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A number of studies have found that the formation of double twins in low symmetry metals can lead to
the onset of strain localizations, leading further to void nucleation and ultimately fracture. This work
extends a recently developed three-dimensional crystal plasticity finite element framework [1] to
explicitly model kinematics and kinetics of nucleation/formation, propagation, and thickening/growth of
a discrete double twin lamella ({1011} — {1012}) in a magnesium alloy AZ31. With this approach,
morphological and crystallographic reorientations as well as the shear transformation strains associated
with strain accommodation by the double twinning sequence are modeled during simple compression

Keywords: . . . . s . . .
Tvginning and tension. The simulations predict that the distribution of local stress-strain fields during formation
Microstructures and growth of primary contraction twin creates the driving force for the formation of a secondary

extension twin variant, which is consistent with experimental observations in both compression and
tension. In particular, the contraction twin variant (0111)[0112] is predicted to form an internal exten-
sion twin variant (0112)[0111]. Furthermore, the prediction of the underlining crystallographic slip
deformation mechanism reveals a substantial activity of basal slip within the contraction portion of the
double twin, causing strain localization in its vicinity. Finally, the simulations reveal a gradient in the
traction force field across twin-parent interface, suggesting that contraction twin-parent boundaries are
weak links in the microstructure where voids can nucleate.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction accommodate strain along the crystallographic c-axis. It is thought

that the main reason for the lack of ductility of magnesium alloys is

Magnesium (Mg) alloys are attractive structural materials for
various automotive and aerospace applications due to their light
weight and high strength to weight ratio [2,3]. However, their
ductility is limited, which leads to low formability and premature
failure at room temperature [4]. Furthermore, magnesium alloys
display strong mechanical anisotropy, which is another major
hurdle to their widespread use in design and manufacturing [5—8].
Plastic deformation in polycrystalline metals is most often accom-
modated by plastic slip, but under certain circumstances it can be
carried by both twinning and slip. Mg is a hexagonal close packed
(HCP) metal which deforms profusely by twinning in order to
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the development of {1011} — {1012} double twins, which promote
early shear failure by localized void formation and propagation
[9,10]. A significant amount of research has been carried out into
suppressing the development of contraction and double twins in
this class of metals by alloying and grain size reduction/refinement
[11-16].

In Mg alloys, the easiest slip mode is basal slip, although pris-
matic and pyramidal slip systems also operate [17—20]. The most
common active twin modes in Mg alloys are extension
{1012}(1011) and contraction {1011}(1012) modes, where the
former facilitates extension and the latter facilitates contraction
along the crystallographic c-axis [21—24]. The c/a ratio for Mg is
1.624 [25], which is less than the ideal \/8/3=1.633 for HCP crystal
structure. The tension twin mode is easy to activate by applied c-
axis tension deformation. Therefore, many experimental reports on
various magnesium alloys have shown that extension twins can
grow quickly and form thick lamellae, and even encompass the
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whole grain, and generally reach profuse levels without failing the
material [26,27]. In order to accommodate applied strain by acti-
vating this type of twinning, crystal structure reorients by 86°
around (1210) axis. Overall, these twins can improve ductility, but
they lower the strength, due to their relatively low resistance to
strain in the twinned orientation. On the other hand, contraction
twins cause crystal to reorient by 56° around (1210) axis. These
twins usually remain very thin and nucleate further a second
extension twin inside their domain that often expands very quickly,
overtaking most of the contraction twin lamella. As a result, the so-
called double twin is formed. It has been experimentally observed
that during lateral growth of secondary extension {1012} twins,
the final {1011} — {1012} double twin shape is largely enforced by
the shape of the primary contraction {1011} twin [28,29].

Experimental characterization of AZ31 samples deformed in
tension has been carried out by using transmission electron mi-
croscopy. This revealed that c-axis contraction was accommodated
predominantly by the formation of {1011} — {1012} double twins,
causing 37.5° (1210) and 30.1° (1210) twin/matrix reorientations
[29]. This work reported the presence of microcracks at the double-
twin intersections and locally along the double-twin/matrix in-
terfaces, suggesting that the double-twin formation in poly-
crystalline Mg alloys promote early shear failure due to localized
void formation. In the same work, visco-plastic self-consistent
(VPSC) crystal plasticity simulations were employed to aid the
interpretation of the obtained results, but the model was unable to
fully capture the observed double twinning sequences. Another
study [30] sought to explain the nucleation of the secondary twin at
the primary twin interface and its early stages of growth in the
primary twin domain. The study concluded that the experimentally
observed double twinning sequences [29] were more energetically
favorable than other sequences.

In many studies [10,21,29,31—34], the formation of double twins
has been correlated to void and crack formation and flow locali-
zation in the vicinity of its boundaries. This correlation has been
rationalized to arise due to substantial crystal reorientations asso-
ciated with the double-twinned region and underlining shifts in
active crystallographic slip modes. The twin introduces a new
crystallographic orientation into the grain and within this domain
favorable slip systems may differ from those in the parent. The
twinned region of a contraction twin is much more favorably ori-
ented for easy basal slip than the original parent crystal [30]. The
intense basal slip activity that results within the thin lamella region
of the double twin produces a localized shear that cannot be
accommodated across the primary twin interface and ultimately
leads to void formation. A recent investigation of twinning in a Mg-
4wt%Li alloy [35], indicated that the lack of plastic relaxation
mechanisms causes void formation, especially at the tips of double
twin/grain boundary junctions under a complex stress state.

Reference [36] presented an analysis of transgranular fracture in
hot rolled AZ61, which was subjected to a triaxial stress state at the
vicinity of a notch by combining EBSD and Schmid's law numerical
calculations. Examination of the misorientation boundaries be-
tween parent and twin regions revealed a strong influence of
{1011} — {1012} double twinning on the formation of trans-
granular micro-cracks. The study also revealed that this twinning
mode amplifies the shear stresses projected on the basal systems,
resulting in early shear localization and transgranular void/crack
initiation.

A number of characterization studies showed that the texture
changes caused by twinning are the main cause of the observed
macroscopic stress—strain anisotropy of HCP metals. In the pre-
dominantly slip dominated deformation curves, the hardening rate
decreases with applied strain, while in the twinning and slip
dominated deformation curves, there are inflection points in the

hardening rate, where the hardening rate increases with applied
strain [8,37,38]. However, the evolution of internal stresses, in a
localized stress field in subsets of grains is complex and more
challenging to measure. Crystallographic details of a twin can
locally affect slip activity and hence influence the macroscopic
stress-strain response. Moreover, the crystallographic boundaries
introduced by twins can pose obstacles to slip motion, resulting in
hardening effects. Finally, twin morphology can arise through the
local stress states that are generated within the twin and the sur-
rounding matrix. In addition to creating localized hardening, the
localized stress-strain fields produced by twins, also influence the
local slip activity within the parent grain and twin itself. They also
have an effect on formation of additional twins, and twin expansion
rates [39]. Knowledge of these local fields can help explain the
probability of other twin-governed phenomena, such as secondary
twinning and de-twinning [40—42].

