Journal of the American Medical Informatics Association, 25(7), 2018, 800808

doi: 10.1093/jamia/ocy013 /\M'/\

Advance Access Publication Date: 23 March 2018 wroswarics eroressionas. Leaoin e wa.
Research and Applications

Research and Applications

Interactive medical word sense disambiguation through
informed learning

Yue Wang," Kai Zheng,? Hua Xu,? and Qiaozhu Mei'*

1Departmen’[ of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI, 48109, USA,
2Department of Informatics, The University of California, Irvine, CA, 92697, USA, School of Biomedical Informatics, The University
of Texas Health Science Center at Houston, Houston, TX, 77030, USA and *School of Information, The University of Michigan,
Ann Arbor, MI, 48109, USA

Corresponding Author: Qiaozhu Mei, 3348 North Quad, 105 S. State St., Ann Arbor, MI, 48109, USA; gmei@umich.edu

Received 25 October 2017; Revised 19 January 2018; Editorial Decision 29 January 2018; Accepted 9 February 2018

ABSTRACT

Objective: Medical word sense disambiguation (WSD) is challenging and often requires significant training with
data labeled by domain experts. This work aims to develop an interactive learning algorithm that makes efficient
use of expert’s domain knowledge in building high-quality medical WSD models with minimal human effort.
Methods: We developed an interactive learning algorithm with expert labeling instances and features. An ex-
pert can provide supervision in 3 ways: labeling instances, specifying indicative words of a sense, and highlight-
ing supporting evidence in a labeled instance. The algorithm learns from these labels and iteratively selects the
most informative instances to ask for future labels. Our evaluation used 3 WSD corpora: 198 ambiguous terms
from Medical Subject Headings (MSH) as MEDLINE indexing terms, 74 ambiguous abbreviations in clinical
notes from the University of Minnesota (UMN), and 24 ambiguous abbreviations in clinical notes from Vander-
bilt University Hospital (VUH). For each ambiguous term and each learning algorithm, a learning curve that
plots the accuracy on the test set against the number of labeled instances was generated. The area under the
learning curve was used as the primary evaluation metric.

Results: Our interactive learning algorithm significantly outperformed active learning, the previous fastest
learning algorithm for medical WSD. Compared to active learning, it achieved 90% accuracy for the MSH corpus
with 42% less labeling effort, 35% less labeling effort for the UMN corpus, and 16% less labeling effort for the
VUH corpus.

Conclusions: High-quality WSD models can be efficiently trained with minimal supervision by inviting experts to la-
bel informative instances and provide domain knowledge through labeling/highlighting contextual features.

INTRODUCTION

Medical documents contain many ambiguous terms, the meaning of
which can only be determined from the context. For example, the
word “ice” may refer to frozen water, methamphetamine (an addic-
tive substance), or caspase-1 (a type of enzyme); and the acronym
“PD” may stand for “peritoneal dialysis” (a treatment for kidney
failure), “posterior descending” (a coronary artery), or “police
department.” Assigning the appropriate meaning (a.k.a. “sense”) to
an ambiguous word based on the context is referred to as the process

of word sense disambiguation (WSD).52 WSD is a critical step for
many medical natural language processing (NLP) applications, such
as text indexing and categorization, named entity extraction, and
computer-assisted chart review.

The research community has proposed and evaluated many
WSD methods in the past, including supervised learning, semi-
supervised learning,’™ and knowledge-driven”'® approaches. Col-
lectively, these studies have shown that a substantial volume of
high-quality training data annotated by human experts is required
for existing WSD models to achieve desirable performance.
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However, annotating training data is a labor-intensive process, and
the quality may deteriorate as the volume required to be annotated
increases.'! This is particularly true for medical WSD, as assigning
correct sense for ambiguous medical terms requires great attention
and highly specialized domain knowledge.

To address this issue, the machine learning community has been ex-
ploring approaches that involve human experts just-in-time during a ma-
chine learning process, in contrast to conventional approaches wherein
human experts are only involved in creating static annotated training or
evaluation datasets. Such approaches are generally referred to as
“active” learning, An active learning (AL) approach'? prioritizes instan-
ces to be labeled and presents to human experts the most informative
ones that would help the algorithm achieve desirable performance with
fewer iterations. This family of learning methods has shown far superior
performance over that of random sampling in medical WSD tasks.'?

