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a b s t r a c t 

This work utilizes mean-field self-consistent and full-field fast Fourier transform-based homogenizations to study 
the effective elastic behavior of several steels: three dual-phase (DP), DP 590, DP 980, and DP 1180, and one 
martensitic (MS), MS 1700. Crystallographic textures and phase fractions of these steels are characterized using 
electron microscopy along with electron-backscattered diffraction to initialize the models. A comprehensive set of 
Young’s modulus and Poisson’s ratio data, measured at the ambient temperature as a function of orientation with 
respect to the rolling direction for each steel sheet, is used to calibrate and validate the models. The calibration 
of the models enabled us to estimate the single crystal elastic constants for both the martensitic phase and ferrite, 
while calculating the orientation dependent effective properties. Half of the data was used in the calibration. 
Subsequent predictions of the orientation dependent effective elastic properties for the remaining data verified 
that the estimated single crystal properties are reliable. As the steels exhibit a different level of anisotropy in their 
effective behavior, good predictions allowed us to discuss the role of texture, grain structure, phase fraction and 
distribution on the effective properties. The results of this work represent a significant incentive to introduce elas- 
tic anisotropy in numerical tools for simulating metal forming processes of dual-phase steels, in particular those 
processes involving springback, using the texture informed crystal mechanics-based models to more accurately 
estimate the effective elastic properties required by such simulations. 
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. Introduction 

Simulations of manufacturing processes and mechanical designs in-
olving polycrystalline metals are performed more accurately if the ma-
erial constitutive behavior is modeled as anisotropic. The basic build-
ng block of a polycrystalline material, the single crystal referred to as
 grain having a certain crystal lattice orientation, is known to exhibit
nisotropic behavior [1,2] . Thermo-mechanical processing of polycrys-
alline aggregates generates a distribution of crystal lattice orientations,
hich is referred to as crystallographic texture [3] . Texture is not ran-
om but actually preferred depending on the directionality of active
rystallographic deformation mechanisms, which accommodate shape
hange during shaping operations. A preferred distribution of crystal
rientations can either enhance or suppress the anisotropy of effective
roperties. Interactions between individual grains of different crystal
rientations exhibiting anisotropy in their properties under load creates
nter-granular stress fields. The local mechanical fields are even more
eterogeneous in multi-phase materials such as dual-phase (DP) steels
ontaining a distribution of martensite and ferrite phases with contrast-
ng mechanical characteristics. 
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The crystal elastic properties play the central role in governing the
xtent of backstress fields under load, or residual stress fields upon load
emoval [4] . A tensorial measure describing the resistance to stretch
 crystal elastically in an anisotropic manner is referred to as elastic
tiffness. Capturing the distribution of elastic backstress fields is espe-
ially important for modeling the material behavior during strain-path-
hanges [5] . Upon a strain-path-change, the material exhibits elastic
nloading followed by a change in the yield stress from the one reached
t the end of pre-straining, while the newly applied stress combines
ith the existing elastic backstress field [6,7] . After a metallic part is

emoved from a forming die, the field further evolves to a new equi-
ibrium, which is accompanied with geometrical changes of the part
eferred to as springback. For example, upon completion of sheet metal
orming, deep-drawn or stretch-drawn parts “spring back ”, affecting the
imensional accuracy of a finished part. The dimensional changes are
irectly dependent on the effective elastic properties of the sheet. Thus,
he constitutive model used in predicting springback in metal forming
hould consider elastic anisotropy, as highlighted in [8,9] . Accurate pre-
ictions of springback are accentuated with the development of mod-
rn alloys for the transportation industry for vehicle light-weighting
1 December 2018 
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1 The Einstein indicial notation of implicit summation on repeated indices is 
employed in this paper, except when explicitly noted otherwise. 
urposes, such as the advanced-high strength steels (AHSS), which ex-
ibit high flow stress or aluminum and magnesium alloys, which exhibit
ow stiffness, both of which accentuate the magnitude of springback.
remier examples of AHSS are DP steels containing variable fractions
f martensite vs. ferrite phases in their microstructure. This paper is
oncerned with the effective elastic behavior of DP steels based on the
ingle crystal mechanics and microstructure. 

Estimates of the effective elastic behavior of DP steels depend on
icrostructure and the accuracy of available single crystal constants for
artensite and ferrite along with the homogenization procedure linking

he crystal to the overall effective elastic response of the polycrystal.
ublished experimental measurements and theoretical estimates of sin-
le crystal elastic constants for martensitic and ferrite phases are rare,
s they are difficult to measure and also difficult to theoretically cal-
ulate. Furthermore, the reported values vary substantially. Tables that
ummarize values based on a literature review are given in Appendix A .
s is evident, while the elastic crystal stiffness coefficients of iron (Fe)
ave been reliably determined by many independent sources, the stiff-
ess coefficients of ferrite and martensite have yet to be established with
onfidence. 

We present estimates of the single crystal elastic coefficients for
artensite and ferrite, based on the calibration and validation of mean-
eld self-consistent (SC) and full-field fast Fourier transform (FFT)-
ased homogenizations towards a comprehensive set of Young’s mod-
lus and Poisson’s ratio data measured at the ambient temperature as
 function of orientation with respect to the rolling direction (RD) for
hree DP steels, DP 590, DP 980, and DP 1180, and one martensitic (MS)
teel, MS 1700. The effective elastic properties have been measured at
5° increments from the RD of the sheets. The specific models consid-
red in the present work are the elasto-plastic SC (EPSC) [10–12] and the
lasto-viscoplastic FFT (EVPFFT) [13,14] in which the strain is restricted
o be elastic. While the former is much more computationally efficient,
he latter is regarded as more accurate and can be used to validate the
ormer. Texture and phase fractions of these steels are characterized
sing scanning electron microscopy (SEM) and electron-backscattered
iffraction (EBSD) to initialize the models. Taking the characterized mi-
rostructure and the single crystal elastic constants as inputs, the mod-
ls calculate the orientation dependent effective elastic behavior of the
teels. The constants for martensite and ferrite are varied to fit the ori-
ntation dependent and microstructure sensitive effective response of
P 590 and MS 1700 using an optimization scheme and then verified
y predicting the response of DP 980 and DP 1180. Thus, the effec-
ive property measurements along with the microstructural measure-
ents are computationally linked to establish single crystal elastic con-

tants for ferrite and martensite. As the steels exhibit a different level
f anisotropy in their effective behavior, good predictions allowed us to
iscuss the role of texture, grain structure, phase fraction and distribu-
ion on the effective properties. 

. Modeling framework for predicting the anisotropic elastic 

esponse of polycrystals 

This section summarizes homogenization approaches for calculating
ffective elastic properties and a procedure for obtaining the effective
roperties as a function of orientation with respect to sheet sample di-
ections. In our notation, tensors are denoted by bold non-italic letters,
hile scalars and tensor components are italic and not bold. 

