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A B S T R A C T

Recent analytic criteria for isotropic porous materials developed by Cazacu et al. (2013) revealed the importance
of considering specificities of plastic behavior in the matrix. On one hand it was shown that if the matrix material
is governed by the von Mises criterion, the yield surface of the porous material should be centrosymmetric and,
with the exception of hydrostatic and purely deviatoric loadings, there are combined effects of the mean stress
and third-invariant of the stress deviator on void growth or collapse; but on the other hand if the matrix plastic
deformation displays strength differential (SD) effects, the response is also sensitive to third-invariant and there
is a lack of symmetry of the yield surface of the porous material. In this paper, we use a unit cell modeling
approach in conjunction with a crystal plasticity finite element model to verify these theoretical predictions. It is
assumed that each porous polycrystal contains a regular array of initially spherical voids and a random initial
texture. At the grain-level, we consider that plastic deformation is governed by Schmid law and a recent non-
Schmid formulation by Savage et al. (2017a) that intrinsically accounts for tension–compression asymmetry in a
physical sense. Unit cell FE calculations are performed for axisymmetric tensile and compressive loadings cor-
responding to a fixed value of the stress triaxiality and the two possible values of the Lode parameter. The
resulting numerical points representing the homogenized yield surfaces and void growth/collapse curves are
found to be in agreement with the analytical model's predictions.

1. Introduction

It is well accepted that ductile failure of polycrystalline metallic
materials is due to the nucleation, growth, and coalescence of voids
(Anderson, 2017; Hosokawa et al., 2012; McClintock, 1968). Void
growth is the result of the plastic deformation of the fully-dense ma-
terial (matrix); therefore, to estimate the rate of void evolution it is
imperative to know the plastic potential of the void-matrix aggregate.
Based on rigorous limit analysis theorems, Gurson (1977) derived an
analytic plastic potential for materials containing randomly distributed
spherical voids in a matrix obeying von Mises isotropic yield criterion
(i.e., J2 plasticity). Based on finite-element (FE) unit cell calculations,
additional parameters q1, q2, q3 were introduced in Gurson's criterion
by Tvergaard (1981). This modified Gurson model, known as Gur-
son–Tvergaard–Needleman (GTN) model reproduces qualitatively the
essential features of tensile fracture of axisymmetric specimens
(Tvergaard and Needleman, 1984).

In the past decade, experimental data under a variety of loadings
have shown the role played by all stress invariants on failure. In par-
ticular, the combined effects of the second and third invariant of the
stress deviator (i.e., Lode parameter) have been well documented
(Barsoum and Faleskog, 2007; Dunand and Mohr, 2011; Lou and Huh,
2013). Using the full-field dilatational viscoplastic fast Fourier trans-
form (FFT)-based approach of Lebensohn et al. (2011), Lebensohn and
Cazacu (2012) performed simulations for both tensile and compressive
loadings and showed that yielding of a porous solid with von Mises
matrix should involve a very specific coupling between the mean stress
and the third-invariant of the stress deviator. However, the effects of
this coupling on void growth or collapse were not reported. Using ki-
nematic homogenization and Hill–Mandel lemma (Hill, 1967; Mandel,
1973), (Cazacu et al., 2013) provided an explanation of these combined
effects of mean stress and third-invariant on the dilatational response of
porous von Mises materials. Furthermore, these authors developed a
new analytic plastic potential that captures the aforementioned trends.
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Comparison between predictions of the void evolution using this plastic
potential and FE cell calculations with a Von Mises matrix reported in
Alves et al. (2014) showed good agreement.

In all the aforementioned contributions on porous solids, the
plastic deformation of the matrix (i.e., void-free material) is con-
sidered to be plastically incompressible. FE unit cell model calcula-
tions and analytical criteria for porous solids with plastically com-
pressible matrices have also been proposed. For example, in the case
when the matrix obeys Drucker–Prager mean-stress-dependent cri-
terion, FE calculations of yielding of the porous solid were reported by
Trillat et al. (2006) while analytical criteria were developed by
Barthélémy and Dormieux (2004) and Guo et al. (2008). It is to be
noted that in all these models the strength-differential (SD) effects or
tension–compression asymmetry in the mechanical response of the
respective porous solids are due to the dependence of the matrix
plastic behavior on mean stress.

For certain fully-dense polycrystalline metallic materials SD effects
are observed even though plastic deformation does not depend on the
mean stress (e.g., for body-centered cubic (BCC) metals (Alleman et al.,
2014; Knezevic et al., 2015a; Patra et al., 2014; Zecevic et al., 2016b),
for hexagonal close-packed (HCP) metals (Gilles et al., 2011; Knezevic
et al., 2013a; Knezevic et al., 2010; Knezevic et al., 2015b; Nixon et al.,
2010; Zecevic et al., 2017; Zecevic et al., 2018), for orthorhombic
metals (Knezevic et al., 2012; Knezevic et al., 2016a; Knezevic et al.,
2013b; Zecevic et al., 2016a)). Pressure independent SD effects have
been explained by single-crystal plastic deformation mechanisms. For
example, in their theoretical study Hosford and Allen (1973) demon-
strated that if the plastic deformation is accommodated only by crys-
tallographic twinning, the yield stress in uniaxial tension of a randomly
oriented face-centered cubic (FCC) polycrystal should be about 25%
lower than that in uniaxial compression and the effect is reversed (i.e.,
25% higher in uniaxial compression) for body-centered cubic (BCC)
polycrystals. If an FCC material deforms by crystallographic slip and
twinning, the difference between the uniaxial yield stresses in tension
and compression is smaller but of the same sign (for more details, see
Hosford and Caddell (1993)). Also, if the plastic deformation by crys-
tallographic slip does not obey the classical Schmid law, a poly-
crystalline material may display a slight tension–compression asym-
metry (see results on columnar ice reported by Lebensohn et al.
(2009)); simulations for polycrystalline molybdenum reported by
Gröger et al. (2008) and Savage et al. (2017a)).

