

In section 3.2 we show how to apply the above results to independent and to quasiperiodic 
environments.

Remark 3.3. Due to ergodicity, the existence of β (or β̃) implies that it is unique up to a 

multiplication by a constant. Indeed, if say β and β̄ satisfy (3.1) then β̄(Tω)
β(Tω) =

β̄(ω)
β(ω)  for a.a. ω 

and hence β̄(ω)
β(ω) = Const.

Remark 3.4. If conditions (3.1), (3.2) are satisfied then it follows from (2.20) that for any 
n � k

�AnAn−1 . . .Akvk−1� = λn . . . λk =
β(Tn+1ω)

β(Tkω)
,

�ln+1αnαn−1 . . . αk� = λ̃n . . . λ̃k =
β̃(Tn+1ω)

β̃(Tkω)
.

 

(3.4)
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The following definition of random potential was used in [3] and is analogous to the one 
introduced in [35].

Definition. A potential is a random function of n defined by

Pn(ω) ≡ Pn
def
=





ln ||An...A1|| if n � 1
0 if n = 0
− ln ||A0...An+1|| if n � −1.

 (3.5)

By lemma 2.3, all matrix elements of matrices An are uniformly separated from 0. This, 
together with corollary 2.5, implies that the map (ω, n) → Pn is bounded if and only if 
ln �An . . .Akvk−1� is bounded which, in turn, is equivalent to (3.1) with bounded β. In one 
direction, this statement is immediate due to (3.4). The other direction is implied by a well 
known result stated in lemma C.1 in appendix C.

Conditions (3.1) and (3.2) may still appear artificial. In fact, as shown in [11], they are 
 necessary and sufficient for the existence of the invariant measure on the space of environ-
ments which in turn is one of the basic ingredients of the proof of theorem 3.1. Moreover, 
as will be seen in the next subsection, these conditions can be checked for some interesting 
classes of environments.

3.2. Applications

The following lemma describes one of the most important classes of environments for which 
conditions (3.1) and (3.2) are satisfied.

Lemma 3.5. For i.i.d. environments satisfying (2.5) conditions (3.1) and (3.2) hold iff the 
RW is recurrent but does not exhibit the Sinai behaviour. In this case the functions β, β̃  can be 
chosen to be continuous.

Corollary 3.6. A recurrent random walk on a strip in an i.i.d. environment either exhibits 
the Sinai behaviour, or satisfies the CLT.

To give more examples of environments satisfying conditions of theorem 3.1 we need the 
following definition. Call a set Λ ⊂ J  admissible if there exists an i.i.d. environment P such 
that the support J0(P) = Λ and the corresponding random walk is recurrent and satisfies the 
CLT. Note that, due to corollary 3.6 and the continuity of functions β, β̃, equations (3.1) and 
(3.2) hold for all (not merely almost all) environments in ΛZ. Thus theorem 3.1 implies the 
following corollary.

Corollary 3.7. If Λ is admissible and P̃ is a stationary ergodic measure on ΛZ then Xn is 
recurrent and satisfies the CLT for P̃ almost every ω.

Another class of examples is described by the following result.

Lemma 3.8. Suppose that there is a vector f = { fk}m
k=1 such that Mn = Xn + fYn is a mar-

tingale. Then (3.1) and (3.2) hold.

Corollary 3.9. The CLT holds for ergodic one dimensional environments where the posi-
tion of the walker is a martingale.
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We have already mentioned above that the results of [3] show that the CLT behaviour 
of recurrent walks is exceptional for the i.i.d environments. The same need not be the case 
in other settings. For example, consider quasiperiodic random walks. Namely, let Td  be a 
d-dimensional torus and ω ∈ Td . Set

(Pn, Qn, Rn)(ω) = (P̄, Q̄, R̄)(ω + nγ), (3.6)

where γ is a vector in Rd, the sum ω + nγ  is defined (mod 1), and (P̄, Q̄, R̄) are Cr matrix 
valued functions on Td. The transformation ω → (ω + γ)(mod 1) preserves the standard 
Lebesgue measure on the torus and the sequence defined by (3.6) is stationary with respect to 
this measure. We assume that γ is Diophantine, that is there are constants C,σ such that for 
each k ∈ Zd, k̃ ∈ Z

|�γ, k� − k̃| � C|k|−σ . (3.7)

Remark 3.10. Conditions (3.7) are satisfied whenever the coordinates of the vector γ  
are rationally independent algebraic numbers. Additionally, they are satisfied for Lebesgue-
almost all γ.

Theorem 3.11. Assume that the matrices (P̄, Q̄, R̄)(ω) satisfy (2.5) for all ω ∈ Td , the walk 
is recurrent, γ satisfies (3.7), and

r > d + σ, (3.8)

where r is the smoothness of the RHS of (3.6). Then (3.1) holds (and hence the random walk 
satisfies the CLT).

In order to obtain a complete description of RW in quasiperiodic Diophantine environments 
we have to consider transient RWs in these REs. To do that we extend the CLT result from 
[15] which applies to transient RWs on Z with jumps to the nearest neighbours in a uniquely 
ergodic environment to transient RWs on a strip in a uniquely ergodic environment. We note 
that quasiperiodic environments are a particular example of uniquely ergodic environments.

To formulate this extension, consider the following setting. Suppose that

(Pn, Qn, Rn)(ω) = (P̄, Q̄, R̄)( f nω) (3.9)

where f is a homeomorphism of a space Ω and (P̄, Q̄, R̄) are continuous matrix valued  
functions on Ω. Recall that a map f : Ω → Ω is called uniquely ergodic if for any continuous 
real valued function Φ the limit

lim
N→∞

1
N

N−1�

n=0

Φ( f nω) (3.10)

exists for all ω ∈ Ω and does not depend on ω. We recall ([8, theorem 1.8.2]) that if Ω is a 
compact metric space then the unique ergodicity of f is equivalent to uniform in ω ∈ Ω conv-
ergence of the averages (3.10) and also equivalent to the existence of a unique f-invariant 
measure P(dω) on Ω (with the sequence (3.9) being stationary with respect to this measure). 
If f in (3.9) is uniquely ergodic we call (Pn, Qn, Rn) a uniquely ergodic environment.

The next result was proven in [15] for the one-dimensional nearest neighbour walk (the 
case m  =  1). In the Appendix, we prove it for arbitrary strip.

Theorem 3.12. A transient RW on a strip in a uniquely ergodic environment generated by 
a continuous (P̄, Q̄, R̄) satisfies the CLT.
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A more precise statement of this result including the normalization is given in theorem B.2.

Corollary 3.13. CLT holds for RW on a strip in a Diophantine quasiperiodic environment 
satisfying (3.8).

