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This work utilizes mean-field self-consistent and full-field fast Fourier transform-based homogenizations to study
the effective elastic behavior of several steels: three dual-phase (DP), DP 590, DP 980, and DP 1180, and one
martensitic (MS), MS 1700. Crystallographic textures and phase fractions of these steels are characterized using
electron microscopy along with electron-backscattered diffraction to initialize the models. A comprehensive set of
Young’s modulus and Poisson’s ratio data, measured at the ambient temperature as a function of orientation with
respect to the rolling direction for each steel sheet, is used to calibrate and validate the models. The calibration
of the models enabled us to estimate the single crystal elastic constants for both the martensitic phase and ferrite,
while calculating the orientation dependent effective properties. Half of the data was used in the calibration.
Subsequent predictions of the orientation dependent effective elastic properties for the remaining data verified
that the estimated single crystal properties are reliable. As the steels exhibit a different level of anisotropy in their
effective behavior, good predictions allowed us to discuss the role of texture, grain structure, phase fraction and
distribution on the effective properties. The results of this work represent a significant incentive to introduce elas-
tic anisotropy in numerical tools for simulating metal forming processes of dual-phase steels, in particular those
processes involving springback, using the texture informed crystal mechanics-based models to more accurately

estimate the effective elastic properties required by such simulations.

1. Introduction

Simulations of manufacturing processes and mechanical designs in-
volving polycrystalline metals are performed more accurately if the ma-
terial constitutive behavior is modeled as anisotropic. The basic build-
ing block of a polycrystalline material, the single crystal referred to as
a grain having a certain crystal lattice orientation, is known to exhibit
anisotropic behavior [1,2]. Thermo-mechanical processing of polycrys-
talline aggregates generates a distribution of crystal lattice orientations,
which is referred to as crystallographic texture [3]. Texture is not ran-
dom but actually preferred depending on the directionality of active
crystallographic deformation mechanisms, which accommodate shape
change during shaping operations. A preferred distribution of crystal
orientations can either enhance or suppress the anisotropy of effective
properties. Interactions between individual grains of different crystal
orientations exhibiting anisotropy in their properties under load creates
inter-granular stress fields. The local mechanical fields are even more
heterogeneous in multi-phase materials such as dual-phase (DP) steels
containing a distribution of martensite and ferrite phases with contrast-
ing mechanical characteristics.

The crystal elastic properties play the central role in governing the
extent of backstress fields under load, or residual stress fields upon load
removal [4]. A tensorial measure describing the resistance to stretch
a crystal elastically in an anisotropic manner is referred to as elastic
stiffness. Capturing the distribution of elastic backstress fields is espe-
cially important for modeling the material behavior during strain-path-
changes [5]. Upon a strain-path-change, the material exhibits elastic
unloading followed by a change in the yield stress from the one reached
at the end of pre-straining, while the newly applied stress combines
with the existing elastic backstress field [6,7]. After a metallic part is
removed from a forming die, the field further evolves to a new equi-
librium, which is accompanied with geometrical changes of the part
referred to as springback. For example, upon completion of sheet metal
forming, deep-drawn or stretch-drawn parts “spring back”, affecting the
dimensional accuracy of a finished part. The dimensional changes are
directly dependent on the effective elastic properties of the sheet. Thus,
the constitutive model used in predicting springback in metal forming
should consider elastic anisotropy, as highlighted in [8,9]. Accurate pre-
dictions of springback are accentuated with the development of mod-
ern alloys for the transportation industry for vehicle light-weighting
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purposes, such as the advanced-high strength steels (AHSS), which ex-
hibit high flow stress or aluminum and magnesium alloys, which exhibit
low stiffness, both of which accentuate the magnitude of springback.
Premier examples of AHSS are DP steels containing variable fractions
of martensite vs. ferrite phases in their microstructure. This paper is
concerned with the effective elastic behavior of DP steels based on the
single crystal mechanics and microstructure.

Estimates of the effective elastic behavior of DP steels depend on
microstructure and the accuracy of available single crystal constants for
martensite and ferrite along with the homogenization procedure linking
the crystal to the overall effective elastic response of the polycrystal.
Published experimental measurements and theoretical estimates of sin-
gle crystal elastic constants for martensitic and ferrite phases are rare,
as they are difficult to measure and also difficult to theoretically cal-
culate. Furthermore, the reported values vary substantially. Tables that
summarize values based on a literature review are given in Appendix A.
As is evident, while the elastic crystal stiffness coefficients of iron (Fe)
have been reliably determined by many independent sources, the stiff-
ness coefficients of ferrite and martensite have yet to be established with
confidence.