Cazacu et al. (2006) proposed a yield criterion for fully-dense, in-
compressible polycrystalline materials that display SD effects. This
criterion involves a unique parameter k, which is expressible in terms of
the ratio of the uniaxial yield stresses in tension and compression. Using
a kinematic limit-analysis approach, Cazacu and Stewart (2009) de-
veloped an analytic plastic potential for isotropic porous solids with a
matrix governed by the (Cazacu et al., 2006) yield criterion. The
(Cazacu and Stewart 2009) analytic criterion involves all stress in-
variants and the porosity. Model parameters are related to the plastic
properties of the matrix and depend on k. Using (Cazacu and Stewart,
2009) criterion, it was demonstrated that even a very small difference
between the uniaxial yield in tension and compression of the matrix has
a dramatic influence on yielding of the porous material. Later, by
performing an FE investigation on the damage of notched rounded
tensile specimens, Cazacu et al. (2013) showed that the rate of void
growth and the damage distribution are significantly affected by the
tension/compression asymmetry ratio of the matrix. The highest rate of
void growth is for materials characterized by k>0 and the lowest rate
of void growth corresponds to materials characterized by k<0. Re-
cently, Alves and Cazacu (Alves et al., 2014; Revil-Baudard et al., 2016)
conducted three-dimensional (3D) FE unit cell calculations for porous
solids with matrix governed by the isotropic form of the (Cazacu et al.,
2006) yield criterion. Calculations were performed for materials with
matrix characterized by k>0 (uniaxial yield in tension larger than the
uniaxial yield in compression), materials with matrix characterized by

=k 0 (von Mises), and materials with matrix characterized by k<0
(uniaxial yield in compression larger than the uniaxial yield in tension).
For each porous material, the imposed macroscopic loadings were such
that the principal values of the macroscopic stresses, Σ1, Σ2, Σ3 followed
a prescribed proportional loading history. It was shown that the stress
path history has a very strong effect on the plasticity-damage couplings.
For loadings at positive third-stress invariant, >J( 0)3

Σ , the rate of void
growth is the slowest for the material characterized by k<0, but the
critical zone in the deformation process (onset of coalescence to failure)
is very limited. However, for equibiaxial tension loadings, which cor-
responds to negative third-stress invariant <J( 0)3

Σ comparison between
the rate of void growth and ductility in the same materials lead to
completely different findings: the materials characterized by k<0 have
the lowest ductility.

A number of studies have been conducted using the unit cell mod-
eling approach pioneered by Gurson (1977) and Koplik and Needleman
(1988) to analyze void evolution in a single crystal matrix. Among the
studies on the dilatational response of single crystals using three-di-
mensional (3D) unit cell models (Srivastava and Needleman, 2015;
Srivastava et al., 2017a; Yerra et al. 2010) have shown that the effects
of J3

Σ (or the Lode parameter) on void evolution are strongly dependent
on the crystal orientation.

In this paper, we use the unit cell modeling approach in conjunc-
tion with crystal plasticity finite element (CPFE) model to study the
dilatational response of porous polycrystals and evaluate the very
specific effects of the plastic deformation of the matrix on yielding and
void evolution that were put into evidence by recent analytic criteria.
Section 2 briefly summarizes these analytic criteria. The CPFE unit cell
modeling approach is presented in Section 3. Simulations are con-
ducted for porous BCC polycrystals for which at the grain-level the
plastic deformation is governed by Schmid law and a recent for-
mulation of that accounts for tension–compression asymmetry
(Savage et al., 2017a). It is assumed that each porous polycrystal
contains a regular array of initially spherical voids and a random in-
itial texture. The unit cell FE calculations are performed for axisym-
metric tensile and compressive loadings corresponding to a fixed value
of the stress triaxiality and the two possible values of the Lode para-
meter. Special attention is given to ensure the stress triaxiality is
constant during the 3D-FE cell model simulations. To impose the
boundary conditions a new procedure through a user element (UEL)
subroutine is developed in ABAQUS. Results are presented in
Section 4. For validation purposes, the numerical yield points ob-
tained with the CPFE unit cell are compared to numerical unit cell
results obtained using J2 plasticity model for the matrix, and the
theoretical yield surfaces according to Cazacu et al. (2013). Void
growth/collapse for axisymmetric loadings are simulated and found to
be in agreement with the calculations obtained using J2 based FE cell
calculations and with the theoretical predictions.

Furthermore, in polycrystals for which the single-crystal plastic
deformation mechanisms are responsible for SD effects (the non-Schmid
law), the dilatational response is compared to the predictions of the
(Cazacu and Stewart, 2009) model. A summary of the main findings and
conclusions are presented in Section 5.

Regarding notations, vector and tensors are denoted by boldface
characters. If A is a second-order tensor, AT denotes its transpose, i.e.

=A Aij
T

ji with i, j=1,…,3, trA denotes its trace, while detA denotes its
determinant; the contracted product between two symmetric tensors A,
and B, is defined as: =A B AB· tr( )T ; the dyadic product of any two
vectors, a and b is a second-rank tensor defined as: ⊗ = a ba b i j.
Scalars and tensor components are denoted as italic and not bold.

2. Analytic isotropic plastic potentials for porous solids

This section summarizes the analytical yield criteria for voided
polycrystals used in this work.
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2.1. Cazacu et al. (2013) model for porous solids with von Mises matrix

The (Gurson, 1977) plastic potential is expressed as:
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In the above equation, f is the porosity volume fraction,
= ′ΣΣ tr( )e

3
2

2 is the von Mises effective stress, = ΣΣ tr( )/3m is the
mean stress, σT is the uniaxial tensile yield stress of the matrix (void-
free material), and Σ′ is the deviator of the stress Σ. If =f 0, Eq. (1)
reduces to the von Mises yield criterion. It is also worth noting that
according to Gurson's criterion there is no effect of the sign of the mean
stress on yielding of a porous Mises material:

= −f fΦ(Σ , Σ , ) Φ( Σ , Σ , ).m e m e (2)

Recently, it was demonstrated that these strong symmetry proper-
ties of the yield locus are a direct consequence of Gurson's approx-
imation of the local plastic dissipation (Cazacu et al., 2013). Further-
more, the authors conducted a limit-analysis study and derived a new
analytic criterion for a porous von Mises material. According to this
criterion: (i) yielding depends on the sign of , the third-invariant of Σ′;
(ii) for stress triaxialities =T Σ /Σm e different from 0 and ± ∞, there
exists a very specific coupling between J3

Σ and Σm. Specifically, the yield
point characterized by ≥J 03

Σ and a given stress-triaxiality T is sym-
metric, with respect to the axis =Σ 0m , to the yield point characterized
by ≤J 03

Σ and −T( ).
The parametric representation of this criterion for the different ax-

isymmetric loading cases is:
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b) For ≤J 03
Σ and Σm≤ 0:
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the right-hand expressions being given by Eqs. ((4)-((6)).
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where the right-hand expressions are given by Eq. (3) (for details on
the derivations, see Cazacu et al. (2013)).

In the above expressions, the parameter u is the strain-rate triaxi-
ality defined as =u D

D
2 m

e
, where =D Dtrm

1
3 and = ′D Dtr( )e

2
3

2 denote
the first and second-invariant of the rate of stretching tensor D, re-
spectively.