The most common crystal plasticity models for metals that
deform by a combination of slip and twinning, utilize polycrystal
homogenizations, such as Taylor-type [43—46] or self-consistent
[47—50]. In these approaches, the grain neighborhood is homoge-
nized and hence the grain boundaries and grain neighbors are not
explicitly modeled. Such schemes assume homogeneous stress
states in the matrix and twin phases, which can be expected to be
very different from the actual highly localized stresses produced by
twin domains, as have been reported experimentally using tech-
niques such as far-field 3D-XRD [39,51-53] and differential-
aperture X-ray microscopy (DAXM) [54]. Localized stresses as a
result of twins can be calculated using spatiotemporal models such
as phenomenological models within FE [55,56], fast Fourier trans-
form crystal plasticity [57], and crystal plasticity finite element
(CPFE) [58—63]. These techniques can calculate the spatially
resolved mechanical fields within deformed microstructures, and
overcome the limitations of the polycrystal homogenization tech-
niques [64].

In this work, a recently developed crystal plasticity model that
explicitly models a twin lamella in 3D in the FE framework [1] is
extended to model secondary twin lamellae. The underlying crystal
plasticity constitutive model considers both anisotropic elastic and
plastic behavior of the material. The implemented hardening law is
a function of strain, temperature and strain rate [65], and it is
governed by the thermally activated dislocation density evolution
on three considered slip modes: basal a, prismatic a and pyramidal
c+ a. In order to form a {1011} — {1012} explicit double twin
lamella in a parent grain under a plastic deformation condition,
either simple compression or tension is applied to form a primary
contraction twin lamella, which after additional straining forms a
secondary extension twin lamella within its region. The work be-
gins by examining whether the present full-field approach can
predict the most commonly observed double twinning sequence,
because such predictions are essential for predicting the local
mechanical fields. Unlike in a Schmid analysis, the present
approach was found successful in predicting the most commonly
observed double twinning sequence in both tension and
compression. Next, the slip analysis within these regions of interest
is performed to determine what slip modes are prevalent. While
the formation of an extension twin within an existing twin lamellae
is the easiest, basal slip was found to operate more in the remaining
portion of the contraction lamellae than within the secondary
extension twin. Finally, the influence of double twinning on the
localized stress-strain fields across the granular structure in the
vicinity of double twin formation is investigated. The simulations
reveal a gradient in the field across the twin-parent interface sug-
gesting that contraction twin-parent boundaries are locations in
the microstructure, where voids can nucleate.
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2. Modeling framework

In this section, the main relationships and stages involved in a
multi-level modeling framework are presented. Fig. 1 displays the
modeling framework. Going from left to the right side (frames a-c),
the material length magnifies/increases and each frame represents
a specific instance at which the material response is being evalu-
ated. At the coarsest level (frame a), the material response of a
polycrystal, which is in the form of a granular microstructural
model is considered through the use of the finite element (FE)
homogenization method. As a full-field model, this method fulfills
both stress equilibrium and strain compatibility conditions making
it one of the best modeling tools for capturing realistic interactions
between the constituent grains. Each grain in the polycrystal is
represented by an element set, which discretizes a given grain into
finite elements (frame b). At this length scale, at each FE integration
point, a material constitutive response is estimated using crystal
plasticity theory. It assumes that the strain is being accommodated
in the material by simultaneous action of crystallographic slip and
deformation twinning. The latter is accomplished using the pseudo
slip model [66—68], which estimates the amount of accommodated
shear strain on a particular twin variant plane. Once the prescribed
critical twin volume fraction value of a particular twin system is
achieved, the twin lamella(e) within the grain are explicitly
modeled, by reorienting the lattice and enforcing the characteristic
twin shear. More details about this stage in the modeling procedure
are given and discussed in the next section.

In order to determine the single crystal response at each inte-
gration point a User MATerial (UMAT) subroutine based on crystal
plasticity constitutive formulation was used in Abaqus Standard.
The framework facilitates various loading conditions from low to
high level of complexity that can be applied in the form of suitable
boundary conditions. This applied load is divided into time/strain
increments, where for each increment a global stress equilibrium
solution is found using a numerically iterative procedure of the
finite element method. This is achieved by solving Eq. (1), which
represents the nonlinear FE governing equation in its linearized
form:

Frame a

I Finite element homogenization,

Frame b
L

FE integration point

(1)

( / BTJBdV) AU=R- /BTcdv.
\'4 \%

In this relation, the listed quantities are respectively B - finite
element strain-displacement matrix, J] - material Jacobian matrix,
AU - displacement increment solution, R - applied force vector and
o - Cauchy stress tensor [69—71].

Next, the key equations pertaining to the crystal plasticity
constitutive law are briefly described in order to relate the material
stress to material distortion (stretch plus rotation) at each inte-
gration point within each finite element in the model [72—74]. A
standard continuum mechanics notation is used, where tensors are
denoted using roman boldface symbols, while scalars are italicized
and not boldfaced. To denote a time derivative we place a dot over
particular quantity.

2.1. Kinematics of slip and twinning within CPFE

The total velocity gradient tensor, L, can be additively decom-
posed as following:
L=L°+1LP, (2)
where L and L? represent elastic and plastic velocity gradients,
respectively. The plastic part of the velocity gradient contains the
contributions from both slip and twinning via

| L L S (3)

The corresponding contributions to the velocity gradients, due
to slip and twinning, are further expressed as:

Nsl NSI Nw
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Fig. 1. Schematic of the multi-level modeling framework.
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where ¥ stands for the shearing rate on the particular slip system
o, m§ and mff represent Schmid tensors associated with slip system
« and twin system g, respectively, S° denotes the value of charac-
teristic twin shear accompanied to twinning. Finally, NS! and N*W
represent the total number of available slip and twin systems,
respectively. The Schmid tensors represent the unit slip or twin
system tensor, defined as the dyadic product (®) between the unit
Burgers direction (b,) and unit plane normal (n,) vectors of slip
system « or twin system f, respectively, in the undeformed
configuration indicated by subscript ‘o

In order to determine the rate of change of the twin volume

fraction per each particular twin system (fﬁ), the pseudo-slip
model takes under consideration only the shear strain accommo-
dated by twinning and not the morphological and crystallographic
reorientation of a twin domain. The latter two are explicitly

modeled, as described shortly. The relationship between the fﬁ and

the shear rate on the twin system (yﬁ ) is inversely proportional to
the characteristic shear strain [66,67]:

(5)

Due to integration, in a given strain increment, previous equa-
tion becomes:

app — A7 6
o = (6)

Integrating over n strain increments, the accumulated twin
volume fraction of a particular twin system, 8, can reach unity (i.e.
SHAfS = 1), which means that the particular twin system
accommodated the maximum possible amount of shear strain (i.e.