In our previous work,'* we described ReQ-ReC (RR) expert, a
step further by incorporating an information retrieval component in
AL that allows human experts to identify and label typical instances
using their domain knowledge through keyword search. It demon-
strated better performance than AL in medical WSD tasks. How-
ever, even though experts are brought into the loop, existing
interactive learning approaches still suffer from the “cold start”
problem. That is, without any prior knowledge about a new WSD
task, an algorithm based on artificial intelligence (i.e., a statistical
WSD classifier) needs a large amount of training data to reach a rea-
sonable accuracy. In contrast, well-trained human experts do not
have the cold start problem because they come to a WSD task with
established domain knowledge, which helps them directly determine
the correct sense of an ambiguous word.

In this paper, we describe a novel interactive learning algorithm
that is capable of directly acquiring domain knowledge from human
experts by allowing them to articulate the evidence that leads to
their sense tagging decisions (e.g., the presence of indicative words
in the context that suggest the sense of the word). This knowledge is
then applied in subsequent learning processes to help the algorithm
achieve desirable performance with fewer iterations, thus solving the
cold start problem. That is, besides labeling instances, the expert can
provide domain knowledge by 2 means: (1) to specify informative
words of a sense and (2) to highlight evidence words in labeled
instances. These interaction modes enable experts to directly express
their prior knowledge and thought process when they perform
WSD, without adding much burden. The 2 channels complement
each other: it is sometimes hard to specify strong informative words
a priori, but easier to highlight these words in situ. The statistical
classifier can learn from both labeled instances and informative
words (i.e., labeled features), and query new labels using AL.

Simulated experiments on 3 WSD corpora show that expert’s do-
main knowledge gives the model a “warm start” at the beginning
stage, significantly accelerating the learning process. On one bio-
medical literature corpus and two clinical notes corpora, the pro-
posed algorithm makes better use of human experts in training WSD
models than all existing approaches, achieving the state-of-the-art
performance with least effort.

METHODS

Instance Labeling vs Feature Determination

Below, we use an example to illustrate how the interactive learning
algorithm works. Suppose the word “cold” (or its spelling variants,
e.g., “COLD”) is mentioned across a set of medical documents.

Depending on the context, it could mean “chronic obstructive lung

»

disease,” “common colds,” or “low temperature.” The task of WSD
is to determine the correct sense of each appearance of this word
(i.e., each instance of the word).

A human expert performing this task may apply a number of rules
based on her or his domain knowledge. For example, she or he may
know that when all letters of the word are spelled in capital case, i.ee,
“COLD,” it is more likely the acronym of “chronic obstructive lung
disease” than any other possible senses. This judgment could be fur-
ther strengthened when there are indicative words (or phrases) such as

»

“chronic,” “obstructive,” or “lung” in the adjacent text. Likewise, if

the word is not spelled in all capitals, and is accompanied by words

»

such as “common,” “cough,” and “sneeze,” it likely means “common
cold.” For certain senses, contextual cues may appear in other forms
rather than indicative words. For example, a numeric value followed
by a unit of temperature (e,g., 5 degrees C”) may give out that the
word “cold” in the current context likely refers to “low temperature,”
instead of a medical condition.

Unfortunately, such domain knowledge is not leveraged by con-
ventional supervised learning approaches, which only ask human
experts to label the sense of the instances of an ambiguous word,
rather than capture how human experts make such judgments. In
other words, conventional approaches only try to “infer” human
wisdom from annotated results, instead of acquiring it directly—
even if such wisdom is readily available and can be formalistically
expressed. The interactive learning algorithm described in this paper
addresses this limitation by allowing human experts to create la-
beled features in addition to labeling instances.

A labeled instance for an ambiguous word is a [context, sense]
pair, following the conventional definition in supervised learning.
For example, a labeled instance of the word “cold” can be:

[“The patient developed cold and experienced cough
and running nose.”, common cold].

A labeled feature for an ambiguous word is a [feature, sense] pair,
where the feature is a textual pattern (a word, a phrase, a skip 7-
gram, or a regular expression in general). The pair encodes the
(most likely) sense of the ambiguous word if the feature appears in
its context. For example, human experts can express domain
knowledge of the sense of “cold” by creating the following labeled
features:

[*COLD” : A1l cap, chronic obstructive
lung diseasel
[“chronic”: Nonall-cap, chronic obstructive
lung diseasel
[“obstructive”: Nonall-cap, chronic obstructive
lung disease]
[*1lung”: Nonall-cap, chronic obstructive
lung diseasel]
[“common” : Non all-cap, common cold]
[“cough” : Non all-cap, common cold]

[“sneeze” : Nonall-cap, common cold]

Human experts can also express domain knowledge by highlighting
a contextual cue after labeling an instance of “cold,” as in

[“The tissue was exposed to a cold environment
(5 degrees C) .”, low temperature].