Proof. If the RW is recurrent the result follows from theorems 3.1 and 3.11 and if it is tran-
sient then it follows from theorem 3.12. □ 

Remark 3.14. Alili in [1] proved the CLT for RW in smooth Diophantine quasiperiodic 
environments with jumps to nearest neighbours on Z. Brémont in [7] extended this result to 
RW with bounded jumps (the [−l, r] model) in a quasiperiodic environment generated by a 
smooth enough function on the torus. In the recurrent regime, Brémont’s result is a particular 
case of theorems 3.1 and 3.11. In the transient regime, theorem 3.12 gives a much more gen-
eral result as it works for all uniquely ergodic environments and requires only continuity of 
the generating probabilities.

Lemma 3.5 and corollaries 3.6 and 3.7 lead naturally to the question of characterizing the 
admissible sets. By corollary 3.7 a subset of an admissible set is admissible. Recall that the 
Zariski closure Ā of a set A is the smallest algebraic variety containing A. The next result 
shows that maximal admissible sets are algebraic subvarieties.

Lemma 3.15. The Zariski closure Λ̄ of an admissible set Λ is admissible.

3.3. Organization of the paper

Our main result, theorem 3.1, is proven in sections 4–7. Namely, section 4 describes the main 
ingredients of the proof, section 5 presents, in the case of the nearest neighbour RWs on Z, 
the simplest version of the formulae for the density of the invariant measure and the martin-
gale which play a major role in the proof of the main result. Section 6 constructs the invariant 
measure for the environment viewed from the particle, and section 7 proves the existence of a 
martingale which is asymptotically linear with respect to the Z-coordinate of the walk (the lat-
ter is often called the harmonic coordinate for the system). The uniqueness of the martingale 
is established in section 8. Section 9 contains the proof of lemmas 3.2 and 3.5. Lemma 3.15 
is proven in section 10. Section 11 contains the proof of lemma 3.8. Two sections deal with 
quasiperiodic environments. Namely, theorem 3.11 is proven in section 12 and theorem 3.12 
is established in appendix B.

4. Main ingredients in the proof of the CLT

The proof of the main result of this paper (theorem 3.1) explained at the end of this section fol-
lows from lemmas 4.2–4.4. But first, we need the following definition.

Definition. The environment seen by the particle is the random process (ω̄n, Yn), n � 0, 
where ω̄n = TXnω and ξn = (Xn, Yn) is the position of the walk at time n.

Denote by Ω̄ = Ω× {1, 2, ..., m} the phase space of the process (ω̄n, Yn) and let 
P̄ def
= P× {m−1} be the probability measure on Ω̄ with P being the measure on the set of 

environ ments Ω (as in section 2) and {m−1} denoting the uniform distribution on {1, ..., m}. 
This process is a Markov chain (which is a simple but important observation, see e.g. [4]).
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Remark 4.1. This process was introduce by S. Kozlov [22, 23], as well as Papanicolau-
Varadhan [30] and played an important role in a number of papers (see [4, 11] for futher refer-
ences). The papers which are more closely related to this work are [6, 7] where the environ-
ment viewed by the particle approach played a major role in the context of the [−l, r] model 
and [33] where it was used for the first time in the context of the RWs on a strip (but in 
transient regime).

Lemma 4.2. If (3.2) holds then the environment seen by the particle has an invariant  
measure µ(dω, dy) on Ω̄ which is absolutely continuous with respect to P̄.

Lemma 4.3. The process (ω̄n, Yn) is ergodic with respect to µ.

Lemma 4.3 is a well known result. Its proof can be found in [4, theorem 1.2].

Lemma 4.4. If (3.1) holds then there is a function M(x, y) = Mω(x, y) such that:

 (1) For almost all ω Mn = Mω(Xn, Yn) is a martingale.
 (2) The increments of M are stationary and square integrable. More precisely, for any 

l ∈ {−1, 0, 1}, Y , Ŷ ∈ {1, . . . , m} the function

δl,Ŷ(X, Y) = M(X + l, Ŷ)− M(X, Y)

  is stationary with respect to X translations and square integrable with respect to the 
measure µ(dω, dy)Pω,(0,y).

 (3) For a.e. ω, the ratio Mω(x,y)
x → c, c �= 0, for all y ∈ {1 . . .m} as |x| → ∞.

We note that the assumption that β and β−1 are in L3 is only used in the proof of part (2) of 
lemma 4.4. A weaker assumption that β and β−1 are in L1 would suffice for lemma 4.2.

Lemmas 4.2 and 4.4 imply theorem 3.1 in a standard way which we now recall for 
completeness.

Proof of theorem 3.1. Observe that lemma 4.4 implies that

Xn√
n
=

Mn

c
√

n
(1 + o(1)) + o(1) as n → ∞. (4.1)

Indeed, if |Xn| � n1/4 then (4.1) holds due to lemma 4.4(3) while if |Xn| � n1/4 then (4.1) holds 
since both the RHS and the LHS are o(1). Due to (4.1) it suffices to prove the CLT for Mn. By 
corollary 3.1 on page 58 of [18], it suffices to show that Dn

n  converges for P-almost all ω to a 
non-random limit, where

Dn =

n−1�

k=0

Eω

�
[M(Xk+1, Yk+1)− M(Xk, Yk)]

2 |(X0, Y0) . . . (Xk, Yk)
�

=

n−1�

k=0

Eω

�
[M(Xk+1, Yk+1)− M(Xk, Yk)]

2 |(Xk, Yk)
�

.

Using the ergodicity of the (ω̄n, Yn) process and stationarity of the increments of M we obtain 
that

lim
n→∞

Dn

n
=

�
Eω,(0,y)

�
[M1 − M0]

2
�
µ(dω, dy)

completing the proof of the theorem. □ 
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5. Nearest neighbour walks on Z

Below we present proofs of lemmas 4.2 and 4.4 in the case of the nearest neighbour walks 
on Z where the formulae for ρn and Mn are simple. They may seem to be a result of a guess 
rather than a derivation. In fact, we borrow the form of ρn from [35] and the formula for Mn 
results from the analysis of a solution to (5.1) considered, for example, in [12]. (Of course, 
they could also be obtained as simplified versions of formulae for ρn and Mn we derive in  
sections 6 and 7.)

Note that in the case of walks on Z (see remark 2.7), condition (3.1) takes the form

An =
qn

pn
= λn =

βn+1

βn
, where βn = β(Tnω).

Proof of lemma 4.2 for Z. Let ρ be the density of the invariant measure and 
ρn(ω) = ρ(Tnω). Then ρ satisfies

ρn = pn−1ρn−1 + qn+1ρn+1.

We claim that this equation has a solution of the form ρn = 1
βnqn

. Indeed

pn−1ρn−1 + qn+1ρn+1 =
pn−1

qn−1βn−1
+

1
βn+1

=
1
βn

+
pn

qnβn
=

1
βn

�
1 +

pn

qn

�
=

1
qnβn

= ρn.

 □ 

Proof of lemma 4.4 for Z. If Xt, t � 0, is the nearest neighbour walk on Z in random 
environment ω then Mω(Xt) is a martingale if the sequence {Mn = Mω(n), n ∈ Z} satisfies 
the equation

Mn = pnMn+1 + qnMn−1. (5.1)

The space of solutions to (5.1) is two-dimensional and we claim that a solution linearly inde-
pendent of Mn ≡ 1 has the form

Mn =





�n
j=1 βj if n � 1,

0 if n = 0,
−�0

j=n+1 βj if n � −1.

