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ABSTRACT

Objective: Medical word sense disambiguation (WSD) is challenging and often requires significant training with

data labeled by domain experts. This work aims to develop an interactive learning algorithm that makes efficient

use of expert’s domain knowledge in building high-quality medical WSDmodels with minimal human effort.

Methods: We developed an interactive learning algorithm with expert labeling instances and features. An ex-

pert can provide supervision in 3 ways: labeling instances, specifying indicative words of a sense, and highlight-

ing supporting evidence in a labeled instance. The algorithm learns from these labels and iteratively selects the

most informative instances to ask for future labels. Our evaluation used 3 WSD corpora: 198 ambiguous terms

from Medical Subject Headings (MSH) as MEDLINE indexing terms, 74 ambiguous abbreviations in clinical

notes from the University of Minnesota (UMN), and 24 ambiguous abbreviations in clinical notes from Vander-

bilt University Hospital (VUH). For each ambiguous term and each learning algorithm, a learning curve that

plots the accuracy on the test set against the number of labeled instances was generated. The area under the

learning curve was used as the primary evaluation metric.

Results: Our interactive learning algorithm significantly outperformed active learning, the previous fastest

learning algorithm for medical WSD. Compared to active learning, it achieved 90% accuracy for the MSH corpus

with 42% less labeling effort, 35% less labeling effort for the UMN corpus, and 16% less labeling effort for the

VUH corpus.

Conclusions: High-quality WSDmodels can be efficiently trained with minimal supervision by inviting experts to la-

bel informative instances and provide domain knowledge through labeling/highlighting contextual features.

INTRODUCTION

Medical documents contain many ambiguous terms, th e meaning of

wh ich can only be determined from th e context. For example, th e

word “ice” may refer to frozen water, meth amph etamine (an addic-

tive substance), or caspase-1 (a type of enzyme); and th e acronym

“PD” may stand for “peritoneal dialysis” (a treatment for kidney

failure), “posterior descending” (a coronary artery), or “police

department.” Assigning th e appropriate meaning (a.k.a. “sense”) to

an ambiguous word based on th e context is referred to as th e process

of word sense disambiguation (WSD).1 ,2 WSD is a critical step for

many medical natural language processing (NLP) applications, such

as text indexing and categorization, named entity extraction, and

computer-assisted ch art review.

Th e research community h as proposed and evaluated many

WSD meth ods in th e past, including supervised learning,3–5 semi-

supervised learning,6–8 and knowledge-driven9,1 0 approach es. Col-

lectively, th ese studies h ave sh own th at a substantial volume of

h igh -quality training data annotated by h uman experts is required

for existing WSD models to ach ieve desirable performance.
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However, annotating training data is a labor-intensive process, and

th e quality may deteriorate as th e volume required to be annotated

increases.1 1 Th is is particularly true for medical WSD, as assigning

correct sense for ambiguous medical terms requires great attention

and h igh ly specialized domain knowledge.

To address th is issue, th e mach ine learning community h as been ex-

ploring approach es th at involve h uman experts just-in-time during a ma-

ch ine learning process, in contrast to conventional approach es wh erein

h uman experts are only involved in creating static annotated training or

evaluation datasets. Such approach es are generally referred to as

“active” learning. An active learning (AL) approach 1 2 prioritizes instan-

ces to be labeled and presents to h uman experts th e most informative

ones th at would h elp th e algorith m ach ieve desirable performance with

fewer iterations. Th is family of learning meth ods h as sh own far superior

performance over th at of random sampling in medical WSD tasks.1 3

In our previous work,1 4 we described ReQ-ReC (RR) expert, a

step furth er by incorporating an information retrieval component in

AL th at allows h uman experts to identify and label typical instances

using th eir domain knowledge th rough keyword search . It demon-

strated better performance th an AL in medical WSD tasks. How-

ever, even th ough experts are brough t into th e loop, existing

interactive learning approach es still suffer from th e “cold start”

problem. Th at is, with out any prior knowledge about a new WSD

task, an algorith m based on artificial intelligence (i.e., a statistical

WSD classifier) needs a large amount of training data to reach a rea-

sonable accuracy. In contrast, well-trained h uman experts do not

h ave th e cold start problem because th ey come to a WSD task with

establish ed domain knowledge, wh ich h elps th em directly determine

th e correct sense of an ambiguous word.

