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The Tomato U-Box Type E3 Ligase
PUB13 Acts With Group Ill Ubiquitin
E2 Enzymes to Modulate
FLS2-Mediated Immune Signaling

Bangjun Zhou and Lirong Zeng*

Department of Plant Pathology, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States

In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays
a significant role in plant pattern-triggered immunity (PTl) and flowering time control.
The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor
FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting
its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating
enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To
address this question, we investigate here the tomato (Solanum lycopersicum) homolog
of PUB13, SIPUB13 by utilizing the recently characterized complete set of tomato E2s.
Of the 13 groups of tomato E2s, only members in group Il are found to interact and act
with SIPUB13. Knocking-down of the group lll E2 genes enhances callose deposition
and induction of the RbohB gene in the immunity-associated, early oxidative burst after
flg22 treatment. The group Ill E2s are also found to work with SIPUB13 to ubiquitinate
FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 jn vivo upon
flg22 treatment, suggesting an essential role for group Ill E2s in the modulation of FLS2-
mediated immune signaling by PUB13. Additionally, another immunity-associated ES3,
NtCMPG1 is shown to also work specifically with members of group lll E2 in the in vitro
ubiquitination assay, which implies the group lll E2 enzymes may cooperate with many
E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate
the notion that group Il E2 enzymes play an important role in PTl and build a foundation
for further functional and mechanistic characterization of tomato PUB13.

Keywords: tomato, ubiquitin, U-box, PUB13, pattern-triggered immunity, FLS2, ubiquitin-conjugating enzyme
(E2), immune signaling

INTRODUCTION

The plant immune system conceptually consists of two layers of active defense responses,
microbe/pathogen -associated molecular pattern (MAMP/PAMP)-triggered immunity (MTI/PTI)
and effector-triggered immunity (ETI) (Jones and Dangl, 2006; Macho and Zipfel, 2014; Cui et al.,
2015). PTT is initiated upon perceiving PAMPs by plant pattern recognition receptors (PRR) (Jones
and Dangl, 2006; Coll et al., 2011; Shamrai, 2014). Activation of PTI triggers an array of defense
responses including production of reactive oxygen species (ROS), modulation of defense-related
gene expression, and callose deposition at the cell wall (Hann and Rathjen, 2007; Nguyen et al.,
2010; Veluchamy et al., 2014). PTI as the first line of immune responses is important for fending off
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most potential plant pathogens. To promote colonization,
pathogens deploy various effectors into the host cell to suppress
or evade PTI (Rosebrock et al., 2007). However, some of these
effectors are detected by intracellular nucleotide-binding leucine-
rich repeat (NLR) proteins thus activate the second layer of
defense, ETI, which is usually accompanied by programed cell
death (PCD) at the site of infection that restricts the spreading
of pathogen (Jones and Dangl, 2006).