Let us check this claim, say for n � 1. In this case

pnMn+1 + qnMn−1 = pn(Mn + βn+1) + qn(Mn − βn) = Mn + pnβn+1 − qnβn = Mn.
 □ 

6. Environment seen by the particle

Proof of lemma 4.2. We will construct the density ρ : Ω× [1, . . . , m] → R as a solution to 
(6.1) below. Denote by ρ = ρ(ω) the row-vector with components ρ(ω, i) and let ρn = ρ(Tnω) 
be a vector with components ρn(i) = ρ(Tnω, i). For ρ to be a density of the invariant measure 
of the Markov chain (TXtω, Yt), t � 0, the corresponding vectors ρn should satisfy the system 
of equations
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ρn = ρn+1Qn+1 + ρnRn + ρn−1Pn−1, −∞ < n < ∞. (6.1)

The restriction of this equation to a finite strip a � n � b was analyzed in [2, section 3]. 
The solution found there satisfies certain (reflecting) boundary conditions and has a meaning 
different from the one we are interested in here.

However, we borrow from [2] the following fact. For any m-dimensional vector h set 
ρh

b = h and define ρh
n for n � b − 1 by the recursion ρh

n = ρh
n+1αn, where the matrices αn are 

defined in (2.12). Then the vectors ρh
n solve (6.1) for all n � b − 1. For the sake of complete-

ness, we shall check this statement. Obviously, if n � b − 1 then

ρh
n = hαb−1 . . . αn (6.2)

and hence

ρh
n+1Qn+1 + ρh

nRn + ρh
n−1Pn−1 = hαb−1 . . . αn+1(Qn+1 + αnRn + αnαn−1Pn−1)

(∗)
= hαb−1 . . . αn+1αn = ρh

n,

where (∗) follows from the relation αn = Qn+1 + αnRn + αnαn−1Pn−1 which in turn is equiv-
alent to (2.13).

Next, note that for vectors ln defined in (2.17) it follows from (2.19) and condition (3.2) that

ln+1αn = λ̃nln =
β̃(Tn+1ω)

β̃(Tnω)
ln and so

1
β̃(Tn+1ω)

ln+1αn =
1

β̃(Tnω)
ln. (6.3)

Remember that ln = l(Tnω). Set

ρ(ω) =
1

Zβ̃(ω)
l(ω), where Z = E

�
1

β̃(ω)

m�

i=1

l(ω, i)

�
. (6.4)

Then the second equation  in (6.3) has the form ρn = ρn+1αn, where ρn = ρ(Tnω) for all 
n ∈ Z. Hence, the ρn, n ∈ Z, solve (6.1) which means that ρ defined by (6.4) is the density of 
the invariant measure of our Markov chain. □ 

7. Construction of the martingale

In this section we prove lemma 4.4. The idea behind the proof is the following one. Let M(·) 
be a martingale with the properties listed in lemma 4.4. Consider z = (x, y) ∈ S and a, b ∈ Z 
such that x − a � 1, b − x � 1 and let τa,b be the first time the walker reaches La or Lb. Set

pa,b(z) = Pω(Xτa,b = a|ξ0 = z)

(we recall the notation ξt = (Xt, Yt)). By the Optional Stopping theorem

M(z) = Eω,z(M(ξτa,b)) = Eω,z(M(ξτa,b)1Xτa,b=a) + Eω,z(M(ξτa,b)1Xτa,b=b).

If z is far from both La and Lb then the distributions of Yτa,b 1Xτa,b=a in La and Yτa,b 1Xτa,b=b in 
Lb is approximately given by pa,b(z)σ−

a  and (1 − pa,b(z))σb respectively. So we expect that
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Eω,z(M(ξτa,b)1Xτa,b=a) ≈ pa,b(z)Ma, Eω,z(M(ξτa,b)1Xτa,b=b) ≈ (1 − pa,b(z))Mb,

where Mb =
�m

j=1 σb( j)M(b, j), Ma =
�m

j=1 σ
−
a ( j)M(a, j) (see (2.9) and remark 2.8 explain-

ing the meaning of σb). This would give

M(z) = pa,b(z)(Ma − Mb) + Mb,

that is M(z) is obtained from pa,b(z) by an affine transformation. In the proof below we will 
show using the formula for pa,b(z) obtained in [2], that a proper rescaling of pa,b indeed gives 
a linearly growing martingale.

Proof. Let mn denote a vector with components mn(i) = M(n, i). For the process M(Xt, Yt), 
t � 0, to be a martingale with respect to the measure Pω,z, the vectors mn should satisfy the 
equation

mn = Pnmn+1 + Rnmn + Qnmn−1. (7.1)

The analysis of the solution to this equation on a finite part of the strip, a � n � b, has played 
a crucial role in [2]. Inevitably, some calculations are similar to those in [2] but here the analy-
sis goes in a very different direction. We would like to emphasize that, apart of the fact stated 
in (7.7) and the preceding comment, the proof presented below is self-contained.

As in [2], define a sequence of m × m matrices ϕn, n � a + 1 by setting ϕa = 0 and com-
puting ϕn recursively

ϕn = (I − Rn − Qnϕn−1)
−1Pn, if n � a. (7.2)

The solutions to (7.1) with boundary conditions ma = 0, mb = f  can be presented in the fol-
lowing form:

mn = ϕnϕn+1 . . . ϕb−1f, a � n � b. (7.3)

For n  =  a or n  =  b this statement is obvious and for a  <  n  <  b it can be verified by substitut-
ing the right hand side of (7.3) into (7.1).

In order to construct a linearly growing solution of (7.1) we consider the solution mn corre-
sponding to f = 1 (in which case mn(i) = pa,b((n, i))) and study some related limits of this so-
lution as a → −∞, b → ∞ so that |a| � b. So, from now on and to the end of this section our 
b  >  0 and a  <  −b.

Set Δn = ζn − ϕn, where ζn are matrices defined in (2.7), (2.8). Following [2], we present 
this difference as

Δn = (I − Rn − Qnζn−1)
−1Pn − (I − Rn − Qnϕn−1)

−1Pn

= (I − Rn − Qnζn−1)
−1QnΔn−1(I − Rn − Qnϕn−1)

−1Pn = AnΔn−1ϕn.
 (7.4)

Iterating the last relation gives, (see [2, equation (2.13)]) that if |n| < b then

Δn = An . . .A−b+1Δ−bϕ−b+1 . . . ϕn. (7.5)

The immediate corollary from here is the inequality �Δn� � �An . . .A−b+1� �Δ−b� which in 
turn, together with (2.21) and (3.1), gives

�Δn� � Constλn . . . λ−b+1 �Δ−b� � H(ω, b) �Δ−b� (7.6)
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where

H(ω, b) = Const
max|n|�b β(Tn+1ω)

β(T−b+1ω)
.