The fourth rank crystal elastic stiffness tensor as a function of the
rystal orientation can be calculated as 

 

𝑐 = 𝐶 

𝑐 
𝑖𝑗𝑘𝑙 

= 𝑔 𝑖𝑝 𝑔 𝑗𝑞 𝑔 𝑘𝑟 𝑔 𝑙𝑠 [ 𝐶 12 𝛿𝑝𝑞 𝛿𝑟𝑠 + 𝐶 44 ( 𝛿𝑝𝑠 𝛿𝑞𝑠 + 𝛿𝑝𝑠 𝛿𝑞𝑟 ) 

+ ( 𝐶 11 − 𝐶 12 − 2 𝐶 44 ) 
∑3 

𝑡 =1 
𝛿𝑝𝑡 𝛿𝑞𝑡 𝛿𝑟𝑡 𝛿𝑠𝑡 ] , (1)

here 𝛿ij represents the Kronecker delta symbol, C 12 , C 12 , and C 44 are
he single crystal elastic stiffness constants for a cubic crystal, and g ij are
640 
omponents of an orthogonal coordinate transformation matrix relating
 crystal to a sample frame as 

 = 
⎡ ⎢ ⎢ ⎣ 
cos 𝜙1 cos 𝜙2 − sin 𝜙1 cos Φsin 𝜙2 − cos 𝜙1 sin 𝜙2 − sin 𝜙1 cos Φsin 𝜙2 sin 𝜙1 sin Φ
sin 𝜙1 cos 𝜙2 + cos 𝜙1 cos Φsin 𝜙2 − sin 𝜙1 sin 𝜙2 + cos 𝜙1 cos Φcos 𝜙2 − cos 𝜙1 sin Φ

sin Φsin 𝜙2 sin Φcos 𝜙2 cos Φ

⎤ ⎥ ⎥ ⎦ 
(2) 

The first-order lower (Reuss) and upper (Voigt) bounds for the effec-
ive elastic stiffness tensor have been well established in the literature
15–22] . The bounds for the diagonal components are 

⟨𝐒 𝑐 ⟩−1 )
𝑖𝑗𝑖𝑗 

≤ 𝐶 

∗ 
𝑖𝑗𝑖𝑗 ≤ 

⟨ 
𝐶 

𝑐 
𝑖𝑗𝑖𝑗 

⟩ 
(3)

hile those for the off-diagonal components are 

ax 
(⟨ 

𝐶 

𝑐 
𝑖𝑗𝑘𝑙 

⟩ 
, ( ⟨𝐒 𝑐 ⟩−1 ) 𝑖𝑗𝑘𝑙 

)
− 

√ 

Δ𝑖𝑗𝑖𝑗 Δ𝑘𝑙𝑘𝑙 

≤ 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

≤ min 
(⟨ 

𝐶 

𝑐 
𝑖𝑗𝑘𝑙 

⟩ 
, ( ⟨𝐒 𝑐 ⟩−1 ) 𝑖𝑗𝑘𝑙 

)
+ 

√ 

Δ𝑖𝑗𝑖𝑗 Δ𝑘𝑙𝑘𝑙 , (4a) 

𝑖𝑗𝑘𝑙 = 

⟨ 
𝐶 

𝑐 
𝑖𝑗𝑘𝑙 

⟩ 
− ( ⟨𝐒 𝑐 ⟩−1 ) 𝑖𝑗𝑘𝑙 . (4b)

ere, no implicit summation on repeated indices is used. 1 The angle
rackets ⟨ ⟩ are used to denote the volume averaged value over con-
tituent crystals in a polycrystal. S c = ( C 

c ) − 1 is the single crystal com-
liance tensor. 

The constitutive relation for linear elasticity that holds for
nisotropic materials expressed in terms of matrices in the Voigt form
23] is 

 

 

 

 

 

 

 

 

Σ11 
Σ22 
Σ33 
Σ23 
Σ31 
Σ12 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐶 

∗ 
1111 𝐶 

∗ 
1122 𝐶 

∗ 
1133 𝐶 

∗ 
1123 𝐶 

∗ 
1131 𝐶 

∗ 
1112 

𝐶 

∗ 
2211 𝐶 

∗ 
2222 𝐶 

∗ 
2233 𝐶 

∗ 
2223 𝐶 

∗ 
2231 𝐶 

∗ 
2221 

𝐶 

∗ 
3311 𝐶 

∗ 
3322 𝐶 

∗ 
3333 𝐶 

∗ 
3323 𝐶 

∗ 
3331 𝐶 

∗ 
3312 

𝐶 

∗ 
3211 𝐶 

∗ 
3222 𝐶 

∗ 
2333 𝐶 

∗ 
2323 𝐶 

∗ 
2331 𝐶 

∗ 
2312 

𝐶 

∗ 
3111 𝐶 

∗ 
3122 𝐶 

∗ 
3133 𝐶 

∗ 
3132 𝐶 

∗ 
3131 𝐶 

∗ 
3112 

𝐶 

∗ 
1211 𝐶 

∗ 
1222 𝐶 

∗ 
1233 𝐶 

∗ 
1223 𝐶 

∗ 
1231 𝐶 

∗ 
1212 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐸 11 
𝐸 22 
𝐸 33 
2 𝐸 23 
2 𝐸 31 
2 𝐸 12 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(5) 

In this reducing order notation, the macroscopic Cauchy stress ten-
or, 𝚺, and macroscopic strain tensor, E , are expressed as column vectors
nd the effective stiffness tensor is expressed as a symmetric matrix. The
nverse relation is 

 

 

 

 

 

 

 

 

𝐸 11 
𝐸 22 
𝐸 33 
2 𝐸 23 
2 𝐸 31 
2 𝐸 12 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑆 

∗ 
1111 𝑆 

∗ 
1122 𝑆 

∗ 
1133 2 𝑆 

∗ 
1123 2 𝑆 

∗ 
1131 2 𝑆 

∗ 
1112 

𝑆 

∗ 
2211 𝑆 

∗ 
2222 𝑆 

∗ 
2233 2 𝑆 

∗ 
2223 2 𝑆 

∗ 
2231 2 𝑆 

∗ 
2221 

𝑆 

∗ 
3311 𝑆 

∗ 
3322 𝑆 

∗ 
3333 2 𝑆 

∗ 
3323 2 𝑆 

∗ 
3331 2 𝑆 

∗ 
3312 

2 𝑆 

∗ 
3211 2 𝑆 

∗ 
3222 2 𝑆 

∗ 
2333 4 𝑆 

∗ 
2323 4 𝑆 

∗ 
2331 4 𝑆 

∗ 
2312 

2 𝑆 

∗ 
3111 2 𝑆 

∗ 
3122 2 𝑆 

∗ 
3133 4 𝑆 

∗ 
3132 4 𝑆 

∗ 
3131 4 𝑆 

∗ 
3112 

2 𝑆 

∗ 
1211 2 𝑆 

∗ 
1222 2 𝑆 

∗ 
1233 4 𝑆 

∗ 
1223 4 𝑆 

∗ 
1231 4 𝑆 

∗ 
1212 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

Σ11 
Σ22 
Σ33 
Σ23 
Σ13 
Σ12 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(6) 