The highlighted text snippet essentially creates another labeled fea-
ture for “cold”:
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Figure 1. Interactive learning with labeled instances and features.

Table 1. Summary Statistics of Three Evaluation Corpora

f: context > sense

. Labeled instances and ____ F‘{ labeled instances
Query instances features o
O,
|é{“cough”
o ]» labeled features
{Ed
=]
A
Instance WSD Model
selector Trainer
A
Unlabeled |«
Predicted instances pool WSD model

Corpus Corpus size Average number Average number of Average number of Average percentage of
of instances per word senses per word tokens per instance majority sense (%)

MSH 198 190 2.1 202.84 54.2

UMN 74 500 5.5 60.59 73.4

VUH 24 194 4.3 18.73 78.3

Table 2. Description of Baseline Methods

Random sampling

Active learning

ReQ-ReC expert

Informed learning

The algorithm selects the next in-
stance at random from the
unlabeled pool

Start with one labeled instance
for each sense

Later iterations use random sam-
pling to obtain instance labels

The algorithm selects the next in-
stance using the minimum
margin criterion.'*'3

Start with one labeled instance
for each sense

Later iterations use minimum
margin to obtain instance
labels

The algorithm extends active
learning by inviting human
experts to search for typical
instances for each sense using
keywords'*

Start with one labeled feature for
each sense

Later iterations use minimum
margin to obtain instance
labels

The proposed interactive learning
algorithm

Start with one labeled feature (or
one labeled instance with a
highlighted feature) for each
sense

Later iterations use minimum
margin to obtain instance
labels

[“<digit> degrees C”, low temperature].

A labeled feature encodes certain domain knowledge that human
experts use to solve a WSD task, which can be directly applied to train
machine-learning models. As a result, it improves WSD performance
and, at the same time, reduces the amount of manual effort required
to create a large quantity of labeled instances as training data.

Overall Workflow
The interactive learning algorithm consists of several distinct com-
ponents; illustrated in Figure 1.

When the human expert can come up with good features for
each sense of an ambiguous word, the algorithm can directly use
them to train an initial WSD classifier. When such domain knowl-
edge is not available, we assume that the human expert can identify
at least one instance for each sense. She or he can then label the

instance and highlight contextual cues in that instance. This kicks
off the interactive learning process.

The algorithm contains an instance selector that determines how
to best select instances from an unlabeled pool to present to the hu-
man expert. Then, the human expert labels the sense of the instance,
followed by potentially suggesting features that were used as the
“rationale” for the labeling decision (i.e., feature labeling). Next,
the algorithm uses both labeled instances and labeled features to re-
train the WSD classifier, then begins another iteration by selecting
additional instances for manual labeling till a satisfactory WSD re-
sult is achieved. This process is described in more detail in the next
few sections.

WSD Model Training
The algorithm of training and retraining a WSD model consists of 2
stages: feature representation and parameter estimation.
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Figure 2. Aggregated learning curves of 198 ambiguous words in the MSH corpus. (A) interactive learning algorithms in comparison, including the best- and
worst-case scenarios of “informed learning”. To achieve 90% accuracy, “random sampling” required 49 instance labels, and “active learning” required 26 in-
stance labels. “ReQ-ReC expert” used labeled features as instance search queries and required 17 instance labels to achieve 90% accuracy. “Informed learning”
directly learned from feature labels and only required 15 instance labels to achieve 90% accuracy. (B and C) drill-down analysis of informed learning using imper-
fect feature labeling (highlighting) oracles, respectively. Even using imperfect feature labeling oracles, variants of “informed learning” still significantly outper-
formed both “active learning” and “ReQ-ReC expert,” according to Wilcoxon signed rank test (see Table 3).