We present estimates of the single crystal elastic coefficients for
martensite and ferrite, based on the calibration and validation of mean-
field self-consistent (SC) and full-field fast Fourier transform (FFT)-
based homogenizations towards a comprehensive set of Young’s mod-
ulus and Poisson’s ratio data measured at the ambient temperature as
a function of orientation with respect to the rolling direction (RD) for
three DP steels, DP 590, DP 980, and DP 1180, and one martensitic (MS)
steel, MS 1700. The effective elastic properties have been measured at
15° increments from the RD of the sheets. The specific models consid-
ered in the present work are the elasto-plastic SC (EPSC) [10-12] and the
elasto-viscoplastic FFT (EVPFFT) [13,14] in which the strain is restricted
to be elastic. While the former is much more computationally efficient,
the latter is regarded as more accurate and can be used to validate the
former. Texture and phase fractions of these steels are characterized
using scanning electron microscopy (SEM) and electron-backscattered
diffraction (EBSD) to initialize the models. Taking the characterized mi-
crostructure and the single crystal elastic constants as inputs, the mod-
els calculate the orientation dependent effective elastic behavior of the
steels. The constants for martensite and ferrite are varied to fit the ori-
entation dependent and microstructure sensitive effective response of
DP 590 and MS 1700 using an optimization scheme and then verified
by predicting the response of DP 980 and DP 1180. Thus, the effec-
tive property measurements along with the microstructural measure-
ments are computationally linked to establish single crystal elastic con-
stants for ferrite and martensite. As the steels exhibit a different level
of anisotropy in their effective behavior, good predictions allowed us to
discuss the role of texture, grain structure, phase fraction and distribu-
tion on the effective properties.

2. Modeling framework for predicting the anisotropic elastic
response of polycrystals

This section summarizes homogenization approaches for calculating
effective elastic properties and a procedure for obtaining the effective
properties as a function of orientation with respect to sheet sample di-
rections. In our notation, tensors are denoted by bold non-italic letters,
while scalars and tensor components are italic and not bold.

The fourth rank crystal elastic stiffness tensor as a function of the
crystal orientation can be calculated as

c _ (C
c = Cijkl_

3
+(C; = C1p —2Cy) Zx:l 564101165t 15

gipgqukrg[s[C126pq5rs + C44(5ps5qs + 5ps5qr)
)]

where §;; represents the Kronecker delta symbol, Cy5, Cy5, and Cy4 are
the single crystal elastic stiffness constants for a cubic crystal, and g; are
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components of an orthogonal coordinate transformation matrix relating
a crystal to a sample frame as

cos ¢, cos ¢, —singh; cosDsingp, —cos¢, sing, —sing, cosPsing,  sing, sin®
g =|sing, cos ¢, + cos ¢, cosPsin¢p, —sin¢, sin¢, + cos P, cosPcosp, —cos¢, sin®
sin @ sin ¢, sin @ cos ¢, cos @
(@)

The first-order lower (Reuss) and upper (Voigt) bounds for the effec-
tive elastic stiffness tensor have been well established in the literature
[15-22]. The bounds for the diagonal components are

-1 *
(<Sc> )[j[j <Cyy < <C[cf[f> ®
while those for the off-diagonal components are
max ((Cij)’ (<SC>_1)[jkl> 4/ Ajii B
< Ci*jk, < min (<ijkl>,(<56>-l)ijk,) + /A4 Arikrs (4a)
Ajj = <C,~Cjk1> - ((SC)_I)ijkl' (4b)

Here, no implicit summation on repeated indices is used.! The angle
brackets ( ) are used to denote the volume averaged value over con-
stituent crystals in a polycrystal. $¢=(C)~! is the single crystal com-
pliance tensor.

The constitutive relation for linear elasticity that holds for
anisotropic materials expressed in terms of matrices in the Voigt form
[23] is

Iy Cl*m C|*122 C|*133 Crm Crm Crnz Ey

Y5} C;2 11 C;222 C;233 C;223 C;23 1 C;22 1| E2

Z33 - C;,m C3*322 C;333 C;m C;,m C;312 Es; )
Y5 C;zn C;zzz C§333 C§323 C;331 C§312 2By

3 C;m C§122 C§133 C§132 C§131 C§112 2E;3

Zp Cl*zn C|*222 C|*233 C7223 C1*231 C1*212 2Ep,

In this reducing order notation, the macroscopic Cauchy stress ten-
sor, X, and macroscopic strain tensor, E, are expressed as column vectors
and the effective stiffness tensor is expressed as a symmetric matrix. The
inverse relation is

Ey Srm S]*122 Srm 257123 281*131 251*112 Zy
Ey 5521 1 S;ézz Si*233 25;223 25;231 2S;F221 Zy
Es; = S;,m ;322 S;333 2S§323 2S;331 2S§312 I3 (6)
2Ey; 25;21 1 2S3*222 2S;333 45;323 4S;331 45;312 I3
2E3 2S;m 2S§122 2S;m 4S§132 45;131 4S§112 Zi3
2E, 251*21I 257222 28?233 457223 4ST231 451*212 Zp

2.1. Effective properties

The effective properties relating X and E can be estimated with the
knowledge of local stress and strain fields in the polycrystal. The macro-
scopic Cauchy stress tensor, X, and macroscopic strain tensor, E, are

(7a)
(7b)

X =<o(x)>,
E =<&(x) >,

where o¢(x) is a local stress tensor, £(x) is a local strain tensor, and x
is a spatial coordinate, which belongs to a crystal c. The superscript
¢ is dropped when the spatial coordinate x is indicated. The general
framework for calculating the local stress and strain fields, entering
Egs. (7a) and (7b), in a heterogeneous polycrystal undergoing a pre-
scribed macroscopic strain tensor is outlined next [24-26]. The local
constitutive relation is

o(x) = C(X)&(x). ®)

