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Abstract
We prove that the recurrent random walk (RW) in random environment (RE)
on a strip in bounded potential satisfies the central limit theorem (CLT).

The key ingredients of the proof are the analysis of the invariant measure
equation and construction of a linearly growing martingale for walks in
bounded potential.

Our main result implies a complete classification of recurrent i.i.d. RWRE
on the strip. Namely the walk either exhibits the Sinai behaviour in the sense
that X;/(In )% converges, as t — 00, to a (random) limit (the Sinai law) or, it
satisfies the CLT.

Another application of our main result is the CLT for the quasiperiodic
environments with Diophantine frequencies in the recurrent case. We
complement this result by proving that in the transient case the CLT holds for
all uniquely ergodic environments.

We also investigate the algebraic structure of the environments satisfying
the CLT. In particular, we show that there exists a collection of proper algebraic
subvarieties in the space of transition probabilities, such that:

e If RE is stationary and ergodic and the transition probabilities are con-
centrated on one of subvarieties from our collection then the CLT holds.

e If the environment is i.i.d then the above condition is also necessary forthe
CLT.

All these results are valid for one-dimensional RWRE with bounded jumps
as a particular case of the strip model.

3 Author to whom any correspondence should be addressed.
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1. Introduction
1.1. Brief history of the problem

It is well known that one dimensional random walk (RW) in random environment (RE) exhibit
features which are very different from those of classical random walks. This fact was first dis-
covered in 1975 by Solomon ([36]) and by Kesten, Kozlov, and Spitzer ([20]) for transient ran-
dom walks on Z for i.i.d. environments with jumps to nearest neighbours. In 1982, Sinai ([34])
found one of the most striking manifestations of that: he proved that for recurrent nearest neigh-
bour RW in i.i.d. RE the correct scaling is In? ¢, or, more precisely, that X,/(In ) converges, as
t — 00, to a (random) limit. Below, we call this phenomena the Sinai law or the Sinai behaviour.

Methods used in [34] (as well as in [20, 36]) rely heavily on the fact that the random walk
is on Z and is allowed to jump only to the nearest sites. Hence the natural question asked by
Sinai in [34]: would it be possible to extend his (and other) results to more general models
such as RW on Z with bounded jumps.

In 1984, Key [24] found a recurrence criterion for RWRE on Z for the so called [, r]
model, where r and / are the maximal lengthes of possible jumps of the walk to the right
and to the left respectively. Key’s criterion was stated in terms of properties of the ‘middle’
Lyapunov exponents of products of random matrices constructed from the parameters of the
environment. This approach was developed by Letchikov [25] who in 1998 obtained a partial
answer to Sinai’s question. He proved that recurrent RWs on Z with bounded jumps in i.i.d.
environment exhibit the Sinai behaviour if the probabilities of jumps of length 1 dominate the
probabilities of other jumps. Further development by Brémont [5-7] of the Key-Letchikov
type approach lead to a number of interesting results for the [—/, r] model. Comments on the
relation between the relevant Brémont’s results and the results of this work will be provided
later.

We turn now to RWRE on a strip. This model was introduced by Bolthausen and Goldsheid
in [2] who also reduced the study of the RWRE with bounded jumps on Z to that of RW on
a strip and proved the recurrence and transience criterion for the strip model. The technique
used in [2] is completely different from that of [5-7, 24, 25].

The approach of [2] was developed in [16] where conditions for the Law of Large Numbers
(LLN) and the CLT for transient RWs were provided in the quenched setting (for almost all
environments). Independently, Roitershtein in [33] obtained the LLN and the annealed CLT
for mixing RE.

A complete answer to Sinai’s question was obtained in [3] where further development
of methods from [2] and [16] allowed authors to prove that, unless the parameters of the
environment belong to a certain algebraic subvariety, recurrent random walks in i.i.d. environ-
ments obey the Sinai law. The description of this subvariety is quite explicit. In particular, this
description was used in [3] to show that recurrent finite range RWs in i.i.d. environments on Z
exhibit either the Sinai behaviour or the CLT behaviour. Moreover, the CLT alternative takes
place if and only if the walk on Z is a martingale.

Quasiperiodic environments form another class of environments where the CLT behav-
iour is observed. The first CLT in the nearest neighbour quasiperiodic setting (under the
Diophantine conditions) is due to [1] in the transient case and due to [35] in the recurrent
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case. Extensions of the above results to the [—/, r] model were obtained in [7]. We note that
the results of [16] imply the CLT for hitting times for uniquely ergodic transient walks on the
strip.

In section 1.2 we describe how our results allow us to obtain a complete classification of
possible regimes in both i.i.d. and quasiperiodic Diophantine environments.

We remark that the papers cited above are only those closely related to our setting. In par-
ticular, since the recurrent random walks are the main subject of this work, we have mentioned
only those papers on the transient case which are related to our approach to the problem. A
comprehensive overview of earlier development of the subject can be found in [4, 37]. More
recent results on the transient walks are contained in [9, 10, 13-16, 29, 31-33].

1.2. Motivation, goal, results, techniques

The main motivation and goal of this paper is to answer the following question: does the Sinai/
CLT alternative mentioned above hold for recurrent walks on a strip?

The principle difference between the [—/, 7] model and the general strip model is that,
unlike in the [/, r] model, the fact that the RW in an i.i.d. RE on a strip does not obey the
Sinai behaviour does not, generally, imply that this walk is a martingale. However, it does
imply ([3]) that the potential of the environment is bounded (see (3.5) for the definition of the
potential).

This boundedness of the potential is the main assumption under which the main result of
the present work (theorem 3.1) holds. It states that:

e Random walks in stationary ergodic environments with bounded potentials satisfy the
CLT.

(The precise formulations of this and other results we discuss in this Introduction
require some preparation and will be given later.)

It is important that this theorem does not use the i.i.d. property of the environment.

The main technical advance of this work is lemma 4.4 which is the crucial ingredient
in the proof of theorem 3.1. This lemma provides a construction of an asymptotically
linear solution to a martingale equation. This requires new technique which is developed
in section 7.

Having said that, we should add that we use widely a number of both technical and
principal results obtained in [2, 3, 10, 16]. Most of these results are listed in section 2
which, on the one hand, is just necessary and on the other makes this paper more self-
contained.

The above CLT criterion implies the following corollary (and answers the question
which has motivated this work):

e [n recurrent i.i.d. environments on a strip there is an alternative: either the walk exhibits
the Sinai behaviour or it satisfies the classical central limit theorem.

This statement largely completes the classification of possible limiting distributions
in i.i.d. environments of the RWRE on the strip (complementing the results obtained in
[2, 3, 10, 16, 32, 33]).

This criterion also allows us to show that:

e Recurrent RWs in Diophantine quasi-periodic random environments generated by
sufficiently smooth functions satisfy the CLT.

Using a different method, we complement this statement by extending to the strip
model the result which was proved in [15] for walks on Z with nearest neighbour jumps
by proving that
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o transient RWs on a strip in environments generated by continuous uniquely ergodic trans-
formations of a compact metric space always satisfy the CLT with positive drift.

Note that the last two statements provide complete classification of the walks in
Diophantine quasi-periodic environments. We would like to emphasize that in the tran-
sient case no smoothness of the uniquely ergodic transformation is required (in contrast
to the recurrent case).

Finally as in [3], also here there is the algebraic side of the problem. We prove that
there exists a collection of proper algebraic subvarieties in the space of transition
probabilities such that:

e [f the RE is stationary and ergodic and the transition probabilities are concentrated on
one of subvarieties from our collection then the CLT holds.

o [f the environment is i.i.d then the above algebraic condition is also necessary for the
CLT.

2. Definition of the model and some preparatory facts

The following notations and definitions are used throughout the paper.
1 is a column vector whose components are all equal to 1.
For a vector x = (x;) and a matrix A = (a(i,j)) we set

[|x]] def max |x;| which implies ||A|| = sup [|Ax|| = maXZ la(i, j)].
! flxl1=1 b
We say that A is strictly positive (and write A > 0), if all its matrix elements satisfy a(i,j) > 0.
A is called non-negative (and we write A > 0), if all a(i, j) are non negative. A similar conven-
tion applies to vectors. Note that if A is a non-negative matrix then ||A|| = ||A1]|.

2.1. The model

We recall the definition of the RWRE on a strip from [2]. Consider astripS = Z x {1,...,m}
and a random walk on S. Let L, = {(n,i) : 1 <i<m} be layer n of the strip. In our
model, the walk is allowed to jump from any point (n,i) € L, only to points in L,_j, or
Ly, or L, ;. To define the corresponding transition kernel consider a sequence of triples
(Pu, Qs Ry), —00 < n < 00, of m x m non-negative matrices such that for all n € Z the sum
P, + O, + R, is a stochastic matrix. That is,

(Pi+Qu+R)1=1 2.1
The matrix elements of P, are denoted P,(i,j), | < i,j < m, and similar notations are used for
O and R,. We now set w = (w,)2 _ . = ((Py, Qn, Ry))52 _, and define

P.(i,j) if z=(ni), z1=(n+1,j),
Ry(ij) it 2= (n0), 21 = (n.)),
Queay ] B T i=(ha=in.
0,(i,j) if z=(ni), z1 = (n— 1),

0 otherwise.