6 — S™"Ay8). In this case, the whole volume of the given parent
grain completely reoriented into the twin variant 8. Therefore,
physically it is not possible to have any other twin variant active in
this particular grain. In contrast, if multiple twin variants activate in
a given grain then none of them can rich a volume fraction of unity
but only sum of their volumes can rich unity.

In our approach, we use a finite deformation formulation, in
which an assumption is made that the deformation gradient (F) can
be multiplicatively decomposed in its elastic (F¢) and plastic (F”)
contributions as:

F = FP, (7)

where elastic component contains contributions to the deforma-
tion gradient due to both elastic stretching and lattice rotation,
while the plastic component relates contributions to deformation
gradients due to plastic deformation. The constitutive relationship
between F¢ and stress in the crystal is made as:

T® = CE%, T° = F° ' {(detF®)cF¢ ', E° = % {FQTF‘? - 1}, (8)
where T¢ is the second Piola-Kirchhoff stress tensor and E¢ is the
Lagrangian finite strain tensor, both representing a pair of work
conjugate stress and strain measures, C is the fourth-order elas-
ticity tensor and o is the Cauchy stress in the crystal. To compute
stress, we need to evaluate the evolution of F? which is ultimately
determined by crystallographic slip and twinning (microshear
rates) and it can be expressed in a rate form using the following
flow rule relationship:

F = PP (9)
If we integrate Eq. (9) from ¢t to 7 = t + 4t it becomes:
FP (1) = exp(LPAL)FP (t). (10)

Furthermore, the exponential can be conveniently approxi-
mated and further expanded using Eq. (3) as:

FP(r) = {1+ AP} () = {1+ 4t (L + L)} (o), (11)

where I is the identity matrix.
Moreover, we can rewrite previous equation as:

P (r)=F" (t){l—At(LS’wLLtW)}‘ (12)
Next, we write L™ as a summation of two parts:

LY — LwPts  ptwots. (13)

where L™ P% denotes the velocity gradient of the most active twin

variant, which we will be referencing further in the paper as the
predominant twin system (pts) and L™ ° which denotes the ve-
locity gradient from all other twin systems contributing to
plasticity.

2.2. Kinetics of the slip and twinning mechanism

In order to accurately estimate the shear strain rates, y* and yﬁ ,
that can be accommodated on each slip system « and twinning
system f, respectively, we use a well establish power-law rela-
tionship to compare the resolved shear stress value (7% = T¢-m§ for
slip and 7% =T®. m for twinning) on the system to thelr corre-
sponding critical re51stance value 7¢ for slip systems and -rC for twin
systems [67,75,76]:

7% ‘Tﬂ‘ szgn(rﬁ) if*>0
“770( )szgn(T“),W: To 70
C
0 if *<0
(14)

where 7, is a reference slip rate (arbitrarily taken here as 0.001 s~
and m denotes the strain rate sensitivity factor (taken here to be
0.02 for both slip and twinning systems).

The hardening law used to govern evolution of 7¢ and T? is
presented in Ref. [77], and it is based on the evolution of dislocation
density (DD). In the model, dislocations are stored according to a
thermally activated rate law in which the resistances 7% and 7¢ are a
function of strain, temperature, and strain rate [65,78]. These re-
lationships are provided in appendix A for completeness of the
present paper. The material parameters for AZ31 utilized in the
present model are taken from Ref. [77].

3. Explicit incorporation of twin lamella in CPFE
3.1. Finite element model of granular microstructure

In order to create a polycrystal (e.g. Fig. 1a) represented by a
cluster of equiaxed grains, a procedure for generation of synthetic
granular microstructure is necessary. In this work, the 3D synthetic
voxelized microstructure and surface meshes for the grain
boundaries were generated in the publicly available software
DREAM.3D (Digital Representation Environment for the Analysis of
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Materials in 3D) [79,80]. The software generates 3D voxel-based
granular microstructure and surface meshes for each individual
grain based on a specified grain size and grain shape distributions.
It is also important to mention that DREAM.3D performs a Lap-
lacian based smoothing filter on the voxelized granular micro-
structure to suppress and remove jagged boundaries between
grains which again contributes to better grain representation. A
surface mesh consists of triangular elements and represents an
important link between a voxel-based model on one side and a
volumetric (in our case tetrahedral) 3D mesh on the other side.
Hence, starting from individual grain surface meshes, obtained
from DREAM.3D, we developed a meshing procedure to acquire
their 3D solid meshes securing mesh conformance between the
grain boundaries. This 3D meshing is performed within Patran and
the reader can find a more elaborate step-by-step description of it
in Refs. [81,82]. As a final result of this meshing procedure, we
obtain a FE model of the granular microstructure used in this study.
All relevant details concerning the model are provided in the next
section (Fig. 3).

3.2. Procedure of discrete double twin lamella modeling

In this section, the main steps involved in the procedure for
explicit incorporation of twin lamella in FE framework are sum-
marized. A reader can find a more in depth explanation of it in
Ref. [1], where this procedure was developed for the first time. The
procedure was later used for explicit formation and thickening of
an extension twin lamellae in AZ31 and, in particular, for revealing
the effect of dislocation density-twin interactions on twin growth
[83]. The purpose of this study is to explicitly model and investigate
a double twin lamella formation in AZ31. The double twin is created
within a parent grain by the formation of a primary contraction
twin lamella first and then formation of a secondary extension twin
lamella within the primary twinned region. This double twin for-
mation is achieved by applying external deformation on the gran-
ular microstructure in the form of consecutive deformation steps.
The deformation had to be interrupted at specific strain levels in
order to alter the FE mesh for the twin formation. Fig. 2 facilitates
an explanation of the procedure. It shows a brief summary of all
intermediate steps necessary to form a twin lamella within the

e 4

»,

.
N)

«a-r

chosen parent grain.

The integrated modeling tool set consists of a master Matlab
script that handles post-processing of the deformed granular mesh
before and after twin lamella formation and can generate the
appropriate Patran and Python scripts necessary for performing
geometric manipulations and mesh generations. To make this
whole procedure as automated as possible, we highly exploited the
scripting capabilities of the above mentioned software packages
(Matlab, Patran, Python). We execute Patran scripts within Patran,
the FE preprocessor from MSC Software, to carry out surface and 3D
meshing of individual granular structures once the twin lamella is
instantiated. On the other hand, Python scripts are used within
Abaqus to obtain individual surface grain meshes from the
deformed solid granular model (after deformation step is applied)
and in the process of mesh cleanup, where bad aspect ratio trian-
gular elements are collapsed before solid meshing of grains in 3D.

