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Compaction of crystallographic texture data is highly desirable in crystal plasticity simulations because
the computational time involved in such calculations scales linearly with the number of crystal orien-
tations. In a recent publication, we have reported a rigorous procedure for reducing large datasets of
crystal orientations for cubic-orthotropic and hexagonal-orthotropic polycrystalline metals using sym-
metrized generalized spherical harmonics (GSH) functions. The procedure relies on a quantitative
description of crystallographic texture using an orientation distribution function (ODF) and its series
representation using GSH. The core procedure consists of matching the spectral representation of a full-
size ODF containing any number of crystal orientations with that of an ODF containing a compact set of
orientations. In this paper, we generalize the procedure to any crystal structure with no restrictions to
sample symmetry. These major extensions are accompanied by dealing with significantly more di-
mensions as well as imaginary terms. Two approaches for generating an initial set of orientations in the
compact ODF are explored, one based on binning of a given fundamental zone in the Bunge-Euler
orientation space and another that takes advantage of MTEX to maximize the compaction. The overall
procedure has been successfully applied to compaction of large ODFs for cubic, hexagonal, and ortho-
rhombic polycrystalline metals with orthotropic and no sample symmetry. It is quantitatively demon-
strated that texture evolution, twin volume fraction evolution, stress-strain response, and geometrical
changes of samples can be accurately simulated to large plastic strains with compact ODFs using crystal
plasticity finite element models.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Crystallographic texture in a polycrystal can be quantitatively
described by an orientation distribution function (ODF) [1], which
is the normalized probability density associated with the occur-
rence of a given crystal orientation in the polycrystal. The ODF is an
important microstructural feature influencing the anisotropy of
various material properties [1e5]. Modeling the anisotropy of
plastic properties and the evolution of anisotropy with plastic
strain requires consideration of the crystal structure and crystal
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orientation because of their role in the activation of dislocation
glide and deformation twinning mechanisms of plastic deforma-
tion [6]. Thus, any material model aimed at predicting anisotropic
material properties and texture evolution must consider the ODF.

Many polycrystal plasticity models have been developed over
the past several decades to predict discrete ODF-property re-
lationships and their evolution. These models range from upper
bound Taylor-type models [6,7], lower bound Sachs model [8,9],
mean-field formulations such as visco-plastic self-consistent
(VPSC) [10e14] and elasto-plastic self consistent (EPSC) [15,16], to
the full-field crystal plasticity finite element (CPFE) models [17e21]
and Green's function based models with a convolution integral
solved using fast Fourier transforms (FFTs) [22,23]. More recently
VPSC and EPSC models have been coupled with implicit FE
framework [24e26].
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Kinematics and kinetics of crystallographic slip and twinning in
these models are physically based, which in combination with
capturing ODF evolution makes these models essential for under-
standing and predicting microstructural processes and associated
microstructure-property relationships. As such, these models are
highly desirable for performing accurate simulations of metal
forming processes. Many simulation cases include simple
compression, simple tension, impact tests, cup-drawing, sheet
hydroforming, bending, and other forming operations have been
performed and reported in the literature [24,27e38]. These works
demonstrated the utility of polycrystal plasticity models within FE
simulation tools to achieve accuracy of simulations. However, the
works emphasized that performing metal forming process simu-
lations with polycrystal plasticity is a huge computational chal-
lenge. For example, the time for a compression simulation up to a
strain of 0.2 with about 1000 elements and an ODF containing 1000
crystal orientations at each FE integration point was approximately
60 h on a regular PC [24]. Clearly, speedups are critically needed to
make complex metal forming simulations with polycrystal plas-
ticity constructive laws practical.

Recently, several computationally efficient numerical imple-
mentations of polycrystal plasticity have been developed. Common
to these developments were databases of precomputed solutions to
crystal plasticity equations in order to circumvent solving sets of
very stiff equations requiring many iterations for every crystal at
every trial time increment. One approach relies on adaptive sam-
pling algorithms to build a database that constantly updates itself
during calculations [39,40]. The method improved the computa-
tional speed involved by about an order of magnitude. Some other
database approaches store precompiled solutions in the form of
spectral coefficients of continuous GSH basis [41e45] or FFTs
[46e49]. These implementations resulted with significant re-
ductions in computational time approaching two orders of
magnitude. A process plane concept, based on proper orthogonal
decomposition in Rodrigues orientation space, has been conceived
to yield some improvements as well [50]. Additionally, several high
performance computational application for crystal plasticity have
been developed to run on graphic processing unit (GPU) hardware
[51e54]. All of these studies have focused on the crystal plasticity
solvers. While successful in accelerating the calculations, none of
the above approaches attempted to minimize the amount of state
variable data related to the ODF. Since polycrystal plasticity calcu-
lations scale linearly with the number of crystal orientations
involved in calculations, the computational speed can further be
reduced by the development of an ODF data compaction procedure.

Several studies for approximating a given ODF with the mini-
mum number of crystal orientations representing the ODF have
been carried out in the past [55e58]. The most successful method
relied on a suitably defined error difference between a measured
ODF and a representative ODF containing discrete crystal orienta-
tions [56,58]. The number of discrete orientations was systemati-
cally increased until the error was minimized. The estimated
number of orientations varied with respect to the measured ODF.
Part of the reason for this variation is because weights of individual
orientations were not adjusted. More conveniently, an ODF can be
represented by a weighted set of discrete orientations if these
orientations are appropriately chosen. To this end, the fundamental
problem is determining the minimal set of these discrete
orientations.