In th is paper, we describe a novel interactive learning algorith m

th at is capable of directly acquiring domain knowledge from h uman

experts by allowing th em to articulate th e evidence th at leads to

th eir sense tagging decisions (e.g., th e presence of indicative words

in th e context th at suggest th e sense of th e word). Th is knowledge is

th en applied in subsequent learning processes to h elp th e algorith m

ach ieve desirable performance with fewer iterations, th us solving th e

cold start problem. Th at is, besides labeling instances, th e expert can

provide domain knowledge by 2 means: (1 ) to specify informative

words of a sense and (2 ) to h igh ligh t evidence words in labeled

instances. Th ese interaction modes enable experts to directly express

th eir prior knowledge and th ough t process wh en th ey perform

WSD, with out adding much burden. Th e 2 ch annels complement

each oth er: it is sometimes h ard to specify strong informative words

a priori, but easier to h igh ligh t th ese words in situ. Th e statistical

classifier can learn from both labeled instances and informative

words (i.e., labeled features), and query new labels using AL.

Simulated experiments on 3 WSD corpora sh ow th at expert’s do-

main knowledge gives th e model a “warm start” at th e beginning

stage, significantly accelerating th e learning process. On one bio-

medical literature corpus and two clinical notes corpora, th e pro-

posed algorith m makes better use of h uman experts in training WSD

models th an all existing approach es, ach ieving th e state-of-th e-art

performance with least effort.

METHODS

Instance Labeling vs Feature Determination
Below, we use an example to illustrate h ow th e interactive learning

algorith m works. Suppose th e word “cold” (or its spelling variants,

e.g., “COLD”) is mentioned across a set of medical documents.

Depending on th e context, it could mean “ch ronic obstructive lung

disease,” “common colds,” or “low temperature.” Th e task of WSD

is to determine th e correct sense of each appearance of th is word

(i.e., each instance of th e word).

A h uman expert performing th is task may apply a number of rules

based on h er or h is domain knowledge. For example, sh e or h e may

know th at wh en all letters of th e word are spelled in capital case, i.ee,

“COLD,” it is more likely th e acronym of “ch ronic obstructive lung

disease” th an any oth er possible senses. Th is judgment could be fur-

th er strength ened wh en th ere are indicative words (or ph rases) such as

“ch ronic,” “obstructive,” or “lung” in th e adjacent text. Likewise, if

th e word is not spelled in all capitals, and is accompanied by words

such as “common,” “cough ,” and “sneeze,” it likely means “common

cold.” For certain senses, contextual cues may appear in oth er forms

rath er th an indicative words. For example, a numeric value followed

by a unit of temperature (e,g., “5 degrees C”) may give out th at th e

word “cold” in th e current context likely refers to “low temperature,”

instead of a medical condition.

Unfortunately, such domain knowledge is not leveraged by con-

ventional supervised learning approach es, wh ich only ask h uman

experts to label th e sense of th e instances of an ambiguous word,

rath er th an capture h ow h uman experts make such judgments. In

oth er words, conventional approach es only try to “infer” h uman

wisdom from annotated results, instead of acquiring it directly—

even if such wisdom is readily available and can be formalistically

expressed. Th e interactive learning algorith m described in th is paper

addresses th is limitation by allowing h uman experts to create la-

beled features in addition to labeling instances.

A labeled instance for an ambiguous word is a [context, sense]

pair, following th e conventional definition in supervised learning.

For example, a labeled instance of th e word “cold” can be:

[“The patient developed cold and experienced cough
and running nose.”, common cold].