As an example, the projection of the yield surface for the porous
solid is shown in Fig. 1 according to (Cazacu et al., 2013) criterion
Eqs. (3)–((8)) corresponding to ≥J 03

Σ and ≤J 03
Σ , respectively, and the

Gurson yield surface Eq. (1)) for a porosity =f 0.05. For purely devia-
toric loading (triaxiality =T 0), the response is the same while for all
other finite triaxialities T the response is softer for ≥J 03

Σ than for
≤J 03

Σ . For triaxialities approaching infinity, the effect of J3
Σ starts to

decrease, and the yield surfaces for ≥J 03
Σ and for ≤J 03

Σ coincide at the
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purely hydrostatic point. It is clearly seen that Gurson's criterion
(Eq. (1)) is an upper-bound of Cazacu et al. (2013) criterion (Eqs.
(3)–(8)).

2.2. Cazacu and Stewart (2009) yield criterion for porous materials

Cazacu and Stewart (2009) developed an isotropic plastic potential
for porous solids containing randomly distributed spherical voids ex-
pressed as:
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where ′Σ1, ′Σ2, ′Σ3 are the principal values of the deviator of the Cauchy
stress tensor Σ′, f is the void volume fraction, and k is a material
parameter associated with plastic tension–compression asymmetry ef-
fects in the matrix. It is worth noting that since the criterion (Eq. 9) was
derived using rigorous upscaling methods using for the description of
the plastic behavior of the matrix (Cazacu et al., 2006) yield criterion;
its dependence on the mean stress, Σm, was deduced and not postulated.
Consequently, the parameter zs has a clear physical significance, being
dependent on the specificities of the plastic deformation, through k, and
of the state of stress. Its expression is:
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For a fully-dense material, i.e. =f 0, ϕ(Σ,f) given by Eq. (9) reduces
to the yield function of the matrix, i.e. the isotropic quadratic form of
the (Cazacu et al., 2006) criterion:
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The rate of change of the void volume fraction, ḟ , is considered to
result only from the growth of existing voids. Thus, the void evolution is
obtained from mass conservation and the use of the associated plastic
flow rule in conjunction with Eq. (9) as:
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where λ̇ stands for the plastic multiplier rate. Note that the void evo-
lution depends on the parameter k (see also Eq. (10) for the expression
of zs) and the imposed stress and strain.

As already mentioned, the dilatational response according to
(Cazacu and Stewart, 2009) criterion has been compared to FE cell
calculation results (Cazacu and Stewart, 2009) or to numerical yield
points obtained using full-field dilatational viscoplastic Fast Fourier
Transform (FFT) approach (Lebensohn and Cazacu, 2012; Lebensohn
et al., 2011). In this paper, the features of the dilatational response of
porous materials revealed by Cazacu et al. (2013) for a porous Mises
material and by Cazacu and Stewart (2009) for isotropic porous ma-
terials with matrix displaying SD effects are verified on the basis of FE
cell calculations results for porous isotropic BCC polycrystals. The
polycrystal model used in the FE calculations and the unit cell method
of analysis are presented in the next section.

3. Crystal plasticity finite element (CPFE) unit cell model

This section reminds of the standard crystal plasticity model for-
mulation and describes the numerical simulation setup developed in
this work for dilatational plasticity simulations.

3.1. Crystal plasticity model

The kinematics of crystal plasticity follows (Ardeljan et al., 2017;
Ardeljan et al., 2016; Ardeljan et al., 2015; Kalidindi et al., 1992),
where it is assumed that the total deformation gradient tensor F can be
decomposed as:

=F F F* ,p (13)

where F* accounts for both elastic stretching as well as lattice rotation,
while Fp denotes the deformation gradient due to plastic deformation
alone. F* is further employed to define the Green–Lagrange strain,

⎧
⎨⎩

⎫
⎬⎭

= −
⎜ ⎟
⎛
⎝

⎞
⎠E F F I* 1

2
*

* .
T

(14)

Fig. 1. Yield surface of the porous solid according to Cazacu et al. (2013) criterion for axisymmetric stress states for loadings such that ≤J 03
Σ and ≥J 03

Σ , re-
spectively, in comparison with Gurson's (1977) for the same porosity (f=0.05).
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Hooke's law is used to describe elastic behavior, so the second-order
Piola–Kirchoff stress in the crystal,

=
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− −

σT F F F*
*

{(det *) }
*

,
T( 1) ( )

(15)

is related to E* as

=T CE* *, (16)

where C is the fourth-order elasticity tensor. Plastic deformation is only
accommodated by crystallographic slip and for cubic crystals, it is
generally assumed that crystallographic slip obeys classical Schmid law.
Therefore, slip system, α, is operational if the resolved shear stress

=τ P T· *,α
sc
α (17)

surpasses the slip resistance threshold τc
α. The Schmid tensor is formed

per slip system as the product between the slip normal nα
0 and slip di-

rection bα
0 in the initial configuration

= ⊗ + ⊗P b n n b1
2

( ).sc
α α α α α

0 0 0 0 (18)

To predict observed SD effects in BCC materials, we will also con-
sider a non-Schmid law of the type first proposed by Dao and Asaro
(1993), Ghorbanpour et al. (2017), Knezevic et al. (2014) and
Savage et al. (2017a) that considers that slip initiation depends on both
the normal and shear stress acting on the slip plane,

= + =τ P T P T P T· * · * · *α
sc
α

ns
α

tot
α (19)

where

= ⊗ + ⊗ + ⊗ + ⊗
− + ⊗
c c c c

c c
P t b t n n n t t

b b
( ) ( ) ( ) ( )
( )( ),

ns
α α α α α α α α α

α α
1 0 0 2 0 0 3 0 0 4 0 0

3 4 0 0

(20)

and the total Schmid tensor Ptot
α is a weighted sum of Schmid and non-

Schmid stresses on the slip plane. Recently in Savage et al. (2017a) it
was shown that the two shear stresses t⊗b and t⊗n acting normal to
the Burgers vector did not have a significant effect on the yield surface
for random textured polycrystals, while the normal stresses n⊗n, t⊗t,
and b⊗b significantly affected dislocation motion, producing strong SD
effects in random textured polycrystals. To remove pressure depen-
dence in the slip criterion, b⊗b is weighted as a combination of c3 and
c4 as discussed in Lim et al. (2013) and implemented in Eq. (20).