In a recent paper [59], we have presented a rigorous procedure
for reducing large datasets of crystal orientations using GSH func-
tions. The procedure involves matching the expansion coefficients
of a full-size ODF containing any number of crystal orientations
with those of an ODF containing a compact set of orientations. The
procedure was applied to metals with cubic and hexagonal crystal
structure restricted to orthotropic sample symmetry. This paper
generalizes the procedure to any crystal structure with no re-
strictions to sample symmetry. In particular, the symmetrized GSH
for orthorhombic crystal symmetry is used. As a result, any given
ODF can be compacted to a computationally manageable ODF,
which is at the same time representative and matches qualitatively
and quantitatively the starting ODF. These major extensions are
accompanied by dealingwith significantlymore dimensions as well
as imaginary terms. Moreover, we explore two approaches for
generating an initial set of orientations in the compact ODF, one
based on binning of a given fundamental zone in the Bunge-Euler
orientation space and another that takes advantage of MTEX to
maximize the compaction. Taking advantage of the linearity of the
Fourier space, a linear programming problem is then set to match
the expansion coefficients of the given ODFwith those of a compact
ODF by varying the weights of orientation in the compact ODF.
Finally, a minimum number of weighted orientations in the
compact ODF is determined and used in modeling of ODF-property
relationships and their evolution. The development of the pro-
cedure along with several case studies verifying the procedure will
be described in this paper. In particular, quantitative agreement
between crystal plasticity calculations of texture evolution, twin
volume fraction evolution, stress-strain response, and geometrical
changes of samples using measured ODFs and compact ODFs will
be demonstrated for several polycrystalline metals with cubic,
hexagonal, and orthorhombic crystal structures.
2. Spectral representation of ODF using GSH

ODF, which will be denoted by f ðgÞ, represents the normalized
probability density that quantifies the occurrence of the crystallo-
graphic orientation, g, in the sample and is expressed as:

f ðgÞdg ¼ dV
V
;

Z
FZ

f ðgÞdg ¼ 1; (1)

where V is the physical volume of a material and dV is the volume
of material associated with a lattice orientation dg. The FZ stands
for a fundamental zone, which is an asymmetrical domain of all
physically distinct orientations of the local crystal that can occur in
the material [1,60]. Size of FZ depends on crystal and sample
symmetry which will be describe later. Crystal lattice orientation is
described by three independent variables through either a matrix
of direction cosines, a set of Bunge-Euler angles [1], an angle-axis
couple [61], a Rodriguez vector [62], or a set of quaternions [63].
Herewe use the Bunge-Euler space and three Bunge-Euler angles to
describe every crystal orientation belonging to an ODF. Every
crystal orientation is thus an ordered set of three rotation angles
g ¼ ð41;F;42Þ that collectively transform the crystal local frame to
the sample reference frame.

The ODF can be developed in a series of GSH as follows [1,64]:

f ðgÞ ¼
X∞
l¼0

Xþl

m¼�l

Xþl

n¼�l

Fmn
l Tmn

l ðgÞ; (2)

where, Tmn
l and Fmn

l are the GSH function and complex coefficients
representing the ODF, respectively. The value of l determines the
total number of dimensions involved in the GSH series. The capital
letter L will be used to indicate the upper limit for the l values.

In terms of Bunge-Euler angles, the representation from Eq. (2)
is
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f ð41;F;42Þ ¼
X∞
l¼0

Xþl

m¼�l

Xþl

n¼�l

Fmn
l eim42Pmn

l ðcos FÞein41 ; (3)

where, Pmn
l ðcos FÞ are Legendre functions [1]. To economically

represent an ODF using GSH, crystal and sample (statistical) sym-
metries are embedded into GSH [1]. For example, Eq. (2) for cubic-
orthotropic1 can be written as follows

f ðgÞ ¼
X∞
l¼0

XMðlÞ

m¼1

XNðlÞ
n¼1

Fmvl T
«: mn

l ðgÞ; (4)

where, the dots on top of the GSH function denote the crystal and
sample symmetries. The limits to linearly independent indices,M(l)
and N(l), depend on selected crystal and sample symmetry [1].
These limits determine the number of dimensions used for the
representation of a given ODF in an infinite dimensional space. The

adopted notation for the symmetrized GSH functions is T
«
mn
l for

cubic-triclinic, T
«: mn

l for cubic-orthotropic, T
:
mn
l for hexagonal-

triclinic, T
::
mn
l for hexagonal-orthotropic, _T

mn
l for orthorhombic-

triclinic, and €T
mn
l for orthorhombic-orthotropic crystals. Note that

triclinic means no sample symmetry so no dots are placed on top of
the functions, while a single dot is placed to denote orthotropic
symmetry, which is typical for an ODF in a rolled sheet.

As an example, a GSH function with combined crystal and
sample symmetry for the representation in Eq. (4) is calculated
using

T
«: mv

l ðgÞ ¼
Xþl

m¼�l

Xþl

n¼�l

A
«
mm
l

_A nn
l Tmn

l ðgÞ; (5)

where, A
«
mm
l and _A

nn
l are symmetry coefficients fulfilling the crystal

and sample symmetries, respectively [1].
In order to evaluate the expansion coefficients Fmnl in Eq. (4), the

orthogonality relation for the GSH functions T
«: mn

l is usedZ
FZ

T
«: mv

l ðgÞT
«: *m

0
n
0

l0
ðgÞdg ¼ 1

2lþ 1
dll0 dmm0 dnn0 : (6)

The asterisk symbol (*) in the superscript denotes the complex
conjugate. The invariant orientation element dg in Bunge-Euler
space is defined as

dg ¼ sinðFÞ d41 dF d42: (7)

To take the advantage of Eq. (6), both sides of Eq. (4) with prime

indices are multiplied by the complex conjugate T
«: *mn

l to get

Z
FZ

f ðgÞT
«: *mn

l ðgÞdg ¼
X∞
l0¼0

XMðl0Þ

m0¼1

XNðl0Þ
n0¼1

Fm
0
n
0

l0

Z
FZ

T
«: m

0
n
0

l0
ðgÞT

«: *mn
l ðgÞdg: (8)

The expansion coefficients are

Fmnl ¼ ð2lþ 1Þ
Z
FZ

f ðgÞT
«: *mn

l ðgÞdg: (9)
1 The first symmetry refers to symmetry at the crystal level, while the second
symmetry refers to statistical symmetry at the sample level.
The procedure for the compact reconstruction of ODFs advanced
in this paper is based on the GSH representation of the ODFs.
Expansion coefficients of any given ODF containing any number of
crystal orientations are evaluated to represent a point in an infinite-
dimensional space. We will refer to this point as the target point.
These expansion coefficients can be matched with those of another
equivalent ODF by solving a linear programing problem in the space
of expansion coefficients. This recognition is in the core of the
procedure for obtaining compact ODFs, which is described next.