Several PAMPs and their corresponding PRRs have been
identified and studied (Felix et al., 1999; Kunze et al., 2004;
Kaku et al., 2006; Kawaharada et al., 2015), among which the
bacterial flagellin and flg22, a 22-amino acid, immunogenic
fragment of flagellin and their plant receptor, Flagellin Sensing
2 (FLS2) have been well characterized and are considered as a
model for functional and mechanistic studies of PTI (Gomez-
Gomez and Boller, 2000; Lu et al., 2011). The Arabidopsis
FLS2 cooperates with the co-receptor, BRI1-Associated Receptor
Kinase 1 (BAK1) to sense bacterial flagellin/flg22 and initiates
immune signaling (Chinchilla et al., 2007). To prevent excessive
or prolonged activation of immune responses, flagellin induces
the recruitment of two closely related U-box type ubiquitin
ligases (E3) PUBI12 and PUBI3 to the Arabidopsis FLS2 receptor
complex to ubiquitinate and consequently promote degradation
of FLS2 by the 26S proteasome (Lu et al., 2011). Upon flg22
treatment, Arabidopsis publ2 and publ3 mutants displayed
increased ROS production and callose deposition and elevated
induction of immune responsive genes than the wild type plants
(Luetal, 2011). The publ3 mutant also displays early flowering,
spontaneous cell death, accumulation of hydrogen peroxide
and salicylic acid (SA), and elevated resistance to biotrophic
pathogens under long-day (LD) condition in a SID2- and PAD4-
dependent manner, which implies that PUB13 plays dual roles
in the regulation of both plant defense and development via
SA-mediated signaling (Li et al., 2012a). In rice, the Spotted
Leafl1 (Spl1l) encodes a U-box type E3 ubiquitin ligase and
is the ortholog to the Arabidopsis PUB12 and PUB13 (Zeng
et al, 2002, 2004). The rice loss-of-function mutant splll
displays broad-spectrum resistance to rice bacterial and fungal
pathogens (Yin et al, 2000). A further investigation indicated
the Rho GTPase-activating protein, SPIN6 (SPL11-interacting
Protein 6) interacts with SPL11 and OsRacl and negatively
regulates programmed cell death and innate immunity in rice
(Liuetal,, 2015). Unlike Arabidopsis mutant pub13 with an early-
flowering phenotype under LD conditions, the rice mutant spl11
displays a delayed-flowering phenotype under LD conditions
(Vega-Sanchez et al., 2008), suggesting opposite functions of
Arabidopsis PUB13/SPL11 in flowering time control. However,
overexpression of SplII can complement the cell death and
flowering phenotype of the pub13 mutant (Li et al., 2012b), which
indicates the roles of PUB13/SPLI11 in the control of flowering
time and in defense are conserved in monocots and dicots. In
Arabidopsis, a LysM receptor kinase, Chitin Elicitor Receptor
Kinase 1 (CERK1) is essential for the chitin elicitor-triggered
immune signaling (Miya et al., 2007). Chitin-induced formation
of a complex of Lysin Motif Receptor Kinase5 (LYK5) and CERK1
leads to activation of the CERK1 intracellular kinase domain
and induction of plant innate immunity in Arabidopsis (Cao

et al.,, 2014). Recently, it was reported that PUB13 regulates the
abundance of chitin receptor LYK5 protein (Liao et al., 2017).
Additionally, PUB13 was also found to regulate the abundance of
the ABA co-receptor ABI1 (Kong et al., 2015) and SA-mediated
induction of pathogenesis-related gene expression (Antignani
et al., 2015). These data indicate PUB13 plays an important
role in multiple immune signaling pathways in Arabidopsis and
rice. Nevertheless, identification and functional characterization
of the tomato homolog of PUB13 have not been reported
so far.

Ubiquitination as a major post-translational protein
modification in eukaryotic cells typically entails a stepwise
enzymatic cascade that is catalyzed by three different classes of
enzymes, the ubiquitin-activating enzyme (E1), the ubiquitin-
conjugating enzyme (E2), and the ubiquitin ligase (E3) (Zhou
and Zeng, 2017). During the ubiquitination process, the
E2~ubiquitin intermediate cooperates with an E3 to transfer
ubiquitin to the substrate. In the past decade, research has
centered on ubiquitin E3 ligases due to their key role in
determining the substrate specificity in ubiquitination. By
contrast, ubiquitin-conjugating enzymes (E2) were often
considered as “carrier of ubiquitin” with an auxiliary role in the
ubiquitination process. However, emerging evidence indicates E2
enzymes are the key mediators of chain assembly (Ye and Rape,
2009). In addition, our recent studies implicated the tomato E2
enzymes Fni3 and the group III E2s in plant immunity (Mural
et al., 2013; Zhou et al., 2017). The group III E2 enzymes were
found to be essential for plant PTI and for the suppression of
host immunity by the ubiquitin ligase activity of a Pseudomonas
syringae pv. tomato (Pst) effector, AvrPtoB (Zhou et al., 2017;
Zhou and Zeng, 2017). Additionally, functional redundancy
among group III members was revealed for their role in PTI
and in AvrPtoB-mediated suppression of plant immunity. In
previous studies that demonstrated the in vitro ubiquitination
of FLS2 (Lu et al,, 2011), ABI1 (Kong et al.,, 2015) and LYK5
(Liao et al., 2017) by PUB13, the Arabidopsis UBC8, a member
of the group III E2s was used for the assays. However, whether
other E2 enzymes in the genome can also work with PUB13 is
unclear.