A labeled feature for an ambiguous word is a [feature, sense] pair,

wh ere th e feature is a textual pattern (a word, a ph rase, a skip n-

gram, or a regular expression in general). Th e pair encodes th e

(most likely) sense of th e ambiguous word if th e feature appears in

its context. For example, h uman experts can express domain

knowledge of th e sense of “cold” by creating th e following labeled

features:

[“COLD”: All cap, chronic obstructive
lung disease]

[“chronic”: Non all-cap, chronic obstructive
lung disease]

[“obstructive”: Non all-cap, chronic obstructive
lung disease]

[“lung”: Non all-cap, chronic obstructive
lung disease]

[“common”: Non all-cap, common cold]
[“cough”: Non all-cap, common cold]
[“sneeze”: Non all-cap, common cold]

. . .

Human experts can also express domain knowledge by h igh ligh ting

a contextual cue after labeling an instance of “cold,” as in

[“The tissue was exposed to a cold environment
(5 degrees C).”, low temperature].

Th e h igh ligh ted text snippet essentially creates anoth er labeled fea-

ture for “cold”:
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[“<digit> degrees C”, low temperature].

A labeled feature encodes certain domain knowledge th at h uman

experts use to solve a WSD task, wh ich can be directly applied to train

mach ine-learning models. As a result, it improves WSD performance

and, at th e same time, reduces th e amount of manual effort required

to create a large quantity of labeled instances as training data.

Overall Workflow
Th e interactive learning algorith m consists of several distinct com-

ponents; illustrated in Figure 1 .

Wh en th e h uman expert can come up with good features for

each sense of an ambiguous word, th e algorith m can directly use

th em to train an initial WSD classifier. Wh en such domain knowl-

edge is not available, we assume th at th e h uman expert can identify

at least one instance for each sense. Sh e or h e can th en label th e

instance and h igh ligh t contextual cues in th at instance. Th is kicks

off th e interactive learning process.

Th e algorith m contains an instance selector th at determines h ow

to best select instances from an unlabeled pool to present to th e h u-

man expert. Th en, th e h uman expert labels th e sense of th e instance,

followed by potentially suggesting features th at were used as th e

“rationale” for th e labeling decision (i.e., feature labeling). Next,

th e algorith m uses both labeled instances and labeled features to re-

train th e WSD classifier, th en begins anoth er iteration by selecting

additional instances for manual labeling till a satisfactory WSD re-

sult is ach ieved. Th is process is described in more detail in th e next

few sections.

WSDModel Training
Th e algorith m of training and retraining a WSD model consists of 2

stages: feature representation and parameter estimation.

Figure 1. Interactive learning with labeled instances and features.

Table 1. Summary Statistics of Three Evaluation Corpora

Corpus Corpus size Average number

of instances per word

Average number of

senses per word

Average number of

tokens per instance

Average percentage of

majority sense (%)

MSH 1 98 1 90 2 .1 2 02 .84 54.2

UMN 74 500 5.5 60.59 73.4

VUH 2 4 1 94 4.3 1 8.73 78.3

Table 2. Description of Baseline Methods

Random sampling Active learning ReQ-ReC expert Informed learning

Th e algorith m selects th e next in-

stance at random from th e

unlabeled pool

Th e algorith m selects th e next in-

stance using th e minimum

margin criterion.1 2 ,1 3

Th e algorith m extends active

learning by inviting h uman

experts to search for typical

instances for each sense using

keywords1 4

Th e proposed interactive learning

algorith m

Start with one labeled instance

for each sense

Start with one labeled instance

for each sense

Start with one labeled feature for

each sense

Start with one labeled feature (or

one labeled instance with a

h igh ligh ted feature) for each

sense

Later iterations use random sam-

pling to obtain instance labels

Later iterations use minimum

margin to obtain instance

labels

Later iterations use minimum

margin to obtain instance

labels

Later iterations use minimum

margin to obtain instance

labels
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Dynamic feature representation

In conventional supervised learning, a model uses a fixed set of fea-

tures th rough out th e training process. For text classification, th is

feature set is often all of th e words in th e corpus. In our interactive

learning algorith m, labeled features may contain arbitrary textual

patterns th at are difficult to know ah ead of time. Rath er th an trying

to include all possible features from th e beginning as conventional

mach ine-learning meth ods do, we use a dynamic feature representa-

tion by starting with a set of base features and gradually expanding

it as new features emerge. Th is meth od h elps to prevent severe over-

fitting wh en th e size of th e feature set is large.