3. Procedure for compact reconstruction of ODFs

The procedure for compacting a given ODF containing a large
number of weighted crystal orientation, whichwill be referred to as
the target ODF, produces an equivalent ODF containing a much
smaller number of weighted crystal orientations, which will be
referred to as the compact ODF. The GSH automated procedure is
developed and fully automated in MATLAB [65]. Fig. 1 shows a
flowchart describing the main steps involved in the procedure.
Expansion coefficients of a target ODF are calculated using Eq. (9) to
set the target point in the multidimensional space with orthogonal
axis defined by the value of the expansion coefficients. Next, we
create compact ODFs. To this end, we explore two approaches, one
based on binning of a given fundamental zone in Bunge-Euler
orientation space and another that takes the advantage of MTEX
to maximize the compaction. Weights of crystal orientations in the
compact ODF are adjusted during the solution procedure. Note that
the number and positions of orientations are not adjusted during
the solution procedure. The supplementary material of the paper
contains the code.

3.1. Fundamental zones of crystal orientations

The set of all distinct crystal orientations that can occur in the
sample is the fundamental zone (FZ). After consideration of crystal
and sample symmetries, redundancies in orientation occurrences
within Bunge-Euler space f g ¼ ð41; F; 42Þ j , 0 � 41 <2p,
0 � F � p, 0 � 42 <2p g can be eliminated to derive a sub-space,
the smallest of which is the FZ containing the physically distinct
and non-redundant orientations. The size of FZ depends on crystal
and sample symmetry. Fundamental zones within Bunge-Euler
orientation space corresponding to relevant crystal-sample sym-
metries used in present work are presented in Table 1. Their
geometrical representation is shown in Fig. 2. The geometrical
representation of a FZ is not unique. Note that two FZs are presented
for the cubic-triclinic case, one conveniently termed as a ‘loaf’ and
another termed as a ‘roof’, based on their shapes. The loaf FZ is
widely used in the literature [66]. However, we point out that it is
not convenient to reduce the loaf FZ to the cubic-orthotropic FZ. It is
convenient to derive an orthotropic FZ by performing three rota-
tions of the type p

2 〈100〉. As a result, 0 � 41 <2p reduces to
0 � 41 <

p
2. This is possible with the roof FZ, which is used in the

present paper. The FZs are used to define sets of crystal orientations
covering respected orientation spaces. These sets will be termed
master sets as described next.

3.2. Master set ODFs

In order to form master sets of crystal orientations, the funda-
mental zones are appropriately discretized into equal volume bins.
The binning procedure has been described in previous works
[59,66]. Each bin has six corner orientations and one orientation at
the center. While the centers yield a more uniform texture, the
corners ensure the complete coverage of the orientation space with
a bigger data set. The bins are created by enforcing the invariant



Fig. 1. Flowchart showing steps involved in the automated procedure for reducing a given ODF into an equivalent but compact ODF. While the master set ODF must increase the
number of weighted orientation to achieve the desired accuracy, the MTEX ODF can cycle with either a constant number of weighted orientation due to the randomness of the
selection in MTEX or an increased number of weighted orientations to achieve the desired accuracy.
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volume integrals of

dV ¼
Z

dg ¼
Z

D42

Z
DF

Z
D41

sinðFÞdFd41d42: (10)

Selected values for the invariant volume defines number of
orientations per master set. Table 2 summarizes the mesh of bins
for each of the FZs and therefore defines the possible master sets of
orientations. Note that either corner or center orientations can be
considered. The resulting master set ODFs are conveniently uni-
form because they result from invariant volume bins.

3.3. MTEX (uniform or fitted) ODFs

Another scheme to define a starting set of orientations for the
ODF compaction procedure is based on MTEX [67]. To this end, we
either output a uniformODF or a fitted ODF fromMTEX. The latter is
pre-fitted towards the target ODF using MTEX. Generation of either
a statistically uniformODF or a fitted ODF using built-in functions in
MTEX will not be elaborated in more details because MTEX manual
describes it and the reader is referred to themanual. Note that here,
the number of orientations per MTEX compact ODF can vary and is
not fixed like in Table 2 for master set ODFs. This contributes to the
flexibility of the procedure involving MTEX. Moreover, the MTEX
methods always produces a different ODF (even for the same
number of orientations) to varying degrees of accuracy (i.e. some
ODFs are better guesses than others). This is the premise of the
iteration over MTEX fitted/MTEX uniform.

3.4. Finding compact ODFs by solving a linear programing problem

Expansion coefficients corresponding to individual crystal ori-
entations within the mater set ODFs or those within MTEX (uni-
form or fitted) ODFs represent convex regions. These convex
regions are referred to as the texture hulls in the multidimensional
space [9,44,68,69]. These works presented orthotropic convex hulls
for the cubic and hexagonal crystal structures. In order to solve the
linear programing problem, a target point corresponding to the
coefficients of a target ODF in the multidimensional space must be
contained within the hull. The procedure ensures that the target
point is within the texture hull. If not, another ODF is imported, as
the backward arrows show in Fig. 1.