1 The Einstein indicial notation of implicit summation on repeated indices is
employed in this paper, except when explicitly noted otherwise.
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where C(x) is the local elastic stiffness at x in a grain c. The local elastic
stiffness can be expressed in terms of an elastic stiffness of a fictitious
homogenous reference medium as

C(x) = C° + 5C(x), ©)

where CO is the elastic stiffness of the homogenous reference medium
and 6C(x) is the deviation of the local elastic stiffness at x from
elastic stiffness of the homogenous reference medium. The equilib-
rium statement in the absence of a body force can be written using
Egs. (8) and (9)

c?jklukq,j(x) + (5c,‘jk,(x)ukq,(x))’j =
where u.(x) is the local displacement vector and the product of 5Cijkl(x)
and uy ;(x) is known as the polarization field, ¢- Eq. (10) can be viewed
as the equilibrium statement for the homogenous reference medium
with a prescribed distribution of the fictitious body force, ¢;;;. Using
the Green function method allows transformation of Eq. (10) into an
integral equation

ﬁk.l(x)=/Gk[,jl(x

R3

0, (10)

X' ) (x')dx’, (11)
where &, ,(x) is the local displacement gradient fluctuation, Gy;(x —x’)
is Green’s function for the infinite homogenous reference medium, and
the integral is generically over the entire three-dimensional space, R3.
Egs. (5), (7a), and (7b) together with the solution of the integral in
Eq. (11) facilitate solving for the effective properties of the polycrystal
[26]. In this work, we will use two approaches to solve for the integral
in Eq. (11) in order to estimate homogenized effective stiffness for poly-
crystals: (1) the mean-field SC approach and (2) the full-field FFT-based
approach.

2.1.1. Mean-field self-consistent homogenization for estimating effective
elastic properties

This section summarizes the solution to Eq. (11) using the SC ap-
proach, which is valid for granular media i.e. polycrystals. The SC ap-
proach facilitates the evaluation of the effective elastic stiffness in a
computationally efficient manner. The underlying assumptions can be
found elsewhere e.g. [26,27], while the actual SC scheme used here is
from [10,28].

Each crystal is represented as an ellipsoidal heterogeneity within
the infinite homogenous reference medium under applied displacement.
Elastic stiffness of the reference homogenous medium is set equal to the
unknown effective elastic stiffnessi.e. Cl - Ci*j o while the elastic stiff-
ness of each crystal, C, ke is assumed to be uniform within the crystal
volume c. The problem can be reduced to Eshelby’s inclusion problem
[27] with an appropriate choice of eigenstrain, meaning that the strain
and stress within the heterogeneity are constant. The polarization ten-
sor, ¢;(x"), is zero outside the inclusion volume and constant within
the inclusion i.e. fictitious body force is only present in the inclusion
volume. Eq. (11) can be integrated over the volume of the inclusion to
calculate the average displacement gradient deviation in the inclusion

[26]
=1 / / th /1 dX dx (Clcjmn C:;mn )ufn,n’ (12)
where u¢  is the average displacement gradient in the inclusion i.e. crys-

tal. Deﬁmng the strain in the inclusion as the symmetric part of the dis-
placement gradient, u{ ,, and invoking the minor symmetry of the elastic
stiffness, gives

1 1 ¢
ekl=Ek1+70//§[Gkiﬂ(x—x’) +Glijk(x—x’)]dx dx(Cljmn Cgmn>ecmn

13)

where E;; is the macroscopically imposed strain tensor i.e.
the strain in the homogenous reference medium. The integral
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S is uniform in the volume
Ve

of the inclusion, meaning that the strain inside the inclusion
is also uniform. The symmetric Eshelby tensor is defined as

f [Giiix —x) + Gy jp(x —x")]dx'C;;  [29]. Then, the strain in
V.
the inclusion is
C*

ypq
-1
[I“’"’" + Sklpq(C;qij> (Clcjmn l/mﬂ)] Epn = AfclmnEmn 14)

where I3, is the fourth rank identity tensor, A¢,, is a localization (or
concentratlon) tensor. Using Egs. (5), 7a), (7b) and (14), the effective
stiffness is

Cgkl =< ClquAzc)qrrm
Since the localization tensor, A;
ness, C"
[10].

%[Gki,jl(x =x') + Gy j(x = x")]dx’

klpq

>< A>T (15)

g is a function of the effective stiff-

ko EQ- (15) is solved numerically using the fixed point iterations

2.1.2. Full-field FFT homogenization for estimating effective elastic
properties

Effective properties of a microstructural cell embedding crystal prop-
erties can be solved using full-field approaches like finite elements with
sub-grain mesh resolution [30-36] or a Green’s function-based method,
which relies on the efficient FFT algorithm to solve the convolution in-
tegral representing stress equilibrium under strain compatibility con-
straint over a voxel-based microstructural cell. The later approach is
utilized here as a more accurate but less computationally efficient alter-
native to the SC homogenization.