In this study, we identify and characterize the tomato closest
homolog of PUBI3, SIPUBI13 in plant immunity. Our results
indicate that SIPUB13 works specifically with members of
group III tomato E2 enzymes for the ubiquitination of FLS2
in modulating FLS2-mediated immune signaling. These data
corroborate the notion that group III E2 enzymes play an
important role in PTL.

MATERIALS AND METHODS

Growth of Bacteria and Plant Materials

Agrobacterium tumefaciens strains GV3101 and GV2260 and
Pseudomonas fluorescens 55 were grown at 28°C on Luria-
Bertani and Kings B medium, respectively with appropriate
antibiotics. Nicotiana benthamiana and tomato RG-ptoll
(ptol1/ptoll, Prf/Prf) seeds were germinated and plants were
grown on autoclaved soil in a growth chamber with 16 h light
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(~300 pwmol/m?/s at the leaf surface of the plants), 24°C/23°C
day/night temperature, and 50% relative humidity.

DNA Manipulations and Plasmid

Constructions

All DNA manipulations were performed using standard
techniques (Sambrook and Russell, 2001). The opening reading
frame (ORF) and U-box domain of tomato SIPUBI3 gene,
NtCMPG]I and kinase domain of FLS2 were amplified using the
Q5 High-Fidelity DNA Polymerase (New England Biolabs) and
then cloned into the pENTR/SD/D-TOPO Gateway entry vector
by following the protocols provided by the manufacturer (Life
Technologies). SIPUB13 and NtCMPGI in the pENTR/SD/D-
TOPO vector were transferred to the pDEST15 vector using LR
reaction according to instructions provided by the manufacturer
(Life Technologies) for expression and purification of GST-
SIPUBI13 and GST-NtCMPGI. SIPUBI3-U-box and the twelve
group III E2 genes (Zhou et al., 2017) in the pENTR/SD/D-TOPO
vector was cloned into the pNLexAattR or pJZ4attR (Finley et al.,
2002) vector using LR reaction according to instructions
provided by the manufacturer (Life Technologies) for yeast two-
hybrid assay. FLS2-KD was digested with the restriction enzymes
EcoRI and Xhol and cloned into the protein expression vector
PMAL-c2 that was restricted by enzymes EcoRI and Sall. The
constructs used for BiFC assay were prepared by digesting the
vectors pA7-nYFP and pA7-cYFP with the restriction enzymes
Xhol and Smal, followed by ligation of the corresponding
gene that has been amplified using the Q5 High-Fidelity DNA
Polymerase (with an adapted 5" Xhol restriction site but without
the stop codon) as described previously (Zhou et al., 2017). To
monitor the degradation of the kinase domain SIFLS2-KD of
SIFLS2 in the presence of PUB13 in N. benthamiana protoplasts,
the genes Fni3C89G and SIFLS2-KD were cloned into a pTEX
35S cauliflower mosaic virus promoter expression cassette with
HA tag at the C terminus (Mural et al., 2013). Primers used for
recombinant DNA cloning are listed in Supplementary Table S1.

Sequence Alignment and Phylogenetic
Analysis

For sequence alignment, sequences of interest in the FASTA
format were input into the ClustalX 2.1 program and aligned
using the ClustalX algorithm (Larkin et al, 2007). The
phylogenetic analysis was then performed with the MEGA6
program using the aligned sequences (Tamura et al.,, 2013) as
described previously (Zhou et al., 2017). The accession numbers
of the Arabidopsis PUB proteins are available at the Arabidopsis
Information Resource (TAIR) website' (Azevedo et al., 2001).