Irrespective of the criterion for activation for crystallographic slip,
the plastic velocity gradient, = −L F F˙ ( )p p p 1 can be written as:

∑= ⊗γL b n˙ ( ),p

α
α

α α
0 0

(21)

where γ̇α is the plastic shear strain rate of the system α, and bα
0 and nα

0
denote the slip direction and the slip plane normal of the slip systems,
respectively, in the initial unloaded configuration. To calculate the
plastic shear strain rates γ̇α, the following power-law relationship
(Asaro and Needleman, 1985) is employed:

⎜ ⎟= ⎛
⎝

⎞
⎠

γ γ τ
τ

τ˙ ˙ sgn( ).α α
α

c
α

n

c
α

0 (22)

In Eq. (22), γ̇α
0 denotes a reference value of the slip rate (taken here

as 0.001 s−1) and n represents the strain rate sensitivity exponent taken
here as 50, making Eq. (22) nearly rate insensitive. The choice of n is of
particular importance in the calculation of gauge yield surfaces of the
polycrystal and will be discussed in Section 4 (Knezevic et al., 2016b;
Lebensohn et al., 2012; Savage et al., 2017b). In the present study,
minimal hardening of the slip resistances is considered to ensure that
the overall plastic behavior of the polycrystal is approximately perfectly
plastic. The spin of the crystal trihedron, which is used to approximate
the lattice spin, is given by Lipinski and Berveiller (1989) and
Peeters et al. (2001):

= − = −W W W W L L* , 1
2

( ),app p p p pT
(23)

where Wapp is the applied overall spin on the polycrystal and Wp is the
plastic spin (skew-symmetric component of Lp defined in Eq. (21)).

In this work, we consider only BCC polycrystals in which Schmid
and non-Schmid stresses are applied to {110} 111 and {112} 111 slip
modes. These two slip modes are most often studied experimentally and
used for modeling partly because slip on {123} planes can be expressed
as a combination of slip on {110} and {112} planes (Franciosi, 1983
and Franciosi, 1985) and because texture and stress–strain modeling
show good agreement with both slip modes (Alleman et al., 2014;
Ardeljan et al., 2014; Ito and Vitek, 2001; Knezevic et al., 2014; Ma
et al., 2007; Savage et al., 2017a; Wang and Beyerlein, 2011). Due to
the generic nature of this study, we assume that both slip modes have
the same starting slip resistance, τc, for all slip systems.

3.2. Unit cell model

It is assumed that the porous polycrystal contains a regular array of
initially spherical voids. The inter-void spacing is considered to be the
same in any direction, and thus the unit cell is initially cubic with side
lengths 2C0 and contains a single void of radius r0 at its center. The
initial porosity is:

⎜ ⎟= ⎛
⎝

⎞
⎠

f π r
C6

.0
0

0

3

(24)

One-eighth of the FE mesh of the unit cell is shown in Fig. 2. Car-
tesian tensor notation is used and the center of the coordinate frame is
placed at the center of the initially spherical void. The edges of the unit
cell are parallel to the axes and the main loading direction is parallel to
the 2-axis. Calculations were performed for an initial porosity

=f 0.01040 . In the FE mesh, each element is considered to be a grain
with a single starting orientation. The size of the elements and the
grains are in this manner linked. A mesh sensitivity study was per-
formed to ensure results became independent on the mesh in terms of
both the numerical method and the effective grain size. The results
reported hereafter were obtained with structured meshes of 12,871
ABAQUS C3D8 (continuum 3D eight-nodal) elements with selective
reduced integration to mitigate volume locking effects. Each mesh was
further refined around the void to ensure mesh quality during void
growth/collapse (see Fig. 2b). Because every element has eight in-
tegration points, the FE unit cells considered for the two initial poros-
ities contained 102,968 and 99,128 crystal orientations, respectively.

The macroscopic stress state imposed on the unit cell is such that the
principal values of the macroscopic Cauchy stresses, Σ1, Σ2, Σ3, follow
an axisymmetric stress path, i.e. =Σ Σ1 3, and a loading history such that
the stress triaxiality, T, is constant. Note that for the loading path
considered, the mean stress is

= +Σ (2Σ Σ )/3,m 1 2 (25)

and the von Mises equivalent stress is:

= −Σ Σ Σ .eq 1 2 (26)

Thus, the stress-triaxiality is

= + −T (2Σ Σ / Σ Σ ),1 2 1 2 (27)

and the third invariant of the stress deviator becomes:

= ′ ′ ′ = − −J Σ Σ Σ 2
27

(Σ Σ ) .3
Σ

1 2 3 1 2
3

(28)

To study the effect of the third-invariant J3
Σ on the behavior of the

voided polycrystal, we will investigate loadings corresponding to either
the axial stress larger than the lateral stress or vice-versa (i.e., loadings
at >J 03

Σ and loadings corresponding to <J 03
Σ , respectively).

To impose the boundary conditions and ensure a constant stress
triaxiality T on the unit cell during the entire loading history, an
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ABAQUS user element subroutine (UEL) was developed. The UEL con-
sists of three reference nodes which are tied to the displacement of each
of the three cell faces (see Fig. 2). The detailed description of the pro-
cedure used for imposing the boundary conditions is given in the Ap-
pendix (see also Fig. A1). Since all loadings on the cell are applied in-
side the UEL, excellent convergence is achieved, and parallel computing
can be natively used in ABAQUS. The macroscopic stresses Σ1, Σ2, Σ3,
are defined by forces applied at each reference node and by the areas of
each face as: = F AΣ /i i i. As in most unit-cell studies (e.g.,
Srivastava et al., 2017b) the void is considered to be traction-free. The
case of the voids under internal pressure is also of technological im-
portance (e.g., Vincent et al., 2009) and will be considered in future
works.

Defining the current cell dimensions as = +C C Ui i0 , = …i 1, ,3, the
macroscopic principal plastic strains Ei

p and the macroscopic equivalent
plastic strain Eeq are:

⎜ ⎟≈ = ⎛
⎝

⎞
⎠

=E E C
C

E E Eln , 2
3

,i
p

i
i

eq i
p

i
p

0 (29)

wherein any elastic strain is negligible (<10−5). The total plastic work
is calculated as:

∑= − −W E E( )Σp

n
eq n
p

eq n
p

eq n, , 1 ,
(30)

where n enumerates strain increments and Σeq is the von Mises
equivalent stress.

The yield/gauge surface was calculated by interpolating the hy-
drostatic and equivalent stresses to a desired level of plastic work and
the reference value of plastic work was selected to correspond to an
equivalent plastic strain of 0.2% imposed on the fully dense material
cell.

The void volume fraction of the cell is calculated as

= − −f V
V

f1 (1 ),0
0 (31)

where =V C0 0
3 is the initial volume of the unit cell, =V C C C1 2 3 is the

current volume of the cell, and f0 is the initial void volume fraction (see
Eq. (24)).

First, we compare the results obtained with our newly developed
UEL routine for imposing boundary conditions with unit cell model
results reported in the literature by Koplik and Needleman (1988) for a
von Mises matrix. Given that these authors used a cylindrical unit cell
with one void at the center, we use the same unit cell geometry, matrix

Fig. 2. (a) Two-dimensional projection of the three-dimensional cubic cell model used in this study. (b) 3D finite-element mesh of one-eighth of the unit cell
corresponding to an initial void volume fraction =f 0.01040 .