We use presence/absence of unigrams as th e base features to rep-

resent an instance: xbase 2 RV , wh ere V is th e number of distinct

unigrams. A labeled feature defines a real-valued function /ð"Þ of an
instance, such as “1 if th e instance contains ‘COLD’ in all caps; 0

oth erwise.” Suppose we h ave m labeled features at iteration t, th en

an instance is represented by a (Vþm)-dimension vector

x ¼ ½xbase; / 1ð Þ; . . ./ mð Þ'.

Parameter estimation

We use logistic regression with linear kernel as th e WSD classifier. If an

ambiguousword h as 2 senses,we build a binary classifier, oth erwise th ere

is a softmax multiclass classifier. Logistic regression classifiers output

probability predictions in ½0; 1 ', wh ich are th en used by th e AL algorith m.

Below, we describe th e algorith m for training th e logistic regres-

sion model. Suppose at a certain iteration, we h ave l labeled instan-

ces fðx ið Þ; y ið ÞÞgli¼1 , and m labeled features fð/ jð Þ; y jð ÞÞg
m

j¼1 . For an

ambiguous word with k senses, y ið Þ or y jð Þ is a one-h ot k-dimensional

vector th at encodes th e assigned sense. We train a logistic regression

model pðyjx;wÞ by minimizing th e following loss function (w

denotes th e parameters of th e model):

J wð Þ ¼
Xl

i¼1

Xk

c¼1

( y ið Þ
c logp ycjx ið Þ;w

! "

þ k1
Xm

j¼1

Xk

c¼1

( y) c
jð Þlogp ycj/ jð Þ;w

! "
þ k2

2
kwk22 (1 )

Figure 2. Aggregated learning curves of 198 ambiguous words in the MSH corpus. (A) interactive learning algorithms in comparison, including the best- and

worst-case scenarios of “informed learning”. To achieve 90% accuracy, “random sampling” required 49 instance labels, and “active learning” required 26 in-

stance labels. “ReQ-ReC expert” used labeled features as instance search queries and required 17 instance labels to achieve 90% accuracy. “Informed learning”

directly learned from feature labels and only required 15 instance labels to achieve 90% accuracy. (B and C) drill-down analysis of informed learning using imper-

fect feature labeling (highlighting) oracles, respectively. Even using imperfect feature labeling oracles, variants of “informed learning” still significantly outper-

formed both “active learning” and “ReQ-ReC expert,” according to Wilcoxon signed rank test (see Table 3).
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pðycj/ jð Þ;wÞ is th e expectation for any instance containing fea-

ture / jð Þ to h ave sense c. Let Sj be th e set of instances (both labeled

and unlabeled) with non-zero feature values for / jð Þ, th en

p ycj/ jð Þ;w
! "

¼

X
i2Sj

pðycjx ið Þ;wÞ

jSjj
:

)y
ðjÞ
c

¼ ðyc þ eÞ=ð1 þ keÞ is th e smooth version of feature label distri-

bution, because unlike labeled instances, labeled features sh ould be

interpreted as preferences rath er th an as absolute assignments. k1
* 0 and k2 * 0 are trade-off weigh ts for different loss terms. In th is

paper, we set e ¼ 0:1 ; k1 ¼ k2 ¼ 1 .

In th e loss function (1 ), th e first term is th e cross-entropy loss on

labeled instances; th e second term is th e cross-entropy loss on la-

beled features; and th e th ird term is a regularization term of parame-

ter w. If th e loss function only consists of th e first and th e th ird

term, th en it reduces to th e loss function of a traditional softmax lo-

gistic regression classifier. Th e second term expresses a preference

on th e expected beh avior of th e WSD classifier, i.e., th e presence of

a feature strongly suggests a label (i.e., th e most probable sense).

Th is is a so-called generalized expectation criterion.1 5 Because of th e

second term, (1 ) is a nonconvex function. We use gradient descent

to find a local minimum for th e model parameter w. In practice, we

find th e local minimum yields a sufficiently performing classification

model.