In this formulation, Eq. (11) is solved in Fourier space, which is then
followed by the inverse transform to obtain the strain as

e5(x) = Ej+ FT™ ( (lkl(k)>¢kl(k))

where the symbols "™" and FT-! indicate direct and inverse Fourier trans-
forms, respectively, while sym indicates the symmetric portion and k is
a point (frequency) in Fourier Space. The fourth order tensor f% oK) is

(16)

1K) = an

Guessing the stress, A;(, and corresponding elastic strain, e;®, at an
iteration (i), the polarization field is

—k kG (K); Gy (k) = [Cp gk 17

by ) = 4,00 = COueg P x). (18)
The new guess for strain field at (i+ 1) is then
ey @) = B, + FT7! (sym(£9,,00 )60 K) ). (19)

The stress field is iteratively solved using a suitably defined residual

Ry(6*D) = 6,01 4 €, 0, +D(00+D) = 2,0 — €, V¢, 0+ = 0. 20)
In Eq. (20), the Voigt form is employed as
i = Oy, k=1.6, @1
Cixt = Cpn - m,n=1..6.
The solution is obtained using the Newton’s solution procedure

o o OR - o
o UHLHD = g (L) <T;k 5(z+1,j)) R (cUt1D), (22)

I

where j enumerates the iterations for stress. The convergence is con-
trolled by
OR,

=8 + Cp,°C 7!
(30'1 kl kq “ql

oli+1.))

(23)

The stress solution is used as a next guess in Eq. (18) until convergence
is achieved in which o approaches 1 and & approaches e.

Upon the convergence, a homogenization over voxels of the mi-
crostructural cell is performed as follows

ZX,Y,Z ("ij(x)) )

T ; N =#of voxelsin X,Y, Z,

y N3
ZX,Y,Z (Eij(x))
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Fig. 1. Stereographic pole figures showing initial texture of (a) DP 590, (b) DP 980, and (c) DP 1180 steel sheets.

Since an equivalent expression to Eq. (15) for the full-field FFT ho-
mogenization is not readily available, an alternative procedure is used
to obtain the effective macroscopic stiffness for a given microstructural
cell. The procedure involves several steps:

i Set six simulations such that

1.0 0.0 0.0 00 00 00 00 00 00
E =100 00 00}, E =00 10 00| E=]00 00 00},
0.0 00 0.0 0.0 00 00 00 00 1.0
0.0 00 00 0.0 00 05 0.0 05 00
EJ =100 00 05 E=[00 00 00fEY =05 00 00|
00 05 00 0.5 00 00 0.0 00 00
(25)
ii Run each simulation to obtain the individual components of elastic
stiffness
M _ M _ )
) = C B, =Cc; i ED =Cly
<2> v @ _rr p@ _ o
Z - CljklE Cu22 E CI_[22
<3> E® <3> 1
= ChyEy = Clas Ey) = CY s
@ _ o g _ ) @ _ 1
L = CiuEy = CiEyy +Cipnky = E(C*zs +C1/32) Cins
) w p(5) SO G _ [ .
2 - Cl/klE - CIJHE +Ctj'§lE E(C j13 +C1/31) Cu]'&
®) _ o+ p® () v g _ 10 .
Zij = CuklE Cu]zE +C¢,2|E21 - §<C j12 +Ctj21) sz
ij =11,22,33,23,13,12. (26)

=5

iii Form the effective elastic stiffness tensor from the components ob-

tained in Eq. (26).

2.2. Obtaining Young’s modulus, Poisson’s ratio, and shear modulus from
an effective elastic tensor

The effective elastic stiffness and compliance tensors as outputs from
the homogenization approaches are defined with respect to the rolling
direction (RD) as e;, the transverse direction (TD) as e,, and the nor-
mal direction (ND) as e; of the steel sheets: C* = C; wti®e e Qe
and S* = Siuei®e; e Qe respectively. Young’s modulus along e;
can be determmed by examining the case of a simple tension in e;.

Eg. (6) reduces to E;; = S},,,Z;; which can be rearranged into

le —

Ey

1

S

Young’s Modulus = .
1111

@7
Similarly, Poisson’s ratio, v;, can be determined using the simple tension

case as
*
S22] 1

Sllll

Ep __

Poisson’s Ratio = — (28)

11

642

Finally, shear modulus, y,, is

Shear Modulus = ——
1212

(29)

The stiffness tensor, C*, given with respect to the reference frame
of the sheet, can be transformed using the coordinate transformation
law into another frame e]. The direction cosines transformation matrix
for change of basis is a dot product between vectors representing the
reference frame of the sheet and the transformed frame, Q;; = ¢, - e}.
=0,y0,01,0:5C, . (30)

The transformation matrix, Q;, can be conveniently established using

l_[kl

two angles, where one rotates about e; (i.e. ¢; in Eq. (2)) to obtain C;;.'k ’
along any in-plane sheet orientation and another rotates about e; (i.e.
@ in Eq. (2)) to obtain Cl.”;.'k, along any orientation in three-dimensional

(3D) space. The transformed stiffness matrix C*/ is then inverted to get

S, 1> Which is then used to determined Young s modulus and Poisson’s
’
. . . . . S3
ratio along selected in-plane sheet orientation using *;, and —%,
1111 1111
respectively.
3. Results