.1. Effective properties 

The effective properties relating 𝚺 and E can be estimated with the
nowledge of local stress and strain fields in the polycrystal. The macro-
copic Cauchy stress tensor, 𝚺, and macroscopic strain tensor, E , are 

= < 𝝈( 𝐱 ) >, (7a)

 = < 𝜺 ( 𝐱 ) >, (7b)

here 𝝈( x ) is a local stress tensor, 𝜺 ( x ) is a local strain tensor, and x
s a spatial coordinate, which belongs to a crystal c . The superscript
 is dropped when the spatial coordinate x is indicated. The general
ramework for calculating the local stress and strain fields, entering
qs. (7a) and (7b) , in a heterogeneous polycrystal undergoing a pre-
cribed macroscopic strain tensor is outlined next [24–26] . The local
onstitutive relation is 

( 𝐱 ) = 𝐂 ( 𝐱 ) 𝜺 ( 𝐱 ) . (8)
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here C ( x ) is the local elastic stiffness at x in a grain c . The local elastic
tiffness can be expressed in terms of an elastic stiffness of a fictitious
omogenous reference medium as 

 ( 𝐱 ) = 𝐂 

0 + 𝛿𝐂 ( 𝐱 ) , (9)

here C 

0 is the elastic stiffness of the homogenous reference medium
nd 𝛿C ( x ) is the deviation of the local elastic stiffness at x from
lastic stiffness of the homogenous reference medium. The equilib-
ium statement in the absence of a body force can be written using
qs. (8) and (9) 

 

0 
𝑖𝑗𝑘𝑙 

𝑢 𝑘,𝑙𝑗 ( 𝐱 ) + 

(
𝛿𝐶 𝑖𝑗𝑘𝑙 ( 𝐱 ) 𝑢 𝑘,𝑙 ( 𝐱 ) 

)
,𝑗 
= 0 , (10)

here u k ( x ) is the local displacement vector and the product of 𝛿C ijkl ( x )
nd u k,l ( x ) is known as the polarization field, 𝜙ij . Eq. (10) can be viewed
s the equilibrium statement for the homogenous reference medium
ith a prescribed distribution of the fictitious body force, 𝜙ij,j . Using

he Green function method allows transformation of Eq. (10) into an
ntegral equation 

̃ 𝑘,𝑙 ( 𝐱 ) = ∫
𝑅 3 

𝐺 𝑘𝑖,𝑗𝑙 

(
𝐱 − 𝐱 ′

)
𝜙𝑖𝑗 

(
𝐱 ′
)
𝑑 𝐱 ′, (11)

here 𝑢̃ 𝑘,𝑙 ( 𝐱) is the local displacement gradient fluctuation, G ki ( x − x ′ )
s Green’s function for the infinite homogenous reference medium, and
he integral is generically over the entire three-dimensional space, R 

3 .
qs. (5) , (7a) , and (7b) together with the solution of the integral in
q. (11) facilitate solving for the effective properties of the polycrystal
26] . In this work, we will use two approaches to solve for the integral
n Eq. (11) in order to estimate homogenized effective stiffness for poly-
rystals: (1) the mean-field SC approach and (2) the full-field FFT-based
pproach. 

.1.1. Mean-field self-consistent homogenization for estimating effective 

lastic properties 

This section summarizes the solution to Eq. (11) using the SC ap-
roach, which is valid for granular media i.e. polycrystals. The SC ap-
roach facilitates the evaluation of the effective elastic stiffness in a
omputationally efficient manner. The underlying assumptions can be
ound elsewhere e.g. [26,27] , while the actual SC scheme used here is
rom [10,28] . 

Each crystal is represented as an ellipsoidal heterogeneity within
he infinite homogenous reference medium under applied displacement.
lastic stiffness of the reference homogenous medium is set equal to the
nknown effective elastic stiffness i.e. 𝐶 

0 
𝑖𝑗𝑘𝑙 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

, while the elastic stiff-
ess of each crystal, 𝐶 

𝑐 
𝑖𝑗𝑘𝑙 

, is assumed to be uniform within the crystal
olume c . The problem can be reduced to Eshelby’s inclusion problem
27] with an appropriate choice of eigenstrain, meaning that the strain
nd stress within the heterogeneity are constant. The polarization ten-
or, 𝜙ij ( x ′ ), is zero outside the inclusion volume and constant within
he inclusion i.e. fictitious body force is only present in the inclusion
olume. Eq. (11) can be integrated over the volume of the inclusion to
alculate the average displacement gradient deviation in the inclusion
26] 

̃ 𝑐 
𝑘,𝑙 

= 

1 
𝑉 𝑐 ∫

𝑉 𝑐 

∫
𝑉 𝑐 

𝐺 𝑘𝑖,𝑗𝑙 

(
𝐱 − 𝐱 ′

)
𝑑 𝐱 ′𝑑𝐱 

(
𝐶 

𝑐 
𝑖𝑗𝑚𝑛 − 𝐶 

∗ 
𝑖𝑗𝑚𝑛 

)
𝑢 𝑐 𝑚,𝑛 , (12)

here 𝑢 𝑐 𝑚,𝑛 is the average displacement gradient in the inclusion i.e. crys-
al. Defining the strain in the inclusion as the symmetric part of the dis-
lacement gradient, 𝑢 𝑐 

𝑘,𝑙 
, and invoking the minor symmetry of the elastic

tiffness, gives 

 

𝑐 
kl 
=𝐸 kl + 

1 
𝑉 𝑐 ∫

𝑉 𝑐 

∫
𝑉 𝑐 

1 
2 
[
𝐺 ki , jl 

(
𝐱 − 𝐱 ′

)
+ 𝐺 li , jk 

(
𝐱 − 𝐱 ′

)]
𝑑 𝐱 ′𝑑 𝐱 

(
𝐶 

𝑐 
ijmn 

−𝐶 

∗ 
ijmn 

)
𝜀 𝑐 mn 

(13) 

here E kl is the macroscopically imposed strain tensor i.e.
he strain in the homogenous reference medium. The integral
641 
∫
 𝑐 

1 
2 [ 𝐺 𝑘𝑖,𝑗𝑙 ( 𝐱 − 𝐱 ′) + 𝐺 𝑙𝑖,𝑗𝑘 ( 𝐱 − 𝐱 ′) ] 𝑑 𝐱 ′ is uniform in the volume

f the inclusion, meaning that the strain inside the inclusion
s also uniform. The symmetric Eshelby tensor is defined as
 

𝑐 
klpq 

= ∫
𝑉 𝑐 

1 
2 [ 𝐺 ki , jl ( 𝐱 − 𝐱 ′) + 𝐺 li , jk ( 𝐱 − 𝐱 ′)] 𝑑𝐱 ′𝐶 

∗ 
ijpq 

[29] . Then, the strain in

he inclusion is 

 