Dynamic feature representation

In conventional supervised learning, a model uses a fixed set of fea-
tures throughout the training process. For text classification, this
feature set is often all of the words in the corpus. In our interactive
learning algorithm, labeled features may contain arbitrary textual
patterns that are difficult to know ahead of time. Rather than trying
to include all possible features from the beginning as conventional
machine-learning methods do, we use a dynamic feature representa-
tion by starting with a set of base features and gradually expanding
it as new features emerge. This method helps to prevent severe over-
fitting when the size of the feature set is large.

We use presence/absence of unigrams as the base features to rep-
resent an instance: x**¢ € RV, where V is the number of distinct
unigrams. A labeled feature defines a real-valued function ¢(-) of an
instance, such as “1 if the instance contains ‘COLD’ in all caps; 0
otherwise.” Suppose we have m labeled features at iteration #, then
an instance is represented by a (V+m)-dimension vector
x = [xbase7 d)(l)7 o ¢(M)].

Parameter estimation
We use logistic regression with linear kernel as the WSD classifier. If an
ambiguous word has 2 senses, we build a binary classifier, otherwise there
is a softmax multiclass classifier. Logistic regression classifiers output
probability predictions in [0, 1], which are then used by the AL algorithm.
Below, we describe the algorithm for training the logistic regres-
sion model. Suppose at a certain iteration, we have / labeled instan-
ces {(x, y(i))}le, and m labeled features {(¢p"), y(f))};il. For an
ambiguous word with k senses, ) or y) is a one-hot k-dimensional
vector that encodes the assigned sense. We train a logistic regression
model p(y|x;w) by minimizing the following loss function (w
denotes the parameters of the model):

Ik
Jw) =33 —ylogp (yclx“); u/)
i=1 c=1
m k 4
+i1 Y > =5 ogp (yeldVsw) + 2 wl} (1)

=1 c=1
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Figure 3. Aggregated learning curves of 74 ambiguous words in the UMN corpus. (A) interactive learning algorithms in comparison, including the best- and
worst-case scenarios of “informed learning”. To achieve 90% accuracy, “random sampling” required more than 50 instance labels, “active learning” required 23
instance labels, and “ReQ-ReC expert” required 21 instance labels. “Informed learning” required only 15 instance labels. (B and C) drill-down analysis of in-
formed learning of imperfect feature labeling (highlighting) oracles, respectively. Even using imperfect feature oracles, variants of “informed learning” still signif-
icantly outperformed both “active learning” and “ReQ-ReC expert”, according to Wilcoxon signed rank test (see Table 3).

p(yc|d;10) is the expectation for any instance containing fea-
ture ) to have sense c. Let S; be the set of instances (both labeled
and unlabeled) with non-zero feature values for %), then

A s POelxsw)
(). _ i€S;
P()’c|¢ 7w> ‘SZ‘

')”7(!) = (ye +8)/(1 + k) i5 the smooth version of feature label distri-
bution, because unlike labeled instances, labeled features should be
interpreted as preferences rather than as absolute assignments. 24
> 0 and Ay > 0 are trade-off weights for different loss terms. In this
paper,wesete =0.1, &y =Xy = 1.

In the loss function (1), the first term is the cross-entropy loss on
labeled instances; the second term is the cross-entropy loss on la-
beled features; and the third term is a regularization term of parame-
ter w. If the loss function only consists of the first and the third
term, then it reduces to the loss function of a traditional softmax lo-
gistic regression classifier. The second term expresses a preference
on the expected behavior of the WSD classifier, i.e., the presence of
a feature strongly suggests a label (i.e., the most probable sense).

This is a so-called generalized expectation criterion.'® Because of the
second term, (1) is a nonconvex function. We use gradient descent
to find a local minimum for the model parameter w. In practice, we
find the local minimum yields a sufficiently performing classification
model.

Instance Selection

The proposed algorithm kicks off the first iteration by a labeled fea-
ture for each sense. Once the WSD classifier p(y|x;w) is trained, AL
can be applied to select a small set of unlabeled instances to present
to human experts for labeling. Specifically, we use minimum
margin-based AL as the instance selection algorithm which has
shown superior performance in classification settings.'>'* It selects
the  unlabeled
O(x) = p(y1]x;0) — p(y2|x; 0), where y; and y, are the most and
second most probable senses. Intuitively, the classifier cannot deter-
mine whether y; or y, is the correct sense, therefore it needs to so-

instance x that satisfies the smallest

licit input from human experts.
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Figure 4. Aggregated learning curves of 24 ambiguous words in the VUH corpus. (A) Interactive learning algorithms in comparison, including the best- and
worst-case scenarios of “informed learning”. To achieve 90% accuracy, “random sampling” required more than 50 instance labels, “active learning” required 31
instance labels, “ReQ-ReC expert” and “Informed learning” required 26 labels. (B and C) drill-down analysis of learning curves of imperfect feature labeling
(highlighting) oracles, respectively. Even using imperfect feature oracles, variants of “informed learning” still significantly outperformed “active learning”,

according to Wilcoxon signed rank test (see Table 3).