Fig. 3. Comparison between simulations for a cylindrical unit cell with plastic behavior governed by von Mises criterion and boundary conditions imposed with the
developed UEL (FE-UEL axisymmetric cell) and the results reported by Koplik and Needleman (1988) (FE axisymmetric cell) for the same geometry, matrix behavior,
and initial porosity =f 0.01040 . (a) Equivalent stress and equivalent plastic strain evolution for triaxiality and =T 2. (b) Normalized void volume fraction vs. von
Mises equivalent plastic strain for triaxiality and =T 2.
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behavior, initial porosity, and loading history. In Fig. 3a and b we
compare the equivalent stress vs. equivalent strain response, and the
void volume fraction evolution obtained for axisymmetric loadings at
fixed triaxiality =T 1 and =T 2 obtained with our procedure for im-
posing the boundary conditions with the results reported by Koplik and
Needleman (1988). The results are in excellent agreement, which va-
lidates our procedure. Note that only the results presented in Fig. 3a
and b are obtained with axisymmetric (cylindrical unit cell). All the
other simulations presented in this paper are done using the cubic unit
cell geometry of Fig. 2.

4. Comparison between CPFE unit cell predictions and analytic
criteria predictions for porous solids

The CPFE unit cell calculations were done for randomly oriented
BCC polycrystals with initial texture presented in Fig. 4a and the con-
stituent grains deforming plastically according to the rate-sensitive
form of Schmid law and Non-Schmid law, respectively (see Eqs. (19)
and (20)). The material texture was generated by binning the Euler
orientation space. To ensure isotropy, orientations from the resulting
textures were shuffled before distribution in the FE model (for more
details, see Savage et al. (2017b)).

First, the CPFE yield points of a fully-dense =f( 0) polycrystal were
calculated. The dependence of the calculated yield stresses on or-
ientation shuffling was investigated and was less than 0.1%. Therefore,
it was concluded that the behavior is isotropic. The CPFE calculated
yield points corresponding to biaxial loadings =(Σ 0)3 are shown in
Fig. 4b in comparison with the yield surface according to the von Mises
yield criterion. It can be seen that the numerical yield surface is iso-
tropic (symmetry with the first bisector) and it is well approximated by
the Von Mises yield criterion.

One of the objectives of the paper was to verify the features of the
dilatational response of a porous Mises material (centrosymmetry;
specific coupling of the invariants) put into evidence by the
(Cazacu et al., 2013) criterion. This criterion was constructed using
limit-analysis and the assumption of rigid-ideal plastic behavior of the
void-free material. Therefore, special care was taken such that it is
ensured that the polycrystal behavior is ideal perfectly plastic and that
the elastic strains are negligible. Thus, in the CPFE unit cell calculations
for both the fully-dense =f( 0) and voided polycrystals (f≠ 0), the
elastic constants of Nb at 300 K (Carroll, 1965) were raised by one order
of magnitude and the initial CRSS value lowered to tractable limits
(10MPa for each slip system), resulting in a maximum elastic strain of

≈ × −E 2.3 10e,max
5. The value of the rate-sensitivity parameter =n 50 in

the hardening law of the single-crystal (see Eq. (22)) was chosen (see
Savage et al. (2017b)) for a detailed study on the effect of the rate-
sensitivity parameter n on the overall polycrystal behavior). Compar-
ison between the response of the matrix obtained with the CPFE code
and that obtained with a rigid-ideal plastic model obeying von Mises
yield criterion is shown in Fig. 5. Although CPFE predicts a gradual
elasto-plastic transition for the fully-dense polycrystal, at larger strains
the behavior is ideal plastic, and it is well approximated by von Mises
yield criterion.

4.1. CPFE calculations obtained for the BCC porous polycrystal with slip
obeying Schmid law and comparison with the analytical predictions
according to Cazacu et al. (2013) criterion

The CPFE calculations for voided polycrystals were performed using
the unit cell presented in Fig. 2 for axisymmetric tensile and com-
pressive loadings corresponding to ≥J 03

Σ (i.e., loadings such that
≥ =Σ Σ Σ2 1 3) and ≤J 03

Σ ( ≤ =Σ Σ Σ2 1 3), respectively. As mentioned,
the simulations are conducted at fixed triaxialities T. For each poly-
crystalline material investigated simulations were conducted for var-
ious triaxialities T, ranging from = ±T 1/3 (uniaxial tension and uni-
axial compression, respectively) to high triaxialities ( = ±T 10).

Fig. 4. (a) {111} Pole figure showing the random initial texture of the fully-dense material in the sample frame. (b) The plane stress yield surface for the fully-dense
=f( 0) BCC polycrystal with constituent grains governed by Schmid law and calculated using CPFE in comparison with the von Mises yield surface.

Fig. 5. Comparison of the stress-strain response in uniaxial tension of the fully
dense material =f( 0) with rigid-ideal plastic behavior governed by von Mises
yield criterion (J2FE), and that of an isotropic BCC polycrystal with grains
obeying Schmid law (CPFE).
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The CPFE yield points were compared to those obtained using a von
Mises FE unit cell (J2FE) with the same loading set-up, unit cell geo-
metry, rigid ideal plastic matrix behavior (see Fig. 6a). Note that the
unit cell calculations results for the porous polycrystal obtained with
the crystal plasticity model for the matrix and those obtained using the
classical von Mises yield criterion are almost identical.

The numerical CPFE yield points were also superposed on the pro-
jection of the yield surface for a porous von Mises material calculated
with Cazacu et al., 2013) criterion (see Eqs. (3)–((8)). These results are
shown in Fig. 6b. It is clearly seen that the centrosymmetry of the yield
surface predicted by the (Cazacu et al., 2013a) model is confirmed.
Namely, there are only two types of loadings for which the sign of J3

Σ

has no effect on the yielding of the porous material: purely deviatoric
( =T 0) and purely hydrostatic (T very high, i.e., close to hydrostatic
loadings). For all other loadings, yielding depends on J3

Σ. Under tensile
loading ( = + ≥Σ (2Σ Σ )/3 0m 1 2 ) the response for loadings such that

≥J 03
Σ is softer than that for loadings corresponding to ≤J 03

Σ (i.e., the
curve corresponding to ≥J 03

Σ is below that corresponding to ≤J 03
Σ )

while under compressive loadings (Σm≤ 0) the opposite occurs. Fur-
thermore, the yield point corresponding to a given stress-triaxiality T
and >J 03

Σ is symmetric, with respect to the vertical axis, =Σ 0m , to the
point corresponding to −T( ) and ≤J( 0)3

Σ . Therefore, the trends in the
description of yielding of porous isotropic BCC materials obeying
Schmid law are predicted by the analytical model at a fraction of the
computational cost of either CPFE or FE von Mises unit cell model.