Yeast Two-Hybrid Assay

The LexA-based yeast two-hybrid system, the corresponding
procedures for testing protein-protein interaction, and the
detection of bait and prey proteins by immunoblot were as
described previously (Mural et al., 2013).

Uhttps://www.arabidopsis.org/browse/genefamily/pub.jsp

Bimolecular Fluorescence

Complementation (BiFC) Assay

The BiFC assay based on split YFP was used to test the
interaction of E2 proteins and SIPUB13 in N. benthamiana leaf
protoplasts (Chen et al., 2006; Waadt et al., 2008; Zhou et al,,
2017). The non-group III E2 UBCI13 fused to the N-terminus
of YFP and the empty vectors expressing the N-terminus and
C-terminus of YFP (nYFP-EV and cYFP-EV) were used as
negative control. Protoplasts were prepared from leaves of wild
type N. benthamiana plants as described (Rosebrock et al., 2007).
Approximately 1 x 10* protoplasts that were suspended in a
volume of 200 wL were then co-transfected with 10 pg plasmid
DNA of each individual of the construct pair to be tested. The
co-transfected protoplast was imaged 21 h after transfection
using an Olympus FV500 Inverted (Olympus IX-81) Confocal
Microscope with the following excitation (ex) and emission (em)
wavelengths: YFP, 514.5 nm (ex), 525-555 nm (em); chlorophyll
auto-fluorescence, 640.5 nm (ex) and 663-738 nm (em).

Expression and Purification of

Recombinant Proteins

GST- and MBP-tagged fusion proteins were expressed in E. coli
strain BL21 (DE3) and purified with Glutathione Sepharose 4
Fast Flow beads (GE Healthcare) and Amylose Resin High Flow
(New England Biolabs), respectively by following the protocol
provided by the manufacturer. The purified proteins were further
desalted and concentrated in the protein storage buffer (50 mM
Tris-HCl pH8.0, 50 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5 mM
PMSF) using the Amicon Centrifugal Filter (Millipore). The
desalted and concentrated recombinant protein was stored at
—80°C in the presence of a final concentration of 40% glycerol.
The concentration of purified protein was determined using
protein assay agent (Bio-Rad). The quality of purified proteins
was analyzed by 10% SDS-PAGE.

In Vitro Ubiquitination Assay

The in vitro ubiquitination assays shown in Figure 2 and Figure 7
were performed together with the assay previously described
(Figure 3 in Zhou et al., 2017) using the same protocol. To test the
ubiquitination of FLS2 by PUB13 and group III E2, the following
protocol was used. 3 pg ubiquitin, 40 ng E1 (GST-SIUBA1),
optimal amount (50-250 ng) of E2 protein (GST-SIUBCS,
GST-SIUBC10, GST-SIUBC27, or 6xHis-SIUBC12) (Zhou
et al.,, 2017), 2 ng E3 ligase (GST-SIPUB13 or GST-NtCMPGI,
Supplementary Figure S2) and 1 pg substrate (MBP-FLS2-KD
or MBP) were added to a 30 pL reaction in the presence of
ubiquitination assay buffer (50 mM Tris-HCI pH7.5, 5 mM ATP,
5 mM MgCl,, 2 mM DTT, 3 mM creatine phosphate, 5 pg/ml
creatine phosphokinase). The reactions were incubated at 30°C
for 1.5 h and then terminated by addition of SDS sample loading
buffer with 100 mM DTT. The reaction products were resolved by
10% SDS-PAGE and analyzed by immunoblotting using mouse
monoclonal anti-FLAG M2-peroxidase-conjugated (horseradish
peroxidase) antibody (Sigma-Aldrich) for identifying the
poly-FLAG-Ubiquitin =~ signal. ~Polyubiquitinated forms of
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MBP-FLS2-KD were detected using anti-MBP antibody (New
England Biolabs).