We note that in order to complete the argument the precise form of the RHS of (7.6) is not 
important, we just need that it is linear in �Δ−b� and the prefactor H is uniform in n and a.

Next, it follows from (3.1) that E(lnλ) = 0 and hence by theorem 2.9 the walk is recur-
rent. Recall (see [2, formula (2.3)]) that ϕn(i, j) is the Pω,(n,i)-probability that a RW starting 
from (n, i) reaches layer n  +  1 before layer a and that it hits layer n  +  1 at (n + 1, j). So, due 
to recurrence, we have that for any i

m�

j=1

ϕn(i, j) = Pω,(n,i){ reach layer n + 1 before a} → 1 as a → −∞. (7.7)

Since Δa = ζa, (7.4) implies that Δn � 0. Therefore

�Δn� = �Δn1� = �(ζn − ϕn)1� = 1 −min
i

m�

j=1

ϕn(i, j) → 0 as a → −∞.

Define εb(a) = ||Δ−b||. Obviously

εb(a) → 0 as a → −∞ and b is fixed. (7.8)

Next, (7.4) also gives

Δn = AnΔn−1(ζn −Δn) = AnΔn−1ζn − AnΔn−1Δn. (7.9)

Substituting Δn−1 = An−1Δn−2ζn−1 − An−1Δn−2Δn−1 only in the term AnΔn−1ζn we obtain

Δn = AnAn−1Δn−2ζn−1ζn − AnAn−1Δn−2Δn−1ζn − AnΔn−1Δn.

Continuing this process we obtain

Δn = An . . .A−b+1Δ−bζ−b+1 . . . ζn −
n−1�

k=−b

An . . .Ak+1ΔkΔk+1ζk+2 . . . ζn, (7.10)

where by convention An . . .Ak+1 = I  if k  +  1  <  n and ζk+2 . . . ζn = I  if k  +  2  >  n. Equality 
(7.10) together with (7.6) implies that

Δn = An . . .A−b+1Δ−bζ−b+1 . . . ζn +O(ε2
b(a)H(b,ω)2b). (7.11)

Applying similar reasoning to (7.3) with f = 1 and ϕj = ζj −Δj gives

mn = 1 −
�

n�k�b−1

ζn . . . ζk−1Δkζk+1 . . . ζb−11 +O(ε2
b(a)H(ω, b)2b2)

= 1 −
�

n�k�b−1

ζn . . . ζk−1Δk1 +O(ε2
b(a)H(ω, b)2b2).

Substituting (7.11) into the last equation gives

mn = 1 −
�

n�k�b−1

ζn . . . ζk−1Ak . . .A−b+1w−b +O(ε2
b(a)H(ω, b)2b2)
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where w−b = Δ−b1. Now set

m̄a,b
n =

1 −mn

||w−b||
.

m̄a,b
n  satisfies (7.1) since it is a linear combination of two solutions. Note that

m̄a,b
n =

�

n�k�b−1

ζn . . . ζk−1Ak . . .A−b+1u−b +O(εb(a)H(ω, b)2b2), (7.12)

where u−b = w−b/||w−b||.
We shall now compute the limit of m̄a,b

n  as a → −∞. To this end note that

lim
a→−∞

u−b = lim
a→−∞

A−b . . .Aa+1ζaϕa+1 . . . ϕ−b1
�A−b . . .Aa+1ζaϕa+1 . . . ϕ−b1� = v−b, (7.13)

where we first use (7.5) and then proceed as in (2.16) with ṽa = ζaϕa+1···ϕ−b1
�ζaϕa+1···ϕ−b1�. Passing to the 

limit a → −∞ in (7.12) and using (7.8) we obtain the following solution on (−b, b):

m̄b
n =

�

n�k�b−1

ζn . . . ζk−1Ak . . .A−b+1v−b.

By (2.20) and (3.4) we have

Ak . . .A−b+1v−b = λk . . . λ−b+1vk =
β(Tk+1ω)

β(T−b+1ω)
vk (7.14)

and by (2.11)

ζn . . . ζk−1vk = (σk(1)1, . . . ,σk(m)1)vk +O
�
θk−n� = (σkvk)1 +O

�
θk−n� ,

 
(7.15)

where here and below we denote (σkvk)
def
=
�m

i=1 σk(i)vk(i). We thus see that

β(T−b+1ω)m̄b
n =

b−1�

k=n

β(Tk+1ω)(σkvk)1 +

b−1�

k=n

β(Tk+1ω)O
�
θk−n�

is also a solution to (7.1) on (−b, b) and so is

m̂b
n

def
= β(T−b+1ω)m̄b

n −
b−1�

k=0

β(Tk+1ω)(σkvk)1

= −
n−1�

k=0

β(Tk+1ω)(σkvk)1 +

b−1�

k=n

β(Tk+1ω)O
�
θk−n� .

The series 
�∞

k=n β(T
k+1ω)O

�
θk−n
�
 converges absolutely because of (2.11) (note that the 

terms of the last sum do not depend on b). Hence setting M(x, ·) = limb→∞ m̂b
x  we obtain a 

solution

M(x, ·) =
x−1�

k=0

β(Tk+1ω)(σkvk)1 + B(Txω), (7.16)
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where

B(ω) =
∞�

k=0

β(Tk+1ω)(ζ0 . . . ζk−1vk − (σkvk)1).

It remains to check statements (2) and (3) of lemma 4.4.
Denote by Eµ the expectation with respect to the measure μ. To check that (2) holds, we 

have to show that

D def
= Eµ
�

Eω (Mω(Xt+1, Yt+1)− Mω(Xt, Yt))
2
�

 (7.17)

= Eµ
�

Eω (Mω(X1, Y1)− Mω(X0, Y0))
2
�
< ∞. (7.18)

Note that equality (7.18) holds since μ is an invariant measure of the Markov chain 
(TXtω, Yt), t � 0. Now D can be presented as

D = E




m�

i=1

ρ(ω, i)
�

s=0,±1;1�j�m

Qω((0, i), (s, j))(Mω(0, i)− Mω(s, j))2


 ,

where Qω((0, i), (s, j)) is defined by (2.2). Equation (7.16) implies that

|Mω(0, i)− Mω(s, j)| � C
∞�

k=0

θkβ(Tkω),

where, as before, C and θ depend only on the ε from (2.5). This inequality, together with (6.4) 
and (3.3), implies

D � CE


 �

k�0,j�0

θk+jβ−1(ω)β(Tkω)β(T jω)


 .

But

E(β−1(ω)β(Tkω)β(T jω)) � 1
3
E(β−3(ω) + β3(Tkω) + β3(T jω)) =

1
3
E(β−3(ω) + 2β3(ω))

finishing the proof of property (2).

Remark 7.1. Note that in the case of a RWRE on Z with nearest neighbour jumps condition 
(3.1) can be replaced by E(β(ω) + β−1(ω)) < ∞. On a strip, we need the stronger require-
ment (3.1) because of the term B in (7.16).