Another objective of the present work is the investigation of the
effects of the coupling between the mean stress and third-invariant J3

Σ

on void growth or collapse. According to Cazacu et al. (2013) model
(see Eqs. (3)–(8)), void growth is faster for loadings corresponding to

≥J 03
Σ than for those corresponding to ≤J 03

Σ . However, void collapse
occurs faster for loadings where ≤J 03

Σ than for those characterized by
≥J 03

Σ (see also Fig. 7- lines). The void growth/collapse curves obtained
with CPFE unit cell calculations and J2-unit cell calculations for the
same loadings ( =T 2 void growth; = −T 2 void collapse; and either

≥J 03
Σ or ≤J 03

Σ ) are also shown in Fig. 7 (symbols). The CPFE and J2-
unit cell numerical predictions also indicate that the rate of void
growth/collapse depends on the sign of J3

Σ.
To get a better insight into the combined effects of the signs of the

third-invariant and mean stress on void evolution in the porous poly-
crystal, we further compare the local mean stress corresponding to the
same level of macroscopic true strain =E 0.15e for loadings at =T 1 and

= −T 1 and either ≤J 03
Σ or ≥J 03

Σ . Examination of the isocontours of
the hydrostatic pressure (negative of mean stress) obtained using the
CPFE unit cell approach for loadings corresponding to the same positive
triaxiality ( =T 1) show that for macroscopic loadings at <J 03

Σ the
distribution is completely different than in the case when the macro-
scopic loading is such that >J 03

Σ (see Fig. 8a and c). This confirms that
for the same triaxiality there is an effect of the third-invariant on the
porosity evolution of the porous solid. On the other hand, the local
distribution of pressure in the unit cell obtained for macroscopic
loadings at >J 03

Σ and = −T 1 is almost identical with the distribution
of hydrostatic pressure corresponding to macroscopic loadings at <J 03

Σ

and =T 1 (compare Fig. 8a, d, b, and c, respectively: almost identical
distribution but opposite in sign). This confirms that the overall beha-
vior of the porous Mises material for a given stress-triaxiality (T) and

>J 03
Σ should be the same for stress states corresponding to (− T ) and

( <J 03
Σ ).

4.2. Comparison between analytical predictions according to Cazacu and
Stewart (2009) criterion and the calculations using CPFE obtained for the
BCC porous polycrystal with slip obeying Schmid law and non-Schmid law

Cazacu and Stewart (2009) have theoretically shown that SD effects
in the matrix affect every aspect of the dilatational behavior of isotropic
porous materials. Lebensohn and Cazacu (2012) confirmed these find-
ings for the case when SD effects in the matrix are promoted artificially
using deformation twinning only carried deformation. In this study, we
examine porous BCC polycrystals for which SD effects in the poly-
crystalline matrix are obtained physically due to deviations from the
Schmid law in the plastic flow of the constituent grains. For a direct
comparison between the predictions of the (Cazacu and Stewart, 2009)
model and unit cell CPFE calculations for a porous polycrystal, we need
first to identify the parameter, k, involved in the (Cazacu and Stewart,
2009) model (see Eq. (9)). As mentioned, this parameter characterizes
the SD effects of the matrix (fully-dense material), and it is expressible
solely in terms of the ratio between the yield stress in uniaxial tension,
σT, and the yield stress in uniaxial compression, σC, of the matrix:

= =−
+

− ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−
k h, withh

h
1
1

2

2 1

σT
σC

σT
σC

2

2

(32)

Fig. 6. Combined effects of the third-invariant and sign of the mean stress on yielding of a randomly textured porous BCC polycrystal: (a) FE unit cell numerical
calculations obtained for the von Mises yield criterion (J2FE) and the CPFE model describing the behavior of the matrix, respectively; (b) Comparison between the
numerical yield points obtained with the unit cell CPFE and the predictions of the analytical model of Cazacu et al. (2013) for a porous von Mises material. Volume
fraction of porosity was =f 0.01040 .
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To determine these yield stresses of the fully-dense polycrystal,
crystal plasticity calculations were performed for the case of fully-dense
( =f 0) isotropic BCC polycrystals with constituent grains obeying non-
Schmid law given by Eqs. (19) and (20). Simulations were carried out
for an untextured fully-dense BCC polycrystal considering = −c 0.133 ,

= = =c c c 01 2 4 in the non-Schmid law. The CPFE model gives a ratio
=σ σ/ 1.1T C for the polycrystal, which corresponds to =k 0.175 (see

Eq. (32)).
Fig. 9a shows the yield locus predicted by the isotropic form of the

criterion (Cazacu et al., 2006) (Eq. (11)) for =k 0.175, in comparison
with points of the gauge surface (symbols) corresponding to biaxial
loadings ( =Σ 03 ) predicted by crystal plasticity with non-Schmid ef-
fects. Clearly, the isotropic form of the (Cazacu et al., 2006) yield cri-
terion describes the plastic behavior of the fully-dense BCC polycrystal
with uniform texture and SD effects. Although only two CPFE data
points (the yield stress in uniaxial tension σT, and the yield stress in
uniaxial compression, σC) were used for the identification and plotting
of (Cazacu et al., 2006) yield locus, the agreement is excellent for all
stress states.

Considering now the case of a voided untextured BCC polycrystal of
the type described above, Fig. 9b shows points belonging to the gauge
surfaces, corresponding to =f 0.0104 and stress-triaxialities ranging
from = ±T 1/3 (uniaxial tension and uniaxial compression, respec-
tively) to high triaxialities ( = ±T 10) obtained by means of the CPFE
based approach, together with the analytical yield loci according to

(Cazacu and Stewart 2009) in the plane (Σm/σT,Σe/σT) for axisymmetric
loadings corresponding to either ≥J 03

Σ or ≤J 03
Σ . The main observa-

tion from Fig. 9b is that the strong effect of the third-invariant of the
stress deviator on all stress states response predicted by (Cazacu and
Stewart, 2009) criterion is indeed confirmed by the CPFE results. For
the porous BCC polycrystal, whose matrix is softer in compression than
in tension ( =σ σ/ 1.1T C ), both (Cazacu and Stewart, 2009) criterion and
the CPFE predictions show that the response is softer for ≤J 03

Σ than for
≥J 03

Σ with the maximum split corresponding to purely deviatoric
loadings ( =Σ 0m ). Also, it is worth noting that Cazacu and Stewart
(2009) predicts for this porous material that the compressive hydro-
static yield stress is larger than the tensile hydrostatic yield stress (see
Eq. (9) and Fig. 9b). The CPFE results also show that this material ex-
hibits SD effects even for very high triaxialities.