Virus-Induced Gene Silencing (VIGS)

Silencing of group III E2 genes was induced using the tobacco
rattle virus (TRV) vectors (Caplan and Dinesh-Kumar, 2006) as
described (Zhou et al., 2017). The group III E2 genes-silenced
plants and non-silenced control plants used for experiments
shown in Figure 5 were from the same batches of plants described
previously (Zhou et al., 2017). The efficiency of silencing group
III E2 genes was detected as previously shown (Supplementary
Figure S9C in Zhou et al., 2017).

Callose Deposition Assay

The measurement of callose deposition was performed
as previously described (Nguyen et al, 2010) with minor
modifications. Leaves of group III ubiquitin E2 genes-silenced
(TRV-group III) and non-silenced TRV control N. benthamiana
plants (3-4 weeks after VIGS infiltration) were infiltrated using
1 mL needleless syringe with 40 uM flg22, 40 pM flglI-28
or a suspension of P. fluorescens 55 at 2.5 x 10 CFU/mL
(ODgpo = 0.5), respectively. Leaf disks of 10 mm in diameter
were then excised using a cork borer from infiltrated areas 24 h
after the infiltration, followed by incubation at 37°C in wells of
a 12-well plate containing 2 mL 95% ethanol until the leaf disks
were cleared of chlorophyll. The incubation time for clearing the
chlorophyll of leaf was up to 48 h and the ethanol was replaced
as necessary until the clearing process was complete. The cleared
leaf disks were washed two times with 70% ethanol and then
three times with distilled water. The leaf disks were immersed
in 0.1% aniline blue in 150 mM K,;HPO,4 (pH 9.5/KOH) and
incubated in the dark for 1 h. The stained leaf disks were
mounted with 60% glycerol on glass slides and observed from the
adaxial surface of the disk by a fluorescence microscope (Zeiss
Axionplan 2, Carl Zeiss, Oberkochen, Germany). The number of
deposited callose was counted using the Image] analysis software
(Schindelin et al., 2012).

Transient Expression of Recombinant
Proteins in N. benthamiana Leaf

Protoplasts

To monitor the degradation of tomato FLS2 cytoplasmic
kinase domain (FLS2-KD) by endogenous PUB13, approximately
6 x 10* protoplasts in a volume of 200 WL were prepared from
leaves N. benthamiana plants, three to four weeks after VIGS
infiltration. The protoplasts were then co-transfected with 7 pg
of plasmid pTEX-SIFLS2-KD-HA and 5 pg of plasmid pTEX-
Fni3C89G-HA. Seventeen hours after transfection the protoplasts
were treated with 1 WM of flg22 for 30 min, followed by protein
extraction and immunoblotting as described (Zhou et al., 2017).
The total proteins were analyzed by immunoblot using anti-HA
antibody.

Real Time RT-PCR

To reveal the expression pattern of the plant immunity marker
gene RbohB, leaves of the group III ubiquitin E2 genes-silenced

(TRV-group III) and non-silenced TRV control N. benthamiana
plants similar to those being used in the callose deposition assay
were infiltrated with 40 WM flg22 using a needleless syringe. Leaf
samples were harvested at 0 (before inoculation), 0.5, 1, 3, 6, 9,
10, 13, and 24 h post-infiltration. For all the samples harvested,
extraction of total RNA, synthesis of first strand cDNA, and qRT-
PCR were conducted as described previously (Zhou et al., 2017).
NbEFIo was used as an internal reference. All primers used in
qRT-PCR are showed in the Supplementary Table S1.