2.2)

For a given w, arandom walk & = (X;, ¥;), > 0, on S with transition kernel Q,, (-, -) is defined
as follows: for any starting point z = (n,i) € S the law P, for the Markov chain ¢ is given by

def

Po.(&=z21,...&=2)= Qu(z2,21)9u(z1,22) - Qu(zi—-1,2%)- (2.3)
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From now on we suppose that each such sequence is a realization of a strictly stationary
ergodic process and let (2, F, P, T) be the corresponding dynamical system with € denoting
the space of all sequences w = (w,)2 _ ., = ((Pyn, On, Ry))2 _ . of triples described above,
F being the corresponding natural o-algebra, P denoting the probability measure on (€2, F),
and 7 being the shift operator on € defined by (Tw), = wy41.

We call w the environment or the random environment on the strip S. Denote by =, the set
of trajectories £ starting at z. P, is the so called quenched probability measure on =,. The
semi-direct product P(dw)P,, ;(d¢) of P and P, is defined on the direct product  x Z; and
is called the annealed measure. The corresponding mathematical expectations are denoted by
E and E,, ..

Remark 2.1. The study of one-dimensional RW with bounded jumps in a RE on Z can be
reduced to the study of the above model. The explanation of this fact was given in [2] and later
in [16] and [3] and shall not be repeated here.

Denote by J the following set of triples of m X m matrices:
TELLP.Q.R) : P>0,0>0,R>0 and (P+Q+R)1=1}.

Let Jo = Jo(P) C J be the support of the probability distribution of the random triple
(Py, On, Ry) defined above (obviously, this support does not depend on n).

Since = JZ, it can be endowed by a metric (in many ways). We shall make use of the
following metric. For w’ = {(P, 0}, R})},w"” = {(P), Q)/,R})} set

romy N~ P = PRI+ 119, = Ol + (IR, — Ry
dw. o)=Y S : (24)
Below, whenever we say that a function defined on €2 is continuous we mean that it is con-
tinuous with respect to the topology induced on € by the metric d(-, -).
The following two assumptions C1 and C2 listed below will be referred to as Condition C
and are supposed to be satisfied throughout the paper.

Condition C:

C1: (P,, Q4. R,), —00 < n < 00, is an ergodic sequence (equivalently, T is an ergodic
transformation of €).

C2: thereisane > 0and apositive integer number ky < oo suchthatforany (P, Q,R) € Jy
and all 4, j € [1,m]

RO <1—e, (I-R)'P)ij) Ze (I-R) QM) >=. (2.5)

Observe that ((I — R,)~'P,)(i,j) is the probability that the walker starting from (n, i) arrives
to (n + 1,j) at her first exit from the layer L,. The meaning of ((I — R,)~'Q,)(i,j) is similar.
We note that condition (2.5) is trivially satisfied if for all (i, ) we have

Pij) =z Qi.j) =& R(i.j) >« (2.6)

However (2.6) never holds for the environments on a strip generated by one dimensional walks
with bounded jumps while (2.5) holds in that case under mild non-degeneracy conditions. We
refer to [3] for a more detailed discussion.
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2.2. Matrices (n, An, aon @and some related quantities

We recall the definitions of several objects most of which were first introduced and studied in
[2, 3]. In these papers, they arise naturally in the context of studying/solving equations related
to different aspects of the asymptotic behaviour of the RWRE on a strip; they will play a cru-
cial role also in this work.

For a given w € (), define a sequence of m x m stochastic matrices ¢, as follows. Fix an
integer a and a stochastic matrix . For n > a define matrices v, as follows. Put ¥, = 1 and
for n > a define recursively

¢n:¢n(a’d)):(I_Rn_an/Jn—l)_an, n:a+l,a+2, (27)

It is easy to show (see [2], lemma 2) that matrices 1), are stochastic. Next, for a fixed n define

G =_lm . 2.8)
As shown in [2, theorem 1] the limit (2.8) exists and is independent of the choice of the initial
matrix .

Next, we define probability row-vectors o, = 0,(w) = (o, (w, 1),...,0,(w,m)) which are
associated with the matrices (,. Let 6, be an arbitrary probability row-vector (by which we
mean that 5, > 0and y i, 5,(i) = 1). Set

def ..
On = lim GaCa -+ Gt (2.9)
a—r—o0
By the standard contraction property of the product of stochastic matrices, this limit exists and does
not depend on the choice of the sequence G, (see [16, lemma 1]). Vectors o,, could be equivalently
defined as the unique sequence of probability vectors satistying the infinite system of equations

0n = 0p—1C—1, nez. (2.10)
Combining (2.9) with standard contracting properties of stochastic matrices ( we obtain for
k > n that

oo Gt = (oe(D)1, ... o (m)1) + O (057) , 2.11)

where 0 < 6 < 1 and the implicit constant in the O(+) term depend only on the width of the
strip m, and the constants € and ko from (2.5).
Define

ap = Qn+l(1 - Rn - QnCn—l)_l’ An = (I _Rn - QnCn—l)_ler (212)
Note that o, P, = Q,+1¢, and hence

Qy :Qn+l(17Rn7an—1Pn—l)_l~ (213)

Remark 2.2. The above definitions imply that when b > n we have
10—ty = OpAp_1Ap_2..Api1 (I — Ry — 0uGumr) ™" (2.14)

Products of matrices A, and «, arise naturally in the analysis of, respectively, the martingale
equation (section 7) and the invariant measure equation (section 6). Even though relation
(2.14) shows that their asymptotic behaviour is essentially the same, an attempt to use just
A’s or a’s would make many of our calculations much more cumbersome. This is the main
reason for introducing both of them. It should be noted that, under ellipticity conditions (2.5),
matrices A have good contracting properties (see lemma 2.3). This may not be so for a’s but
their products can be controlled via products of A’s.

3386



Nonlinearity 31 (2018) 3381 D Dolgopyat and | Goldsheid

The following is a slightly modified version of lemmas 2 and 4 from [3].

Lemma 2.3. Suppose that matrices (P, Q, R) satisfy (2.5), ( is a stochastic matrix, and set
a=I—R—QCand A= a"'Q. Then

(a) [la™"|| < kom™'e™2, (b) A(i,j) > eforalli,j, (c)||A]] < (me)™'. (2.15)
Proof. Notice that (I — R)~'Q 4 (I — R)~'P is a stochastic matrix and hence, due to (2.5),
one has||(I — R)~'Q|| < 1 — me. Hence also

1T =R)~'cll = I -R)~'ect| = [ =R~ Q1| < 1 — me.

Since
%) oo kp—1 %)
=R < DCIRIF =D IRI™H < ko ZIIRII"k° <koZ<1 —e)f = koe™!
k=0 k=0 i=0
anda™'=(I—(I—R)7'QO) "I —-R) ™ =320 (I =R)™'Q¢) *(I = R)~!, we obtain
el < 1= R T =R < koe™' Y (1 = me)t = kom™'e™2
k=0 k=0

which proves (2.15) (a). Next, (2.15) (b) follows from

—(ZIR Q<)>( R~'Qo=(I-R)'Q

=
Finally, [|A]] < 3220 11 = R) 7' OCI* < 3020 (1 — me)* = (me) ™. O
Since matrices A, have properties (2.15) (b), (c), we can set

o A An 1- Aa+lz~7a
v, = lim —,
a——00 HA An 1- AzH—lvaH

(2.16)

As explained in [3, theorem 4] this limit exists and does not depend on the choice of the
sequence of vectors 0, > 0,]7,]| = 1.

Remark 2.4. The components of vectors v, are strictly positive. Moreover, v, > me>1.
Indeed if a vector v > 0, ||[v|| = 1 and a matrix A has properties (2.15) then
min;(Av);  min; > AL )v; €20 € 2

= = /mE

|Av]| max; YAy~ AT lIAl

Next, for any sequence of row-vectors I, > 0, ||I,|| = 1such that 7,Q), # 0, define
= lim 010

2.17
b—o0 Hlbab Loy ( )

Once again, the limit in (2.17) exists and does not depend on the choice of the sequence 1.
Vectors [, and v, play important roles in sections 6 and 7.
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Set
Me = [[Axve—i]| and A = ||l cuel|- (2.18)
Then obviously
1o = Ml AxOk—1 = Mg (2.19)
and for any n > k we have

lApAn—1 . Ao = Moo M 10Ot -] = A A (2.20)

Corollary 2.5. If a sequence of triples (P, On, Ry) —co<n<oo Satisfies (2.5) then
[ ApAn_1 ... Agl] < Consth, ... Ar, 2.21)

where Const = 1/(me?).