Instance Selection
Th e proposed algorith m kicks off th e first iteration by a labeled fea-

ture for each sense. Once th e WSD classifier pðyjx;wÞ is trained, AL
can be applied to select a small set of unlabeled instances to present

to h uman experts for labeling. Specifically, we use minimum

margin-based AL as th e instance selection algorith m wh ich h as

sh own superior performance in classification settings.1 2 ,1 4 It selects

th e unlabeled instance x th at satisfies th e smallest

Q xð Þ ¼ pðy1 jx; hÞ ( pðy2 jx; hÞ, wh ere y1 and y2 are th e most and

second most probable senses. Intuitively, th e classifier cannot deter-

mine wh eth er y1 or y2 is th e correct sense, th erefore it needs to so-

licit input from h uman experts.

Figure 3. Aggregated learning curves of 74 ambiguous words in the UMN corpus. (A) interactive learning algorithms in comparison, including the best- and

worst-case scenarios of “informed learning”. To achieve 90% accuracy, “random sampling” required more than 50 instance labels, “active learning” required 23

instance labels, and “ReQ-ReC expert” required 21 instance labels. “Informed learning” required only 15 instance labels. (B and C) drill-down analysis of in-

formed learning of imperfect feature labeling (highlighting) oracles, respectively. Even using imperfect feature oracles, variants of “informed learning” still signif-

icantly outperformed both “active learning” and “ReQ-ReC expert”, according to Wilcoxon signed rank test (see Table 3).
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Evaluation Method

Evaluation corpora

In th is study, we used th ree establish ed medical corpora to evaluate

th e performance of th e interactive learning algorith m.

The MSH corpus contains a set of MEDLINE abstracts automat-

ically annotated using MSH indexing terms.1 6 Similar to h ow it was

h andled in previous work,1 3,1 4 for th is corpus, we only included am-

biguous words th at h ave at least 1 00 instances, providing adequate

data for training and evaluation. Th is gave us 1 98 ambiguous

words, including 1 02 abbreviations, 86 nonabbreviated words, and

1 0 abbreviation-word combinations.

The University of Minnesota (UMN) corpus contains 74 ambigu-

ous abbreviations from a total of 604944 clinical notes created at th e

Fairview Health Services affiliated with th e University of Minnesota;

each abbreviation h as 500 randomly sampled instances.1 7 Each in-

stance is a paragraph in wh ich th e abbreviation appeared. Four abbre-

viations h ave a general English sense (FISH, IT,OR, US).

Th e Vanderbilt University Hospital (VUH) corpus contains

ambiguous abbreviations from th e admission notes created at th e

Vanderbilt University Hospital.1 8 Similar to th e MSH corpus, we

only retained 2 4 abbreviations th at h ave more th an 1 00 instances.

Each instance is a sentence in wh ich th e abbreviation appeared. One

abbreviation is a loanword in English (AD as in “ad lib”).

Th e summary statistics of th ese 3 evaluation corpora are sh own

in Table 1 (more details can be found in Supplementary Appendix

Tables A1 –A3). Th e MSH corpus h as th e rich est context in an in-

stance (i.e., h igh est average number of tokens per instance), and th e

least skewed distribution of senses (i.e., lowest proportion of domi-

nating majority senses). Because th e main objective of th is study was

to evaluate th e performance of th e interactive learning algorith m in

comparison with oth er mach ine-learning algorith ms, we did not fur-

th er tune th e context window size for each corpus. Th e 3 corpora

sh are 3 abbreviations (SS, CA, RA). MSH and UMN sh are anoth er

6 abbreviations. UMN and VUH sh are anoth er 5 abbreviations. Th e

same abbreviation may h ave different senses in different corpora.