As mentioned above, texture hulls are composed of points the
multidimensional space, where the number of dimensions depends



Table 1
Fundamental zones within Bunge-Euler orientation space as a function of crystal and sample symmetries.

Fundamental zone Crystal symmetry Sample symmetry

FZLoaf ¼

8>>>>>>>><>>>>>>>>:

ð41;F;42Þj0 � 41 <2p;

cos�1

 
cos 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos242

q !
� F � p

2
;

0 � 42 � p

4

9>>>>>>>>=>>>>>>>>;
or

FZRoof ¼

8>>>>>>>>>><>>>>>>>>>>:

ð41;F;42Þj0 � 41 <2p;

cos�1

 
sin 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin2
42

q !
� F � p

2
; 0 � 42 � p

4

cos�1

 
cos 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos242

q !
� F � p

2
;
p

4
� 42 � p

2

9>>>>>>>>>>=>>>>>>>>>>;

Cubic Triclinic

FZ ¼

8>>>>>>>>>><>>>>>>>>>>:

ð41;F;42Þj0 � 41 <
p

2
;

cos�1

 
sin 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin2
42

q !
� F � p

2
;0 � 42 � p

4

cos�1

 
cos 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos242

q !
� F � p

2
;
p

4
� 42 � p

2

9>>>>>>>>>>=>>>>>>>>>>;

Cubic Orthotropic

FZ ¼

8>>>><>>>>:
ð41;F;42Þj0 � 41 <2p;

0 � F � p

2
;

0 � 42 � p

3

9>>>>=>>>>;
Hexagonal Triclinic

FZ ¼

8>>>>>><>>>>>>:

ð41;F;42Þj0 � 41 <
p

2
;

0 � F � p

2
;

0 � 42 � p

3

9>>>>>>=>>>>>>;

Hexagonal Orthotropic

FZ ¼

8>>><>>>:
ð41;F;42Þj0 � 41 <2p;

0 � F � p

2
;

0 � 42 � p

9>>>=>>>;
Orthorhombic Triclinic

FZ ¼

8>>>><>>>>:
ð41;F;42Þj0 � 41 <

p

2
;

0 � F � p

2
;

0 � 42 � p

9>>>>=>>>>;
Orthorhombic Orthotropic
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on L. Table 3 summarizes the number of dimensions for given L
values. Note that the number of dimensions scales inversely with
the level of symmetry. It has been shown that the coefficients
beyond L¼ 16 are insignificant for an ODF representation [59].
EDAX orientation imaging microscopy (OIM) analysis software,
TexSEM Laboratories (TSL), uses the default value for L as L¼ 16
[70]. The representation of ODF-elastic stiffness relationship re-
quires only L¼ 4, while the representation of ODF-yield stress re-
quires L to about 10 or 12 [9,42,71]. Therefore, the present study
will not consider coefficients beyond L¼ 16.

As mentioned above, Eq. (9) allows visualization of ODF as a
point with the coordinates of F

mn
l . We place the bar on top of these

coefficients representing an ODF to indicate an averaged value of
the coefficients based on the weights of crystal orientations in the
ODF. Similarly, the coefficients of a single crystal, k, can be evalu-
ated and also visualized as a point. The single crystal coefficients,
kF

mn

l , are used to define the hull of points. The space in between the
points can be populated as a linear combination of the points so the
hull is guaranteed to be compact and convex. As a result, the texture
hull represents the complete set of all physically realizable ODFs
[72]. Thus, the texture hull containing a given average ODF can be
formally defined as
M ¼
(
F
mn
l

����� Fmnl ¼
X
k

ka kF
mn

l ; kFmnl 2Mk; ka � 0;
X
k

ka ¼ 1

)
Mk ¼

n
kF

mn

l

��� kF
mn

l ¼ ð2lþ 1Þ T*mn
l

�
gk
�
; gk2 FZ

o
(11)

Fig. 3 illustrates the real and imaginary texture hulls for cubic,
hexagonal, and orthorhombic crystal structures with triclinic
sample symmetry. The first three coefficients are plotted in every
case.We emphasize that any physically realizable ODF has to have a
representation inside the corresponding hull. Fig. 3 also depicts a
few points corresponding to the measured textures, which will be
used to demonstrate the utility of the developed procedure. These
textures will be used as the full-size target ODFs for which equiv-
alent compact ODFs will be sought.

The linear programming problem consists of finding an appro-
priate weight of expansion coefficients for each orientation in the
respected compact ODF to match expansion coefficients of the
target ODF. The solver starts with equal weight orientations within
the compact ODF. In the cases of master set ODFs and MTEX uni-
form ODFs, the initial ODFs are uniform and the corresponding



Fig. 2. Fundamental zones within Bunge-Euler orientation space corresponding to crystal-sample symmetries as presented in Table 1 i.e.: (a) ‘loaf’ cubic-triclinic, (b) ‘roof’ cubic-
triclinic, (c) cubic-orthotropic, (d) hexagonal-triclinic, (e) hexagonal-orthotropic, (f) orthorhombic-triclinic, and (g) orthorhombic-orthotropic.

Table 2
Number of orientations in mater set ODFs for given symmetries and dV .

Crystal-sample symmetry dV [+3] # of bin centers # of bin corners dV [+3] # of bin centers # of bin corners

Cubic-triclinic (roof) 2.26 2700 3960 3.81 1472 2350
Cubic-orthotropic (roof) 0.53 3240 4200 1.03 1568 2176
Hexagonal-triclinic 5.97 3290 4224 15.43 1225 1728
Hexagonal-orthotropic 1.70 2992 3672 6.37 770 1056
Orthorhombic-triclinic 13.61 4165 5184 19.91 2790 3584
Orthorhombic-orthotropic 5.82 2530 3168 14.89 952 1296

Table 3
Numbers of dimensions from non-zero frequencies for selected L values. Note that the first frequency is always (Re¼ 1, Im¼ 0) and is not counted. Note also that, in addition to
longer series expansion, triclinic ODFs have real and imaginary terms, which were counted separately.