Proof. By remark 2.4 and (2.20), ||A, ... Akl = ||An - . - Ak1]| < ||A, .. . Ag(Constog_y)|| =
Const \, ... M. O

Remark 2.6. It should be emphasized that the proof provided in [2, 3] of the existence of
the limits (2.8) and (2.16) in fact works for all (and not just almost all) sequences w satisfying
(2.5). If we define

(W) =GWw), AWw)=4(w), aw)=ayw), o(w)=o0(w)
v(w) =), W) =hw) Aw)=lw), Aw)=Iw) (2.22)

then
G =CTw), A, =A(T"w), «a,=a(T'w), o,(w)=0c(T"w),
Oy =0(T"w), L, =UT"w), A =AT"w), X\ =AT"w). (2.23)

Moreover, the functions ¢(+), v(-), I(+) are continuous in w. The continuity of all other func-
tions is implied by the continuity of (, v, and /. In fact, we have a stronger result, namely the
above functions are Holder with respect to the metric d defined by (2.4), see lemma A.2. This
regularity plays important role in our analysis.

Remark 2.7. Note that m = 1 corresponds to the random walks on Z with jumps to the
nearest neighbours. In this case p, = P,(§41 =n+ 1|, = n) and g, = 1 — p,. The above
formulae now become very simple, namely

wnZCn:L Un:ln:L An:An:ql’ anzj\n:qn+l~

Pn Pn

Remark 2.8. Let us describe the probabilistic meaning of some of the matrices introduced
above. For simplicity, we restrict ourselves to the recurrent case, referring to [2] for the dis-
cussion of the transient regime. The statements we make within this remark are not used in
the sequel and because of that we only briefly explain their proofs. We believe however that
they provide some intuition concerned with the behaviour of the RW in a RE with a bounded
potential.

Denote t, = min{z > 0: & € L,,}. Then
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G(i)) = Polupy = (n+ 1)) €0 = (n,0)).

Thus
on(Jj) = aLiI}lOOPw(ftn = (n,))| §o = (a,i)).

That is, 0, (j) is the probability that the walk first enters level n at site (n,j) ‘provided that it
starts from —oo’. This follows from definition (2.9) and the just mentioned meaning of (’s.

Next, denote R, = R, + 0,C,—1 and let t,(,k) be the k™ hitting time of L,,. Note that

(Qui1RY) (i) = Pu (gtm = (n,j) and X, < nforallt < 0| & = (n+ 1, i)) .

Then the formula a,, = Qi1 Y pep R shows that

o, (i,j) = E,,( number of visits to (n, j) before t,11|§ = (n+ 1,i)).  (2.24)

The probabilistic meaning of matrices A is similar to « but it is slightly more cumbersome so
we will not provide it here.
Applying (2.24) twice we get

E,,(number of visits to (n — 1,j) before t,11| & = (n + 1,i))

= Z [E., (number of visits to (n, k) before t,11| & = (n+ 1,1))
k=1
x E,,(number of visits to (n — 1,j) before t,| & = (n,k))]

:(anoc,,,l )(l’l)
A similar argument shows that

(antn—1 ... cug)(i))
= E,,(number of visits to (n — [, j) before t,1| & = (n + 1,1)). (2.25)

In this paper we study walks in a bounded potential (see below definition 3.5 of the potential).
If the potential P, is bounded then (2.14) and lemma 2.3 imply that also In ||, a,—1 . . . Gy i]]
is bounded. Relation (2.25) now shows that the walks in bounded potentials are characterized
by the condition that there is a constant K > 1 such that for each z;,z, € S the following
property holds:

If the walk starts from z; then the expected number of visits to z, before the first return to z;
is between 1 /K and K.

This provides some intuition about the walks studied here.

2.3. Recurrence and transience criteria
The following recurrence and transience criteria were proved in [2].

Theorem 2.9 ([2], theorem 2). Suppose that Condition C is satisfied. Then for P-almost
all w the following holds:

RW is recurrent, that is P, (liminf, ,. X, = —oco and limsup, . X, = c0) =1, iff
E(lnA) =0
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RW is transient to the right, that is P, (X; — +00 as t = 00) = 1, iff E(In \) < 0,
RW is transient to the left, that is P, ,(X; — —oo as t — 00) = L, iff E(In \) > 0.

3. Statement of results

3.1. The central limit theorem

We shall now state sufficient conditions under which the asymptotic behaviour of a recurrent
RW on a strip is described by the CLT. As far as we are aware of, the only result of this kind
was previously established by Brémont in [5] for the [/, 1] model which is a particular case
of the [—1, r] model and the latter, in turn, reduces to the strip model (as has already been men-
tioned in the introduction).

Theorem 3.1. Consider an ergodic environment satisfying (2.5). Assume that there exists a
Sunction B : Q@ — R such that

B(Tw)

3 -3
) and E(5° 4+ 67°) < oc. (3.1)

Alw) =

Then there is a constant D > 0 such that for P-almost all environments

% = N(0,D).

Conditions (3.1) is related to matrices A,. It will be convenient to have an equivalent condi-
tion related to matrices «,,. Namely, we shall prove the following

Lemma 3.2. For ergodic environments satisfying (2.5) condition (3.1) is equivalent to the
following one: there exists a function 3 : £ — R such that
- B(T _ _
Mw) = 65 w) and E(3° + 7% < 0. (3.2)
Bw)

Moreover; the functions [3, B can be chosen so that for some constant ¢ > 0
¢ 'B(w) < Bw) < cBw). (3.3)
In section 3.2 we show how to apply the above results to independent and to quasiperiodic
environments.
Remark 3.3. Due to ergodicity, the existence of 3 (or 3) implies that it is unique up to a

B(Tw) _ B(w)
B(T:) = ij) for a.a. w

multiplication by a constant. Indeed, if say 3 and (G satisfy (3.1) then
and hence % = Const.

Remark 3.4. If conditions (3.1), (3.2) are satisfied then it follows from (2.20) that for any

n=>k "
T"w
||A,,An,1 .. .AkUk,] H = /\n e /\k = %,
~ - 2 Tn+1
||ln+lan05nfl ...OékH :)\n...)\k = M (34)
B(Tw)
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The following definition of random potential was used in [3] and is analogous to the one
introduced in [35].

Definition. A potential is a random function of n defined by

In||A,..A]| ifn>1
Po(w) =P, =00 ifn=20 (3.3)
—1I1HA()...A,,+]|| 1fn§ —1.

By lemma 2.3, all matrix elements of matrices A, are uniformly separated from 0. This,
together with corollary 2.5, implies that the map (w,n) — P, is bounded if and only if
In ||A, .. .Agvr—1] is bounded which, in turn, is equivalent to (3.1) with bounded S. In one
direction, this statement is immediate due to (3.4). The other direction is implied by a well
known result stated in lemma C.1 in appendix C.

Conditions (3.1) and (3.2) may still appear artificial. In fact, as shown in [11], they are
necessary and sufficient for the existence of the invariant measure on the space of environ-
ments which in turn is one of the basic ingredients of the proof of theorem 3.1. Moreover,
as will be seen in the next subsection, these conditions can be checked for some interesting
classes of environments.

3.2. Applications

The following lemma describes one of the most important classes of environments for which
conditions (3.1) and (3.2) are satisfied.

Lemma 3.5. For i.i.d. environments satisfying (2.5) conditions (3.1) and (3.2) hold iff the
RW is recurrent but does not exhibit the Sinai behaviour. In this case the functions 3, 3 can be
chosen to be continuous.

Corollary 3.6. A recurrent random walk on a strip in an i.i.d. environment either exhibits
the Sinai behaviour, or satisfies the CLT.

To give more examples of environments satisfying conditions of theorem 3.1 we need the
following definition. Call a set A C J admissible if there exists an i.i.d. environment P such
that the support Jy(IP) = A and the corresponding random walk is recurrent and satisfies the
CLT. Note that, due to corollary 3.6 and the continuity of functions 3, 3, equations (3.1) and
(3.2) hold for all (not merely almost all) environments in A%, Thus theorem 3.1 implies the
following corollary.

Corollary 3.7. If A is admissible and P is a stationary ergodic measure on A% then X, is
recurrent and satisfies the CLT for P almost every w.

Another class of examples is described by the following result.
Lemma 3.8. Suppose that there is a vector f = { fi}i, such that M,, = X,, + fy, is a mar-
tingale. Then (3.1) and (3.2) hold.

Corollary 3.9. The CLT holds for ergodic one dimensional environments where the posi-
tion of the walker is a martingale.
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We have already mentioned above that the results of [3] show that the CLT behaviour
of recurrent walks is exceptional for the i.i.d environments. The same need not be the case
in other settings. For example, consider quasiperiodic random walks. Namely, let T¢ be a
d-dimensional torus and w € T¢. Set

(Pu» Qns Ry)(w) = (P, Q,R)(w + 1), (3.6)

where 7 is a vector in R?, the sum w + ny is defined (mod 1), and (P, O, R) are C" matrix
valued functions on T¢. The transformation w — (w + y)(mod 1) preserves the standard
Lebesgue measure on the torus and the sequence defined by (3.6) is stationary with respect to
this measure. We assume that v is Diophantine, that is there are constants C, o such that for
eachk € Zk € Z

[(v.k) — k| > Clk|7°. (3.7)

Remark 3.10. Conditions (3.7) are satisfied whenever the coordinates of the vector ~
are rationally independent algebraic numbers. Additionally, they are satisfied for Lebesgue-
almost all ~.