Baseline Methods

To comparatively evaluate th e performance of th e interactive learn-

ing algorith m, we included 3 oth er mach ine-learning algorith ms in

Figure 4. Aggregated learning curves of 24 ambiguous words in the VUH corpus. (A) Interactive learning algorithms in comparison, including the best- and

worst-case scenarios of “informed learning”. To achieve 90% accuracy, “random sampling” required more than 50 instance labels, “active learning” required 31

instance labels, “ReQ-ReC expert” and “Informed learning” required 26 labels. (B and C) drill-down analysis of learning curves of imperfect feature labeling

(highlighting) oracles, respectively. Even using imperfect feature oracles, variants of “informed learning” still significantly outperformed “active learning”,

according to Wilcoxon signed rank test (see Table 3).
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th e analysis. As sh own in Table 2 , th ese algorith ms vary mainly

based on h ow labeled instances or features are obtained from h uman

experts.

Simulated human expert input

To derive evaluation metrics, we simulated h uman expert input us-

ing labeled data from each corpus, wh ich is a meth od commonly

used to evaluate AL algorith ms.1 2 Th is meth od reduces potential

influences th at may be introduced due to performance variation by

h uman experts. More specifically:

1 . Labeling instances: We used th e validated labels in th ese evalua-

tion corpora as th e oracle of instance labels.

2 . Labeling features: To implement simulated h uman expert input

(i.e., th e “oracle”) th at provides labeled features, we computed

information gain for each unigram feature using th e entire la-

beled corpus,1 9 and selected th e most informative features as or-

acle features. A feature is associated with a sense wh en th e

feature co-occurs most frequently with th e sense. To make it

more realistic, we simulated th e oracle th at knows th e q -th best

feature among all unigram features, wh ere q ¼ 1 , 5, 1 0. Th is ora-

cle was also used in th e “RR expert” algorith m wh en composing

th e first search query. Th e labeled features generated in th is way

were mostly th e words in th e definition of each sense.

Since, in reality, a h uman expert is unlikely able to come up with all

features ach ieving th e h igh est information gain, we also imple-

mented a weaker, supplementary oracle th at better resembles true

h uman performance in realistic WSD tasks. It simulates th e action

of th e expert highlighting a feature in a labeled instance wh ile sh e or

h e is doing th e annotation. In th e first iteration, a random instance

in each sense was given to th e oracle. It identified th e most informa-

tive n-gram (n¼ 1 , 2 , 3) feature in th at instance. We used n-grams

instead of unigrams to allow th e oracle to h igh ligh t consecutive

words in a sentence. To make th e oracle more realistic, we simulated

th e oracle th at knows th e q -th best n-gram feature in th at instance,

wh ere q ¼ 1 , 2 , 3.

Evaluation metrics

We used learning curves to evaluate th e cost-benefit performance of

different learning algorith ms. A learning curve plots th e learning

performance against th e effort required in training th e algorith m. In

th e context of th is paper, learning performance is measured by clas-

sification accuracy on a test corpus; and effort is measured by th e

number of instances th at need to be labeled by h uman experts. For

each ambiguous word, we split its instances into an unlabeled set

and a test set. Wh en a learning algorith m is executed over th e unla-

beled set, a label is revealed only if th e learning algorith m asks for it.

With more and more labels becoming available, th e WSD model is

continuously updated and its accuracy continuously evaluated, pro-

ducing a learning curve.

To reduce variation of th e curve due to differences between th e

unlabeled set and th e test set, we ran a 1 0-fold cross validation: 9

folds of th e data are used as th e unlabeled set and 1 -fold used as th e

test set. Th e learning curve of th e algorith m on a particular ambigu-

ous word is produced by taking th e average of th e 1 0 curves. Th e

overall aggregated learning curve of th e algorith m is obtained by

taking th e average of all curves on all ambiguous words in an evalu-

ation corpus.

In reality, h uman experts are unlikely to provide an inclusive set

of features with th e h igh est information gain prior to th e annotation

process. On th e oth er h and, a well-trained h uman annotator sh ould

be able to identify th e best (or one of th e best) features after seeing

and labeling an instance. Th erefore, we h ypoth esize th at th e true

performance of a h uman expert will be between th e oracle th at pro-

vides th e best feature (best-case scenario) and th e oracle th at h igh -

ligh ts th e th ird best feature in a labeled instance (worst-case

scenario). We average th e learning curves of th e best- and th e worst-

case scenarios to generate th e learning curve of “informed

learning.”