After a deformation step (e.g. in simple compression) is
accomplished to a prescribed strain level (Fig. 2a), the procedure
starts by obtaining the deformed surface meshes of all individual
grains (Fig. 2b). Next, we want to introduce a twin lamella into the
parent grain. At this step, the predominant twin system (pts) and
exact location of the twin lamella in the parent grain are deter-
mined, which will be described later. Hence, based on the pre-
dominant twin system we can uniquely define in 3D two twin
planes with specified mutual distance between them (Fig. 2c). This
distance should account for the incremental increase in twin vol-
ume that accumulated in the previously performed deformation
step. The Matlab script identifies all intersection points between
these two twin cutting planes and the 3D surface mesh of the
parent grain (Fig. 2d). Next, the Patran script uses the coordinates of
these points to reconstruct the closed loops that define each of the
two intersected planes and to mesh them with triangular elements
of similar size to the ones used to build the surface mesh of the
intersected (parent) grain. After meshing is done, the intersection
plane surface meshes are exported, which are then used to
construct new parent and twin grain surface meshes (Fig. 2e).
Finally, a Python script performs a mesh cleanup by collapsing any
element with aspect ratio greater than 4 in the granular micro-
structure. This automated procedure is applied after completion of
each deformation step every time when a new twin lamella has to

Fig. 2. Procedure for explicit incorporation of twinning in CPFE: (a) An example deformation step of simple compression; (b) Exploded surface meshes of individual grains upon
deformation; (c) Intersection between the two twin cutting planes and the 3D surface mesh of the parent grain developing the twin; (d) Two contours composed of intersection
points connected by a line used to obtain two meshed twin intersected planes; (e) Resulting twin-parent grain mesh.
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be formed or thickened for a prescribed volume increment. As a
final outcome, at the end of this procedure we get a twin lamella of
a desired volume instantiated into a parent grain with conformal
grain boundaries within the granular model.

While performing the above-mentioned procedure, we mini-
mize as much as possible the changes made to the granular model
mesh away from the formed twin lamella region. After meshing the
interior of the grains and completing the procedure, in order to
transfer the deformation state of all grains in the model from
previous step and to use it in the subsequent deformation step, we
map the following state variables from the old mesh (before twin
lamella instantiation) to the new mesh (after twin lamella instan-
tiation): FP — plastic deformation gradient, dislocation densities
and crystal orientations (keeping any developed intra-grain mis-
orientations due to the previous deformation). We map the values
of the state variables between the finite elements in the “old” mesh
(before applying any alterations to the mesh) and the “new” mesh
(after instantiating the twin) based on mutual proximity of their
centroids. This element mapping/matching is performed for each
grain within the granular model.

From the experimental records it can be inferred that the twin
nucleation sites can be usually found at grain boundaries at specific
points of highest stress concentration. Hence, the initial location of
the primary contraction twin lamella in both cases of simple
compression and tension is determined by applying this criterion
and examining the von Mises stress contours over the entire vol-
ume of the model.

3.3. Accommodation of the characteristic twin shear by twin
lamella

Thus far, we described how the morphological and crystallo-
graphic reorientation of the twin lamella is handled in our explicit
twin modeling approach. Based on a pseudo-slip model and the
total accumulated twinning activity a discrete twin lamella of
appropriate volume is explicitly formed. However, in order to fully
model all aspects of twinning necessary to accurately predict the
mechanical fields, we also have to account for the accommodation
of the characteristic twinning shear within the reoriented twinned
volume. As a result, the accommodated plastic strain by the twin
corresponds to its size. Here, we describe the necessary steps that
have to be performed in between deformation steps to satisfy the
kinematics and kinetics pertaining to the twin shear strain, which
influences the mechanical behavior of the parent and twin grain
before and after the twin lamella is formed.

When the twin lamella is explicitly introduced, regardless of
whether it is a primary or secondary lamella, deformation history is
changed locally. This is achieved by modifying plastic deformation
gradient (FP) and enforcing the appropriate value at each integra-
tion point within each finite element belonging to these two re-
gions. In the twinned region, we enforce the values of F? to be:

P (r) = {1 smpsmi Pe ], (15)
while in the parent grain this value is altered according to:
P (1) = B (0) {1 fopisstpsmghoe (16)

Equations (15) and (16) are special cases of Eq. (12), with Eq. (15)
restricted to the twinned region of the ‘pts’ twin variant and Eq.
(16) restricted to the parent grain containing the twin variant. The
accumulated twin volume fraction is denoted with f'W-Ps, where
the superscript denotes the variant ( = tw,pts that has been
selected as previously mentioned predominant twin variant

system. These two equations (Eq. (15) and (16)) ensure the transfer
of strain between the parent and twin grain. While the twin
accommodated the plastic strain solely corresponding to its size,
any strain accommodated by the slip is transformed to the parent.
To be more specific, Eq. (15) assigns the appropriate amount of
strain that has been accommodated by the predominant twin
variant (pts) to the twin volume, while Eq. (16) ensures that this
same amount of strain is deleted from the parent grain. In order to
enforce these two equations and retain the numerical stability at
the same time, the value of F? is multiplicatively decomposed and
then updated during much smaller strain (or time) increments at
the beginning of each subsequent deformation step. Once the
characteristic twin shear transfer is successfully accomplished be-
tween the parent and the twin grain, simple compression (or ten-
sion) boundary conditions are enforced in order to perform next
deformation step to further strain the grain model.

4. Double twinning in AZ31
4.1. Finite element model set up

Fig. 3 shows the final FE mesh of the granular microstructure
used in this work. Also shown are the two cut plane views with
consistent grain coloring map, where the model is cut in half to
expose the interior of the granular microstructure (two right-most
images in Fig. 3).

The created FE model consists of 29 grains in total and
approximately 570,000 tetrahedral finite elements (type C3D4 -
continuum 3D four nodal). Very fine FE resolution/density is
applied, where each grain is discretized with roughly 19,500 finite
elements in order to accurately capture inhomogeneity as best as
possible in the deformation fields. All grains in the polycrystal can
deform by twinning using the pseudo-slip model, but for the sake
of simplicity, we perform explicit modeling of twin lamella for the
central grain only. We select the grain positioned in the center of
the model which is surrounded by the highest number of grains
(colored in green in the two right-most images in Fig. 3) to form a
{1011} — {1012} double twin. We consider two different defor-
mation modes/cases. The double twin is formed within the central
(parent) grain by deforming the granular model, firstly by applying
simple compression along the z-axis and secondly by applying
simple tension along the y-axis. We arbitrarily allocate crystal
orientations in the model for all grains except for the central one,
where specific crystal orientation (0°,350°,0"), expressed in Bunge-
Euler convention, has been assigned for both compression and
tension case. This starting crystal orientation is favorable for
{1011} contraction twinning for the corresponding deformation
cases. Finite elements within any particular grain (element set)
share the same crystal orientation. Hence, each grain possesses
initial intragranular misorientation of zero degrees. It should be
noted that in the tension case, in order to favor contraction twin-
ning over prismatic slip, we lowered the temperature. Hence,
deformation in simple tension was simulated at a temperature of
70K.