Evaluation Method

Evaluation corpora
In this study, we used three established medical corpora to evaluate
the performance of the interactive learning algorithm.

The MSH corpus contains a set of MEDLINE abstracts automat-
ically annotated using MSH indexing terms.'® Similar to how it was
handled in previous work,'®'* for this corpus, we only included am-
biguous words that have at least 100 instances, providing adequate
data for training and evaluation. This gave us 198 ambiguous
words, including 102 abbreviations, 86 nonabbreviated words, and
10 abbreviation-word combinations.

The University of Minnesota (UMN) corpus contains 74 ambigu-
ous abbreviations from a total of 604 944 clinical notes created at the
Fairview Health Services affiliated with the University of Minnesota;
each abbreviation has 500 randomly sampled instances.!” Each in-
stance is a paragraph in which the abbreviation appeared. Four abbre-
viations have a general English sense (FISH, IT, OR, US).

The Vanderbilt University Hospital (VUH) corpus contains
ambiguous abbreviations from the admission notes created at the

Vanderbilt University Hospital.'® Similar to the MSH corpus, we
only retained 24 abbreviations that have more than 100 instances.
Each instance is a sentence in which the abbreviation appeared. One
abbreviation is a loanword in English (AD as in “ad lib”).

The summary statistics of these 3 evaluation corpora are shown
in Table 1 (more details can be found in Supplementary Appendix
Tables A1-A3). The MSH corpus has the richest context in an in-
stance (i.e., highest average number of tokens per instance), and the
least skewed distribution of senses (i.e., lowest proportion of domi-
nating majority senses). Because the main objective of this study was
to evaluate the performance of the interactive learning algorithm in
comparison with other machine-learning algorithms, we did not fur-
ther tune the context window size for each corpus. The 3 corpora
share 3 abbreviations (SS, CA, RA). MSH and UMN share another
6 abbreviations. UMN and VUH share another 5 abbreviations. The
same abbreviation may have different senses in different corpora.

Baseline Methods
To comparatively evaluate the performance of the interactive learn-
ing algorithm, we included 3 other machine-learning algorithms in
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the analysis. As shown in Table 2, these algorithms vary mainly
based on how labeled instances or features are obtained from human
experts.

Simulated human expert input

To derive evaluation metrics, we simulated human expert input us-
ing labeled data from each corpus, which is a method commonly
used to evaluate AL algorithms.'® This method reduces potential
influences that may be introduced due to performance variation by
human experts. More specifically:

1. Labeling instances: We used the validated labels in these evalua-
tion corpora as the oracle of instance labels.

2. Labeling features: To implement simulated human expert input
(i.e., the “oracle”) that provides labeled features, we computed
information gain for each unigram feature using the entire la-
beled corpus,'” and selected the most informative features as or-
acle features. A feature is associated with a sense when the
feature co-occurs most frequently with the sense. To make it
more realistic, we simulated the oracle that knows the g-th best
feature among all unigram features, where g =1, 5, 10. This ora-
cle was also used in the “RR expert” algorithm when composing
the first search query. The labeled features generated in this way
were mostly the words in the definition of each sense.

Since, in reality, a human expert is unlikely able to come up with all
features achieving the highest information gain, we also imple-
mented a weaker, supplementary oracle that better resembles true
human performance in realistic WSD tasks. It simulates the action
of the expert highlighting a feature in a labeled instance while she or
he is doing the annotation. In the first iteration, a random instance
in each sense was given to the oracle. It identified the most informa-
tive n-gram (n =1, 2, 3) feature in that instance. We used 7-grams
instead of unigrams to allow the oracle to highlight consecutive
words in a sentence. To make the oracle more realistic, we simulated
the oracle that knows the g-th best n-gram feature in that instance,
where g=1, 2, 3.