𝑐 
𝑘𝑙 

= 

[ 
𝐼 𝑘𝑙𝑚𝑛 + 𝑆 

𝑐 
𝑘𝑙𝑝𝑞 

(
𝐶 

∗ 
𝑝𝑞𝑖𝑗 

)−1 (
𝐶 

𝑐 
𝑖𝑗𝑚𝑛 − 𝐶 

∗ 
𝑖𝑗𝑚𝑛 

)] −1 
𝐸 𝑚𝑛 = 𝐴 

𝑐 
𝑘𝑙𝑚𝑛 

𝐸 𝑚𝑛 (14)

here I ijkl is the fourth rank identity tensor, 𝐴 

𝑐 
𝑖𝑗𝑘𝑙 

is a localization (or
oncentration) tensor. Using Eqs. (5) , 7a ), ( 7b ) and (14) , the effective
tiffness is 

 

∗ 
ijkl 

= < 𝐶 

𝑐 
ijpq 

𝐴 

𝑐 
pqmn > < 𝐴 

𝑐 
mnkl 

> 

−1 . (15)

ince the localization tensor, 𝐴 

𝑐 
𝑝𝑞𝑚𝑛 , is a function of the effective stiff-

ess, 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

, Eq. (15) is solved numerically using the fixed point iterations
10] . 

.1.2. Full-field FFT homogenization for estimating effective elastic 

roperties 

Effective properties of a microstructural cell embedding crystal prop-
rties can be solved using full-field approaches like finite elements with
ub-grain mesh resolution [30–36] or a Green’s function-based method,
hich relies on the efficient FFT algorithm to solve the convolution in-

egral representing stress equilibrium under strain compatibility con-
traint over a voxel-based microstructural cell. The later approach is
tilized here as a more accurate but less computationally efficient alter-
ative to the SC homogenization. 

In this formulation, Eq. (11) is solved in Fourier space, which is then
ollowed by the inverse transform to obtain the strain as 

 ij ( 𝐱 ) = 𝐸 ij + 𝐹 𝑇 −1 
(

sym 

(
Γ̂0 

ijkl 
( 𝐤 ) 

)
𝜙̂kl ( 𝐤 ) 

)
, (16)

here the symbols "ˆ" and FT − 1 indicate direct and inverse Fourier trans-
orms, respectively, while sym indicates the symmetric portion and k is
 point (frequency) in Fourier Space. The fourth order tensor Γ̂0 

𝑖𝑗𝑘𝑙 
( 𝐤 ) is

̂ 0 
𝑖𝑗𝑘𝑙 

( 𝐤 ) = − 𝑘 𝑗 𝑘 𝑙 𝐺̂ 𝑖𝑘 ( 𝐤 ); 𝐺̂ 𝑖𝑘 ( 𝐤 ) = [ 𝐶 𝑘𝑗𝑖𝑙 𝑘 𝑙 𝑘 𝑗 ] −1 . (17)

Guessing the stress, 𝜆ij 
( i ) , and corresponding elastic strain, e ij 

( i ) , at an
teration ( i ), the polarization field is 

𝑖𝑗 
( 𝑖 ) ( 𝐱) = 𝜆𝑖𝑗 

( 𝑖 ) ( 𝐱) − 𝐶 

0 
𝑖𝑗𝑘𝑙 𝑒 𝑘𝑙 

( 𝑖 ) ( 𝐱) . (18)

he new guess for strain field at ( i + 1) is then 

 𝑖𝑗 
( 𝑖 +1) ( 𝐱) = 𝐸 𝑖𝑗 + 𝐹 𝑇 −1 

(
𝑠𝑦𝑚 

(
Γ̂0 

𝑖𝑗𝑘𝑙 
( 𝐤 ) 

)
𝜙̂
( 𝑖 ) 
𝑘𝑙 
( 𝐤 ) 

)
. (19)

he stress field is iteratively solved using a suitably defined residual 

 𝑘 ( 𝝈( 𝑖 +1) ) = 𝜎𝑘 
( 𝑖 +1) + 𝐶 𝑘𝑙 

0 𝜀 𝑙 
( 𝑖 +1) ( 𝝈( 𝑖 +1) ) − 𝜆𝑘 

( 𝑖 ) − 𝐶 𝑘𝑙 
0 𝑒 𝑙 

( 𝑖 +1) = 0 . (20)

n Eq. (20) , the Voigt form is employed as 

ij → 𝜎𝑘 , 𝑘 = 1 .. 6 , 
 ijkl → 𝐶 mn 𝑚, 𝑛 = 1 .. 6 . (21) 

he solution is obtained using the Newton’s solution procedure 

𝑘 
( 𝑖 +1 ,𝑗+1) = 𝜎𝑘 

( 𝑖 +1 ,𝑗) − 

( 

𝜕 𝑅 𝑘 

𝜕 𝜎𝑙 

||||𝝈( 𝑖 +1 ,𝑗) 
) −1 

𝑅 𝑙 ( 𝝈( 𝑖 +1 ,𝑗) ) , (22)

here j enumerates the iterations for stress. The convergence is con-
rolled by 
𝜕𝑅 𝑘 

𝜕𝜎𝑙 

||||𝝈( 𝑖 +1 ,𝑗 ) = 𝛿kl + 𝐶 kq 
0 𝐶 ql 

−1 (23) 

he stress solution is used as a next guess in Eq. (18) until convergence
s achieved in which 𝝈 approaches 𝝀 and 𝜺 approaches e . 

Upon the convergence, a homogenization over voxels of the mi-
rostructural cell is performed as follows 

Σij = 

∑
𝑋,𝑌 ,𝑍 

(
𝜎ij ( 𝐱 ) 

)
𝑁 

3 ; 𝑁 = # of voxels in 𝑋, 𝑌 , 𝑍, 

 ij = 

∑
𝑋,𝑌 ,𝑍 

(
𝜀 ij ( 𝐱 ) 

)
𝑁 

3 . (24) 
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Fig. 1. Stereographic pole figures showing initial texture of (a) DP 590, (b) DP 980, and (c) DP 1180 steel sheets. 
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Since an equivalent expression to Eq. (15) for the full-field FFT ho-
ogenization is not readily available, an alternative procedure is used

o obtain the effective macroscopic stiffness for a given microstructural
ell. The procedure involves several steps: 