To summarize th e performance of different learning algorith ms

using a composite score, we also generated a global Area under

Learning Curve (ALC) for each algorith m on each corpus. Th is

meth od was introduced in th e 2 01 0 Active Learning Ch allenge.2 0

Th e global ALC score was normalized by th e area under th e best

ach ievable learning curve (constant 1 .0 accuracy over all points).

To test th e significance of performance difference between th e

algorith ms in terms of average ALC scores, we used Wilcoxon

signed rank test,2 1 a nonparametric test for paired examples. We set

th e type I error control at a ¼ 0:01 .

RESULTS

Th e aggregated learning curves obtained by applying each of th e

learning algorith ms on th e evaluation corpora, including drill-down

analyses of imperfect feature labeling and h igh ligh ting oracles, are

exh ibited in Figures 2 –4.

Th e learning curves of th e informed learning (IL) algorith m dem-

onstrated a “warm start” substantially better th an th e oth er algo-

rith ms evaluated. Th is is as a result of applying directly acquired

domain knowledge from h uman experts at th e beginning of th e

learning process. Th e warm start not only h elps to ach ieve desired

performance faster with fewer instance labels, but also makes th e

proposed algorith m (potentially) less susceptible to h igh ly skewed

sense distribution. Th is is as sh own by th e curves on th e 2 clinical

WSD corpora, UMN, and VUH. To reach 90% accuracy, IL saved

42 % instance labels compared to AL on th e MSH corpus (1 5 vs 2 6),

Table 3. Area under learning curve (ALC) scores of evaluated inter-
active learning algorithms

Learning algorith m MSH UMN VUH

Random sampling 0.81 59 0.81 46 0.831 1

Active learning 0.8676 0.852 2 0.8309

ReQ-ReC expert 0.892 8 0.8550 0.852 4

Informed learning 0.9094*,† 0.9074*,† 0.8706*

Provide th e best feature in

Iteration 1

0.91 41 *,† 0.91 2 2 *,† 0.8792 *

Provide fifth best feature in

Iteration 1

0.9087*,† 0.9038*,† 0.8773*

Provide 1 0th best feature in

Iteration 1

0.9052 *,† 0.902 9*,† 0.8777*

High ligh t th e best feature in

Iteration 1

0.91 1 9*,† 0.9091 *,† 0.8675*

High ligh t second best feature in

Iteration 1

0.9072 *,† 0.9035*,† 0.8639*

High ligh t th ird best feature in

Iteration 1

0.9047*,† 0.9004*,† 0.862 0*

Th e bottom 2 sections are variants of “Informed learning” with different

feature labeling (h igh ligh ting) oracles. “*” means th e score is significant com-

pared to “Active learning” at level a ¼ 0:01 . “† ” means th e score is significant

compared to “ReC-ReQ expert” at level a ¼ 0:01 .
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35% instance labels on th e UMN corpus (1 5 vs 2 3), and 1 6% in-

stance labels on th e VUH corpus (2 6 vs 31 ).

Th e ALC scores for each corpus and each learning algorith m, as

well as th e results of statistical significance tests, are reported in

Table 3. On all 3 corpora, Wilcoxon signed rank test sh owed th at

th e ALC scores of IL were statistically significantly better th an

margin-based AL. On 2 corpora (MSH and UMN), th e ALC scores

of IL were statistically significantly better th an RR expert, th e previ-

ous state of th e art. Th ese significance results h old even wh en th e

feature oracles were imperfect, demonstrating th at th e proposed al-

gorith m was applicable in a broad range of conditions.

DISCUSSION

Warm-start Effect
Th e IL algorith m is perfectly positioned to address th e “cold start”

problem. AL works best wh en th e model h as a reasonably good

“understanding” of th e problem space so th at th e selected instances

are th e most informative. At th e beginning, th e model trained on

very few labeled instances can perform poorly and waste data selec-

tion. In IL, h uman experts can start th e learning process by specify-

ing an informative keyword of a sense, wh ich essentially provides

weak labels for many instances containing th at keyword, resulting

in a “warm start.” It significantly reduces th e total number of in-

stance labels to reach h igh accuracy.