Finally, property (3) follows from the ergodic theorem. In fact, for the martingale con-
structed above, c  >  0 since β,σk  and vk  in the RHS of (7.16) are all positive. □ 

8. The Liouville theorem

The construction of the martingale in the previous section was based on a choice of two par-
ticular solutions of the martingale equation on finite intervals. The following lemma shows 
that the final result is essentially unique. And even though this lemma is not used in the rest 
of the paper, it provides an important contribution to the understanding of the whole picture.
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Let M denote the space of martingales satisfying conditions (1)–(2) of lemma 4.4 and such 
that if M(·, ·) ∈ M then

lim
x→±∞

M(x, y)
x

= 1.

(Clearly, we can scale the martingale from lemma 4.4 to achieve this condition.)

Lemma 8.1. If M1, M2 ∈ M then M1 − M2 = Const.

Proof. Let M̄(x, y) = M1(x, y)− M2(x, y). Then theorem 3.1 implies that, for almost all ω, 
Xn√

n is tight. Since M̄(x, y) grows sublinearly, for almost all ω, M̄(Xn,Yn)√
n → 0 in probability with 

respect to the Pω,z measure on the space of trajectories. On the other hand the proof of theorem 

3.1 shows that M̄(Xn,Yn)√
n → 0 iff D̄n

n → 0 where

D̄n =

n−1�

k=0

E
�

Eω

�
[M̄(Xk+1, Yk+1)− M̄(Xk, Yk)]

2 |Xk

��
.

By Ergodic theorem,

lim
n→∞

D̄n

n
=

�
Eω,(0,y)

�
(M̄1 − M̄0)

2
�
µ(dω, dy)

and this expression vanishes iff M̄1 ≡ M̄0 which implies, due to the stationarity, that M̄ is a 
constant. □ 

9. Equivalent conditions for boundedness of the potential

Proof of lemma 3.2. Suppose that β(·) satisfying (3.1) exists. Define an = I − Rn − Qnζn−1. 
In these notations, we have An = a−1

n Qn and αn−1 = Qna
−1
n−1 and hence anAn = αn−1an−1 = Qn. 

Multiplying all parts of this equality by vectors ln and vn−1 we obtain

lnanAnvn−1 = lnαn−1an−1vn−1 = lnQnvn−1

and this, by (2.18) and (2.19), gives

(lnanvn)λn = (ln−1an−1vn−1)λ̃n−1 = lnQnvn−1.

Since ln  >  0 and vn > 0 for all n and since Qn has no zero columns (because of (2.5)), also 
lnQnvn−1 > 0 and therefore (lnanvn) > 0 for all n. We thus can write

λ̃n−1 =
(lnanvn)

(ln−1an−1vn−1)
λn =

(lnanvn)β(Tn+1ω)

(ln−1an−1vn−1)β(Tnω)
. (9.1)

We now set

β̃(ω) = (l(ω)a(ω)v(ω))β(Tω) = (l(ω)a(ω)v(ω)λ(ω))β(ω). (9.2)

With this definition of β̃(ω), equation (9.1) reads λ̃n−1 = β̃(Tnω)

β̃(Tn−1ω)
 which in particular proves 

that (3.2) holds.
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Similarly, (3.2) implies (3.1).
It remains to notice that the factor l(·)a(·)v(·)λ(·) in (9.2) is a continuous function of ω and 

this, together with strictly positivity of this function and compactness of the space of environ-
ments satisfying (2.5), implies (3.3). □ 

Proof of lemma 3.5. Suppose that the walk is recurrent but does not exhibit the Sinai be-
haviour. It is proven on pages 273–274 of [3], that in this case condition (iii) of theorem 6 of 
[3] holds. This condition says that there exists a function F defined on the space of pairs (φ, w), 
where φ is a stochastic matrix and w is a unit vector such that for each triple (P, Q, R) ∈ J0

ln ||Bw|| = F(φ, w)− F
�
(I − R − Qφ)−1P,

Bw
||Bw||

�
, (9.3)

where B = (I − R − Qφ)−1Q. To obtain (9.3) from equation (2.19) of [3] we observe that, 
due to recurrence, theorem 2.9 tells us that E(lnλ) = 0 (note that this expectation is denoted 
by λ in [3]).

Applying (9.3) to (P, Q, R) = (Pn, Qn, Rn) and (φ, w) = (ζn−1, vn−1) we obtain

lnλn = F(ζn−1, vn−1)− F(ζn, vn).

This proves (3.1) with

β(ω) = e−F(ζ(T−1ω),v(T−1ω)).

It remains to note that β is continuous due to continuity of F which is evident from the explicit 
formula for this function, namely formula (4.11) from [3].

Conversely if (3.1) and (3.2) hold then the RW does not exhibit the Sinai behaviour by 
theorem 3.1. □ 

10. Periodic boundary conditions

Here we describe a criterion for recurrence and the CLT in terms of periodic approximations 
to our random environment. We remark that the results below are analogous to the Livsic 
theory for hyperbolic dynamical systems (see [27, 28]).

Given N let πN(n, y) denote the invariant measure for the random walk on 
[0, N − 1]× [1 . . .m] with periodic boundary conditions. Let πN

n  denote the vector with comp-
onents πN

n (y) = πN(n, y).

Proposition 10.1. Suppose that Condition (2.5) is satisfied and that for any N � 1 the 
support of the measure P contains all periodic sequences generated by periodic repetition of 
finite sequences of the form ((Pn, Qn, Rn))

N−1
n=0 ∈ J N

0 . Then condition (3.1) holds for all ω ∈ Ω 
with | lnβ| bounded if and only if for each N and for each ((Pn, Qn, Rn))

N−1
n=0 ∈ J N

0  the follow-
ing identity holds

πN
0 Q01 = πN

N−1PN−11. (10.1)

The proof consists of two steps.

Lemma 10.2. (3.1) holds with | lnβ| bounded if and only if for each N and for each environ-
ment ω such that TNω = ω we have

λ0λ1 . . . λN−1 = 1. (10.2)
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Proof. By lemma C.1 we need to show that (10.2) is equivalent to

n−1�

j=0

lnλ(T jω) (10.3)

being uniformly bounded in ω ∈ Ω and n ∈ N.

 (a) If (10.3) is bounded for each ω it is in particular bounded for periodic ω and hence

kN−1�

j=0

lnλ(T jω) = k




N−1�

j=0

lnλj




  is uniformly bounded in k which is only possible if (10.2) holds.
 (b) Suppose that (10.2) holds. Given ω, N let ω̃  be the environment such that ω̃j = ωj  for 

j ∈ {0, . . .N − 1} and such that ω̃  is periodic with period N. Then due to lemma A.2

������

N−1�

j=0

lnλ(T jω)

������
=

������

N−1�

j=0

lnλ(T jω)−
N−1�

j=0

lnλ(T jω̃)

������
=

������

N−1�

j=0

�
lnλ(T jω)− lnλ(T jω̃)

�
������

� Const
N−1�

j=0

ds(T jω, T jω̃) � Const
N−1�

j=0

2−α(min( j,N−j)) � Const

  where s is the Hölder exponent of lnλ given by lemma A.2. It follows that (10.3) is 
bounded.