Theorem 3.11.  Assume that the matrices (P, Q, R)(w) satisfy (2.5) for all w € T¢, the walk
is recurrent, vy satisfies (3.7), and

r>d+o, (3.8)

where r is the smoothness of the RHS of (3.6). Then (3.1) holds (and hence the random walk
satisfies the CLT).

In order to obtain a complete description of RW in quasiperiodic Diophantine environments
we have to consider transient RWs in these REs. To do that we extend the CLT result from
[15] which applies to transient RWs on Z with jumps to the nearest neighbours in a uniquely
ergodic environment to transient RWs on a strip in a uniquely ergodic environment. We note
that quasiperiodic environments are a particular example of uniquely ergodic environments.

To formulate this extension, consider the following setting. Suppose that

(Pus Qns Ry)(w) = (P, O, R)(f"w) (3.9)

where f is a homeomorphism of a space Q2 and (P,Q,R) are continuous matrix valued
functions on 2. Recall that a map f : Q@ — Q is called uniquely ergodic if for any continuous
real valued function ® the limit

N—1
Jim 2::0 B(f"w) (3.10)

exists for all w € 2 and does not depend on w. We recall ([8, theorem 1.8.2]) that if €2 is a
compact metric space then the unique ergodicity of fis equivalent to uniform in w € 2 conv-
ergence of the averages (3.10) and also equivalent to the existence of a unique f-invariant
measure P(dw) on Q (with the sequence (3.9) being stationary with respect to this measure).
If fin (3.9) is uniquely ergodic we call (P,, Q,, R,) a uniquely ergodic environment.

The next result was proven in [15] for the one-dimensional nearest neighbour walk (the
case m = 1). In the Appendix, we prove it for arbitrary strip.

Theorem 3.12. A transient RW on a strip in a uniquely ergodic environment generated by
a continuous (P, Q, R) satisfies the CLT.
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A more precise statement of this result including the normalization is given in theorem B.2.

Corollary 3.13. CLT holds for RW on a strip in a Diophantine quasiperiodic environment
satisfying (3.8).

Proof. If the RW is recurrent the result follows from theorems 3.1 and 3.11 and if it is tran-
sient then it follows from theorem 3.12. O

Remark 3.14. Alili in [1] proved the CLT for RW in smooth Diophantine quasiperiodic
environments with jumps to nearest neighbours on Z. Brémont in [7] extended this result to
RW with bounded jumps (the [/, 7] model) in a quasiperiodic environment generated by a
smooth enough function on the torus. In the recurrent regime, Brémont’s result is a particular
case of theorems 3.1 and 3.11. In the transient regime, theorem 3.12 gives a much more gen-
eral result as it works for all uniquely ergodic environments and requires only continuity of
the generating probabilities.

Lemma 3.5 and corollaries 3.6 and 3.7 lead naturally to the question of characterizing the
admissible sets. By corollary 3.7 a subset of an admissible set is admissible. Recall that the
Zariski closure A of a set A is the smallest algebraic variety containing A. The next result
shows that maximal admissible sets are algebraic subvarieties.

Lemma 3.15. The Zariski closure A of an admissible set A is admissible.

3.3. Organization of the paper

Our main result, theorem 3.1, is proven in sections 4-7. Namely, section 4 describes the main
ingredients of the proof, section 5 presents, in the case of the nearest neighbour RWs on Z,
the simplest version of the formulae for the density of the invariant measure and the martin-
gale which play a major role in the proof of the main result. Section 6 constructs the invariant
measure for the environment viewed from the particle, and section 7 proves the existence of a
martingale which is asymptotically linear with respect to the Z-coordinate of the walk (the lat-
ter is often called the harmonic coordinate for the system). The uniqueness of the martingale
is established in section 8. Section 9 contains the proof of lemmas 3.2 and 3.5. Lemma 3.15
is proven in section 10. Section 11 contains the proof of lemma 3.8. Two sections deal with
quasiperiodic environments. Namely, theorem 3.11 is proven in section 12 and theorem 3.12
is established in appendix B.

4. Main ingredients in the proof of the CLT

The proof of the main result of this paper (theorem 3.1) explained at the end of this section fol-
lows from lemmas 4.2—4.4. But first, we need the following definition.

Definition. The environment seen by the particle is the random process (wy, ¥y,), n > 0,
where @, = T%w and &, = (X, Y,) is the position of the walk at time 7.

Denote by Q= x {1,2,..,m} the phase space of the process (&,,Y,) and let
PYPx {m~'} be the probability measure on ) with P being the measure on the set of
environments € (as in section 2) and {m~!} denoting the uniform distribution on {1, ..., m}.

This process is a Markov chain (which is a simple but important observation, see e.g. [4]).
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Remark 4.1. This process was introduce by S. Kozlov [22, 23], as well as Papanicolau-
Varadhan [30] and played an important role in a number of papers (see [4, 11] for futher refer-
ences). The papers which are more closely related to this work are [6, 7] where the environ-
ment viewed by the particle approach played a major role in the context of the [—/, r] model
and [33] where it was used for the first time in the context of the RWs on a strip (but in
transient regime).

Lemma 4.2. [f (3.2) holds then the environment seen by the particle has an invariant
measure (1(dw, dy) on Q which is absolutely continuous with respect to P.

Lemma 4.3. The process (in, Yy) is ergodic with respect to 1.
Lemma 4.3 is a well known result. Its proof can be found in [4, theorem 1.2].
Lemma 4.4. If(3.1) holds then there is a function M(x,y) = M,,(x,y) such that:

(1) For almost all w M,, = M,,(X,,, Y,)) is a martingale.
(2) The increments of M are stationary and square integrable. More precisely, for any

le {-1,0,1},7, Ye {1,...,m} the function
5,7(X.Y) =M(X+1Y) - M(X.Y)
is stationary with respect to X translations and square integrable with respect to the
measure ji(dw, dy)P,, (o)
(3) For a.e. w, the ratiow — ¢, c#0,forally € {1...m}as|x| = cc.
We note that the assumption that 3 and 3! are in L* is only used in the proof of part (2) of
lemma 4.4. A weaker assumption that 3 and 3~! are in L' would suffice for lemma 4.2.

Lemmas 4.2 and 4.4 imply theorem 3.1 in a standard way which we now recall for
completeness.
Proof of theorem 3.1. Observe that lemma 4.4 implies that

Xn _ Mn

Vi eyn
Indeed, if |X,,| > n'/*then (4.1) holds due to lemma 4.4(3) while if |X,,| < n'/*then (4.1) holds
since both the RHS and the LHS are o(1). Due to (4.1) it suffices to prove the CLT for M,,. By
corollary 3.1 on page 58 of [18], it suffices to show that % converges for P-almost all w to a
non-random limit, where

D, = iEw ([M(Xk+1, Yerr) — M(Xe, YOI | (Xou Yo) - . (X, Yk))
k=0

(I+o0(1))+o(1) as n — oc. “4.1)

= iEw ([M(Xk+1’ Yest) — M(Xe, Yl | (X, Yk)) .
k=0

Using the ergodicity of the (@,, ¥,) process and stationarity of the increments of M we obtain
that

. D
lim =% = /Ew,(O,y) ([M1 —Mo]z) p(dw, dy)

n—oo n

completing the proof of the theorem. |
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5. Nearest neighbour walks on Z

Below we present proofs of lemmas 4.2 and 4.4 in the case of the nearest neighbour walks
on Z where the formulae for p, and M, are simple. They may seem to be a result of a guess
rather than a derivation. In fact, we borrow the form of p, from [35] and the formula for M,
results from the analysis of a solution to (5.1) considered, for example, in [12]. (Of course,
they could also be obtained as simplified versions of formulae for p, and M, we derive in
sections 6 and 7.)

Note that in the case of walks on Z (see remark 2.7), condition (3.1) takes the form

_ 4n —\, = BnJrl’
Pn Bn

A, where (3, = B(T"w).

Proof of lemma 4.2 for Z. Let p be the density of the invariant measure and
pn(w) = p(T"w). Then p satisfies

Pn = Pn—1Pn—1 + qn+1Pn+1-

We claim that this equation has a solution of the form p, = ﬁ Indeed

Pn—1 1 1 Pn 1 < Pn 1
DPn—1Pn—1+Gut1ppy1 =——— + —=—+—F=—|1+—| = = Pu.
Gn—1Bn—1 But1 B qnBn B qn Gnn

O

Proof of lemma 4.4 for Z. 1If X,, t > 0, is the nearest neighbour walk on Z in random
environment w then M, (X;) is a martingale if the sequence {M,, = M,,(n), n € Z} satisfies
the equation

M, :pnMn+1 +‘ZnMn71- (51)

The space of solutions to (5.1) is two-dimensional and we claim that a solution linearly inde-
pendent of M,, = 1 has the form

Z;lzl B] ifn > 1,
0 ifn=0,
—Y B ifn<—L

M, =

Let us check this claim, say for n > 1. In this case

PnMyt1 + guMy—y = pn(Mn + BnJrl) + Qn(Mn - 5n) =M, + pnBuy1 — GnBn = M,.