Evaluation metrics

We used learning curves to evaluate the cost-benefit performance of
different learning algorithms. A learning curve plots the learning
performance against the effort required in training the algorithm. In
the context of this paper, learning performance is measured by clas-
sification accuracy on a test corpus; and effort is measured by the
number of instances that need to be labeled by human experts. For
each ambiguous word, we split its instances into an unlabeled set
and a test set. When a learning algorithm is executed over the unla-
beled set, a label is revealed only if the learning algorithm asks for it.
With more and more labels becoming available, the WSD model is
continuously updated and its accuracy continuously evaluated, pro-
ducing a learning curve.

To reduce variation of the curve due to differences between the
unlabeled set and the test set, we ran a 10-fold cross validation: 9
folds of the data are used as the unlabeled set and 1-fold used as the
test set. The learning curve of the algorithm on a particular ambigu-
ous word is produced by taking the average of the 10 curves. The
overall aggregated learning curve of the algorithm is obtained by
taking the average of all curves on all ambiguous words in an evalu-
ation corpus.

In reality, human experts are unlikely to provide an inclusive set
of features with the highest information gain prior to the annotation

Table 3. Area under learning curve (ALC) scores of evaluated inter-
active learning algorithms

Learning algorithm MSH UMN VUH

Random sampling 0.8159 0.8146 0.8311

Active learning 0.8676 0.8522 0.8309

ReQ-ReC expert 0.8928 0.8550 0.8524

Informed learning 0.9094™t  0.9074>"  0.8706

Provide the best feature in 0.9141>t 091221 0.8792"
Iteration 1

Provide fifth best feature in 0.9087t  0.9038""  0.8773"
Iteration 1

Provide 10th best feature in 0.9052"t  0.9029""  0.8777"
Iteration 1

Highlight the best feature in 0.9119"  0.9091>"  0.8675"
Iteration 1

Highlight second best feature in ~ 0.9072""  0.9035>"  0.8639"
Iteration 1

Highlight third best feature in 0.9047"1 0.9004 "1 0.8620"

Iteration 1

The bottom 2 sections are variants of “Informed learning” with different

CE

feature labeling (highlighting) oracles. means the score is significant com-
pared to “Active learning” at level & = 0.01. “1” means the score is significant

compared to “ReC-ReQ expert” at level o = 0.01.

process. On the other hand, a well-trained human annotator should
be able to identify the best (or one of the best) features after seeing
and labeling an instance. Therefore, we hypothesize that the true
performance of a human expert will be between the oracle that pro-
vides the best feature (best-case scenario) and the oracle that high-
lights the third best feature in a labeled instance (worst-case
scenario). We average the learning curves of the best- and the worst-
case scenarios to generate the learning curve of “informed
learning.”

To summarize the performance of different learning algorithms
using a composite score, we also generated a global Area under
Learning Curve (ALC) for each algorithm on each corpus. This
method was introduced in the 2010 Active Learning Challenge.’
The global ALC score was normalized by the area under the best
achievable learning curve (constant 1.0 accuracy over all points).

To test the significance of performance difference between the
algorithms in terms of average ALC scores, we used Wilcoxon
signed rank test,”’ a nonparametric test for paired examples. We set
the type I error control at o = 0.01.

RESULTS

The aggregated learning curves obtained by applying each of the
learning algorithms on the evaluation corpora, including drill-down
analyses of imperfect feature labeling and highlighting oracles, are
exhibited in Figures 2—4.

The learning curves of the informed learning (IL) algorithm dem-
onstrated a “warm start” substantially better than the other algo-
rithms evaluated. This is as a result of applying directly acquired
domain knowledge from human experts at the beginning of the
learning process. The warm start not only helps to achieve desired
performance faster with fewer instance labels, but also makes the
proposed algorithm (potentially) less susceptible to highly skewed
sense distribution. This is as shown by the curves on the 2 clinical
WSD corpora, UMN, and VUH. To reach 90% accuracy, IL saved
42% instance labels compared to AL on the MSH corpus (15 vs 26),
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Table 4. Average ALC Scores of Evaluated Interactive Learning Algorithms Across Different Subsets of Ambiguous Words

Subsets of ambiguous words in each corpus Average ALC score ALC advantage (%)
Random Active ReQ-ReC Informed Informed over Informed over
sampling learning expert learning Active (%) ReQ-ReC (%)