3.1. Microstructure

The materials investigated in this study are commercial steel
sheets received from US Steel. The studied steels are typical of auto-
body/structure applications. We begin by presenting texture for the
sheets as characterized using EBSD. Fig. 1 shows stereographic pole fig-
ures visualizing the texture for the ferrite phase in DP 590, DP 980, and
DP 1180. The data for DP 590 was taken from [37]. The EBSD scans
were run over a very large area for each steel to obtain statistically
significant data. The texture evolution in the sheets resembles classi-
cally reported orthotropic rolled texture for body-centered cubic (BCC)
materials, where a majority of the grains are concentrated around the
y-fiber and a portion of the a-fiber [3,38-45]. We have attempted to
separate the texture of the martensitic phase in each steel and obtained
these to be weak (i.e. approximately random). While the measured EBSD
scans consisted of over a million index-able points with high confidence
index for ferrite for each sheet, textures used in the simulations were
compacted to 1,000 weighted orientations using the recently developed
procedures [46,47]. Sum of the weights corresponded to the fraction of
ferrite for each steel. Texture used in the simulation for the martensitic
phase was also represented by 1000 orientations, which were approxi-
mated as uniform random. Likewise, for ferrite, the sum of the weights
of orientations for the martensite phase corresponded to the measured
fraction of martensite for each steel. The phase fractions were measured
using a combination of EBSD and SEM imaging, where the latter method
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Table 1

Measured fraction of martensitic phase per steel.
Steel DP 590 DP 980 DP 1180 MS 1700
Fraction 0.077 0.33 0.42 0.90

was used to verify the former method. Since regions of martensite ap-
pear as dark regions in image quality (IQ) maps [37,48], the volume
fraction of martensite was determined using a threshold procedure from
IQ maps of high resolution. The obtained estimates were verified by an-
alyzing many SEM images. Table 1 presents the measured fraction of
martensite for each steel.

3.2. Calibration

To study elastic anisotropy of dual-phase steels as a function of their
microstructural features, we first employ the SC homogenization to esti-
mate the effective elastic properties. The microstructural variables con-
sidered by the SC homogenization are restricted to texture and phase
fraction. The steels used in this study have similar texture but con-
tain an increasing volume fraction of martensite within a ferrite matrix
(Table 1). The content of martensite is likely the main microstructural
feature governing the difference in their elastic behavior. To begin, tex-
ture and phase fraction of DP 590 as a predominantly ferritic streel and
MS 1700 as a predominantly martensitic steel are used to appropriately
initialize the SC modeling framework put together to extract the single
crystal constants. As a consequence of cubic crystal symmetry, BCC for
ferrite and body-centered tetragonal for martensite require only three
crystal stiffness coefficients, Cy;, C5, and Cy4 to define their single-
crystal stiffness tensors. These three crystal constants per phase are a
user defined input in the SC model, in addition to the input in terms of
the phase fractions and texture per phase. The objective is to determine

Young's Modulus (GPa)

Poisson's Ratio

a 90°
120° B 120°
.7 b >
L ]
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' 200 y (A
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the crystal stiffness coefficients of ferrite and martensite while calculat-
ing the orientation dependent effective data for Young’s modulus and
Poisson’s ratio with respect to RD for the two sheets. The data is taken
from [49]. Additionally, the data for the shear modulus was available
for MS 1700 [50]. We set a direct-search optimization algorithm to find
the optimal constants while matching the experimental data with the
output of the SC homogenization.

Since the elastic stiffness coefficients of ferrite are expected to be sim-
ilar to those of Fe, we used them as the initial guess. The elastic crys-
tal stiffness coefficients of Fe have been reliably determined by many
independent sources (Appendix A). The two-tier direct-search optimiza-
tion algorithm was set to minimize the error between the calculated
and mean of the measured effective values for two steels in seven di-
rections (RD=0°, 15°, 30°, 45°, 60°, 75°, and TD =90°) to determine the
crystal elastic stiffness coefficients for ferrite and martensite. For every
combination of the constants, the effective stiffness tensors are calcu-
lated for the two steels using the SC homogenization model. The two
effective stiffness tensors are then passed to the program for perform-
ing the change of basis and obtaining Young’s modulus, Poisson’s ratio,
and shear modulus for two steels in every direction. The first stage of
the program considered only the experimental data for Poisson’s ratio
and varied all six coefficients at once. The second stage of the program
kept the anisotropy ratio constant and varied only the overall magni-
tude of the constants to minimize the error for Young’s Modulus. Thus,
both the level of anisotropy and the magnitude of the constants were
adjusted. The optimization scheme attempted to increase and decrease
each crystal constant by a predetermined step size and the combination
with the lowest error from the experimental data was used as the new
initial value. This process continued until no change in the new initial
constant values from the old values occurred.

Fig. 2 shows the comparison between measured and calculated vari-
ation of effective Young’s modulus and Poisson’s ratio with the in-plane

Fig. 2. Comparison of measured [49] and cal-

90° culated variation of effective Young’s modulus
60° and Poisson’s ratio with the in-plane sheet ori-
0.3 entation: (a) DP 590 and (b) MS 1700. The
N angle starts from the rolling direction (i.e.
~ * i 30° 0°=RD). The calculations are performed using
e 7 . \
SO035 g ! the mean-field self-consistent homogenization
] o method.
/
,
02 % 0°
-
I \
o b
| WY &l
. wiz, 57 330°
300°
270°
90°
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o 03
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N
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\
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Table 2
Comparison of measured [50] and calculated
in-plane shear modulus (y;,).