6. Environment seen by the particle

Proof of lemma 4.2. We will construct the density p :  x [1,...,m] — R as a solution to
(6.1) below. Denote by p = p(w) the row-vector with components p(w, i) and let p, = p(T"w)
be a vector with components p, (i) = p(T"w, i). For p to be a density of the invariant measure
of the Markov chain (Txfw, Y:), t > 0, the corresponding vectors p, should satisfy the system
of equations
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Pn = pn+1Qn+1 + ann + pn—an—l’ —00 < n < 0. 6.1)

The restriction of this equation to a finite strip @ < n < b was analyzed in [2, section 3].
The solution found there satisfies certain (reflecting) boundary conditions and has a meaning
different from the one we are interested in here.

However, we borrow from [2] the following fact. For any m-dimensional vector & set
pi = h and define p! for n < b — 1 by the recursion p}! = p!, | a,, where the matrices , are
defined in (2.12). Then the vectors p! solve (6.1) for all n < b — 1. For the sake of complete-
ness, we shall check this statement. Obviously, if n < b — 1 then

o =hay_y... . (6.2)
and hence

p2+1Qn+1 + pﬁRn + pz—lpn—l = hab—l v an+l(Qn+1 + aan + anan—lpn—l)
()
= hop_1...0p4 10 = pﬁ,

where () follows from the relation & = Qnt-1 + @Ry + -1 Py—1 which in turn is equiv-
alent to (2.13).
Next, note that for vectors /, defined in (2.17) it follows from (2.19) and condition (3.2) that

- (T w) 1
1oy = Mply = ———, and s0 =— 110 = = L. .
o B " By F Y
Remember that [, = [(T"w). Set
1 1 m
pw) = —=—I(w), where Z=E | = lw,i)| . 6.4
©= 73 [ﬁ(w);< )} 64

Then the second equation in (6.3) has the form p, = ppy1Qn, where p, = p(T"w) for all
n € 7Z. Hence, the p,, n € Z, solve (6.1) which means that p defined by (6.4) is the density of
the invariant measure of our Markov chain. O

7. Construction of the martingale

In this section we prove lemma 4.4. The idea behind the proof is the following one. Let M(-)
be a martingale with the properties listed in lemma 4.4. Consider z = (x,y) € Sand a,b € Z
such that x —a > 1,b — x > | and let 7, be the first time the walker reaches L, or LL;,. Set

Pas(2) = Pu(Xr,, = alé =2)
(we recall the notation & = (X, ;). By the Optional Stopping theorem
M(z) = E:(M(&r,,)) = Ewz(M(&r,,)1x,,,=a) + Ew:(M(&r,,) Ix., —b)-

Tab

If z is far from both L, and L, then the distributions of Y-, 1x, —ainL,and Y- 1y, —pin

L, is approximately given by p,,(z)o, and (1 — p,;(z))o, respectively. So we expect that
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Ew,z (M(f‘ra_h ) IXT

a

,‘,,:u) 2 Pab(2)Ma, EW,Z(M(an,b)IXan:b) ~ (1 = pap(2))Mp,

where My, = 37| o())M(b,j), Ma = 3212 0 (j)M(a, j) (see (2.9) and remark 2.8 explain-
ing the meaning of o). This would give

M(z) = pap(z) (Mg — My) + M,

that is M(z) is obtained from p,4(z) by an affine transformation. In the proof below we will
show using the formula for p,,(z) obtained in [2], that a proper rescaling of p,;, indeed gives
a linearly growing martingale.

Proof. Letm, denote a vector with components m,, (i) = M(n, i). For the process M(X,, Y;),
t > 0, to be a martingale with respect to the measure P, ., the vectors m, should satisfy the
equation

m, = £, My, + ann + Qnmn—1~ (71)
The analysis of the solution to this equation on a finite part of the strip, a < n < b, has played
a crucial role in [2]. Inevitably, some calculations are similar to those in [2] but here the analy-
sis goes in a very different direction. We would like to emphasize that, apart of the fact stated
in (7.7) and the preceding comment, the proof presented below is self-contained.

As in [2], define a sequence of m x m matrices @,, n > a + 1 by setting ¢, = 0 and com-
puting ¢, recursively

©n = (I - R, — Qn‘ﬂn—l)_lpn’ ifn > a. (72)

The solutions to (7.1) with boundary conditions m, = 0, m;, = § can be presented in the fol-

lowing form:
My = QnPnt1---Pp—1f, asn<b. (1.3)

For n = a or n = b this statement is obvious and for a < n < b it can be verified by substitut-
ing the right hand side of (7.3) into (7.1).

In order to construct a linearly growing solution of (7.1) we consider the solution m,, corre-
sponding to f = 1 (in which case m, (i) = p,,((n,))) and study some related limits of this so-
lution as a — —o0,b — oo so that|a| > b. So, from now on and to the end of this section our
b>0anda < —b.

Set A, = {, — @u, where (, are matrices defined in (2.7), (2.8). Following [2], we present
this difference as

Aﬂ = (I 7Rn - Qngn—l)_lpn - (I 7Rn - Qn@n—l)_lpn

= (I —Ry— 0sGi1) "' Qo1 (I = Ry — Quipn—1)'Py = A"A”"% 4)

Iterating the last relation gives, (see [2, equation (2.13)]) that if |n| < b then

An = An .. -A—b-HA—bQO—b—H - Pne (75)

The immediate corollary from here is the inequality || A,|| < [|Ax - .. A—py1]] |A—p|| which in
turn, together with (2.21) and (3.1), gives

[An]l < Const A, .. A1 [|A—]| < H(w,b) A (7.6)
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where

Max|,|<p ﬁ(T”'HoJ)
,5(T‘b+1w)

We note that in order to complete the argument the precise form of the RHS of (7.6) is not
important, we just need that it is linear in || A_, || and the prefactor H is uniform in » and a.

Next, it follows from (3.1) that E(In ) = 0 and hence by theorem 2.9 the walk is recur-
rent. Recall (see [2, formula (2.3)]) that ,(i,j) is the P,, (,-probability that a RW starting
from (n, i) reaches layer n + 1 before layer a and that it hits layer n + 1 at (n + 1,j). So, due
to recurrence, we have that for any i

H(w,b) = Const

m
Z on(i,j) = Py (ni){ reach layer n + 1 before a} — lasa — —co.  (7.7)
=1

Since A, = (,, (7.4) implies that A, > 0. Therefore
m
[Anll = [[AuL]] = [[(C — a1 =1 = miinZ%(iJ) —0asa — —oo.
j=1

Define e,(a) = ||A_;||. Obviously

ep(a) — 0asa — —oo and b is fixed. (7.8)

Next, (7.4) also gives
An = AnAnfl (gn - An) = AnAnflcn - AnAnflAm (79)

Substituting A, | = A, 1A, 21 — Ap_1A,_2A,_1only in the term A, A,_(, we obtain
An = AnAn—lAn—ZCn—ICn - AnAn—lAn—ZAn—ICn - AnAn—lAn-

Continuing this process we obtain

n—1
Ap=Ap. A pi Dy pyr G — Z ) P VAR VAVYAVERTOTE S e (7.10)
k=—b

where by convention A, ... Ay =1 ifk+ 1 <nand G2...¢ =1 if k + 2 > n. Equality
(7.10) together with (7.6) implies that

Ay =Ay. . Ay 1A pir... G+ O(e5(a)H (b, w)*D). (7.11)
Applying similar reasoning to (7.3) with f = 1 and ¢; = (; — A; gives
m, = 1-— Z Cn - Ck,IAkaJr] ce Cb*l 1+ (’)(E,%(a)H(w,bsz)
n<k<b—1

=1— > G- G A+ O(e}(a)H(w, b)),

n<k<b—1

Substituting (7.11) into the last equation gives

my=1— > G GorAe. . Apwoy + O(5(a)H(w, b)*b?)
n<k<b—1
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where w_, = A_,1. Now set
_ 1-m,
med = :

[wsll”

ﬁlf,‘b satisfies (7.1) since it is a linear combination of two solutions. Note that

Z Cuov o CGhotAg . A pypu_p + O(gb(a)H(w,b)zbz), (7.12)

n<k<b—1

where u_, = w_/||w_p||.
We shall now compute the limit of m%? as a — —oo. To this end note that

A_ ool
lim u_p, = lim porAatiCaPatt b
a—r—co as—oc [|[A_p. .. Auy1Caart - - - o—p1|