RESULTS

Identification of the Closest Tomato

Homolog of PUB12 and PUB13

To study the function of tomato PUB13 and the E2 enzymes
with which it works in plant immunity, we searched the
tomato genome in the Sol Genomics Network (SGN?) database
using the sequences of Arabidopsis PUB12 (AtPUBI2) and
PUBI13 (AtPUB13) as query. Twenty-one tomato homologous
proteins of AtPUB12 and AtPUBI13 were identified. The tomato
genes Solyc11g066040.1 and Solyc06¢g076040.2 that encode the
closest homolog to AtPUB12 and AtPUBI3, respectively were
named SIPUBI2 and SIPUBI3 based on the phylogenetic
analysis (Supplementary Figure S1) of the tomato homologs
and the Arabidopsis PUB proteins (Azevedo et al, 2001).
Phylogenetic analysis of the PUB12 and PUB13 homologs from
tomato, Arabidopsis and rice indicated tomato PUB12 and
PUBI13 proteins (hereafter designed as SIPUB12 and SIPUB13,
respectively) are phylogenetically closer to the counterparts
from Arabidopsis (Figure 1A). Sequence alignments revealed
the tomato, Arabidopsis and rice PUB12 and PUBI3 proteins
are highly homologous, with AtPUB13 and SIPUB13 are 66.1%
identical whereas the SIPUB12 and SIPUB13 proteins are 78.2%
identical in amino acid sequence (Figure 1B).

SIPUB13 Works Specifically With the
Tomato Group lll E2s to Catalyze
Ubiquitination

We previously identified and cloned a set of forty tomato genes
that encode ubiquitin E2 proteins (Zhou et al., 2017). Of the 40
genes, we were able to purify the recombinant protein for 35 of
them and demonstrate 34 of the purified E2 proteins possessed
E2 ubiquitin-conjugating activity (Zhou et al.,, 2017). To find
out which tomato E2 Enzymes work with SIPUB13, the E2-E3
specificity between SIPUB13 and the 34 enzymatically active E2s
was examined by in vitro ubiquitination assay. To ensure the
accuracy of the assay, we utilized SDS-PAGE to examine the
quality of purified recombinant E2 proteins and the thioester
assay to determine the amount of each E2 to be used for the assay
so that similar amount of ubiquitin was activated and conjugated
to each E2 (Supplementary Figures S$4, S5 in Zhou et al., 2017),
which is critical for testing the E2-E3 specificity. The amount of
each E2 protein determined in those experiments was used for

2http:/ /solgenomics.net/
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FIGURE 1 | Phylogenetic analysis and sequence alignments of PUB12 and PUB13 homologs from tomato, Arabidopsis and rice. (A) Phylogenetic analysis of
PUB12 and PUB13 from tomato, Arabidopsis and rice. The sequences of PUB12 and PUB13 proteins were used for generating the tree. The unrooted phylogenetic
tree was generated by the neighbor-joining method using the MEGAB program with 1000 bootstrap trials (Saitou and Nei, 1987; Tamura et al., 2013). (B) Sequence
alignments of PUB12 and PUB13 from tomato, Arabidopsis and rice. The sequences of PUB12 and PUB13 proteins in the FASTA format were entered into MultAlin
and aligned using the default parameters (Corpet, 1988). Color red denotes high consensus amino acids while blue and black denotes low and neutral consensus

ones, respectively.
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testing the PUB13-E2 specificity. In in vitro ubiquitination assay
RING and U-box type ubiquitin E3s work with their cognate E2
to produce self-ubiquitination (Lorick et al., 1999; Hatakeyama
et al., 2001; Zeng et al., 2004). As shown in Figure 2, in the
presence of tomato E1, FLAG-tagged ubiquitin, SIPUB13, and
required co-factors, reactions that contain members of group III
tomato E2 enzymes, UBCS, 9, 10, 11, 12, 28, 29, 30, 31, 38, 39,
and 40, respectively produced strong poly-ubiquitin signal that
was shown as high molecular weight (MW) smear. By contrast,
weak signal with MW less than that of GST-SIPUBI13 (98 kD)
was detected in reactions that contain UBCI, 2, 3, 41, 7, 4, 5,
6, 13, 13-2, 20, 22, and 35, respectively, which suggests none of
the signal is self-ubiquitination by SIPUB13. Comparison of the
pattern of the signal in these reactions with our previous results of
thioester assay for tomato E2s (Zhou et al., 2017) suggested that
the signals detected in the in vitro ubiquitination assay for these
11 E2s were E2-ubiquitin adducts. Therefore, the tomato UBCI,
2,3, 4,7, 13, 13-2, 20, 22, and 35 did not work with SIPUB13
in catalyzing ubiquitination. This result is in consistence with
previous studies that the Arabidopsis UBC8, a member of the
group III E2s was used for examining the in vitro ubiquitination
of FLS2, ABII, and LYK5 by PUB13 (Lu et al,, 2011; Liu et al,
2012; Kong et al.,, 2015). The signal detected in the reactions