MS 1700 (GPa)

78.0
79.28

Measured
SC Calculated

Table 3
Single crystal elastic stiffness values in GPa for
ferrite and martensite estimated in this work.

Cn Ciz Cas
Ferrite 218.37 113.31 105.34
Martensite 282.31 116.19 78.57

sheet orientation for the two steels based on the optimized single crys-
tal constants. Table 2 compares measured and calculated in-plane shear
modulus. As is evident, the agreement is reasonably good suggesting
that the calibrated single crystal constants should be reliable.

Table 3 presents the established single crystal values for both ferrite
and martensite. Fig. 3 illustrates the dependence of Young’s modulus
for ferrite and martensite on orientation in 3D. These diagrams illus-
trate the level of anisotropy of single crystals. The behavior of ferrite is
such that [100], [010], and [001] directions are softer, while the [111],
[111], and [111] directions are stiffer. Interestingly, for martensite, the
opposite occurs but the anisotropy of Young’s modulus is small. The co-
ordinate axes correspond to slightly stiffer directions. Effective elastic
behavior of polycrystalline DP steels is governed essentially by super-
position of these two crystal diagrams weighted by their texture and
phase fractions.

2.6e+02

1.4e+02

International Journal of Mechanical Sciences 151 (2019) 639-649
3.3. Verification using the full-field estimates

In order to verify the estimates of the single crystal constants and
evaluate the sensitivity of the effective stiffness properties on mi-
crostructure, we designed several simulation setups for the full-field FFT
solver to estimate the elastic stiffness of DP 590. Here, the role of grain,
phase, and misorientation distributions as full-field microstructural fea-
tures in governing the effective elastic properties can be assessed, in ad-
dition to phase fractions and texture as mean-field microstructural fea-
tures. To this end, three synthetic microstructures with different grain
strictures are generated using the DREAM3D software package [51].
The grain structure is based on the EBSD scans [37], ensuring the ra-
tio between smaller martensite grains surrounded by the larger ferrite
crystals and the volume fraction of the phases. Furthermore, the tex-
ture is shuffled three times using the “jumble orientations” function in
DREAMS3D to further vary the inter-granular misorientation distribu-
tion per microstructure realization. Numerical setups in terms of the
3D voxel-based microstructural cells and texture shuffles in each are
shown in Fig. 4. Every microstructural cell consist of 1283 voxels em-
bedding 3,592 ferrite grains and 270 martensite grains. The measured
texture was loaded in DREAM3D and assigned to ferrite, while a uni-
form random texture is assigned to martensite. The two categories of
grains are designed as equiaxed and of similar volume per phase in each
microstructural cell. Thus, texture and phase fractions were nearly the
same in every microstructural realization as shuffles had minimal effect
on the change in texture.

Fig. 5 shows the comparison of measured and calculated variation
of effective Young’s modulus and Poisson’s ratio with the in-plane sheet
orientation for DP 590 based on the full field calculations. The figure
also shows the comparison between the SC estimates and the average of
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Fig. 3. Contour plots showing anisotropy of Young’s modulus with orientation for single crystalline (a) ferrite phase and (b) martensitic phase.

iii

Fig. 4. Front, side, and top views of 3D voxel-based microstructural cells generated in DREAM.3D to synthetically represent grain structure of DP 590: (a) microstruc-
tural cell #, 1 (b) microstructural cell #2, (c) microstructural cell #3, (i) texture shuffle #1, (ii) texture shuffle #2, (iii) texture shuffle #3. The colors represent
different grains. These numerical setups are used in the EVPFFT simulations of the effective elastic properties for DP 590.
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Fig. 5. Comparison of measured and calculated varia-
tion of effective Young’s modulus and Poisson’s ratio
with the in-plane sheet orientation for DP 590. The angle
starts from the rolling direction (i.e. 0°=RD). The calcu-
lations of the effective properties are performed using
the full-field EVPFFT homogenization method based on
(a) microstructural cell #1 (b) microstructural cell #2,
(c) microstructural cell #3 with three texture shuffles in
each. (d) Comparison between the SC and the average of
the full-field FFT predictions. The property bounds are
also plotted.
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Fig. 6. Comparison of measured [49] and pre-
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the full-field FFT predictions. Additionally, the property bounds are plot- Table 4

ted. First, it is observed that the effective values are within the bounds.
Next, the effective elastic stiffness estimated using the full-field FFT
solver and the SC approach are very similar, validating the single crystal
elastic stiffness constants for both phases. Finally, the good agreement
between the SC and FFT-based estimates suggests that texture and phase
fractions play the major role in governing the effective elastic behavior,
while grain, phase, and misorientation distributions are secondary. Al-
though the grains of the martensite are much different than grains of
the ferrite, the morphology effects still seem secondary.