=0y, (7.13)

CaPati1-P—pl
T CaPat1p—pl]|”
limit ¢ — —oo in (7.12) and using (7.8) we obtain the following solution on (—b, b):

Z GrvoCem1Ak - o A_pp1 Uy

where we first use (7.5) and then proceed as in (2.16) with v, = Passing to the

n<hk<b—1
By (2.20) and (3.4) we have
B(TFw
Ak...A7b+1’07b = /\k~~-/\7b+lvk = ﬁvk (714)
and by (2.11)
Cn P Ck—lvk = (O’k(l)l, ey ak(m)l)vk + 0 (ak—n) = (Jk"()k)l + 0O (ek—n) 5 (715)

where here and below we denote (kak) Zl 1 0k (i)vg (i). We thus see that

b—1 b—1
BT w BT w)(ow)l + > BT w)O (6")
k=n k=n

is also a solution to (7.1) on (—b, b) and so is

b & gty Zﬂ(TkJr ) (o001
n—1 b—1
=- ZB(THIW)(UWUI + Zﬁ(TkHw)(’) (0.
k=0 k=n

The series > o, B(T"1w)O (0"_”) converges absolutely because of (2.11) (note that the
terms of the last sum do not depend on b). Hence setting M(x, -) = lim,_, o, M2 we obtain a
solution

x—1

M(x.)) =Y BT w)(oww)1 + B(T*w), (7.16)

k=0
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where
B(w) = Z 5(Tk+1w)(C0 e Ck—lvk — (akvk)l).
k=0

It remains to check statements (2) and (3) of lemma 4.4.
Denote by E# the expectation with respect to the measure p. To check that (2) holds, we
have to show that

DB (B, (Mo(Xi1, Vi) = Mu(X,, Y))°) (7.17)

— R# (Ew (Mo (X1, Y1) — Mo (Xo, YO))Z) < 0. (7.18)

Note that equality (7.18) holds since g is an invariant measure of the Markov chain
(TXw,Y,), t > 0. Now D can be presented as

D=E Zp(w,i) > Qu(0i), (5.) (M (0,i) — Mus(s.))* |

s=0,£1;1<j<m

where Q,,((0,1), (s,j)) is defined by (2.2). Equation (7.16) implies that

M, (0,1) — My (s.j)] < C Y 0°B(T*w),
k=0

where, as before, C and 6 depend only on the € from (2.5). This inequality, together with (6.4)
and (3.3), implies

DLCE| Y 6057 (w)B(T"w)B(Tw)

k0,420

But

E(5™! ()B(T) B(T0)) < 3E(B7() + 5(Thw) + 5 (Tw)) = 3E(5 () +25°(w)

finishing the proof of property (2).

Remark 7.1. Note that in the case of a RWRE on Z with nearest neighbour jumps condition
(3.1) can be replaced by E(B(w) + 87! (w)) < 0o. On a strip, we need the stronger require-
ment (3.1) because of the term B in (7.16).

Finally, property (3) follows from the ergodic theorem. In fact, for the martingale con-
structed above, ¢ > 0 since (3, oy and vy in the RHS of (7.16) are all positive. O

8. The Liouville theorem

The construction of the martingale in the previous section was based on a choice of two par-
ticular solutions of the martingale equation on finite intervals. The following lemma shows
that the final result is essentially unique. And even though this lemma is not used in the rest
of the paper, it provides an important contribution to the understanding of the whole picture.
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Let 91 denote the space of martingales satisfying conditions (1)—(2) of lemma 4.4 and such
that if M(-,-) € 91 then

lim
x—Foo X

(Clearly, we can scale the martingale from lemma 4.4 to achieve this condition.)

Lemma 8.1. If M,M;, € 9 then M| — M, = Const.

Proof. Let M(x,y) = M, (x,y) — M(x,y). Then theorem 3.1 implies that, for almost all w,
f;"ﬁ is tight. Since M(x,y) grows sublinearly, for almost all w, % — 0 in probability with

respect to the P, ; measure on the space of trajectories. On the other hand the proof of theorem
3.1 shows that 2&e¥s) _y 0 jff D2 5 0 where
vn n

Do = SR (£ (W00 o) — B I IX4)).
k=0

By Ergodic theorem,
. Dn Y Tr \2
lim — = [ E, oy [(Ml — My) } p(dw, dy)

and this expression vanishes iff M; = My which implies, due to the stationarity, that M is a
constant. Il

9. Equivalent conditions for boundedness of the potential

Proofoflemma3.2. Supposethat 3(-)satisfying (3.1)exists. Definea, = I — R, — QnCy—1.
Inthesenotations, wehave A, = a,; 10, andq,,_; = Q,,anill andhencea,A, = a,_1a,—1 = O,.
Multiplying all parts of this equality by vectors /, and U,—1 we obtain

lnanAnvnfl = lnanflanflvnfl = annvnfl
and this, by (2.18) and (2.19), gives

(lnanvn) An - (ln—lan—lvn—l))‘n—l - annUn—l-

Since [, > 0 and v, > 0 for all n and since Q,, has no zero columns (because of (2.5)), also
[,0nUs—1 > 0 and therefore (/,a,v,) > 0 for all n. We thus can write

-
e = e Sy O
We now set
Bw) = (l(w)a(w)o(w))B(Tw) = (I(w)a(w)o(w)A(w))B(w). 9.2)
With this definition of 3(w), equation (9.1) reads \,_; = Bfgjfi) which in particular proves

that (3.2) holds.
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Similarly, (3.2) implies (3.1).

It remains to notice that the factor /(-)a(-)v(-)A(+) in (9.2) is a continuous function of w and
this, together with strictly positivity of this function and compactness of the space of environ-
ments satisfying (2.5), implies (3.3). O

Proof of lemma 3.5. Suppose that the walk is recurrent but does not exhibit the Sinai be-
haviour. It is proven on pages 273-274 of [3], that in this case condition (iii) of theorem 6 of
[3] holds. This condition says that there exists a function F defined on the space of pairs (¢, w),
where ¢ is a stochastic matrix and w is a unit vector such that for each triple (P, Q,R) € J

Bw

— _ P -1
B = o) — F (1~ R = 00" ). ©3)

where B= (I — R — Qd))_lQ. To obtain (9.3) from equation (2.19) of [3] we observe that,
due to recurrence, theorem 2.9 tells us that E(In A) = 0 (note that this expectation is denoted
by Ain [3]).

Applying (9.3) to (P, Q,R) = (P, Qn, Ry) and (¢, w) = ({y—1,0n—1) We obtain

11’1)\,, = F(Cnflavnfl) - F(Cnavn)-
This proves (3.1) with
Blw) = e~ FET )a(r™w)),

It remains to note that 3 is continuous due to continuity of F which is evident from the explicit
formula for this function, namely formula (4.11) from [3].

Conversely if (3.1) and (3.2) hold then the RW does not exhibit the Sinai behaviour by
theorem 3.1. O

10. Periodic boundary conditions

Here we describe a criterion for recurrence and the CLT in terms of periodic approximations
to our random environment. We remark that the results below are analogous to the Livsic
theory for hyperbolic dynamical systems (see [27, 28]).

Given N let 7(n,y) denote the invariant measure for the random walk on
[0,N — 1] x [1...m]with periodic boundary conditions. Let 7 denote the vector with comp-
onents 7Y (y) = 7V (n, ).

Proposition 10.1. Suppose that Condition (2.5) is satisfied and that for any N > 1 the
support of the measure P contains all periodic sequences generated by periodic repetition of

finite sequences of the form ((Py, Oy, R,,))f:/:_o1 € JY. Then condition (3.1) holds for all w € Q
with | In 8| bounded if and only if for each N and for each ((P,, Qn, R,,))i:’:_o1 € JY the follow-
ing identity holds
70 Qol = 7y_ Py_11. (10.1)
The proof consists of two steps.

Lemma 10.2. (3.1) holds with|In 3| bounded if and only if for each N and for each environ-
ment w such that TNw = w we have

XAt Ao = L. (10.2)
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Proof. By lemma C.1 we need to show that (10.2) is equivalent to

n—1

> InA\(Tw) (10.3)
j=0

being uniformly bounded inw € 2 and n € N.
(a) If (10.3) is bounded for each w it is in particular bounded for periodic w and hence

kN—1

N—1
Z In \(T/w) =k Zln Aj
j=0 j=0

is uniformly bounded in k which is only possible if (10.2) holds.
(b) Suppose that (10.2) holds. Given w, N let @ be the environment such that &; = w; for
Jj €{0,...N — 1} and such that @ is periodic with period N. Then due to lemma A.2

N—1 N—1 N—1 N—1
S IANTiw)| = > InATw) =Y InA(T7@)| = | [In \Tw) — In \(T7@)]
j=0 j=0 j=0 i=0

Jj=

N—1 N—1
< Const Z ds(Tjw, chD) < Const Z 2~e(min(GN=)) < Const
j=0 Jj=0

where s is the Holder exponent of In A given by lemma A.2. It follows that (10.3) is
bounded.
O

Lemma 10.3. For each periodic environment (10.1) and (10.2) are equivalent.