The simple compression boundary conditions are prescribed by
specifying a displacement of the top surface in the negative z-di-
rection, while enabling the lateral sides to be traction-free and
constraining the bottom surface in z-direction. Following the same
pattern, simple tension boundary conditions were prescribed by
displacing the right surface of the model along the positive y-di-
rection. In both deformation cases (compression and tension) a
double twin was formed in the central grain after applying three
consecutive deformation steps (stages of remeshing). In the first
stage, the grain model was pre-strained in simple compression to a
true strain of 0.073, which was necessary for the parent grain to
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Fig. 3. FE model of explicit grain structure composed of 29 grains and approximately 570,000 C3D4 finite elements. The model is sectioned in two directions to show the interior of
the granular model, where the initial crystal orientation of the central grain (colored in green) is chosen to be favorable for {1011}1012 contraction twinning. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

generate a primary ((0111)[0112]) contraction twin lamella of
sufficient volume. This lamella is afterwards explicitly formed. In
the subsequent deformation stage, the grain model was deformed
for additional true strain of 0.056, in order to nucleate a secondary
((0112)[0111]) extension twin within the existing primary twin
lamella domain. In the third and final deformation stage, the grain
model, which now contains the double twin, was deformed for a
small additional true strain of 0.015 in order to better reach the
equilibrium state after forming the secondary twin and establish
stress-strain fields across the volume. These strain increments
correspond to the compression case, while the strains at each stage
for the simple tension case are 0.118, 0.061 and 0.015 respectively.
In tension, the same double twin variant sequence (0111)[0112] —
(0112)[0111] is predicted as the most favorable. The volume frac-
tions of the primary contraction twin lamellae are 1.5% (compres-
sion case) and 1.3% (tension case) of the parent grain volume. The
percent values represent the volume of the twin lamellae with
respect to its corresponding parent grain. In the case of double
twin, the parent grain of the secondary twin is the primary twinned
region/grain. Furthermore, volume fractions of the secondary
extension twin lamellae are 49% (compression case) and 50%
(tension case) of the primary twin volume. Moreover, the primary
twin lamella was formed when the value of accumulated twin
volume fraction of the predominant twin system reached a
threshold value of 1.5% and 1.3% of the central grain volume in the
case of simple compression and tension, respectively. Likewise, the
second deformation stage generates the secondary predominant
twin system of a given volume relative to the volume of the primary
twin. After each interruption and each deformation step a transfer
of characteristic twin shear between the parent and twin grain is
enforced as explained in section 3.3. Next, we explain how these
specific primary and secondary twin variants in the central grain
were determined along with their corresponding volume fractions.

4.2. Twin variant selection and instantiation

In order to determine which contraction twin system is pre-
dominant in the parent grain, we look at the distributions of
normalized resolved shear stresses (RSSTW) of all 6 available
{1011}(1012) contraction twin variants after applying the first
deformation stage (the pre-strain of 0.073 in simple compression
and 0.118 in simple tension). This quantity represents the shear
stress resolved on the twin plane and in the twinning direction
(RSSTW) that is normalized by its critical value, as entering Eq. (14).
Fig. 4 displays the interior of the parent grain (y-z cut) and shows
these distributions found across it. Furthermore, it represents a
driving force for twin to nucleate, suggesting the spatial region in

the parent grain where the twin could initially form. Percent values
found below each image show the accumulated twin volume
fraction values for the corresponding contraction twin variant. CPFE
results show that the (0111)[0112] contraction twin is the pre-
dominant twin system in the parent grain.

When forming primary contraction twin lamella, a very
important question arises; what is the appropriate place where it
would form? Twins occur due to highly localized material behavior,
not influenced by the average stress or strain properties. The twin
system resolved shear stress is the necessary condition, otherwise
the twin variant does not activate. However, many locations over
the grain satisfy this criterion as the accumulated twin volume
fraction at the strain level of twin formation is finite. Points of the
highest stress concentrations in the grain tend to act as favorable
twin nucleation sites. These point locations are often, but not
necessarily, found at the grain boundaries [84—88]. In our approach
as a measure of determining stress concentration points in the
model we use Von Mises stress values (Fig. 5b and c, b’, and ¢’).
Normalization is performed over the entire volume of the poly-
crystal with the average value of applied stress. We investigate
contours of the normalized RSSTW of the (0111)[0112] contraction
twin variant, since this variant, as previously defined, is predomi-
nant. Fig. 5 contains plots that were used to identify the exact
location where the primary contraction twin lamella (1.5% and 1.3%
of the parent volume fraction in compression and tension respec-
tively) was formed. The lower right part of the parent grain was
selected as the most favorable location for twin to nucleate, since it
is the region of the highest stress concentration and also has the
necessary driving force (resolved shear stress) to from the twin
(Fig. 5a, b, @', and b’).

Furthermore, after performing the second stage of deformation,
we found that roughly 50% of the twin volume fraction was accu-
mulated (according to the pseudo-slip model for twinning) on the
predominant (0112)[0111] extension twin variant plane within the
previously instantiated primary twin volume. Fig. 6 displays con-
tours of RSSTW within the primary twin lamella for all 6 available
{1012}(1011) extension twin systems. The contours are shown on
both sides of the primary contraction twin volume. It shows a
tendency of forming an (0112)[0111] extension twin lamella inside
the primary twin region. Furthermore, explanation of the double
twin classification into different types is provided in the following
section.