4, Discussion

This work utilized the single crystal mechanics, homogenization the-
ories, sets of microstructural characterization data, and sets of orienta-
tion dependent Young’s modulus and Poisson’s ratio data to reliably
determine the single crystal elastic stiffness constants for ferrite and
martensite. Two steels were suitably selected to facilitate the accurate
determination of the constants per phase, one containing over 90% of
ferrite (DP 590) and another containing up to 90% of martensite (MS
1700). Crystallographic texture and phase fractions have been charac-
terized using EBSD and SEM. Taking texture and phase fractions as input
into the model, the effective elastic behavior of two steels was modelled
using the SC homogenization while calibrating the constants by match-
ing the measured anisotropy. To this end, an optimization algorithm
was developed to search for the optimal constant. The optimal constants
were then successfully used within the full-field FFT model to verify the
elasticity response of DP 590.

To further verify the established values, we simulate the orientation
dependent Young’s modulus and Poisson’s ratio for DP 980 and DP 1180
using the SC approach. These calculations are regarded as predictions
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Comparison of measured [50] and predicted in-
plane shear modulus (y1,).

DP 980 (GPa) DP 1180 (GPa)

78.1
79.40

75.0
77.53

Measured
SC Predicted

since the same set of single crystal constants for ferrite and marten-
site (Table 3) are used. The initial textures shown in Fig. 1 were used
to initialize the ferrite phase per steel used in the SC model. Compar-
ison of measured [49] and predicted variation of the effective proper-
ties with the in-plane sheet orientation is given in Fig. 6. Furthermore,
Table 4 shows the predicted values of the shear modulus for both steels.
Considering the predicted magnate of the effective properties and the
shape of the curves, we regard these predictions as reasonably good.
Appendix B presents values of the elastic stiffness tension components
for the four studied steels.

Clearly, the four steels studied in this work exhibit a moderate level
of anisotropic effective elastic behavior, where both their Young’s mod-
ulus and the Poisson’s ratios depend on orientation with respect to the
sheet loading direction. As has been determined, the individual crystals
exhibit the crystalline anisotropy and symmetry. The contour plots pre-
sented in Fig. 3 reveal the level of orientation dependence of Young’s
modulus for ferrite and martensite in 3D. Interestingly, soft vs. stiff
directions are the opposite for the two phases. Moreover, the levels
of elastic anisotropy are different. The estimated Zener anisotropy ra-
tio, A = ZC:‘“ , for ferrite is A=2.0, which is slightly less than the

1 1
value for Fe (A=2.4 for Fe). While a value of 1.0 for A is for an
isotropic material, that value for martensite is A =0.95. The values of the
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constants and the small level of anisotropy we obtain for martensite
are in good agreement with the experimental measurements presented
in [52], which are given in table A4 of the Appendix A. The effective
behavior of polycrystalline aggregates of these steels is a direct con-
sequence of texture and phase fractions, homogenizing the crystalline
effects.

In closing, we reflect on possible sources influencing the accuracy
of the predictions, in addition to the intrinsic assumptions involved in
the homogenization approached we employed to estimate the effective
properties. We have used EBSD and SEM to initialize texture and phase
fraction input to the models. While we have attempted to provide as
statistically significant as possible data based on these techniques, it
is possible that spatial variation in the microstructure of studied steels
can cause these to be inaccurate. In particular, texture of martensite
was assumed as uniform random. To relax this concern, future research
will involve generating the input to the models based on the data col-
lected using neutron diffraction. Neutron diffraction allows for the mea-
surement of microstructural features averaged over large volumes due
to the deep penetration of thermal neutrons into most materials com-
bined with beam spot sizes of ~1 cm?. The constants determined in
this work asummed single chemical composition for ferrite and single
chemical composition for martensite. The four studied steels have very
similar chemical composition but not identical. Solute atoms could in-
duce lattice strains, which could change lattice parameters. Such dis-
tortions could affect the single crystal elastic constants, and as a re-
sult, the effective behavior. For example, the studied steels have a slight
difference in the content of carbon (C). C atoms within the interstitial
sites increase the interatomic constants and should increase the stiff-
ness on one hand. On the other hand, these atoms increase the vol-
ume of the lattice, reducing the stiffness. Thus, there are some com-
peting effects [53] but considering the similarity in the composition of
the studied steels, the effect on solute on the determined crystal con-
stants is likely to be secondary. In addition, any variation in the density
of dislocations, especially in martensite, can have some effect on the
constants [54].

5. Conclusions

This work has shown that it is possible to reliably estimate sin-
gle crystal stiffness coefficients for ferrite and martensite using an ap-
proach involving single crystal mechanics, homogenization theories, mi-
crostructural characterization data, and orientation dependent Young’s
modulus and Poisson’s ratio data. The microstructure data of DP 590
and MS 1700 steels was used to initialize the homogenization models
in terms of texture and phase fraction. The models were run within an
optimization scheme to extract the single crystal stiffness constants for
ferrite and martensite, while reproducing the effective property data.
Subsequently, the constants were verified by predicting the effective
property data for DP 980 and DP 1180. It is shown that the model tak-
ing the calibrated constants and microstructure as input can predict the
effective elastic properties for all studied steels containing various levels
of martensitic volume fraction. The effective behavior of the predomi-
nantly martensitic steel, MS 1700, was predicted as nearly isotropic due
to nearly isotropic behavior of a martensite single crystal. In contrast,
the behavior of the predominantly ferrite steel, DP 590, was predicted
as the most anisotropic amongst the studied steels, as a consequence of
anisotropic behavior of a ferrite single crystal and texture. Thus, the ef-
fective behavior of steels exhibiting a different level of anisotropy was
successfully predicted. Since the effective elastic stiffness estimated us-
ing the full-field FFT solver of several microstructural realizations, for
constant texture and phase fractions and the SC approach for the same
texture and phase fraction, were nearly identical, it is inferred that tex-
ture and phase fractions play a primary role in governing the effective
elastic behaviors of steels, while grain, phase, and misorientation distri-
butions are secondary. The results of this work represent a significant
incentive to introduce elastic anisotropy in numerical tools for simulat-
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ing metal forming processes of dual-phase steels using the texture in-
formed crystal mechanics-based models to more accurately estimate the
effective elastic properties required by such simulations. Furthermore,
texture evolution can be simulated during a forming process using crys-
tal plasticity models such as EPSC and EVPFFT implying that the evolu-
tion of the effective elastic behavior with plastic strain is also calculated
during the forming process.
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Appendix A