i Set six simulations such that 

𝐸 

(1) 
𝑖𝑗 

= 

⎡ ⎢ ⎢ ⎣ 
1 . 0 0 . 0 0 . 0 
0 . 0 0 . 0 0 . 0 
0 . 0 0 . 0 0 . 0 

⎤ ⎥ ⎥ ⎦ , 𝐸 

(2) 
𝑖𝑗 

= 

⎡ ⎢ ⎢ ⎣ 
0 . 0 0 . 0 0 . 0 
0 . 0 1 . 0 0 . 0 
0 . 0 0 . 0 0 . 0 

⎤ ⎥ ⎥ ⎦ , 𝐸 

(3) 
𝑖𝑗 

= 

⎡ ⎢ ⎢ ⎣ 
0 . 0 0 . 0 0 . 0 
0 . 0 0 . 0 0 . 0 
0 . 0 0 . 0 1 . 0 

⎤⎥⎥⎦
𝐸 

(4) 
𝑖𝑗 

= 

⎡ ⎢ ⎢ ⎣ 
0 . 0 0 . 0 0 . 0 
0 . 0 0 . 0 0 . 5 
0 . 0 0 . 5 0 . 0 

⎤ ⎥ ⎥ ⎦ , 𝐸 

(5) 
𝑖𝑗 

= 

⎡ ⎢ ⎢ ⎣ 
0 . 0 0 . 0 0 . 5 
0 . 0 0 . 0 0 . 0 
0 . 5 0 . 0 0 . 0 

⎤ ⎥ ⎥ ⎦ , 𝐸 

(6) 
𝑖𝑗 

= 

⎡ ⎢ ⎢ ⎣ 
0 . 0 0 . 5 0 . 0 
0 . 5 0 . 0 0 . 0 
0 . 0 0 . 0 0 . 0 

⎤⎥⎥⎦
(25

ii Run each simulation to obtain the individual components of elastic
stiffness 

Σ(1) 
𝑖𝑗 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐸 

(1) 
𝑘𝑙 

= 𝐶 

𝑒𝑓𝑓 
𝑖𝑗11 𝐸 

(1) 
11 = 𝐶 

∗ 
𝑖𝑗11 

Σ(2) 
𝑖𝑗 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐸 

(2) 
𝑘𝑙 

= 𝐶 

∗ 
𝑖𝑗22 𝐸 

(2) 
22 = 𝐶 

∗ 
𝑖𝑗22 

Σ(3) 
𝑖𝑗 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐸 

(3) 
𝑘𝑙 

= 𝐶 

∗ 
𝑖𝑗33 𝐸 

(3) 
33 = 𝐶 

𝑒𝑓𝑓 
𝑖𝑗33 

Σ(4) 
𝑖𝑗 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐸 

(4) 
𝑘𝑙 

= 𝐶 

∗ 
𝑖𝑗23 𝐸 

(4) 
23 + 𝐶 

∗ 
𝑖𝑗32 𝐸 

(4) 
32 = 

1 
2 

(
𝐶 

∗ 
𝑖𝑗23 + 𝐶 

∗ 
𝑖𝑗32 

)
= 𝐶 

∗ 
𝑖𝑗23 

Σ(5) 
𝑖𝑗 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐸 

(5) 
𝑘𝑙 

= 𝐶 

∗ 
𝑖𝑗13 𝐸 

(5) 
13 + 𝐶 

∗ 
𝑖𝑗31 𝐸 

(5) 
31 = 

1 
2 

(
𝐶 

∗ 
𝑖𝑗13 + 𝐶 

∗ 
𝑖𝑗31 

)
= 𝐶 

∗ 
𝑖𝑗13 

Σ(6) 
𝑖𝑗 

= 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐸 

(6) 
𝑘𝑙 

= 𝐶 

∗ 
𝑖𝑗12 𝐸 

(6) 
12 + 𝐶 

∗ 
𝑖𝑗21 𝐸 

(6) 
21 = 

1 
2 

(
𝐶 

∗ 
𝑖𝑗12 + 𝐶 

∗ 
𝑖𝑗21 

)
= 𝐶 

∗ 
𝑖𝑗12 

𝑖𝑗 = 11 , 22 , 33 , 23 , 13 , 12 . (26)

iii Form the effective elastic stiffness tensor from the components ob-
tained in Eq. (26) . 

.2. Obtaining Young’s modulus, Poisson’s ratio, and shear modulus from 

n effective elastic tensor 

The effective elastic stiffness and compliance tensors as outputs from
he homogenization approaches are defined with respect to the rolling
irection (RD) as e 1 , the transverse direction (TD) as e 2 , and the nor-
al direction (ND) as e 3 of the steel sheets: 𝐂 

∗ = 𝐶 

∗ 
𝑖𝑗𝑘𝑙 

𝐞 𝑖 ⊗ 𝐞 𝑗 ⊗ 𝐞 𝑘 ⊗ 𝐞 𝑙 
nd 𝐒 ∗ = 𝑆 

∗ 
𝑖𝑗𝑘𝑙 

𝐞 𝑖 ⊗ 𝐞 𝑗 ⊗ 𝐞 𝑘 ⊗ 𝐞 𝑙 , respectively. Young’s modulus along e 1 
an be determined by examining the case of a simple tension in e 1 .
q. (6) reduces to 𝐸 11 = 𝑆 

∗ 
1111 Σ11 which can be rearranged into 

oung’s Modulus = 

∑
11 

𝐸 11 
= 

1 
𝑆 

∗ 
1111 

. (27)

imilarly, Poisson’s ratio, 𝜈12 can be determined using the simple tension
ase as 

oisson’s Ratio = − 

𝐸 22 
𝐸 11 

= − 

𝑆 

∗ 
2211 

𝑆 

∗ (28)
1111 

642 
inally, shear modulus, 𝜇12 , is 

hear Modulus = 

1 
4 𝑆 

∗ 
1212 

(29)

The stiffness tensor, C 

∗ , given with respect to the reference frame
f the sheet, can be transformed using the coordinate transformation
aw into another frame 𝐞 ′

𝑖 
. The direction cosines transformation matrix

or change of basis is a dot product between vectors representing the
eference frame of the sheet and the transformed frame, 𝑄 𝑖𝑗 = 𝐞 𝑖 ⋅ 𝐞 ′𝑗 . 

 

∗ ′
𝑖𝑗𝑘𝑙 

= 𝑄 𝑖𝑝 𝑄 𝑗𝑞 𝑄 𝑘𝑟 𝑄 𝑙𝑠 𝐶 

∗ 
𝑝𝑞𝑟𝑠 (30)

he transformation matrix, Q ij , can be conveniently established using

wo angles, where one rotates about e 3 (i.e. 𝜙1 in Eq. (2) ) to obtain 𝐶 

∗ ′
𝑖𝑗𝑘𝑙 

long any in-plane sheet orientation and another rotates about e 1 (i.e.
in Eq. (2) ) to obtain 𝐶 

∗ ′
𝑖𝑗𝑘𝑙 

along any orientation in three-dimensional

3D) space. The transformed stiffness matrix 𝐶 

∗ ′
𝑖𝑗𝑘𝑙 

is then inverted to get

 

∗ ′
𝑖𝑗𝑘𝑙 

, which is then used to determined Young’s modulus and Poisson’s

atio along selected in-plane sheet orientation using 1 
𝑆 ∗ 

′
1111 

and − 

𝑆 ∗ 
′

2211 
𝑆 ∗ 

′
1111 

,

espectively. 