 □ 

Lemma 10.3. For each periodic environment (10.1) and (10.2) are equivalent.

Proof. Since periodic environments are stationary and ergodic, theorem 2.9 implies that 
in this case recurrence is equivalent to 1 being the top eigenvalue of any of the products 
AN+k−1...Ak, which is what (10.2) says.

On the other hand, in the periodic environment, the recurrence holds if and only if the walk-
er has zero speed. Let h(x) denote the integer part of x/N. Then the speed is zero if and only if

lim
t→∞

h(X(t))
t

= 0.

But h(X(t + 1)) may differ from h(X(t)) only if X(t) is comparable to either 0 or to N  −  1 
mod N. Therefore by the Ergodic theorem for Markov chains

lim
t→∞

h(X(t))
t

= πN
N−1PN−11 − πN

0 Q01,

so the walk is recurrent iff (10.1) holds. □ 

Proof of lemma 3.15. For given matrices

(P0, Q0, R0), (P1, Q1, R1), . . . , (PN−1, QN−1, RN−1)
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the entries πN(n, y) are rational functions of the coefficients. Accordingly equation (10.1) can 
be written as

FN((P0, Q0, R0), (P1, Q1, R1) . . . (PN−1, QN−1, RN−1)) = 0

where FN  is a certain polynomial. In other words (3.1) holds if and only if for each N, FN  
vanishes on ΛN . But then it also vanishes on Λ̄N  and hence Λ̄ is also admissible. □ 

11. Stationary case

Proof of lemma 3.8. The condition that Mn = Xn + fYn is a martingale is equivalent to

f = (P + R + Q) f + (P − Q)1 for all (P, Q, R) ∈ J0. (11.1)

Let Jε,f  be the set of all triples (P, Q, R) ∈ J  satisfying (2.5) and (11.1). Consider the ran-
dom environment where (Pn, Rn, Qn) are iid and are uniformly distributed on Jε,f . Then by  
[18, theorem 4.1] given ε̄ there exists δ > 0 such that

P(|Xn| > δ
√

n) > 1 − ε̄

for large n. Accordingly, Xn does not exhibit the Sinai behaviour. Therefore by lemma 3.5, 
(3.1) and (3.2) are satisfied for all environments in (Jε,f )

Z. □ 

12. Quasiperiodic case: proof of theorem 3.11

We turn now to the quasiperiodic case with the sequence (Pn, Qn, Rn) defined by (3.6). Note 

that by stationarity there exist functions ζ̄, Ā, ᾱ, v̄, l̄, λ̄, ¯̃λ on Td  such that

ζn(ω) = ζ̄(ω + nγ), An(ω) = Ā(ω + nγ), αn(ω) = ᾱ(ω + nγ),

vn(ω) = v̄(ω + nγ), ln(ω) = l̄(ω + nγ), λn(ω) = λ̄(ω + nγ), λ̃n(ω) =
¯̃
λ(ω + nγ).

Lemma 12.1. The functions ζ̄, Ā, ᾱ, v̄, l̄, λ̄ and ¯̃λ are Cr smooth.

This lemma is proven in appendix A.
Next, by theorem 2.9 ([2, theorem 2]) recurrence is equivalent to

�

Td
ln λ̄(ω)dω = 0. (12.1)

Now [21] tells us that if Φ ∈ Cr(Td) has zero mean and (3.7) and (3.8) are satisfied then there 
is Φ̃ ∈ C0(Td) such that

Φ(ω) = Φ̃(ω + γ)− Φ̃(ω) and hence
n−1�

k=0

Φ(ω + kγ) = Φ̃(ω + nγ)− Φ̃(ω).

 (12.2)
Applying (12.2) with Φ = ln λ̄ we obtain (3.1).
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Appendix A. The invariant section theorem

The following result is useful for ascertaining the regularity of auxiliary sequences of matrices 
considered in this paper.

Let X and Y be complete metric spaces.
Consider a skew product transformation F : X × Y → X × Y given by 

F(x, y) = ( f (x), g(x, y)) and such that:

 (1) F is a continuous transformation; 
 (2) f : X → X is a homeomorphism; 
 (3) g(x, ·) : Y → Y is a fiber contraction, that is, there exists θ < 1 such that

d(g(x, y�)), g(x, y��) � θd(y�, y��).

Proposition A.1 ([19, theorem 3.5)]. 

 (a) F admits an invariant section. That is, there exists a continuous map Γ : X → Y such that 
g(x,Γ(x)) = Γ( f (x)).

 (b) If F is Cδ , f and f−1 are Lipshitz, and θ[Lip( f−1)]δ < 1 then Γ belongs to a Hölder space 
Cδ .

 (c) If X is a manifold and Y is a manifold with boundary and g(x, ·) : Y → Int(Y) for each 
x ∈ X and if F is a Cr diffeomorphism such that

θ[Lip( f−1)]r < 1 (A.1)

then Γ is Cr smooth.

Lemma A.2. The maps

ω → ζ(ω), ω → A(ω), ω → α(ω), ω → v(ω),ω → l(ω), ω → λ(ω), ω → λ̃(ω)

defined by (2.22) are Hölder continuous with respect to the metric d defined by (2.4).

Proof. We start with the smoothness of ζ. To this end we apply proposition A.1 to the map 
F1 defined on the product of Ω× Z , where Z is the space of stochastic matrices by the formula

F1(ω, ζ) = (Tω, (I − Q(ω)ζ − R(ω))−1P(ω)).

Thus f is a shift T and so Lip(T−1) = 2. On the other hand due to [10, proposition D.1], there 
are constants K̄ > 0, θ̄ < 1 which depend only on the width of the strip m and on ε in (2.5) 
such that

d(Fn
1(ω, ζ �), Fn

1(ω, ζ ��)) � K̄θ̄nd(ζ �, ζ ��).

Applying proposition A.1 to Fn0
1  where n0 is such that K̄θ̄n0 < 1 we get that ζ is Cδ where δ is 

such that

D Dolgopyat and I Goldsheid Nonlinearity 31 (2018) 3381



3406

2δn0 K̄θ̄n0 < 1.

(Since n0 can be arbitrarily large we can optimize with respect to n0 and conclude that 
ω → ζ(ω) is Cδ provided that 2δ θ̄ < 1.)

Since ω → ζ(ω) is Cδ , (2.12) shows that ω → A(ω) and ω → δ(ω) is Cδ as well.
Next, A(ω) are positive matrices and therefore preserve the positive cone in Rm. Moreover 

they act as contractions in the so called Hilbert metric (see e.g [26]). Consider now the map F2 

acting on Ω× Sm−1
+  by the formula

F2(ω, v) =
�

Tω,
A(ω)v

||A(ω)v||

�
,

where Sm−1
+  is the set of unit vectors with positive coordinates. This map is a fiber contraction 

in the metric induced on Sm−1
+  in a natural way by the Hilbert metric. Thus proposition A.1 

implies that ω → v(ω) is Cδ . The Hölder property of ω → l(ω) is established similarly by 
looking at the projective action of α.