Error Analysis
In Table 4, we break down th e performance of each algorith m on

different subsets of words in th ree corpora. In th e MSH corpus, as

abbreviations often co-occur with its full forms, th ey were easier to

disambiguate th an nonabbreviated words. Th e abbreviations in

UMN and VUH were h arder to disambiguate th an th ose in MSH,

because th e unbalanced sense distribution presented a ch allenge to

mach ine learning models.

We studied th e cases wh ere IL underperformed AL or RR expert.

Th e main reason was th at th e simulated feature oracle sometimes

provided low-quality labeled features. In fact, words with h igh in-

formation gain could be rare words, not generalizing to many exam-

ples; th ey could also be common words (e.g., “th at,” “of”), wh ich

h appened to appear more frequently in one sense th an oth ers but

were too noisy to be useful in classification. IL works well wh en a

labeled feature is representative of and specific to a sense. We

h ypoth esize th at real h uman experts are more capable of providing

such h igh -quality features th an simulated experts.

AL and RR start learning with an equal number of instances in

each sense, i.e., assuming a uniform prior distribution over senses.

As for IL, initial labeled features induce a sense distribution th rough

feature popularity (a frequent feature indicates a major sense), natu-

rally giving rise to a skewed sense distribution. Wh en th e true sense

distribution is indeed uniform (MSH), AL, and RR may h ave an ad-

vantage over IL. However, wh en th e true sense distribution is

skewed (UMN and VUH), AL and RR may suffer as th ey need more

instance labels to correct th eir uniform prior assumption.

In th is study, we set 90% accuracy as th e target and measured

th e number of instances required for ach ieving th at performance. In

secondary analysis of Electronic Health Records (EHRs) data for

clinical research , NLP systems with over 90% accuracy are often

viewed as reasonable2 2 –2 4 and h ave been widely used. However, for

NLP systems th at will be used for clinical practice (e.g., clinical deci-

sion support systems), h igh er performance would be required.

Th erefore, th e target performance is dependent on specific tasks. In

th e future, we will furth er investigate our approach es wh en required

performance ch anges.

CONCLUSION

Th is paper introduces a novel interactive mach ine learning algo-

rith m th at can learn from domain knowledge to rapidly build statis-

tical classifiers for medical WSD. Human experts can express

domain knowledge by eith er prescribing informative words for a

sense, or h igh ligh ting evidence words wh en labeling an instance. In

addition, active learning tech nique is employed to query instance

labels. Experiments using th ree biomedical WSD corpora sh owed

th at th e algorith m delivered significantly better performance th an

strong baseline meth ods. In th e future, we will conduct evaluation

studies to assess th e performance of th e algorith m using real-world

scenarios with real h uman experts.
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Table 4. Average ALC Scores of Evaluated Interactive Learning Algorithms Across Different Subsets of Ambiguous Words

Subsets of ambiguous words in each corpus Average ALC score ALC advantage (%)

Random

sampling

Active

learning

ReQ-ReC

expert

Informed

learning

Informed over

Active (%)

Informed over

ReQ-ReC (%)

MSH

1 02 abbreviations 0.861 7 0.91 89 0.9349 0.9548 1 01 /1 02 (99) 98/1 02 (96)

1 0 abbreviation-word combinations 0.82 65 0.862 3 0.892 2 0.91 50 1 0/1 0 (1 00) 1 0/1 0 (1 00)

86 nonabbreviated words 0.7603 0.8074 0.8430 0.8549 86/86 (1 00) 66/86 (77)

UMN

70 abbreviations 0.81 45 0.852 0 0.8545 0.9076 70/70 (1 00) 70/70 (1 00)

4 abbreviation-word combinations 0.81 76 0.8540 0.8635 0.9048 4/4 (1 00 4/4 (1 00)

VUH

2 3 abbreviations 0.8332 0.8343 0.8552 0.871 0 2 1 /2 3 (91 ) 1 8/2 3 (78)

1 abbreviation-word combination 0.782 0 0.7535 0.7877 0.8490 1 /1 (1 00) 1 /1 (1 00)
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