L¼ 4 L¼ 6 L¼ 8 L¼ 10 L¼ 12 L¼ 14 L¼ 16

Cubic-triclinic 18 44 78 158 258 370 564
Cubic-orthotropic 3 7 12 22 36 50 75
Hexagonal-triclinic 28 80 178 300 496 778 1100
Hexagonal-orthotropic 5 13 26 42 68 104 145
Orthorhombic-triclinic 88 236 496 900 1480 2268 3296
Orthorhombic-orthotropic 14 34 68 120 194 294 424

Fig. 3. Texture hulls in the first three dimensions for: (a) cubic-triclinic, (b) hexagonal-triclinic, and (c) orthorhombic-triclinic materials. Target ODFs for Cu in (a), Ti in (b), and SW U
along with origins are indicated in the respected hulls.

A. Eghtesad et al. / Acta Materialia 155 (2018) 418e432 423



Table 4
Experimentally measured texture data used in case studies as target ODFs.

Material Crystal structure Sample symmetry Technique # of weighted orientations

Pure Cu Cubic (FCC) Triclinic Numerical 50,000
AA6022-T4 Cubic (FCC) Orthotropic EBSD 119,248
Pure Ta Cubic (BCC) Orthotropic XRD 184,464
Pure a-Zr Hexagonal Triclinic XRD 100,000
WE43 Hexagonal Triclinic EBSD 100,000
High purity a-Ti Hexagonal Triclinic Neutron 50,000
Depleted a-U (SR) Orthorhombic Triclinic EBSD 80,434
Depleted a-U (SW) Orthorhombic Triclinic EBSD 128,780
Depleted a-U (CR) Orthorhombic Orthotropic EBSD 295,600

A. Eghtesad et al. / Acta Materialia 155 (2018) 418e432424
expansion coefficients are approximately at the origin of the
respected hulls. Any deviation from the equally weighted orienta-
tions makes these ODFs non-uniform, shifting their expansion co-
efficients from the origin. The weighted average of the expansion
coefficients corresponding to the compact ODF is evolving during
fitting until it is equal to that of the target ODF. The solution is
available as long as the target point is within the hull of the
Fig. 4. Stereographic pole figures showing: (a) FCC-orthotropic target ODF of AA6022-T4, (b
compact ODF, (d) initial MTEX fitted ODF and final compact ODF. Note that two initial sets
perfectly uniform texture and initial master set ODF, perfectly uniform texture and initial M
Maximum intensity is indicated for each pole plot. L and Dim. indicates the number of dimen
not specified then pole figures are plotted with default L¼ 16.
compact ODF. The number of dimensions used in the fitting pro-
cedure, defined by L, influences the accuracy of the representation
as well the computational time involved in the procedure. The
more dimensions used imply more accurate representations and
longer computational times.

The equation and constraints to find a compact ODF matching
an initial full size ODF are:
) initial master set ODF and final compact ODF, (c) initial MTEX uniform ODF and final
of crystal orientations were used in (b) and (c). TDI quantifies the difference between
TEX uniform ODF, target ODF and MTEX fitted ODF, and target ODF and compact ODF.
sions fit in the space. Number of weighted orientations per ODF is indicated. In case L is
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bFmn

l ¼ kakF
mn

l ;
XNcrys

k

ka ¼ 1; 0 � ka � 1; (12)

Where, kF
mn

l are the expansion coefficients of individual orien-
tations in the compact ODF and ka are the unknown weights. We
employ a linear programming solver “linprog” in MATLAB [73] to
solve for the weights. The system of equations is set as

kakF
mn

l � F
mn
l � Pmnl � Qmn

l ¼ 0;
XNcrys

k

ka ¼ 1; (13)

inequality constraints are

ka � 0; ka � 1; Pmnl � 0; Qmn
l � 0; (14)

and the objective function for minimization isX
l

X
m

X
n

�
Pmnl þ Qmn

l

�
: (15)

In this formulation, Pmnl and Qmn
l are slack variables. Number of

slack variables depend on the number of available inequalities.
Since two inequalities exist, two slack variables are needed for the
linprog solver. The slack variables ensure equality constraint of the
linear system of equations to be solved. The slack variables are
positive and bounded in magnitude. The mathematical operations
of summation and subtraction facilitate a wide variety of paths to
obtain the solution. The fitting program stops upon reaching a
Fig. 5. Compact reconstruction of HCP-triclinic target ODF of CR pure a-Zr. Det
prescribed tolerance defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

X
m

X
n

�
F
mn
l � bFmn

l

�2s
: (16)

The tolerance value is set to TOL � 10�12. It is necessary to
ensure that the procedure fit as many dimensions as possible. In
case the procedure fails to fit the desired number of dimensions, it
cycles and another ODF is imported as shown by the backward
arrows in Fig. 1. If based on the MTEX selection, the new ODF can
contain the same number of different crystal orientations. Alter-
natively, the new ODF can have an increased number of crystal
orientations generated either based on theMTEX selection or the FZ
binning. The latter is used if the former fails to converge upon three
trials. The number of discrete orientations in the new ODF is sys-
tematically increased until the procedure fits L¼ 16. However,
L¼ 16 for low symmetry orthotropic structures can becomes
excessive for the linprog MATLAB function and memory
requirement.

Finally, the orientations with negligible weights are removed. In
order to make sure that no appreciable error is introduced by
removing these orientations, it is ensured that the summation of
weights after the removal is greater than 0.99.