Finally, Fig. 7 shows views of the granular microstructure and
the central grain after each deformation step necessary to form a
double twin in simple compression and tension. Once the 50%
secondary extension twin lamella was instantiated, the volume of
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Fig. 4. Distributions of normalized resolved shear stresses along the twin plane and in the twin direction for all six contraction twin variants after a true pre-strain of: (a) 0.073 in
simple compression and (a’) 0.118 in simple tension, which was necessary to nucleate a primary twin lamella. The normalization was performed with the corresponding critical
value for onset of twinning. Percentage values indicated at the bottom represent accumulated twin volume fractions per variant at the given strain levels. The sections are made at
x = 0.5, which cuts the parent grain approximately in half.
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Fig. 5. Distribution of normalized resolved shear stresses (RSSTW) for (0111)[0112] predominant contraction twin variant after a pre-strain of (a) 0.073 in simple compression and
(a’) 0.118 in simple tension. Distributions of von Mises stress normalized by its average value over the granular microstructure: (b) right before and (c) after the formation of 1.5%
primary contraction twin lamella in simple compression and (b’) right before and (c’) after the formation of 1.3% primary contraction twin lamella in simple tension.
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Fig. 6. Distributions of normalized resolved shear stresses within the twin plane (on both sides) and in the twin direction for all six extension variants after the second deformation
step to an additional true strain of: (a) 0.056 in simple compression and (a’) 0.061 in simple tension, which was imposed to nucleate a secondary twin lamella. The normalization
was done with a corresponding critical value of twin resistance values for onset of twinning. Percentage values indicated at the bottom represent accumulated twin volume
fractions for each extension twin system at the given strain level.
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Fig. 7. Double twin formation during simple compression (top row) and simple tension (bottom row) with respect to the surrounding neighboring grains in the 3D granular
microstructure. (a and a’) Initial microstructure, where the central grain colored in green, is favorably oriented for {1011}(1012) contraction twinning. (b and b’) Granular
microstructure after the formation of the (0111)[0112] primary contraction twin in the parent grain. (c and ¢’) Granular microstructure upon double twin formation, where the
secondary extension twin lamella (0112)[0111] is colored in light blue. The unprimed and primed labels are for simple compression and simple tension, respectivelly. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

the initial primary contraction twin lamella was not changed. This
is justified, because in the lateral growth of secondary {1012}
twins, the final shape of a double twin is mainly enforced by the
shape of primary {1011} twin [28,29]. However, while the size and
the shape of the secondary twin is pre-determined by the size and
shape of the primary contraction twin, the primary twin is expe-
riencing a slight distortion due to the secondary twin reorientation
and the evolution of local mechanical fields towards a new
equilibrium.

4.3. CPFE vs. schmid analysis of primary and secondary twin
variants

In general, the material response is highly affected by the rapid
reorientation of crystallographic texture due to primary and sec-
ondary twinning [36,89,90]. Therefore, an accurate prediction of
the most dominant twin variants that occur in the microstructure is
of high importance. The most commonly adopted method that has
been used to investigate the mechanism of primary and secondary
twin variant selection under different loading conditions is Schmid
factor analysis [91,92]. Recent statistically significant experimental
findings suggest that the behavior of AZ31 Mg alloy deviates from
Schmid-like behavior for both primary and secondary twinning
[28,53]. This type of behavior usually represents an implication of a
locally stress-driven event, when the local stress state in the grain is
significantly different from the macroscopically imposed stress
state.

A brief background about the two stage twin variant sequence
that occurs during the process of double twinning is provided. We
focus on the particular double twin variant sequence observed in
AZ31 during both simple compression and tension using our 3D
CPFE modeling approach which explicitly models double twin
lamella. Also provided are the misorientation relations between the
original parent (matrix) and doubly twinned volumes.

In terms of twinning in AZ31, we have six contraction and six
extension twin variants. In order to form a double twin, each of the
six contraction twin variants (cause primary twin reorientation of
~56° around a (1210) axis) can form/nucleate one of the six avail-
able extension twin variants (secondary twin reorientation of ~86°
around a (1210) axis). Hence, in the most general case double twin
formation covers 36 different primary-secondary pairs of twin
variants [93]. However, all of them can be classified into only four
groups (types) depending on the overall reorientation that they
cause with respect to the parent/matrix crystal orientation. Based
on our CPFE predictions in both simple compression and tension
cases the same double twin variant sequence is predicted. As
already stated, the primary predominant contraction twin variant is
(0111)[0112], while the secondary predominant extension twin
variant is (0112)[0111]. More detailed visual representation of the
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Primary contraction twin variants (A-F)
reoriented from the parent

wE A Secondary extension twin variants (f7-f6)
reoriented from F
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Fig. 8. Stereographic projection of the basal {0001} pole of the initial parent orien-
tation, 6 contraction (primary) and 6 extension (secondary) twin variants. Red colored
markers are used to denote the specific twin variants (the predominant twin systems),
which are modeled using CPFE as a primary and a secondary twin variant. Secondary
extension twin variants (f1-f6) reorient from the primary contraction twin variant
denoted with red star, F. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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Table 1
Six {1011} — {1012} double twin variant pairs classified into 4 types. Misorientation angles about the common zone axis between the basal planes of the matrix/parent define
the 4 different double twin types.

Double twin variants f1 (type 1)

37.5°

f4 (type 2)
30.1°

f2 and f3 (type 3)
66.5°

f5 and f6 (type 4)
69.9°

Misorientation

Table 2

Calculated Schmid factor values for basal slip, contraction, and extension twin variants within parent, primary, and secondary twinned regions under simple compression and
simple tension. The most heavily stressed twin systems based on the Schmid analysis are tagged with red stars, while those based on the CPFE simulations are tagged with blue
stars. The relevant labels of twin variants in the most left column are consistent with those in Table 1 and Fig. 8.

Schmid factor values Compression tension
parent primary twin secondary twin parent primary twin secondary twin
3 basal systems (0001)[2110] 0 0 0 0 0 0
(0001)[1210] —0.148 0.32 0.279 0.148 -0.32 -0.279
(0001)[1120] 0.148 -0.32 -0.279 —0.148 0.32 0.279
6 contraction twin variants A (1101)[1102] 0.447 -0.122 0.265 0.136 -0.434 —0.047
B (1011)[1012] 0.352 0.083 0.444 0.041 —0.228 0.132
C (0111)[0112) 0.295 —0.075 0.497 0.295 —-0.075 0.497
D (1101)[1102) 0.352 0.083 0.444 0.041 -0.228 0.132
E (1011)[1012] 0.447 -0.122 0.265 0.136 -0434 —0.047
F (0111)[0112) 0.486** —0.486 0.139 0.486** —0.486 0.139
6 extension twin variants f1 (0112)[0111] —0.458 0.312 —0.403 —0.458 0.312 —0.403
f2 1012) [T011] -0.486 0.035 ~0415 ~0.112 0.41* 0041
f3 (1102)[1101] —-0.486 0.035 —-0415 -0.112 041" —0.041
f4 (0112)[0111] —0.480 0.361** —0.361 -0.48 0.361* —0.361
f5 (1012)[1011] -0475 0.011 —0.436 -0.1 0.385 —0.062
f5 (1102)[1101] -0.475 0.011 -0.436 -0.1 0.385 —0.062

above mentioned twin variants is shown in Fig. 8 where red color
markers were used to tag these twin variants. Furthermore, Table 1
classifies twin variants into 4 different types, also containing the
corresponding misorientation angles from the parent orientation
basal plane. According to the table, the selected double twin for the
study is classified as type 2. The types 1 and 2 have been observed

(2) CE— (b

to frequently form in compression along an axis close to the c-axis
[28].