Proof. Since periodic environments are stationary and ergodic, theorem 2.9 implies that
in this case recurrence is equivalent to 1 being the top eigenvalue of any of the products
Anyk—1...Ag, which is what (10.2) says.

On the other hand, in the periodic environment, the recurrence holds if and only if the walk-
er has zero speed. Let (x) denote the integer part of x/N. Then the speed is zero if and only if

G)

t—00 1

But 2(X(t + 1)) may differ from h(X(z)) only if X(z) is comparable to either 0 or to N — 1
mod N. Therefore by the Ergodic theorem for Markov chains

X
lim Lt(t)) =y Pv—11—m) Qol,

=0.

—00

so the walk is recurrent iff (10.1) holds. O

Proof of lemma 3.15. For given matrices
(Po, Q0. Ro), (P1,Q1,R1), - -, (Pn—1,On—1,Rn_1)

3403



Nonlinearity 31 (2018) 3381 D Dolgopyat and | Goldsheid

the entries " (n,y) are rational functions of the coefficients. Accordingly equation (10.1) can
be written as

Fn((Po, Qo, Ro), (P1,Q1,R1) ... (Py—1,0On—1,Rv-1)) =0

where Fy is a certain polynomial. In other vgords 3.1) holfis if and only if for each N, Fy
vanishes on A”. But then it also vanishes on A" and hence A is also admissible. [l

11. Stationary case

Proof of lemma 3.8. The condition that M,, = X,, + fy, is a martingale is equivalent to
f=P+R+Q)f+(P—0)1 forall (P,Q,R)€ . (11.1)
Let J. be the set of all triples (P, Q,R) € J satisfying (2.5) and (11.1). Consider the ran-

dom environment where (P,, R, 0,) are iid and are uniformly distributed on 7. ;. Then by
[18, theorem 4.1] given € there exists § > 0 such that

P(1X,| > 6v/n) >1—¢

for large n. Accordingly, X,, does not exhibit the Sinai behaviour. Therefore by lemma 3.5,
(3.1) and (3.2) are satisfied for all environments in (7 f)Z. O

12. Quasiperiodic case: proof of theorem 3.11

We turn now to the quasiperiodic case with the sequence (P,, O, R,) defined by (3.6). Note
that by stationarity there exist functions f LA, @, D, 1 N, X on T¢ such that

Glw)=Cw+ny), Ayw)=Aw+ny), a(w)=a(w+ny),

0(w) = 0w+ 7)., L) =lw+my), Mw) =Aw+m), Auw) = Aw+n).
Lemma 12.1. The functions (f,;l, a, 0,1, and 5\ are C" smooth.

This lemma is proven in appendix A.
Next, by theorem 2.9 ([2, theorem 2]) recurrence is equivalent to

/ In A(w)dw = 0. (12.1)
Td

N0~W [21] tells us that if ® € C’('JI‘d) has zero mean and (3.7) and (3.8) are satisfied then there
is @ € C%(T?) such that
n—1

®(w) = D(w + ) — P(w) and hence Z D(w +ky) = B(w +ny) — O(w).

=0 (12.2)
Applying (12.2) with ® = In X we obtain (3.1).
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Appendix A. The invariant section theorem

The following result is useful for ascertaining the regularity of auxiliary sequences of matrices
considered in this paper.

Let X and Y be complete metric spaces.

Consider a skew product transformation F:XxY —XxY given by
F(x,y) = (f(x),g(x,y)) and such that:

(1) F is a continuous transformation;
(2) f: X — X is a homeomorphism;
(3) g(x,-) : Y — Y is a fiber contraction, that is, there exists # < 1 such that

d(g(x,y"),g(x.y") <0d(y,y").

Proposition A.1 ([19, theorem 3.5)].

(a) F admits an invariant section. That is, there exists a continuous map I' : X — Y such that

8(xI'(x)) = I'(f(x)).
(b) If Fis C°, fand f~" are Lipshitz, and O[Lip(f~")]° < 1then I belongs to a Holder space
C5

(c) If X is a manifold and Y is a manifold with boundary and g(x, ) : Y — Int(Y) for each
x € X and if F is a C" diffeomorphism such that

OlLip(f ")) <1 (A1)
then I'is C" smooth.
Lemma A.2. The maps
w— (W), w = AW), w = a(w), w = w),w — (W), w— AMw), w— A(w)
defined by (2.22) are Holder continuous with respect to the metric d defined by (2.4).

Proof. We start with the smoothness of (. To this end we apply proposition A.1 to the map
F defined on the product of 2 x Z, where Z is the space of stochastic matrices by the formula

Fi(w,¢) = (Tw, (I = Q)¢ — R(w))~'P(w)).

Thus fis a shift 7 and so Lip(T~") = 2. On the other hand due to [10, proposition D.1], there
are constants K > 0,6 < 1 which depend only on the width of the strip m and on ¢ in (2.5)
such that

d(Fi(w.¢), Fi(w.¢")) < KO"d(¢".¢").

Applying proposition A.1 to F}* where ng is such that K™ < 1 we get that  is C° where 6 is
such that

3405



Nonlinearity 31 (2018) 3381 D Dolgopyat and | Goldsheid

20m g < 1,

(Since ng can be arbitrarily large we can optimize with respect to ng and conclude that
w — ((w) is C° provided that 2°0 < 1.)

Since w — ¢(w)is €%, (2.12) shows that w — A(w) and w — §(w) is C° as well.
Next, A(w) are positive matrices and therefore preserve the positive cone in R™. Moreover
they act as contractions in the so called Hilbert metric (see e.g [26]). Consider now the map F»

acting on ) x S’fﬁl by the formula

_ (1w Aw)v
) = (1o i)

where S’_”fl is the set of unit vectors with positive coordinates. This map is a fiber contraction
in the metric induced on S’_,"fl in a natural way by the Hilbert metric. Thus proposition A.1
implies that w — v(w) is C%. The Holder property of w — I(w) is established similarly by
looking at the projective action of a.

Finally the Holder property of A(w) follows from the Holder property of A and v, and the
Holder property of :\(w) follows from the Holder property of v and /. O

Proof of lemma 12.1. The proof of lemma 12.1 is similar to the proof of lemma A.2
except that now we apply proposition A.1 to skew products with the base map being toral
translation f(w) = w + ~ rather than the shift of 2. Thus f~!(w) = w — 7 is an isometry and
thus Lip(f~') = 1. Accordingly, (A.1) holds for all r implying that {,A, &, 9,1, X and A are C”
smooth. O

Appendix B. CLT for transient uniquely ergodic environments

In this section we consider uniquely ergodic environments defined by (3.9). Below, whenever
there is no danger of confusion, we write, with a slight abuse of notation, f~'w for f~!(w)
and, more generally, f"w for f"(w).

By stationarity there exist functions ¢, A, 7, A(w) = ||A(w)9(f~'w)|| on 2 such that

G(w) =C(f"w),  An(w) =A(f'w),  wa(w) =0(f"w),  An(w) = A(f"w).

Applying C° invariant section theorem (proposition A.1(a) and lemma A.2) we conclude
similarly to section 12 that the above functions f , A, 7and hence also \ are continuous.

Without loss of generality we assume that X; — +ocoast — coand hence A = E(In ) < 0.
We recall the general results proven in [16] for ergodic environments satisfying the following
assumption:

E ([[An(@) .- Ax(@)i @)oo(@)|P) = E ([AU"w) . A(w)A@)])

decays exponentially as n — oo.
(B.1)

In our case (B.1) is satisfied. Indeed, due to the unique ergodicity

Sy InA(flw)

n

— X asn — oo uniformly in w. (B.2)
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Hence for any € > 0 there is N, such that for all n > N, and all w € 2 there is ¢(n, w) satisfy-
ing |e(n,w)| < € and such that

[[4n(w) - . . A2 (@)A1 (W)vo ()] = Aw)A(fw) ... A(f"'w) =

n—1
exp <Z In X(f"w)> = exp(n(A + €(n,w))) (B.3)
i=0

which implies the exponential decay in (B.1).

Remark B.1. One more immediate corollary of (B.3) is the following inequality which
holds uniformly inw € Q foralln > 1:

1An(@) - - Az (W)Ar (W) = [[An(w) . .- Az (w) A (w)1]]

B.4
< Const||A,(w) . .. Az (w)A; (w)vo|| < Conste™/2. (B.4)

This follows from the property vy > me?1 explained in remark 2.4.

The CLT holds for any initial distribution of the walk. In order, to simplify several formulae
below we choose the initial distribution as follows:

Py 0918w(0) = (0,i)} = 00(i), 1<i<m, (B.5)

where oy is defined by (2.9). We would like to emphasize that the proof presented below
works, with minor modifications (see e.g. the comment following formula (B.6)), for arbitrary
initial distribution.