In closing this section, we introduce a convenient measure in
order to quantify the quality of fits. The measure is termed texture
difference index (TDI) [59,74]. The measure is used to quantify the
accuracy of the spectral representation as a function of the di-
mensions in the infinite space because it is not always possible to fit
the number of dimensions corresponding to L¼ 16, especially for
ails in the figure are the same as those in Fig. 4 (see the caption of Fig. 4).
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low symmetry structures. The TDI is calculated using

TDI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
FZ

�
f ðgÞ � bf ðgÞ�2dgvuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
FZ

�
f ðgÞ � ~f ðgÞ

�2
dg

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

P
m

P
n

�
F
mn
l � bFmn

l

�2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

P
m

P
n

�
F
mn
l � ~F

mn
l

�2s (17)

where, F
mn
l and bFmn

l denote the expansion coefficients for the target

ODF (f ðgÞ) and compact ODF (bf ðgÞ), respectively. The right hand
side of Eq. (17) is readily obtained taking the advantage of the rule

for real functions that f ðgÞ ¼ Fmnl T
«: mn

l ðgÞ ¼ F*mnl T
«: *mn

l ðgÞ. The
normalization term represents the distance from the target to the
furthest point in the respected convex hull made up of the

expansion coefficients corresponding to a uniform ODF (~f ðgÞ). Here,
the superscript ð�Þ is used to indicate a uniform (or a random) ODF.
The TDI value of zero indicates identical ODFs, while a value of unity
indicates maximum theoretical disagreement between two ODFs.
Note also that the following hold true for the normalized ODFsR
FZ
f ðgÞdg ¼ R

FZ

bf ðgÞdg ¼ R
FZ

~f ðgÞdg ¼ 1. Note that TDI values are al-

ways calculated for L¼ 16. Thus, if the fit between a target and a
Fig. 6. Compact reconstruction of orthorhombic-triclinic target ODF of SR a-U. D
compact representation achieved the accuracy of L¼ 16, then TDIz
0 and the solution is regarded as the exact. However, if the fit
achieved L< 16 then TDI > 0. The TDI value is influenced by the
‘trailing’ expansion coefficients that were not fit. These coefficients
are set to zero for the TDI calculations. Additionally, the TDI value
can change with choosing another normalization term such as the
largest distance in the respected hull.

The procedure is applied to several material systems, and the
results are presented and discussed in the next section.

4. Results

Table 4 presentsmaterial systems used in the study. The systems
are chosen to cover a broad range of crystal and sample symmetries
as well as to show that the developed procedure is independent on
techniques used to determine the measured full-size ODFs. The
techniques for measuring ODF are broadly classified according to
whether they measure macro-texture or micro-texture. The former
includes X-ray diffraction (XRD) and neutron diffraction while the
latter is based on electron backscattered diffraction (EBSD). While
the ODF is directly available from an EBSDmeasurement, it needs to
be calculated based on the pole figures for XRD and Neutron
measurements. The number of crystal orientations in the calculated
ODF is appropriately chosen to capture the pole figure
measurements.
etails in the figure are the same as those in Fig. 4 (see the caption of Fig. 4).
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The alloy AA6022-T4 [16,75] was a rolled sheet having an
approximately orthotropic texture, which was measured using
EBSD. This texture is further made orthotropic by artificially
enforcing the sample symmetry. Pure Ta was also a rolled sheet
whose texture was measured by XRD and was found orthotropic
looking as well [76]. While the alloy AA6022-T4 is an example of
face-centered cubic (FCC) material, pure Ta is a body-centered cubic
(BCC) material. An example of a cubic-triclinic texture is created
numerically by performing a simple shear simulation of an initially
uniform texture of pure Cu using a crystal plasticity model. Ex-
amples of hexagonal materials include a clock rolled (CR) pure a-Zr
[77], a straight rolled (SR) rare earth Mg alloy WE43 [78e81], and
SR high-purity a-Ti [30]. Geometries of crystal lattices in these
materials differ in their c/a ratio. Moreover, they have been
measured using three different techniques. Finally, a-U is consid-
ered as the material with the lowest level of crystal symmetry,
which is orthotropic. The material was processes in three different
ways CR, SR and swaged (SW) resulting in three different ODFs,
which were measured by EBSD over large areas [82]. Table 4 pre-
sents the number of crystal orientations for every measured ODF.

The compact reconstruction of the above target ODFs is per-
formed using the developed procedure. Figs. 4e6 present the re-
sults for AA6022-T4, pure a-Zr, and depleted a-U (SR), respectively
in terms of stereographic pole figures plotted in the TSL software
Fig. 7. (a) Comparison of measured and simulated by EPSC quasi-static true stressetrue strai
legend for AA6022-T4. Simulations were performed using the full ODF and the compact OD
simple tension at a true strain of 0.6. (c) Photograph of a drawn-cup from AA6022-T4 sheet an
is the rolling direction (RD¼ x, TD¼ z). ¼ of the blank consisted of 14,560 C3D8R eleme
embedded at each FE integration point.
[70]. More results are provided in the supplementary material of
the paper (Figs. A1-A6). The target ODFs are always plotted with
L¼ 16. Three compact ODFs were used in every case. Furthermore,
two master set ODFs and two MTEX uniform ODFs are considered.
The effort was made to obtain compact ODFs for L¼ 16. TDI was
used to quantify the quality of the fits. For the high symmetry cases
like FCC and BCC, the linprog solver was capable of fitting all di-
mensions (denoted by ‘Dim’ in the figures) corresponding to L¼ 16.
Therefore, TDI shows almost perfect match. However, for some
cases we accepted fits corresponding to L< 16, especially for the
low symmetry structures. Note that the TSL software requires
entering L for plotting pole figures from either ODF or its repre-
sentation. Therefore, we performed the reconstruction for given L
values, although it was possible to fit more dimensions but less
than the next L value. In these cases, L used to plot pole figures
corresponded to that of fits. TDI for these cases was essentially the
difference between the fitted ODF to a given L value and the cor-
responding target ODF for L¼ 16. We point out that fitting higher
number of dimensions (L¼ 16) was always possible but with larger
number of orientations in the compact ODFs. Thus, there is a
tradeoff between the quality of fit and size of the compact ODF.
Figs. 4e6 and A1eA6 demonstrate this tradeoff.