Furthermore, we provide Schmid factor analysis for basal slip
systems, contraction and extension twin variant systems under
simple compression and tension. We consider crystal orientations
in the parent region, as well as in the double twin region. The

VMises

Fig. 9. Distributions of von Mises stress at different stages of double twinning: (a and a’) right before (0111)[0112] primary contraction twin formation (end of the first deformation
step), (b and b’) right before (0112)[0111] secondary extension twin formation (end of the second deformation step), and (c and c’) upon double twinning and a small amount of
additional deformation of 0.015 true strain (end of the third deformation step). The unprimed and primed labels are for simple compression and simple tension cases, respectivelly.
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results of the analysis are presented in Table 2. Schmid factor of a
specific crystallographic system (slip or twin) can be computed as
the ratio between the shear stress that can be resolved on the
particular slip or twin plane and the macroscopic stress state that is
imposed to evaluate the (7) in the crystal or more conveniently
expressed using the angles:

M = 7/d = cos A-CoS ¢. 17)

The angles A and ¢ represent angles between the loading axis
and the crystallographic plane normal and direction vectors,
respectively, for each specific crystallographic system. Red stars are
put in the table next to the most stressed twin variant systems
determined by the analysis. Also, we assume that the macroscopic
stress (o) of unity (1 MPa) was applied for both simple compression
and tension cases, to estimate resolved shear stress for each crystal
orientation. Due to the directionality of the twinning, twin variants
can be activated only if the resolved shear stress (or Schmid factor)
is positive.

In compression, results of the Schmid analysis match well with
the results obtained from our 3D CPFE modeling approach. In fact,
the most heavily stressed twin systems (highest Schmid factor-
marked with a red star in Table 2) are found to be the most
dominant ones in the CPFE simulations (marked with a blue star in
Table 2). However, in the tension case, twin variant selection
slightly deviates from the Schmid-like behavior, because the

-

secondary predominant extension twin variant system does not
have the highest Schmid factor value. The Schmid analysis predicts
the rarely observed type 3 sequence. An interesting observation
which we find important to note here is that in simple tension all 6
available extension twin variants possess relatively high and
similar Schmid factor values.

5. Stress fields as predicted by CPFE

Fig. 9 shows the evolution of von Mises stress fields across the
granular microstructure as the double twin forms during simple
compression and tension deformation steps. The material param-
eters used in the dislocation density hardening law were calibrated
for AZ31 to capture its material response across a large range of
different strain rates and temperatures [77]. Hence, the stress
magnitude shown are realistic and are not normalized. As more
strain is applied, double twin forms in the parent grain interior,
which is followed by the increase in stress magnitude in the vicinity
of the formed double twin. It is noticeable that this event affects the
stress distribution in some of the neighboring grains as well. These
specific details are governed by the particular grain orientations,
morphology of the grain boundary surfaces, and history of loading.

Furthermore, we investigate how plastic strain is accommo-
dated across the granular microstructure as external deformation is
applied. Fig. 10 shows strain concentration distributions (PEEQ -

OO0 EIINNRIWN O
oA NOWRLNG
SVPBNONPEWWNRO

1 — Primary contraction twin
2 — Secondary extension twin

OLo0oRREEREINNN (O
ONBRNRONBOEONU
SRNWRWRNANO®DOO

Fig. 10. Distributions of normalized value of equivalent plastic strain (PEEQ) (a) right before and (b) after secondary twin formation in simple compression and (a’) right before and
(b') after secondary twin formation in simple tension. Note that in (b) and (b’) a small amount of additional deformation of 0.015 true strain was applied upon double twinning. The
inserts show the contours across primary contraction and secondary extension portions of the double twin. Dashed lines superimposed over the inserts show the location of the
planes used to cut the upper granular microstructures. The normalization is performed by the applied equivalent plastic strain value.
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equivalent plastic strain is normalized with the applied strain) after
primary and secondary twin lamellae have been introduced. The
plots shown correspond to the deformation states after the second
and third deformation stages in simple compression and tension.
An interesting conclusion can be drawn that most of the strain is
contained in the primary contraction twin lamella region. This state
remains even after secondary twin lamella is formed. Fig. 11 can
explain this kind of behavior by providing the distributions of the
accumulated shear strains for basal and prismatic slip modes for
the corresponding deformation steps. These values are plotted at
the end of each performed deformation stage ensuring the same
strain levels. These slip activity maps show the amount of basal and
prismatic shear strains accumulated in each of the three defor-
mation steps that were carried out for the corresponding externally

applied strain increments. Hence, for each deformation step these
values start from zero and accumulate as the external deformation
is applied. The double twin region is favorable for basal slip due to
the twin induced crystal reorientation. Moreover, the basal slip
mode has the highest activity within the primary contraction twin
lamella. As a result, the strain energy is predicted to be lower upon
twin instantiation.

In order to better understand the inhomogeneity introduced by
formation of double twin, we examine distributions of traction
forces at the double twin-parent boundary. This boundary is
initially introduced by the formation of the primary contraction
twin lamella and, subsequently modified by secondary twinning to
consist of two crystallographically different parts, where parent
and either contraction or extension twin meet. Fig. 12 shows the
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Fig. 11. Distributions of the accumulated shear strains across the whole grain model for basal and prismatic slip modes: (a and a’) right before primary contraction twin formation
(end of the first deformation step), (b and b’) right before secondary extension twin formation (end of the second deformation step), and (c and ¢’) upon double twinning and a small
amount of additional deformation of 0.015 true strain (end of the third deformation step). The unprimed and primed labels correspond to simple compression and simple tension
cases, respectivelly. Note that the values are initialized before a given deformation step and refect those accumulated during the given deformation step. The model was
consecutively deformed in true strain increments of 0.073, 0.056 and 0.015 for the compression case, while those for the tension case are 0.118, 0.061 and 0.015. Note that the model
was much less deformed in the third deformation stage relative to the first two stages. As a result, the basal and prismatic shear strains have lower values in the third stage.
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Fig. 12. Distributions of magnitude of traction force across the twin-parent boundary: (a and a’) right before secondary extension twin formation (end of the second deformation
step) and (b and b’) upon double twinning and a small amount of additional deformation of 0.015 true strain (end of the third deformation step). Both sides of the twin-parent
boundaries are shown. The unprimed and primed labels are for simple compression and simple tension, respectivelly.

distributions of traction force magnitude that are spatially resolved
across twin-matrix boundaries at the end of the second and the
third deformation steps in simple compression and tension. Both
sides of the double twin-parent boundary are shown (i.e. from
twin's and parent's side). The field on the parent side is calculated
from stress in the finite element layer of the parent adjacent to the
interface (oP¥®"), while the field on the twin size is calculated from
stress in the element layer in the twin adjacent to the interface
(o™). The traction force vector is obtained as a projection of the
Cauchy stress tensor in each finite element on the twin lamella
normal and its magnitude is calculated using: |f| = |c-v?"P5|, as
schematically shown in Fig. 13. Note that the vector vWP5 is
conveniently defined to locally change its direction over the
interface as it always points from the twin to the parent, unlike the
crystallographic plane normal n!“PS. Existence of the spatial
gradient in the magnitude of the traction force across and over the
interface indicates that fracture could initiate from the twin-matrix
interface.