. Results 

.1. Microstructure 

The materials investigated in this study are commercial steel
heets received from US Steel. The studied steels are typical of auto-
ody/structure applications. We begin by presenting texture for the
heets as characterized using EBSD. Fig. 1 shows stereographic pole fig-
res visualizing the texture for the ferrite phase in DP 590, DP 980, and
P 1180. The data for DP 590 was taken from [37] . The EBSD scans
ere run over a very large area for each steel to obtain statistically

ignificant data. The texture evolution in the sheets resembles classi-
ally reported orthotropic rolled texture for body-centered cubic (BCC)
aterials, where a majority of the grains are concentrated around the

-fiber and a portion of the 𝛼-fiber [3,38–45] . We have attempted to
eparate the texture of the martensitic phase in each steel and obtained
hese to be weak (i.e. approximately random). While the measured EBSD
cans consisted of over a million index-able points with high confidence
ndex for ferrite for each sheet, textures used in the simulations were
ompacted to 1,000 weighted orientations using the recently developed
rocedures [46,47] . Sum of the weights corresponded to the fraction of
errite for each steel. Texture used in the simulation for the martensitic
hase was also represented by 1000 orientations, which were approxi-
ated as uniform random. Likewise, for ferrite, the sum of the weights

f orientations for the martensite phase corresponded to the measured
raction of martensite for each steel. The phase fractions were measured
sing a combination of EBSD and SEM imaging, where the latter method
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Table 1 

Measured fraction of martensitic phase per steel. 

Steel DP 590 DP 980 DP 1180 MS 1700 

Fraction 0.077 0.33 0.42 0.90 
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a  
as used to verify the former method. Since regions of martensite ap-
ear as dark regions in image quality (IQ) maps [37,48] , the volume
raction of martensite was determined using a threshold procedure from
Q maps of high resolution. The obtained estimates were verified by an-
lyzing many SEM images. Table 1 presents the measured fraction of
artensite for each steel. 

.2. Calibration 

To study elastic anisotropy of dual-phase steels as a function of their
icrostructural features, we first employ the SC homogenization to esti-
ate the effective elastic properties. The microstructural variables con-

idered by the SC homogenization are restricted to texture and phase
raction. The steels used in this study have similar texture but con-
ain an increasing volume fraction of martensite within a ferrite matrix
 Table 1 ). The content of martensite is likely the main microstructural
eature governing the difference in their elastic behavior. To begin, tex-
ure and phase fraction of DP 590 as a predominantly ferritic streel and
S 1700 as a predominantly martensitic steel are used to appropriately

nitialize the SC modeling framework put together to extract the single
rystal constants. As a consequence of cubic crystal symmetry, BCC for
errite and body-centered tetragonal for martensite require only three
rystal stiffness coefficients, C 11 , C 12 , and C 44 to define their single-
rystal stiffness tensors. These three crystal constants per phase are a
ser defined input in the SC model, in addition to the input in terms of
he phase fractions and texture per phase. The objective is to determine
643 
he crystal stiffness coefficients of ferrite and martensite while calculat-
ng the orientation dependent effective data for Young’s modulus and
oisson’s ratio with respect to RD for the two sheets. The data is taken
rom [49] . Additionally, the data for the shear modulus was available
or MS 1700 [50] . We set a direct-search optimization algorithm to find
he optimal constants while matching the experimental data with the
utput of the SC homogenization. 

Since the elastic stiffness coefficients of ferrite are expected to be sim-
lar to those of Fe, we used them as the initial guess. The elastic crys-
al stiffness coefficients of Fe have been reliably determined by many
ndependent sources ( Appendix A ). The two-tier direct-search optimiza-
ion algorithm was set to minimize the error between the calculated
nd mean of the measured effective values for two steels in seven di-
ections (RD = 0°, 15°, 30°, 45°, 60°, 75°, and TD = 90°) to determine the
rystal elastic stiffness coefficients for ferrite and martensite. For every
ombination of the constants, the effective stiffness tensors are calcu-
ated for the two steels using the SC homogenization model. The two
ffective stiffness tensors are then passed to the program for perform-
ng the change of basis and obtaining Young’s modulus, Poisson’s ratio,
nd shear modulus for two steels in every direction. The first stage of
he program considered only the experimental data for Poisson’s ratio
nd varied all six coefficients at once. The second stage of the program
ept the anisotropy ratio constant and varied only the overall magni-
ude of the constants to minimize the error for Young’s Modulus. Thus,
oth the level of anisotropy and the magnitude of the constants were
djusted. The optimization scheme attempted to increase and decrease
ach crystal constant by a predetermined step size and the combination
ith the lowest error from the experimental data was used as the new

nitial value. This process continued until no change in the new initial
onstant values from the old values occurred. 

Fig. 2 shows the comparison between measured and calculated vari-
tion of effective Young’s modulus and Poisson’s ratio with the in-plane
Fig. 2. Comparison of measured [49] and cal- 
culated variation of effective Young’s modulus 
and Poisson’s ratio with the in-plane sheet ori- 
entation: (a) DP 590 and (b) MS 1700. The 
angle starts from the rolling direction (i.e. 
0°= RD). The calculations are performed using 
the mean-field self-consistent homogenization 
method. 
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Table 2 

Comparison of measured [50] and calculated 
in-plane shear modulus ( 𝜇12 ). 

MS 1700 (GPa) 

Measured 78.0 
SC Calculated 79.28 

Table 3 

Single crystal elastic stiffness values in GPa for 
ferrite and martensite estimated in this work. 

C 11 C 12 C 44 

Ferrite 218.37 113.31 105.34 
Martensite 282.31 116.19 78.57 
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heet orientation for the two steels based on the optimized single crys-
al constants. Table 2 compares measured and calculated in-plane shear
odulus. As is evident, the agreement is reasonably good suggesting

hat the calibrated single crystal constants should be reliable. 
Table 3 presents the established single crystal values for both ferrite

nd martensite. Fig. 3 illustrates the dependence of Young’s modulus
or ferrite and martensite on orientation in 3D. These diagrams illus-
rate the level of anisotropy of single crystals. The behavior of ferrite is
uch that [100], [010], and [001] directions are softer, while the [111],
1 ̄1 1], and [11 ̄1 ] directions are stiffer. Interestingly, for martensite, the
pposite occurs but the anisotropy of Young’s modulus is small. The co-
rdinate axes correspond to slightly stiffer directions. Effective elastic
ehavior of polycrystalline DP steels is governed essentially by super-
osition of these two crystal diagrams weighted by their texture and
hase fractions. 
Fig. 3. Contour plots showing anisotropy of Young’s modulus with orienta

ig. 4. Front, side, and top views of 3D voxel-based microstructural cells generated in
ural cell #, 1 (b) microstructural cell #2, (c) microstructural cell #3, (i) texture sh
ifferent grains. These numerical setups are used in the EVPFFT simulations of the eff

644 
.3. Verification using the full-field estimates 

In order to verify the estimates of the single crystal constants and
valuate the sensitivity of the effective stiffness properties on mi-
rostructure, we designed several simulation setups for the full-field FFT
olver to estimate the elastic stiffness of DP 590. Here, the role of grain,
hase, and misorientation distributions as full-field microstructural fea-
ures in governing the effective elastic properties can be assessed, in ad-
ition to phase fractions and texture as mean-field microstructural fea-
ures. To this end, three synthetic microstructures with different grain
trictures are generated using the DREAM3D software package [51] .
he grain structure is based on the EBSD scans [37] , ensuring the ra-
io between smaller martensite grains surrounded by the larger ferrite
rystals and the volume fraction of the phases. Furthermore, the tex-
ure is shuffled three times using the “jumble orientations ” function in
REAM3D to further vary the inter-granular misorientation distribu-

ion per microstructure realization. Numerical setups in terms of the
D voxel-based microstructural cells and texture shuffles in each are
hown in Fig. 4 . Every microstructural cell consist of 128 3 voxels em-
edding 3,592 ferrite grains and 270 martensite grains. The measured
exture was loaded in DREAM3D and assigned to ferrite, while a uni-
orm random texture is assigned to martensite. The two categories of
rains are designed as equiaxed and of similar volume per phase in each
icrostructural cell. Thus, texture and phase fractions were nearly the

ame in every microstructural realization as shuffles had minimal effect
n the change in texture. 