Letus list some properties of the vectors o,, which will be used below. It follows directly from
(2.10) that 0, = 0%Cx . . . ,—1 for any k < n (here we also use the relation (,(w) = ¢(f"w)).
Next, o¢(w) is a continuous function of w. This fact follows form proposition A.1(a) applied
to Q x U, where U is the set of probability vectors of dimension m. The corresponding skew
product transformation is given by (w,y) — (fw, y((w)). The related fiber contraction prop-
erty is the standard property of stochastic matrices ¢ with {(i,j) > ¢, where € is the same as in
(2.5) (because (I — R — Q¢)~'P > (I — R)~'P; see proof of (2.15) (b)).

In what follows, we use the following notations and conventions. & = &, (7) = (X(¢), Y(¢))
is the walk in RE w starting from a random point in layer 0 which is distributed according to
(B.5). More precise notations, such as e. g. &, o,y (¢) will also be used where appropriate. The
same convention applies to P, and E|,,.

As in remark 2.8, denote t, the hitting time, by the RW, of layer n, t, = min{z : X, = n}.
Recall that if a RW is recurrent or transient to the right then the entries of the matrix ¢, have
the following probabilistic meaning:

Cu(i,j) = P, (RW starting from (n, i) hits L,4; at (n + 1,j)).
Since £ is a Markov chain, it follows for n > 1 that
Py 0, (€(tn) = (n.0)) = 0, (i), 1<i<m. (B.6)

(If the initial distribution of the walker is different from o then o, in (B.6) has to be replaced
by some &, which is exponentially close to o,,.)
It is proven in [16] that if (B.1) holds then there are positive constants v and o such that
with probability 1
E,(t,) 1

1 (B.7)
n A\
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and
tn - Ew (tn) . . . . . . .
7\f converges in distribution to a standard normal distribution. (B.8)
o\n
Define b, by the condition
Ey(te,—1) <n < Eu(ty,).

We are now in a position to prove the precise version of theorem 3.12.

Theorem B.2. X:-Yo converges to a standard normal distribution almost surely.
ov3/2\/n

Proof. We need the following estimate of the probability of return from layer L, to L, which
is uniform in w: there is a # > 0 such that for alla, n,a <n,n >0 and all w €

P, (RW visits L, after visiting L,) < Conste~ ("= (B.9)

This estimate is a strengthening of lemma 3.2 from [10]. Its proof relies strongly on the
unique ergodicity property of the environment and is different from that of lemma 3.2 in [10].

We also need two strengthenings of (B.7) for uniquely ergodic environments. First, as
k — o0

E,(t 1
Eult) — — uniformly in w (B.10)
k v
and hence
E,(tir—t Eqi,(t 1
(te=t) _ B v (%) — — uniformly in i and w. (B.11)
k k v
Second
E,(t1) is bounded (B.12)
and hence
E,(ts,) =n+ 0(1). (B.13)

The proofs of (B.9), (B.10) and (B.12) will be given later. Let us first see how these facts imply
the theorem. Given x we have

Pw(tbn+\/7lx+lnn < n) - Pw(An) < Py (Xn b, > \/ﬁx) < Pw(thn+\/7zx < n)

where A, is the event that X returns to level b, 4+ /nx after visiting level b, + x\/n + Inn.
By (B.9)

Const

P, (A,) < Conste /" = 7

n

Therefore to complete the proof of the CLT for X it suffices to obtain the asymptotic behaviour
of P, (te,+x, < n) under the assumption that k,//n — x as n — oo. Next,

to, ik — Eoltorin) _ 1~ Ey ("bn+kn)>
Vb, + Ky S Vbt ke '

Pw(thn+k)1 < ”) =P, <

3408



Nonlinearity 31 (2018) 3381 D Dolgopyat and | Goldsheid

By (B.11) and (B.13), we have
Eu(to,+1,) = Eu(ts,) + Epto, ,(t,) = n+ O(1) + Epu, , (t, )

This, together with b, = nv + o(n) and Ej, ,(t,) = ka/V + o(ky), shows that

i T Ewltotn) _ —x

oo b, F kv

So (B.8) gives

—e/() o=/
. <) —
nliglo P, (tp,+k, < 1) /_OO W ds

proving the CLT for X.

It remains to establish (B.9), (B.10) and (B.12). We start with (B.10) and (B.12).

Denote by ¢, the column vector whose i coordinate ¢, (i) is E,, .0,i) () (the expectation of
t, conditioned on £(0) = (0,)). By [16, equation (4.27)] forn > 1

n—1
ey = Z Co---G ZA Ajipt (I — QjiGicr — Rj—1) ™1,
Jj=0

where we use the following conventions: forany k x ... G =1, Aj ... Ajri—1 = 1ifi =0, and
Aj...Aj_iy1 = A;ifi=1.Since E,(t,) = .1, 0o(i)e,(i), we have

E,(t,) = ooe, = ZUJ ZA A (I = QiGim — Rii) ™1

Jj=0 i=0

and in particular

w(th) _UOZAO AT = Qi€ =R 7'

Estimate (2.15) (a) means that ||(I — Q—;(—;—1 — R—;)""|| < Const and hence

) < Const Y [|Ag ... A_ip]|-

Due to (B.2) and (B.3)
i—1

l|A; .. Ao|| < Const [ [ M(fw) (B.14)

proving (B.12). Next, denote u(w) = E, (t;). Obviously E (t,) = ZJ o 'u(fJw) and since
u is continuous the unique ergodicity implies that Z

=0 ' u(fiw) converges uniformly in w
which proves (B.10).
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We next prove (B.9). Define events A,, def {RW visits L, after visiting L,} and
Banp def {RW visits L, before L, after visiting L, }, where n < b. Due to the choice of the
initial distribution o of the walk (see (B.5)) and the fact that the walk is transient to the right
we have

Pw (Aa,n) = Pw,(0,~)(Aa,n) - Pw,(n,')(Aa,n)’ (B15)

where the distribution of the starting point in L, is now given by o, (see (B.6)). So, from now
on we shall be proving (B.9) for the walk starting from n.
Observe next that

Poony(Aan) = 1= lim Py ) (Banp)- (B.16)

We shall now compute P, .. (Bynp) in terms of of products of matrices ¢ defined in (7.2).
Let hyyp = (Buap(J))1<i<m be a column vector with components /g5 (f) = P (n)) (Bans)
(in words, they are the probabilities of reaching b before a starting from (n,j)). It is routine
(see [2]) that vectors h,,; solve equation (7.1) with h,,;, = 0 and h,;, = 1 and therefore,
by (7.3),

by = Onntt - @11 = (G — Au) (Gt — Dugr) - - (Gt — D)1,

where as before A; = ¢; — ;. Since (§; — A)1=1—- A1 > (1 — ||Aj])1and || 4] < L, we
obtain by induction (on b) that

(o]

hass = (1= Al = 1 Auri]) - (1= Apma DT> [ 1=l ] 1.

Jj=n

But then Py, (,.y(Banp) = 0nhanp > 1 — Zf:n |A;|| and therefore (B.16) gives

Py (Aan) < D 1IA]- (B.17)
Jj=n

From (7.11) (with —b replaced by a) we have for any n > a
[An(@)] = |An(w) - - - Aat1 (W) Aapati - - - ull < [[An(W) - - Agyr (W]

B.18
Due to (B.4) and since (B.18) holds uniformly in w, we obtain that ( :
| An(w)]| < Conste™ "7,
where # = —\/2. Finally this together with (B.17) implies
Py (Aan) < Conste ™ (=)0
and this finishes the proof of (B.9). O

Note that theorem B.2 requires a random centering by b,(w). On the other hand if fis a
translation on T¢, (P, Q, R) are C", and (3.7) and (3.8) hold then o and hence u are C". We
now settt = [, u(w)dw and apply (12.2) to u — . This gives u(w) = it + d(w+7) — d(w),
where & is continuous and hence
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: : 1
E,(ty) = nu+ @(w +ny) — ¢(w) = % + O(1), where . .

Accordingly b, = vn + O(1) and we obtain

Corollary B.3. In the quasiperiodic environment satisfying (3.7), (3.8) and v # 0
(X, — nv)
Vnvi/2g

converges to a standard normal distribution where o is the constant from (B.S8).

Appendix C. Bounded ergodic sums

The following lemma is a variation of the Gottschalk—Hedlund theorem [17, theorem 14.11].
We include the proof of this lemma for the sake of completeness and because it is very short.

Lemma C.1. Let T be an ergodic transformation and ® be a measurable function. Then
there exists a constant K such that for almost all w and alln € N

n—1

Y o(Tw)| <K (C.1)

J=0

if and only if there exists a bounded function ® such that

P(w) = &(Tw) — D(w). (C2)

Proof. (C.2)implies (C.1) since in that case Z]";OI ®(Tw) = ®(T"w) — (w). Conversely,
if (C.1) holds then one can set ®(w) = — liminf,_, o, Z]";Ol O (Tw). O
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