This appendix presents a summary of available single crystal elastic
coefficients for a-Iron (Fe), ferrite, and martensite, including the source
of the values. (Tables A1-A5)

Table Al

Single crystal elastic stiffness coefficients in GPa for a-
iron (Fe) measured using either the ultrasonic pulse-echo
technique or resonant ultrasonic spectroscopy at room
temperature (~300K) and atmospheric pressure.

Source Cpy Cio Cyy

[55] 236.88 140.63 116.01
[56] 241.50 146.63 111.73
[57] 228.09 133.48 110.86
[58] 209.36 113.66 111.36
[59] 242.00 146.50 112.00
[59] 237.00 141.00 116.00
[60] 233.10 135.44 117.83
[61] 228.00 132.00 116.50
[61] 223.00 127.00 115.00
[62] 231.40 134.70 116.40
[63] 230.10 134.60 116.60
[64] 226.00 140.00 116.00
[65] 232.20 135.60 117.00
[52] 231.50 135.00 116.00
[66] 230.37 134.07 115.87

Table A2

Single crystal elastic stiffness coefficients in GPa for a-
iron estimated theoretically using first-principles calcula-
tions based on density functional theory (DFT) methods.

Source Cny Cio Cyq
[671 276.6 145.8 97.58
[68] 289 118 115
[69] 279 140 99
[70] 271 145 101
[71] 303 150 126
[72] 297.8 141.9 106.7
[73] 279.2 148.8 93.0
Table A3

Single crystal elastic stiffness coefficients in GPa for fer-
rite, estimated theoretically using a micromechanical
approach involving a crystallography-based anisotropic
thermomechanical continuum model.

Source Cny Cio Cyq

[74] 233.3 135.5 118.0
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Table A5

Table A4
Elastic stiffness tensor values in GPa for martensite measured using resonant ultrasonic
spectroscopy at room temperature (~300K) and atmospheric pressure.

International Journal of Mechanical Sciences 151 (2019) 639-649

Source  Cyipp Cozor Cs333 Ciizz Ciizs Ca233 Cas23 Caizn Cizz
[52] 268.1 268.4 2672 111.2 110.2 111.0 79.06 78.72  78.85
[9] Sumikawa S, Ishiwatari A, Hiramoto J, Urabe T. Improvement of springback pre-

Single crystal elastic stiffness coefficients in GPa for
martensite, estimated theoretically using either a mi-
cromechanical approach involving a crystallography-
based anisotropic thermomechanical continuum model

or DFT.
Source Cyy Ciy Cyq
[74] 372.4 345.0 191.0
[75] 417.4 242.4 211.1
[67] 268.1 139.7 89.2
[67] 259.0 135.2 86.6
[76] 278.0 148.0 98.0
Appendix B

This appendix presents values of the elastic stiffness tensor compo-
nents in MPa for the four steels based on the single crystal elastic coef-
ficients established in this paper and their measured texture and phase

fractions.
C DP 590 DP 980 DP 1180 MS 1700
Cin 260,080.22 262,883.38 264,902.01 277,435.51
Ci122 91,758.80 101,380.85 103,506.58 116,707.88
Cii33 98,082.99 102,394.45 104,378.27 116,758.64
Cip 37381 —81.34 -71.79 —15.04
Cis 39175 -11.71 —12.44 -16.48
Cios 35226 —225.35 -192.98 0.07
Cyypp  262,349.70  266,081.14  267,659.45  277,644.75
Coo33 95,813.51 99,196.68 101,620.84 116,549.40
Cyp  409.71 —-24.34 -21.53 -5.63
Cypiz  20.52 -141.35 -123.20 ~18.00
Cona3 111.68 418.16 362.49 33.63
Cs333 256,025.51 265,067.54 266,787.76 277,593.99
Cyzs  —783.52 105.68 93.31 20.67
Cyz  —412.27 153.06 135.64 34.48
Cyps  —463.95 -192.82 -169.50 -33.70
Ciy12  75,445.64  79,396.14  79,527.72  80,283.19
Ciiz  350.19 —227.27 -194.40 0.08
Cis  23.95 ~135.84 -119.04 -17.95
Ci313 81,503.84 80,386.05 80,381.80 80,333.89
Cizps  —809.71 103.53 91.66 20.63
Ca33 79,275.37 77,303.06 77,710.09 80,125.18
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