Fig. 5 shows the comparison of measured and calculated variation
f effective Young’s modulus and Poisson’s ratio with the in-plane sheet
rientation for DP 590 based on the full field calculations. The figure
lso shows the comparison between the SC estimates and the average of
tion for single crystalline (a) ferrite phase and (b) martensitic phase. 

 DREAM.3D to synthetically represent grain structure of DP 590: (a) microstruc- 
uffle #1, (ii) texture shuffle #2, (iii) texture shuffle #3. The colors represent 
ective elastic properties for DP 590. 
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Fig. 5. Comparison of measured and calculated varia- 
tion of effective Young’s modulus and Poisson’s ratio 
with the in-plane sheet orientation for DP 590. The angle 
starts from the rolling direction (i.e. 0°= RD). The calcu- 
lations of the effective properties are performed using 
the full-field EVPFFT homogenization method based on 
(a) microstructural cell #1 (b) microstructural cell #2, 
(c) microstructural cell #3 with three texture shuffles in 
each. (d) Comparison between the SC and the average of 
the full-field FFT predictions. The property bounds are 
also plotted. 
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Fig. 6. Comparison of measured [49] and pre- 
dicted variation of effective Young’s modulus 
and Poisson’s ratio with the in-plane sheet ori- 
entation: (a) DP 980 and (b) DP 1180. The 
angle starts from the rolling direction (i.e. 
0°= RD). The calculations are performed using 
the mean-field self-consistent homogenization 
method. 
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Table 4 

Comparison of measured [50] and predicted in- 
plane shear modulus ( 𝜇12 ). 

DP 980 (GPa) DP 1180 (GPa) 

Measured 78.1 75.0 
SC Predicted 79.40 77.53 
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i  
he full-field FFT predictions. Additionally, the property bounds are plot-
ed. First, it is observed that the effective values are within the bounds.
ext, the effective elastic stiffness estimated using the full-field FFT

olver and the SC approach are very similar, validating the single crystal
lastic stiffness constants for both phases. Finally, the good agreement
etween the SC and FFT-based estimates suggests that texture and phase
ractions play the major role in governing the effective elastic behavior,
hile grain, phase, and misorientation distributions are secondary. Al-

hough the grains of the martensite are much different than grains of
he ferrite, the morphology effects still seem secondary. 

. Discussion 

This work utilized the single crystal mechanics, homogenization the-
ries, sets of microstructural characterization data, and sets of orienta-
ion dependent Young’s modulus and Poisson’s ratio data to reliably
etermine the single crystal elastic stiffness constants for ferrite and
artensite. Two steels were suitably selected to facilitate the accurate
etermination of the constants per phase, one containing over 90% of
errite (DP 590) and another containing up to 90% of martensite (MS
700). Crystallographic texture and phase fractions have been charac-
erized using EBSD and SEM. Taking texture and phase fractions as input
nto the model, the effective elastic behavior of two steels was modelled
sing the SC homogenization while calibrating the constants by match-
ng the measured anisotropy. To this end, an optimization algorithm
as developed to search for the optimal constant. The optimal constants
ere then successfully used within the full-field FFT model to verify the
lasticity response of DP 590. 

To further verify the established values, we simulate the orientation
ependent Young’s modulus and Poisson’s ratio for DP 980 and DP 1180
sing the SC approach. These calculations are regarded as predictions
646 
ince the same set of single crystal constants for ferrite and marten-
ite ( Table 3 ) are used. The initial textures shown in Fig. 1 were used
o initialize the ferrite phase per steel used in the SC model. Compar-
son of measured [49] and predicted variation of the effective proper-
ies with the in-plane sheet orientation is given in Fig. 6 . Furthermore,
able 4 shows the predicted values of the shear modulus for both steels.
onsidering the predicted magnate of the effective properties and the
hape of the curves, we regard these predictions as reasonably good.
ppendix B presents values of the elastic stiffness tension components

or the four studied steels. 
Clearly, the four steels studied in this work exhibit a moderate level

f anisotropic effective elastic behavior, where both their Young’s mod-
lus and the Poisson’s ratios depend on orientation with respect to the
heet loading direction. As has been determined, the individual crystals
xhibit the crystalline anisotropy and symmetry. The contour plots pre-
ented in Fig. 3 reveal the level of orientation dependence of Young’s
odulus for ferrite and martensite in 3D. Interestingly, soft vs. stiff
irections are the opposite for the two phases. Moreover, the levels
f elastic anisotropy are different. The estimated Zener anisotropy ra-
io, 𝐴 = 

2 𝐶 44 
𝐶 11 − 𝐶 12 

, for ferrite is A = 2.0, which is slightly less than the

alue for Fe ( A = 2.4 for Fe). While a value of 1.0 for A is for an
sotropic material, that value for martensite is A = 0.95. The values of the
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Table A1 

Single crystal elastic stiffness coefficients in GPa for 𝛼- 
iron (Fe) measured using either the ultrasonic pulse-echo 
technique or resonant ultrasonic spectroscopy at room 

temperature ( ∼300 K) and atmospheric pressure. 

Source C 11 C 12 C 44 

[55] 236.88 140.63 116.01 
[56] 241.50 146.63 111.73 
[57] 228.09 133.48 110.86 
[58] 209.36 113.66 111.36 
[59] 242.00 146.50 112.00 
[59] 237.00 141.00 116.00 
[60] 233.10 135.44 117.83 
[61] 228.00 132.00 116.50 
[61] 223.00 127.00 115.00 
[62] 231.40 134.70 116.40 
[63] 230.10 134.60 116.60 
[64] 226.00 140.00 116.00 
[65] 232.20 135.60 117.00 
[52] 231.50 135.00 116.00 
[66] 230.37 134.07 115.87 

Table A2 

Single crystal elastic stiffness coefficients in GPa for 𝛼- 
iron estimated theoretically using first-principles calcula- 
tions based on density functional theory (DFT) methods. 

Source C 11 C 12 C 44 

[67] 276.6 145.8 97.58 
[68] 289 118 115 
[69] 279 140 99 
[70] 271 145 101 
[71] 303 150 126 
[72] 297.8 141.9 106.7 
[73] 279.2 148.8 93.0 

Table A3 

Single crystal elastic stiffness coefficients in GPa for fer- 
rite, estimated theoretically using a micromechanical 
approach involving a crystallography-based anisotropic 
thermomechanical continuum model. 