In the case of a fully-dense isotropic BCC polycrystal with non-
Schmid effects corresponding to =c 0.133 and all other ci values zero,
the ratio between the yield stresses in uniaxial tension and uniaxial
compression is =σ σ/ 0.909T C . Note that such a slight tension–com-
pression asymmetry ratio may occur in certain steel alloys (e.g.,
Spitzig et al., 1975). For this material using Eq. (32)), we obtain the SD
parameter = −k 0.175. Fig. 10a shows the yield surface according to the
isotropic form of (Cazacu et al., 2006) criterion with = −k 0.175 and the
yield points obtained with the CPFE model with non-Schmid effects.
The agreement is excellent for all stress states.

Considering next the case of the voided untextured polycrystal of

Fig. 7. Comparisons of void volume fraction and equivalent stress evolution with equivalent plastic strain predicted numerically by CPFE, J2 FE, and analytically
using Cazacu et al. (2013). Comparisons correspond to axisymmetric loadings with stress triaxiality of (a and c) =T 2 (Growth) and (b and d) = −T 2 (Collapse)
corresponding to either ≤J 03

Σ or ≥J 03
Σ . The initial void volume fraction was =f 0.01040 .
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the same type, in Fig. 10b are shown points belonging to the gauge
surfaces, corresponding to =f 0.0104 and stress-triaxialities ranging
from = ±T 1/3 (uniaxial tension and uniaxial compression,

respectively) to high triaxialities ( = ±T 10) obtained by means of the
CPFE based approach, together with the analytical yield loci according
to Cazacu and Stewart, (2009), in the plane (Σm/σT,Σe/σT) for

Fig. 8. Isocontours showing the local distribution hydrostatic pressure (negative of the mean stress) in the unit-cell for the applied macroscopic loadings. The amount
of plastic work and the void volume fraction correspond to points on the gauge surfaces shown in Fig. 6. It is clear from these contours that the symmetry of gauge
surface is preserved in CPFE unit-cell calculations (e.g., the local pressure distributions of loading > =J T0, 13

Σ is the same but opposite in sign to the local pressure
distributions of loading < = −J T0, 13

Σ ).

Fig. 9. (a) Yield surface for the fully-dense ( =f 0) isotropic BCC polycrystals with =σ σ/ 1.1T C (yield stress in tension larger than in compression according to the
yield criterion (Cazacu et al., 2006) ( =k 0.175), and CPFE yield points obtained by considering non-Schmid effects (NS-CPFE) ( = −c 0.133 ). (b) Yield surfaces of the
voided ( =f 0.0104) isotropic BCC polycrystal for axisymmetric loadings corresponding to either J3> 0 and J3< 0, respectively according to Cazacu and Stewart
(2009) analytic crtierion and the yield points obtained with CPFE unit-cell calculations.
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axisymmetric loadings corresponding to either ≥J 03
Σ or ≤J 03

Σ . It is
very interesting to note that for this material whose matrix is softer in
tension than in compression, for any given triaxiality T, the response of
the voided material is softer for loadings at ≥J 03

Σ than for loadings at
≤J 03

Σ . For purely deviatoric loading ( =T 0), the effect of the third
invariant is the strongest while for triaxialities approaching infinity, the
effect of J3

Σ starts to decrease, and the yield surfaces for ≥J 03
Σ and for

≤J 03
Σ coincide. In contrast to the case when the matrix has no SD ef-

fects (governed by von Mises; see Fig. 6), the voided polycrystal dis-
plays SD effects irrespective of the triaxiality. In particular, for hydro-
static loadings (triaxiality infinite), the absolute value of the yield
pressure corresponding to compressive hydrostatic loading is slightly
lower than the mean stress corresponding to tensile hydrostatic loading.

5. Conclusions

In this paper, we used the unit cell modeling approach in conjunc-
tion with crystal plasticity finite element (CPFE) model to study the
dilatational response of porous polycrystals and verify the specific ef-
fects of the plastic deformation of the matrix on yielding and void
evolution that were suggested in recent analytic criteria. The unit cell
modeling approach in conjunction with CPFE was used to generate
gauge surfaces for porous untextured BCC polycrystals deforming by
slip at single crystal level. Both Schmid and non-Schmid activation
criteria for plastic deformation were considered. The simulations were
conducted for axisymmetric tensile and compressive loadings corre-
sponding to a fixed value of the stress triaxiality. The main observations
are the following:

(1) In the case when slip is governed by the classic Schmid law and
there is no preferred texture, the fully-dense polycrystal's plastic
behavior is well described by von Mises yield criterion. For a porous
polycrystal of the same type, the main features predicted by the
(Cazacu et al., 2013) criterion are confirmed, namely:
(a) the yield surface of the porous material is centrosymmetric;

(b) there is a specific coupling between the signs of the mean stress
and third-invariant of the stress-deviator on yielding and void
growth/collapse;

(c) there is no effect of the third-invariant of the stress deviator for
purely deviatoric loadings;

(d) there are no strength differential (SD) effects for hydrostatic
loadings.

(2) In the case when slip deviates from Schmid law and there is no
preferred orientation, the SD effects on the yielding behavior of the
fully-dense isotropic polycrystal can be described by (Cazacu et al.,
2006) yield criterion. Furthermore, for a voided polycrystal of the
same type, as described by (Cazacu and Stewart, 2009) analytic
criterion, the sensitivity of the mechanical response to the third-
invariant of the stress deviator correlates with the matrix ten-
sion–compression asymmetry ratio. Specifically,
(a) If deviations from Schmid law induce an SD ratio of the fully-

dense polycrystal such that σC/σT>1:
i) both the analytical yield surface and the CPFE yield locus

corresponding to stress states for which ≤J 03
Σ is above that

corresponding to ≥J 03
Σ ;

ii) the strongest effect of J3
Σ is for purely deviatoric loadings;

iii) the porous material displays SD effects irrespective of the
triaxiality. In particular, for hydrostatic loadings (triaxiality
infinite), the absolute value of the yield pressure corre-
sponding to compressive hydrostatic loading is slightly
larger than the mean stress corresponding to tensile hy-
drostatic loading.