We find that the use of MTEX uniform and MTEX fitted compact
ODFs are more flexible in terms of the number of orientations per
n responses in tension and R-ratio along the three loading directions as indicated in the
F as indicated in the legend. (b) Pole figures showing predicted texture evolution after
d predicted geometry using FE-EPSC showing the formation of four ears. Also indicated
nts was simulated. The FE-EPSC simulation was performed using the compact ODF
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compact ODF and yields better results compared to the rigid master
set ODFs. The MTEX compact ODFs allowed us to use higher L
values and, as a result, more dimensions were fit. More terms in the
expansion results in more detailed reconstruction. For example, for
the a-Ti case or SW a-U uranium, the use of mater set ODFs forced
us to choose very low L values to fit the target using a reasonable
number of grains (i.e. not more than 300 grains). Compact ODFs
generated using MTEX allowed us to use high values for L and
consequently improve the quality of fits. Moreover, a closer initial
guess provided by MTEX fitted ODF significantly helps the iterative
fitting procedure so the linear programming solver converges
faster.
5. Discussion

The procedure advanced in this paper is a rigorousmethodology
for the compaction of large crystallographic texture data. We have
showed that any statistical ODF containing any number of orien-
tations can be reconstructed with a compact ODF containing a
significantly smaller but representative set of orientations. This was
possible taking the advantage of the GSH representation and the
linearity of the expansion space.
Fig. 8. (a) Comparison of measured and simulated by VPSC true stressetrue strain respon
indicated in the legend. Evolution of twin volume fraction predicted by the model is also
indicated in the legend. (b) Pole figures showing predicted texture evolution after in-plane c
using FE-VPSC. ¼ of the cylinder consisted of 405 C3D8 elements was simulated. Compariso
showing the elliptical cross-sectional shape formed from the foot to about 40mm from th
cylinder, and R-value plot showing the ratio between the major radial strain and the min
embedded at each FE integration point.
During plastic deformation, orientations within a poly-
crystalline metal reorient and as a result an initial ODF evolves. ODF
evolution can be captured using crystal plasticity models such as
VPSC or EPSC. These models consider the operating slip and twin
systems. Questions like whether a compact ODF is sufficient to
capture stress-strain response to large strains, texture evolution,
evolution of twin volume fractions, and ultimately geometrical
changes of the samples could arise.

We now present several case studies of different complexity to
fully validation of the procedure in every aspect mentioned above.
Fig. 7 compares the measured and simulated quasi-static true
stressetrue strain responses in tension and R-ratio along the three
loading directions for AA6022-T4. The simulations were performed
using the full ODF and the compact ODF consisting of only 83
weighted crystal orientations using EPSC. Pole figures show the
texture evolution in tension to a strain of 0.6 is predicted well with
the compact ODF. Details of the material model can be found in
Ref. [16]. The comparison of a drawn-cup photograph and predicted
geometry using FE-EPSC shows that the model captures the for-
mation of four ears. More details about the cup drawing experi-
mental setup can be found in Ref. [83]. Details for the FE-EPSC
formulation can be found in Refs. [26,38,84]. ¼ of the blank
ses in compression along the in-plane (RD) direction of CR a-Zr under strain rates as
presented. Simulations were performed using the full ODF and the compact ODF as
ompression at a true strain of 0.2. (c) FE model for simulating the Zr Taylor impact test
n of measured and predicted geometrical changes: major and minor radial strain plot
e foot, aspect ratio plot depicting the ratio between the major and minor axis of the
or radial strain. The FE-VPSC simulation was performed using the compact ODF: 93
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consisted of 14,560 C3D8R elements was simulated. The FE-EPSC
simulation was performed using the compact ODF embedded at
each FE integration point.

While the FCC metals deform with one slip mode, the HCP and
Fig. 9. (a) Comparison of measured and simulated by VPSC quasi-static true stressetrue str
volume fraction predicted by the model is also presented. Simulations were performed using
predicted texture evolution after compression at a true strain of 0.2. (c) Comparison of the p
coordinates of the deformed FE model are superimposed on the photographed experimentall
FE-VPSC simulation was performed using the compact ODF: 128 embedded at each FE inte

Fig. 10. Comparison of the computational time involved in the standalone model simulations
U. The rate sensitivity exponent of the visco-plastic power law known to influence the numb
to a total strain of 0.2 in 200 strain increments for VPSC and 1500 strain increments for EPS
that the a-Zr simulations are longer than the a-U simulations because of modeling of both p
modeled in a-U. All simulation were run on a single core of Intel(R) Xeon(R) CPU E5-2699
orthorhombic metals deforms by multiple slip and twinning
modes. The next two case studies are for these low symmetry
metals. Fig. 8 compares measured and simulated true stressetrue
strain responses in compression along the in-plane direction for
ain responses in compression along the three directions for SR a-U. Evolution of twin
the full ODF and the compact ODF as indicated in the legend. (b) Pole figures showing
redicted and measured beam cross-section for the beam of SR a-U. The external nodal
y deformed beam. ¼ of the beam consisted of 300 C3D20R elements was simulated. The
gration point.

using the compact ODF and the full ODF for: (a) AA6022-T4, (b) Pure a-Zr, and (c) SR a-
er of iterations and computational time of VPSC was set to 50. The simulations were run
C, which is an explicit code demanding more increments to ensure the accuracy. Note
rimary and secondary twinning reorientation in a-Zr, while only primary twinning was
v4 @ 2.20 GHz.



Table 5
Comparison of the computational time involved in the FEM simulations using the compact ODFs and the full ODFs.