Finally the Hölder property of λ(ω) follows from the Hölder property of A and v, and the 
Hölder property of λ̃(ω) follows from the Hölder property of α and l. □ 

Proof of lemma 12.1. The proof of lemma 12.1 is similar to the proof of lemma A.2 
except that now we apply proposition A.1 to skew products with the base map being toral 
translation f (ω) = ω + γ rather than the shift of Ω. Thus f−1(ω) = ω − γ  is an isometry and 
thus Lip(f−1)  =  1. Accordingly, (A.1) holds for all r implying that ζ̄, Ā, ᾱ, v̄, l̄, λ̄ and ¯̃λ are Cr 
smooth. □ 

Appendix B. CLT for transient uniquely ergodic environments

In this section we consider uniquely ergodic environments defined by (3.9). Below, whenever 
there is no danger of confusion, we write, with a slight abuse of notation, f−1ω for f−1(ω) 
and, more generally, f nω for f n(ω).

By stationarity there exist functions ζ̄, Ā, v̄, λ̄(ω) = ||Ā(ω)v̄( f−1ω)|| on Ω such that

ζn(ω) = ζ̄( f nω), An(ω) = Ā( f nω), vn(ω) = v̄( f nω), λn(ω) = λ̄( f nω).

Applying C0 invariant section theorem (proposition A.1(a) and lemma A.2) we conclude 
similarly to section 12 that the above functions ζ̄, Ā, v̄ and hence also λ̄ are continuous.

Without loss of generality we assume that Xt → +∞ as t → ∞ and hence λ = E(ln λ̄) < 0. 
We recall the general results proven in [16] for ergodic environments satisfying the following 
assumption:

E
�
||An(ω) . . .A2(ω)A1(ω)v0(ω)||2

�
= E
��

λ̄( f n−1ω) . . . λ̄( fω)λ̄(ω)
�2�

decays exponentially as n → ∞.
 (B.1)

In our case (B.1) is satisfied. Indeed, due to the unique ergodicity
�n−1

i=0 ln λ̄( f jω)

n
→ λ as n → ∞ uniformly in ω. (B.2)
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Hence for any ε > 0 there is Nε such that for all n > Nε and all ω ∈ Ω there is �(n,ω) satisfy-
ing |�(n,ω)| � ε and such that

||An(ω) . . .A2(ω)A1(ω)v0(ω)|| = λ̄(ω)λ̄( fω) . . . λ̄( f n−1ω) =

exp

�
n−1�

i=0

ln λ̄( f jω)

�
= exp(n(λ+ �(n,ω)))

 
(B.3)

which implies the exponential decay in (B.1).

Remark B.1. One more immediate corollary of (B.3) is the following inequality which 
holds uniformly in ω ∈ Ω for all n � 1:

||An(ω) . . .A2(ω)A1(ω)|| = ||An(ω) . . .A2(ω)A1(ω)1||
� Const||An(ω) . . .A2(ω)A1(ω)v0|| � Constenλ/2.
 (B.4)

This follows from the property v0 � mε21 explained in remark 2.4.

The CLT holds for any initial distribution of the walk. In order, to simplify several formulae 
below we choose the initial distribution as follows:

Pω,(0,·){ξω(0) = (0, i)} = σ0(i), 1 � i � m, (B.5)

where σ0  is defined by (2.9). We would like to emphasize that the proof presented below 
works, with minor modifications (see e.g. the comment following formula (B.6)), for arbitrary 
initial distribution.

Let us list some properties of the vectors σn  which will be used below. It follows directly from 
(2.10) that σn = σkζk . . . ζn−1 for any k  <  n (here we also use the relation ζn(ω) = ζ( f nω)). 
Next, σ0(ω) is a continuous function of ω. This fact follows form proposition A.1(a) applied 
to Ω× U, where U is the set of probability vectors of dimension m. The corresponding skew 
product transformation is given by (ω, y) → ( fω, yζ(ω)). The related fiber contraction prop-
erty is the standard property of stochastic matrices ζ with ζ(i, j) � ε, where ε is the same as in 
(2.5) (because (I − R − Qζ)−1P � (I − R)−1P; see proof of (2.15) (b)).

In what follows, we use the following notations and conventions. ξt = ξω(t) = (X(t), Y(t)) 
is the walk in RE ω starting from a random point in layer 0 which is distributed according to 
(B.5). More precise notations, such as e. g. ξω,(0,·)(t) will also be used where appropriate. The 
same convention applies to Pω and Eω.

As in remark 2.8, denote tn the hitting time, by the RW, of layer n, tn = min{t : Xt = n}. 
Recall that if a RW is recurrent or transient to the right then the entries of the matrix ζn have 
the following probabilistic meaning:

ζn(i, j) = Pω (RW starting from (n, i) hits Ln+1 at (n + 1, j)) .

Since ξ is a Markov chain, it follows for n � 1 that

Pω,(0,·) (ξ(tn) = (n, i)) = σn(i), 1 � i � m. (B.6)

(If the initial distribution of the walker is different from σ0  then σn  in (B.6) has to be replaced 
by some σ̃n  which is exponentially close to σn .)

It is proven in [16] that if (B.1) holds then there are positive constants v and σ such that 
with probability 1

Eω(tn)

n
→ 1

v
 (B.7)
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and
tn − Eω(tn)

σ
√

n
converges in distribution to a standard normal distribution. (B.8)

Define bn by the condition

Eω(tbn−1) < n � Eω(tbn).

We are now in a position to prove the precise version of theorem 3.12.

Theorem B.2. Xn−bn
σv3/2

√
n converges to a standard normal distribution almost surely.

Proof. We need the following estimate of the probability of return from layer Ln to La which 
is uniform in ω: there is a θ > 0 such that for all a, n, a  <  n, n � 0 and all ω ∈ Ω

Pω (RW visits La after visiting Ln) � Conste−θ(n−a). (B.9)

This estimate is a strengthening of lemma 3.2 from [10]. Its proof relies strongly on the 
unique ergodicity property of the environment and is different from that of lemma 3.2 in [10].

We also need two strengthenings of (B.7) for uniquely ergodic environments. First, as 
k → ∞

Eω(tk)

k
→ 1

v
uniformly in ω (B.10)

and hence

Eω(ti+k − ti)

k
=

Ef iω(tk)

k
→ 1

v
uniformly in i and ω. (B.11)

Second

Eω(t1) is bounded (B.12)

and hence

Eω(tbn) = n + O(1). (B.13)

The proofs of (B.9), (B.10) and (B.12) will be given later. Let us first see how these facts imply 
the theorem. Given x we have

Pω(tbn+
√

nx+ln n � n)− Pω(An) � Pω

�
Xn − bn �

√
nx
�
� Pω(tbn+

√
nx � n)

where An is the event that X returns to level bn +
√

nx  after visiting level bn + x
√

n + ln n. 
By (B.9)

Pω(An) � Const e−θ ln n =
Const

nθ
.