(b) If deviations from Schmid law induce an SD ratio of the fully-
dense polycrystal characterized by an SD ratio σC/σT<1:
i) both the analytical yield surface and the CPFE yield locus

corresponding to stress states for which ≥J 03
Σ is above that

corresponding to ≤J 03
Σ ;

ii) the strongest effect of J3
Σ is for purely deviatoric loadings;

iii) the porous material displays SD effects irrespective of the
triaxiality. In particular, for hydrostatic loadings (triaxiality

Fig. 10. (a) Yield surface for the fully-dense ( =f 0) isotropic BCC polycrystals with =σ σ/ 0.909T C (yield stress in compression larger than in tension according to the
yield criterion (Cazacu et al., 2006) ( = −k 0.175), and CPFE yield points obtained by considering non-Schmid effects (NS-CPFE) ( =c 0.133 ). (b) Yield surfaces of the
voided ( =f 0.0104) isotropic BCC polycrystal for axisymmetric loadings corresponding to either J3> 0 and J3< 0, respectively according to (Cazacu and Stewart,
2009) analytic crtierion and the yield points obtained with CPFE unit-cell calculations.
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infinite), the absolute value of the yield pressure corre-
sponding to compressive hydrostatic loading is slightly
lower than the mean stress corresponding to tensile hy-
drostatic loading.

In closing we would like to point out that although the agreement
obtained between the numerical CPFE predictions and the analytical
results is not necessarily quantitative (due to different assumptions
involved in both approximations to the problem of dilatational plasti-
city, the strain rate sensitivity, and homogenization), the good quali-
tative agreement serves as cross-validation of both approaches. Most
importantly, it was shown that micromechanically motivated macro-
scopic models can predict with accuracy the influence of the stress
history on yielding and void evolution in isotropic porous polycrystal-
line materials. It is also to be noted that these analytic macroscopic
models can be efficiently implemented as a material subroutine in FE

codes for engineering applications involving polycrystalline materials
with complex dilatational plastic behavior; and that their respective
material parameters can be identified from CPFE simulations. These
aspects will be studied in future works.
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Appendix A

In the following, we describe the procedure used for imposing constant stress triaxiality on the unit cell during the entire loading history.
Fig. A1 shows the boundary conditions and the ABAQUS user element subroutine (UEL) used for conducting the simulations. The coordinate

system used is defined with respect to the center of the void. To simulate one-eighth of the unit cell, symmetry boundary conditions are applied on
the interior of the cell, i.e. for symmetry planes 1, 2, and 3:

= = =u x x ur x x ur x x(0, , ) (0, , ) (0, , ) 01 2 3 2 2 3 3 2 3 (A1)

= = =u x x ur x x ur x x( , 0, ) ( , 0, ) ( , 0, ) 02 1 3 1 1 3 3 1 3 (A2)

= = =u x x ur x x ur x x( , , 0) ( , , 0) ( , , 0) 03 1 2 1 1 2 2 1 2 (A3)

where the variables, u and ur are the translational and angular displacements respectively. The subscript = …i 1, ,3 denotes the respective Cartesian
coordinate axis i.e. 1, 2, or 3.

The translational displacements Ui of the cube faces are tied to the displacements of a reference node M =U u(i.e. )i i
M , located at the intersection

of the three planes, using multipoint constraints (MPCs). This constraint ensures the periodicity of the cell. The current cell dimensions are defined
with respect to the node M as,

= +C C ui i
M

0 (A4)

Fig. A1. (a) Cell definition and UEL nomenclature. (b) Dimensions of the unit cell corresponding to an initial void volume fraction of =f 0.01040 .
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where C0 is the initial length of the cubic cell (Fig. A1b). The areas of the faces of the deformed cubic cell are then given as,

= = =A C C A C C A C C, , and1 2 3 2 1 3 3 1 2 (A5)

The stress boundary conditions are applied through a single reference node, M, in the UEL subroutine. The user element (UEL) is defined as a
linear elastic spring between a free node N (see Fig. A1a) and the edge node M. For a given displacement u N

2 , a known force is applied to M and thus
to A2 by either stretching or compressing the spring. Appropriate forces are calculated and applied simultaneously on the faces A1 and A3 to ensure
the required value of the stress triaxiality TΣ. Note that, the overall Cauchy stress on each face is defined as:

=
F
A

Σ .i
i
M

i (A6)

The trial displacement at M and the prescribed displacement at N are made available in the UEL as part of the standard solution procedure in
ABAQUS. The force on node M due to the relative displacement between nodes M and N is:

= −F u u k( )M N M
2 2 2 (A7)

where a suitable stiffness k is approximately 10–100 times larger than the Young's modulus (Ha and Kim, 2010) of the matrix material of the unit
cell.

Given that we consider only axisymmetric loadings, the other two forces applied on node M are then calculated as,

= =F A H
A

F F A H
A

FandM M M M
1

1

2
2 3

3

2
2 (A8)

where, F M
1 and FM

3 are forces applied on face 1 and 3, respectively, H is the stress ratio between the two independent overall Cauchy stress com-
ponents.

Note that for axisymmetric loadings ( =Σ Σ1 3)

= +
−

T 2Σ Σ
3 Σ Σ

Σ 1 2

1 2 (A9)

For Σ2≠ 0, the stress ratio =H Σ /Σ1 2 on substitution in Eq. (A9) gives,

= +
−

T H
H

2 1
3 1

Σ
(A10)

As mentioned in Section 1:

a. For the same value of stress triaxiality TΣ, axisymmetric loading can correspond to >J 03
Σ or <J 03

Σ during the entire deformation process.
b. Moreover, in this paper we consider both axisymmetric tensile loading with TΣ>0 and axisymmetric compressive loading with TΣ<0.

For all these loading scenarios, two cases arise,

I. For >J 03
Σ , TΣ>0 or <J 03

Σ , TΣ<0

= −
+

H T
T

3 1
3 2

Σ

Σ (A11)

II. For >J 03
Σ , TΣ<0 or <J 03

Σ , TΣ>0

= +
−

H T
T

3 1
3 2

Σ

Σ (A12)

For case I, using a truss element formulization as in Lin et al. (2006), the forces applied on the faces 1 and 3 (see Eq. (A8)) can be defined in a UEL
stiffness matrix. Their contribution to the Jacobian and overall stiffness of the cell model is therefore accounted for and the rate of convergence is
excellent. Thus, the nonsymmetric system of equations defined in the UEL is explicitly given as

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
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−

−
−

−
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⎩
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⎫

⎬

⎪
⎪
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⎭

⎪
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⎨

⎪
⎪
⎪

⎩

⎪
⎪
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⎫

⎬

⎪
⎪
⎪

⎭

⎪
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k k

k k
k k
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u
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F
F
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0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0
0 0 0 0 0 0

0

0
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A
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A

M
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M

M

M

N

1
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1

2

3

1

2

3

2

1
2

1
2

3
2

3
2

(A13)

The main convergence criteria for this scheme are a suitable stiffness value, k, and ensuring that the direction of applied displacement u N
2 is the

same as that of the planar displacement U2. For case II (i.e., for loadings > <J T( 0, 0)3
Σ Σ and < >J T( 0, 0)3

Σ Σ ) u N
2 and U2 will have opposite

directions; therefore, the spring element must be reoriented to either the 1 or the 3 direction.
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