The magnitude of the traction force shown in Fig. 12 does not
convey the maximum acting direction. Fig. 14 shows the difference
in traction force at the twin-parent interface (i.e. between the
parent and the twin side of the interface) in the direction pointing

Twin

Fig. 13. Schematic of the twin-matrix boundaries showing the vector v?":P% pointing
from twinned region to its surrounding.

from the twinned region towards the parent surrounding (Fig. 13).
It is computed using the relationship:

Af _ fparent .vtw,pts _ ftwin -Vtw’pts

The difference between traction forces in this particular direc-
tion, viW-P5 | further confirms the heterogeneity in the field created
by double twinning that can lead to void initiation and propagation
to failure. Variation in the tensile and compressive sense of the
traction forces along the v?WP% direction is the highest along the
primary contraction twin-parent boundary for both simple
compression and tension cases. In particular, the predicted tensile
traction region points to void formation from the twinned region,
as experimentally observed in Ref. [ 10]. The voids were observed to
extend along a significant portion of the twinned region or some-
times even to form in the twin interior. In summary, the presence of
a strong traction force gradient of even variable sign suggests that
twin-parent interface is a favorable void nucleation site in the
microstructure. Future work will consider the implementation of
cohesive zone elements at the twin-parent interface to facilitate
modeling of interface decohesion.

6. Summary and conclusions

In this work, a recently developed CPFE framework for explicit
modeling of microstructure is extended to model a discrete double
twin lamella. The present study is applied to a magnesium alloy
AZ31, an HCP material that deforms by a combination of crystal-
lographic slip and deformation twinning, and has a tendency of
forming double twins. These twins are experimentally found to
lead to a void formation and failure of AZ31. A polycrystal in the
form of synthetically generated granular microstructure was
studied in simple compression and tension. A centrally located
grain in the microstructure surrounded by the largest number of
neighboring grains was chosen to form a double twin lamella. The
lamella was developed by executing three consecutive deformation
stages consisting of pre-straining (to form a primary contraction
twin), followed by straining (to form a secondary extension twin),
and finally a small amount of additional deformation upon double
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1 — Primary contraction twin 2 — Secondary extension twin

Fig. 14. Distributions of the difference in the projected traction force along v between parent grain and twinned region at the twin-parent interface: (a and a’) right before sec-
ondary extension twin formation (end of the second deformation step) and (b and b’) upon double twinning and a small amount of additional deformation of 0.015 true strain (end
of the third deformation step). The unprimed and primed labels are for simple compression and simple tension, respectivelly.

twinning. While all constituent grains in the microstructure were
allowed to deform by slip and twinning, the explicit modeling of a
twin lamella was performed only for the suitably oriented central
grain. The model successfully predicts the most commonly
observed “double twin” sequence, (0111)[0112] — (0112)[0111], as
the most likely to occur in both simple compression and simple
tension. The predicted sequence in the parent grain obtained using
the CPFE simulations in simple compression match well with the
corresponding results of the Schmid analysis. In contrast, in the
tension case, the twin variant selection based on CPFE deviated
from the one based on the Schmid analysis. The stress fields pre-
dicted by CPFE govern the correct sequence. Furthermore, the
predicted stress fields in the microstructure with the double twin
reveals a greater strain concentration in the close vicinity of the
initially formed primary contraction twin than in the secondary
twin. The primary contraction twin region was predicted to deform
by a large amount of basal slip. Finally, the investigation of the
traction forces acting on a double twin-parent interface reveals that
the contraction twin-parent interface is a weak link in the micro-
structural grain boundary network, which is susceptible to void
nucleation.
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Appendix A

For completeness of the presented constitutive model, we pro-
vide a summary of the utilized dislocation density hardening law.
This formulation of the hardening law was used to compute the
evolution of slip and twin resistances as a function of strain, tem-
perature, and strain rate [65,83].

In order to estimate the resistance required to trigger slip, we
take into account the contributions of the following terms: a fric-
tion stress 7§ ;, a forest dislocation interaction stress Tlor and a
dislocation sulgstructure interaction stress 7 ,:

Te =705 + Tor + Tsub- (A1)

The resistance for twin activation evolves considering a
temperature-independent friction term Tg and a latent hardening
term which performs coupling between the active slip and twin
systems. Accounting for both effects, the resistance for twinning is
expressed as:

e (A2)
[0

In this relationship uf, bf and C*# represent respectively the
elastic shear modulus, Burgers vector on the given twin system, and
the latent hardening matrix used for coupling. Furthermore, the
individual behavior of 7% _and 7§, is determined by the evolution
of the dislocation densities that consist of forest pg . and sub-
structure pg, , dislocations. For this purpose a Taylor-like law is used
to represent these relationships for each dislocation type. These are
expressed as:
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Thor = XD U™\ /Pfey. (A3)

7'g[ub = ksubru'abav psub10g< (A4)

1
be vV Psub) .

Here 7 is a dislocation interaction parameter set to 0.9 and
ksu» = 0.086 is a mathematical parameter that insures that Eq. (A3)
compensates the Taylor law at low dislocation densities [94]. The
initial material state corresponds to an annealed state, hence the
initial dislocation density was set to 10’2 m~2. The value of stored
forest density pj‘%r changes according to competition between the
rate of storage/generation and the rate of dynamic recovery/
removal:

apﬁ)r _ a'ogen,for -~ ap?em,for — ka /pa e (s T)pa Apa
67"‘ a,Ya a,Ya 1 'for 2\ 'for> 'for

B
v

|4y

(A5)

In Eq. (A5) k{ is a coefficient for the rate of dislocation storage
because of statistical trapping of gliding dislocations and kg is the
coefficient for the rate of dynamic recovery by thermally activated
mechanisms. The second coefficient can be determined by this
relationship:

k5(¢,T)  xb“ kT &
T e (o)) ")

where k, £9, g% and D are respectively Boltzmann's constant, a
reference strain rate (taken here to be 107 s 1), an effective acti-
vation enthalpy and a drag stress. Lastly, the increment in sub-
structure development can be related to the rate of dynamic
recovery of all active dislocations as:

ap
Apgyp = qu“%j” |44, (A7)
o

where q is a rate parameter that determines the fraction of an «
-type dislocations that do not annihilate, but become substructure
dislocation. As previously mentioned in the text, the material pa-
rameters used in this hardening law have been calibrated in a prior
study.
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