Therefore to complete the proof of the CLT for X it suffices to obtain the asymptotic behaviour 
of Pω(tbn+kn � n) under the assumption that kn/

√
n → x as n → ∞. Next,

Pω(tbn+kn � n) = Pω

�
tbn+kn − Eω(tbn+kn)√

bn + kn
� n − Eω(tbn+kn)√

bn + kn

�
.

D Dolgopyat and I Goldsheid Nonlinearity 31 (2018) 3381



3409

By (B.11) and (B.13), we have

Eω(tbn+kn) = Eω(tbn) + Ef tbn ω(tkn) = n + O(1) + Ef tbn ω(tkn).

This, together with bn = nv + o(n) and Ef tbn ω(tkn) = kn/v + o(kn), shows that

lim
n→∞

n − Eω(tbn+kn)√
bn + kn

=
−x
v3/2 .

So (B.8) gives

lim
n→∞

Pω(tbn+kn � n) =
� −x/(σv3/2)

−∞

e−s2/2
√

2π
ds

proving the CLT for X.
It remains to establish (B.9), (B.10) and (B.12). We start with (B.10) and (B.12).
Denote by en the column vector whose ith  coordinate en(i) is Eω,(0,i)(tn) (the expectation of 

tn conditioned on ξ(0) = (0, i)). By [16, equation (4.27)] for n � 1

en =

n−1�

j=0

ζ0 . . . ζj

∞�

i=0

Aj . . .Aj−i+1(I − Qj−iζj−i−1 − Rj−i)
−11,

where we use the following conventions: for any k ζk . . . ζk = I , Aj . . .Aj+i−1 = I if i  =  0, and 
Aj . . .Aj−i+1 = Aj  if i  =  1. Since Eω(tn) =

�m
i=1 σ0(i)en(i), we have

Eω(tn) = σ0en =

n−1�

j=0

σj

∞�

i=0

Aj . . .Aj−i+1(I − Qj−iζj−i−1 − Rj−i)
−11

and in particular

Eω(t1) = σ0

∞�

i=0

A0 . . .A−i+1(I − Q−iζ−i−1 − R−i)
−11.

Estimate (2.15) (a) means that �(I − Q−iζ−i−1 − R−i)
−1� � Const  and hence

Eω(t1) � Const
∞�

i=0

||A0 . . .A−i+1||.

Due to (B.2) and (B.3)

||Ai . . .A0|| � Const
i−1�

k=0

λ̄( f kω) (B.14)

proving (B.12). Next, denote u(ω) = Eω(t1). Obviously Eω(tn) =
�n−1

j=0 u( f jω) and since 
u  is continuous the unique ergodicity implies that 1

n

�n−1
j=0 u( f jω) converges uniformly in ω 

which proves (B.10).
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We next prove (B.9). Define events Aa,n
def
= {RW visits La after visiting Ln} and 

Ba,n,b
def
= {RW visits Lb before La after visiting Ln}, where n  <  b. Due to the choice of the 

initial distribution σ0  of the walk (see (B.5)) and the fact that the walk is transient to the right 
we have

Pω(Aa,n) ≡ Pω,(0,·)(Aa,n) = Pω,(n,·)(Aa,n), (B.15)

where the distribution of the starting point in Ln is now given by σn  (see (B.6)). So, from now 
on we shall be proving (B.9) for the walk starting from n.

Observe next that

Pω,(n,·)(Aa,n) = 1 − lim
b→∞

Pω,(n,·)(Ba,n,b). (B.16)

We shall now compute Pω,(n,·)(Ba,n,b) in terms of of products of matrices ϕ defined in (7.2). 
Let ha,n,b = (hn,a,b( j))1�j�m be a column vector with components ha,n,b( j) = Pω,(n,j) (Ba,n,b) 
(in words, they are the probabilities of reaching b before a starting from (n, j)). It is routine 
(see [2]) that vectors ha,n,b solve equation (7.1) with ha,a,b = 0 and ha,b,b = 1 and therefore, 
by (7.3),

ha,n,b = ϕnϕn+1 . . . ϕb−11 = (ζn −Δn)(ζn+1 −Δn+1) . . . (ζb−1 −Δb−1)1,

where as before Δj = ζj − ϕj. Since (ζj −Δj)1 = 1 −Δj1 � (1 − �Δj�)1 and �Δj� � 1, we 
obtain by induction (on b) that

ha,n,b � (1 − �Δn�)(1 − �Δn+1�) . . . (1 − �Δb−1�)1 �


1 −

∞�

j=n

�Δj�


 1.

But then Pω,(n,·)(Ba,n,b) = σnha,n,b � 1 −�∞
j=n �Δj� and therefore (B.16) gives

Pω,(n,·)(Aa,n) �
∞�

j=n

�Δj� . (B.17)

From (7.11) (with  −b replaced by a) we have for any n  >  a

�Δn(ω)� = �An(ω) . . .Aa+1(ω)Δaϕa+1 . . . ϕn� � �An(ω) . . .Aa+1(ω)� .
 (B.18)

Due to (B.4) and since (B.18) holds uniformly in ω, we obtain that

�Δn(ω)� � Conste−(n−a)θ,

where θ = −λ/2. Finally this together with (B.17) implies

Pω,(n,·)(Aa,n) � Conste−(n−a)θ

and this finishes the proof of (B.9). □ 

Note that theorem B.2 requires a random centering by bn(ω). On the other hand if f is a 
translation on Td, (P̄, Q̄, R̄) are Cr, and (3.7) and (3.8) hold then σ0  and hence u  are Cr. We 
now set ū =

�
Td u(ω)dω and apply (12.2) to u− ū. This gives u(ω) = ū+ Φ̂(ω + γ)− Φ̂(ω), 

where Φ̂ is continuous and hence
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Eω(tn) = nū+ Φ̂(ω + nγ)− Φ̂(ω) =
n
v
+ O(1), where

1
v
= ū.

Accordingly bn = vn + O(1) and we obtain

Corollary B.3. In the quasiperiodic environment satisfying (3.7), (3.8) and v �= 0

(Xn − nv)√
nv3/2σ

converges to a standard normal distribution where σ is the constant from (B.8).

Appendix C. Bounded ergodic sums

The following lemma is a variation of the Gottschalk–Hedlund theorem [17, theorem 14.11]. 
We include the proof of this lemma for the sake of completeness and because it is very short.

Lemma C.1. Let T be an ergodic transformation and Φ be a measurable function. Then 
there exists a constant K such that for almost all ω and all n ∈ N

������

n−1�

j=0

Φ(T jω)

������
� K (C.1)

if and only if there exists a bounded function Φ̃ such that

Φ(ω) = Φ̃(Tω)− Φ̃(ω). (C.2)

Proof. (C.2) implies (C.1) since in that case 
�n−1

j=0 Φ(T jω) = Φ̃(Tnω)− Φ̃(ω). Conversely, 
if (C.1) holds then one can set Φ̃(ω) = − lim infn→∞

�n−1
j=0 Φ(T jω). □ 
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