Source C 11 C 12 C 44 

[74] 233.3 135.5 118.0 
onstants and the small level of anisotropy we obtain for martensite
re in good agreement with the experimental measurements presented
n [52] , which are given in table A4 of the Appendix A . The effective
ehavior of polycrystalline aggregates of these steels is a direct con-
equence of texture and phase fractions, homogenizing the crystalline
ffects. 

In closing, we reflect on possible sources influencing the accuracy
f the predictions, in addition to the intrinsic assumptions involved in
he homogenization approached we employed to estimate the effective
roperties. We have used EBSD and SEM to initialize texture and phase
raction input to the models. While we have attempted to provide as
tatistically significant as possible data based on these techniques, it
s possible that spatial variation in the microstructure of studied steels
an cause these to be inaccurate. In particular, texture of martensite
as assumed as uniform random. To relax this concern, future research
ill involve generating the input to the models based on the data col-

ected using neutron diffraction. Neutron diffraction allows for the mea-
urement of microstructural features averaged over large volumes due
o the deep penetration of thermal neutrons into most materials com-
ined with beam spot sizes of ∼1 cm 

2 . The constants determined in
his work asummed single chemical composition for ferrite and single
hemical composition for martensite. The four studied steels have very
imilar chemical composition but not identical. Solute atoms could in-
uce lattice strains, which could change lattice parameters. Such dis-
ortions could affect the single crystal elastic constants, and as a re-
ult, the effective behavior. For example, the studied steels have a slight
ifference in the content of carbon (C). C atoms within the interstitial
ites increase the interatomic constants and should increase the stiff-
ess on one hand. On the other hand, these atoms increase the vol-
me of the lattice, reducing the stiffness. Thus, there are some com-
eting effects [53] but considering the similarity in the composition of
he studied steels, the effect on solute on the determined crystal con-
tants is likely to be secondary. In addition, any variation in the density
f dislocations, especially in martensite, can have some effect on the
onstants [54] . 

. Conclusions 

This work has shown that it is possible to reliably estimate sin-
le crystal stiffness coefficients for ferrite and martensite using an ap-
roach involving single crystal mechanics, homogenization theories, mi-
rostructural characterization data, and orientation dependent Young’s
odulus and Poisson’s ratio data. The microstructure data of DP 590

nd MS 1700 steels was used to initialize the homogenization models
n terms of texture and phase fraction. The models were run within an
ptimization scheme to extract the single crystal stiffness constants for
errite and martensite, while reproducing the effective property data.
ubsequently, the constants were verified by predicting the effective
roperty data for DP 980 and DP 1180. It is shown that the model tak-
ng the calibrated constants and microstructure as input can predict the
ffective elastic properties for all studied steels containing various levels
f martensitic volume fraction. The effective behavior of the predomi-
antly martensitic steel, MS 1700, was predicted as nearly isotropic due
o nearly isotropic behavior of a martensite single crystal. In contrast,
he behavior of the predominantly ferrite steel, DP 590, was predicted
s the most anisotropic amongst the studied steels, as a consequence of
nisotropic behavior of a ferrite single crystal and texture. Thus, the ef-
ective behavior of steels exhibiting a different level of anisotropy was
uccessfully predicted. Since the effective elastic stiffness estimated us-
ng the full-field FFT solver of several microstructural realizations, for
onstant texture and phase fractions and the SC approach for the same
exture and phase fraction, were nearly identical, it is inferred that tex-
ure and phase fractions play a primary role in governing the effective
lastic behaviors of steels, while grain, phase, and misorientation distri-
utions are secondary. The results of this work represent a significant
ncentive to introduce elastic anisotropy in numerical tools for simulat-
647 
ng metal forming processes of dual-phase steels using the texture in-
ormed crystal mechanics-based models to more accurately estimate the
ffective elastic properties required by such simulations. Furthermore,
exture evolution can be simulated during a forming process using crys-
al plasticity models such as EPSC and EVPFFT implying that the evolu-
ion of the effective elastic behavior with plastic strain is also calculated
uring the forming process. 
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ppendix A 

This appendix presents a summary of available single crystal elastic
oefficients for 𝛼-Iron (Fe), ferrite, and martensite, including the source
f the values. ( Tables A1–A5 ) 
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Table A4 

Elastic stiffness tensor values in GPa for martensite measured using resonant ultrasonic 
spectroscopy at room temperature ( ∼300 K) and atmospheric pressure. 

Source C 1111 C 2222 C 3333 C 1122 C 1133 C 2233 C 2323 C 3131 C 1212 

[52] 268.1 268.4 267.2 111.2 110.2 111.0 79.06 78.72 78.85 

Table A5 

Single crystal elastic stiffness coefficients in GPa for 
martensite, estimated theoretically using either a mi- 
cromechanical approach involving a crystallography- 
based anisotropic thermomechanical continuum model 
or DFT. 

Source C 11 C 12 C 44 

[74] 372.4 345.0 191.0 
[75] 417.4 242.4 211.1 
[67] 268.1 139.7 89.2 
[67] 259.0 135.2 86.6 
[76] 278.0 148.0 98.0 
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ppendix B 

This appendix presents values of the elastic stiffness tensor compo-
ents in MPa for the four steels based on the single crystal elastic coef-
cients established in this paper and their measured texture and phase

ractions. 

C DP 590 DP 980 DP 1180 MS 1700 
C 1111 260,080.22 262,883.38 264,902.01 277,435.51 
C 1122 91,758.80 101,380.85 103,506.58 116,707.88 
C 1133 98,082.99 102,394.45 104,378.27 116,758.64 
C 1112 373.81 − 81.34 − 71.79 − 15.04 
C 1113 391.75 − 11.71 − 12.44 − 16.48 
C 1123 352.26 − 225.35 − 192.98 0.07 
C 2222 262,349.70 266,081.14 267,659.45 277,644.75 
C 2233 95,813.51 99,196.68 101,620.84 116,549.40 
C 2212 409.71 − 24.34 − 21.53 − 5.63 
C 2213 20.52 − 141.35 − 123.20 − 18.00 
C 2223 111.68 418.16 362.49 33.63 
C 3333 256,025.51 265,067.54 266,787.76 277,593.99 
C 3312 − 783.52 105.68 93.31 20.67 
C 3313 − 412.27 153.06 135.64 34.48 
C 3323 − 463.95 − 192.82 − 169.50 − 33.70 
C 1212 75,445.64 79,396.14 79,527.72 80,283.19 
C 1213 350.19 − 227.27 − 194.40 0.08 
C 1223 23.95 − 135.84 − 119.04 − 17.95 
C 1313 81,503.84 80,386.05 80,381.80 80,333.89 
C 1323 − 809.71 103.53 91.66 20.63 
C 2323 79,275.37 77,303.06 77,710.09 80,125.18 
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