Simulation type # of orientations (compact/full) Elapsed time (days) # of processors Processor type

AA6022-T4 cup drawing 83/119,248 2.92/4051.8 30 Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10 GHz
Pure a-Zr Taylor impact 93/100,000 1.1/1019.2 34
Depleted a-U (SR) beam bending 128/80,434 0.33/173.38 32
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CR a-Zr under several strain rates. Additionally, the evolution of
twin volume fraction predicted by the model is presented. Simu-
lations were performed using the full ODF and the compact ODF
consisting of 93 crystal orientations using VPSC. Details for this
model can be found in Ref. [77]. Pole figures showing predicted
texture evolution after the compression at a true strain of 0.2 are
also shown. Predictions using a larger compact ODF fit to L¼ 16 are
also shown. Finally, geometrical changes simulated using FE-VPSC
for the Zr Taylor impact test are shown [85]. ¼ of the cylinder
consisted of 405 C3D8 elements was simulated like in our earlier
work [85]. Comparison of measured and predicted geometrical
changes in terms of the major and minor radial strain, aspect ratio,
and R-value demonstrate the accuracy of the simulation. The FE-
VPSC simulation was performed using the compact ODF
embedded at each FE integration point.

Finally, Fig. 9 shows similar information for SR a-U. Measured
and simulated quasi-static true stressetrue strain responses in
compression along the three directions are presented along with
the evolution of twin volume fractions. As before, the simulations
were performed using the full ODF and the compact ODF consisting
of 128 crystal orientations using VPSC [29,86]. Pole figures showing
predicted texture evolution after compression at a true strain of 0.2
are also presented. The larger compact ODF was fit to L¼ 14.
Evidently, the compact ODF with more weighted crystal orienta-
tions more accurately capture texture evolution. The predicted and
measured beam cross-section for the beam are compared to
demonstrate accuracy of the model to capture geometrical changes.
The external nodal coordinates of the deformed FE model are
superimposed on the photographed experimentally deformed
beam taken from Ref. [24]. ¼ of the beam consisted of 300 C3D20R
elements was simulated. The FE-VPSC simulation was performed
using the compact ODF embedded at each FE integration point.

Fig. 10 shows the comparison of the computational time
involved in the standalone simulations using the compact ODFs and
the full ODFs. As expected, the scalability is approximately linear.
Comparison of the computational time involved in the FEM simu-
lations is given in Table 5. The elapsed times for the simulations
using compact ODFs are recorded. However, the FEM simulations
involving the full ODFs at every FE integration point are computa-
tionally challenging for a regular computer workstation. The values
shown for the full ODFs are estimates based on the scalabilities of
the standalone simulations and the FEM simulations involving the
compact ODFs at every FE integration point. Clearly, the simulations
with experimentally measured textures are impractical.

The case studies show that the compact ODFs capture every
aspect of deformation behavior with great accuracy. Thus, a dra-
matic data compaction is possible using the GSH functions without
losing accuracy in the predictions. The computing time involved in
polycrystal plasticity models increases almost linearly with the
number of crystal orientations considered in simulations. Thus, the
speedups are directly proportional to the compaction of crystal
orientations. These speedups are critically needed for enabling
large scale crystal plasticity finite element simulations. The pro-
cedure developed in the present paper is primarily intended to
increase efficiency of these codes.

The methods for determining the compact set ODFs used in the
present work can be regarded as brute force methods. Future
research will focus on establishing a more sophisticated procedure
to find the minimal set of crystallographic orientations for the
compact ODF for every crystal and sample symmetry. To this end,
orientations corresponding to the boundary points of the compact
and convex texture hulls in multiple dimensions (Fig. 3) would be
sought. As explained earlier, the convex hull for a given crystal and
sample contains all physically realizable textures, and theoretically,
the compact set of orientations that will provide the most efficient
texture reconstruction is one that is comprised of crystal orienta-
tions with expansion coefficients that form the boundary for this
convex region up to the desired number of dimensions. The main
challenge encountered in attempting this concept is finding the
vertices of the texture hull in fairly large dimensional spaces.
Alternatively, orientations corresponding to minimum and
maximum value for each expansion coefficient for each non-zero
frequency (Table 3) could be selected and further prioritized to
maximize the compaction.

The developed procedure is restricted to finding compact ODFs.
Futureworkwill also attempt to further generalize the procedure to
finding statistically representative volume elements, which would
consider not only ODF information but also spatially resolved
explicit microstructural features [87,88]. The present work formed
solid bases for such future developments.

6. Conclusions

Metal forming process simulations using ODF sensitive crystal
plasticity models are impractical in part because of the need to
store many state variables including the ODF data. The computa-
tional time involved in such calculations scales linearly with the
number of crystal orientations. This work successfully advanced the
procedure for the compaction of the ODF data of any size to
computationally manageable compact ODFs. The extended pro-
cedure can consider low symmetry crystal structures and triclinic
sample symmetry. The procedure is based on the spectral repre-
sentation of ODFs using the GSH functions. The core procedure
consists of matching the spectral representation of a full-size ODF
containing any number of crystal orientations with that of an ODF
containing a compact set of orientations. The procedure is fully
automated using an algorithm developed in MATLAB. Case studies
of ODF compaction showed that the procedure can accurately
compact large data ODFs to significantly smaller sets of weighted
orientations on the order of approximately 100. The procedure was
applied to metals with cubic, hexagonal, and orthorhombic crystal
structures with orthotropic and triclinic sample symmetries and
shown to work well for all these metals, some of which deform by
both slip and twinning. It is quantitatively demonstrated that
texture evolution, twin volume fraction evolution, stress-strain
response, and geometrical changes of samples can be accurately
simulated to large plastic strains with compact ODFs using crystal
plasticity finite element models with dramatic reduction in
computational time involved.
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