MSH

102 abbreviations 0.8617 0.9189 0.9349 0.9548 101/102 (99) 98/102 (96)
10 abbreviation-word combinations 0.8265 0.8623 0.8922 0.9150 10/10 (100) 10/10 (100)
86 nonabbreviated words 0.7603 0.8074 0.8430 0.8549 86/86 (100) 66/86 (77)

UMN

70 abbreviations 0.8145 0.8520 0.8545 0.9076 70/70 (100) 70/70 (100)

4 abbreviation-word combinations 0.8176 0.8540 0.8635 0.9048 4/4 (100 4/4 (100)
VUH

23 abbreviations 0.8332 0.8343 0.8552 0.8710 21/23 (91) 18/23 (78)

1 abbreviation-word combination 0.7820 0.7535 0.7877 0.8490 1/1 (100) 1/1 (100)

35% instance labels on the UMN corpus (15 vs 23), and 16% in-
stance labels on the VUH corpus (26 vs 31).

The ALC scores for each corpus and each learning algorithm, as
well as the results of statistical significance tests, are reported in
Table 3. On all 3 corpora, Wilcoxon signed rank test showed that
the ALC scores of IL were statistically significantly better than
margin-based AL. On 2 corpora (MSH and UMN), the ALC scores
of IL were statistically significantly better than RR expert, the previ-
ous state of the art. These significance results hold even when the
feature oracles were imperfect, demonstrating that the proposed al-
gorithm was applicable in a broad range of conditions.

DISCUSSION

Warm-start Effect

The IL algorithm is perfectly positioned to address the “cold start”
problem. AL works best when the model has a reasonably good
“understanding” of the problem space so that the selected instances
are the most informative. At the beginning, the model trained on
very few labeled instances can perform poorly and waste data selec-
tion. In IL, human experts can start the learning process by specify-
ing an informative keyword of a sense, which essentially provides
weak labels for many instances containing that keyword, resulting
in a “warm start.” It significantly reduces the total number of in-
stance labels to reach high accuracy.

Error Analysis

In Table 4, we break down the performance of each algorithm on
different subsets of words in three corpora. In the MSH corpus, as
abbreviations often co-occur with its full forms, they were easier to
disambiguate than nonabbreviated words. The abbreviations in
UMN and VUH were harder to disambiguate than those in MSH,
because the unbalanced sense distribution presented a challenge to
machine learning models.

We studied the cases where IL underperformed AL or RR expert.
The main reason was that the simulated feature oracle sometimes
provided low-quality labeled features. In fact, words with high in-
formation gain could be rare words, not generalizing to many exam-
ples; they could also be common words (e.g., “that,” “of”), which
happened to appear more frequently in one sense than others but
were too noisy to be useful in classification. IL works well when a
labeled feature is representative of and specific to a sense. We

hypothesize that real human experts are more capable of providing
such high-quality features than simulated experts.

AL and RR start learning with an equal number of instances in
each sense, i.e., assuming a uniform prior distribution over senses.
As for IL, initial labeled features induce a sense distribution through
feature popularity (a frequent feature indicates a major sense), natu-
rally giving rise to a skewed sense distribution. When the true sense
distribution is indeed uniform (MSH), AL, and RR may have an ad-
vantage over IL. However, when the true sense distribution is
skewed (UMN and VUH), AL and RR may suffer as they need more
instance labels to correct their uniform prior assumption.

In this study, we set 90% accuracy as the target and measured
the number of instances required for achieving that performance. In
secondary analysis of Electronic Health Records (EHRs) data for
clinical research, NLP systems with over 90% accuracy are often

22724 and have been widely used. However, for

viewed as reasonable
NLP systems that will be used for clinical practice (e.g., clinical deci-
sion support systems), higher performance would be required.
Therefore, the target performance is dependent on specific tasks. In
the future, we will further investigate our approaches when required

performance changes.

CONCLUSION

This paper introduces a novel interactive machine learning algo-
rithm that can learn from domain knowledge to rapidly build statis-
tical classifiers for medical WSD. Human experts can express
domain knowledge by either prescribing informative words for a
sense, or highlighting evidence words when labeling an instance. In
addition, active learning technique is employed to query instance
labels. Experiments using three biomedical WSD corpora showed
that the algorithm delivered significantly better performance than
strong baseline methods. In the future, we will conduct evaluation
studies to assess the performance of the algorithm using real-world
scenarios with real human experts.
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