that contain tomato UBC16 and 17, respectively is weak but
include high MW smear (Figure 2). However, the tomato UBC16
and 17 have been demonstrated to be capable of catalyzing the
formation of poly-ubiquitin chains in the absence of an E3 (Zhou
et al,, 2017). The high MW smear in the reactions that contain
tomato UBC16 and 17 may not be resulted from the action of
UBCI16 and 17 with SIPUBI13. To confirm this, we performed
in vitro ubiquitination assays in the presence of GST-SIPUBI13 or
GST. The 6HIS-UBCI12 from group III was included as control
(Supplementary Figure S3). In reactions where SIPUB13 was
absent (lane 2 and 5), tomato UBC16 and 17 produced poly-
ubiquitin and GST-UBC16- or 17-(Ub)n polyubiquitin ladders.
The addition of GST-SIPUB13 or GST to the reaction both
enhanced the signal but did not alter the pattern of the ladders
(lane 1, 4, 7, and 8). These results indicate tomato UBC16 and 17
are capable of catalyzing poly-ubiquitination in the absence of an
E3. Additionally, the GST-SIPUB13-(Ub)n signals were detected
only in the reaction where the 6HIS-UBCI12 of group III was
presented (lane 10), which indicated the SIPUB13 does not work
with UBCI16 and 17 to catalyze self-ubiquitination. These data
confirm SIPUBI13 does not have specificity toward UBC16 and
UBC17 but is able to promote their activity (Supplementary
Figure S3) and the high MW smear signals in the reactions that
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FIGURE 2 | SIPUB13 shows specificity toward group Ill E2s in in vitro ubiquitination assays. GST-SIPUB13 was tested against 34 purified tomato E2 proteins (Zhou
et al., 2017) in in vitro ubiquitination assays to determine its specificity toward ubiquitin E2s. Tomato E2 protein used in each reaction is shown above the lane by
their UBC number and the minus marker () denotes the absence of any E2 enzyme in the reaction. The presence of high molecular weight (MW) (>98 kD, size of
GST-SIPUB13) smear of ubiquitinated proteins as detected by Western blot using anti-FLAG antibody indicates E2-E3 specificity. The numbers on the right denote
the molecular mass of marker proteins in kilodaltons. This experiment was repeated two times with similar results.
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contain tomato UBC16 and 17 (Figure 2) were not the product
of SIPUBI13 self-ubiquitination, which is similar to our previous
finding (Zhou et al., 2017). Taken together, we conclude that only
members of the tomato group III E2s work with SIPUBI3 to
catalyze ubiquitination.

Members of Group lll E2s Interact With

Tomato PUB13 in Vivo

To confirm the interaction of SIPUB13 with the group III
E2s, yeast two-hybrid was employed to test the interaction of
tomato group III ubiquitin E2 enzymes and the U-box domain
of SIPUBI13. Structural data available so far indicate that the
RING (Really Interesting New Gene) and U-box domain of
RING/U-box type E3s are responsible for the interaction with
their cognate ubiquitin E2s in the ubiquitination process (Lorick
et al., 1999; Zheng et al., 2000; Ohi et al., 2003; Christensen et al.,
2007; Xu et al., 2008; Yin et al., 2009). We therefore tested the
interaction of the U-box domain of SIPUB13 with group III E2
proteins by yeast two-hybrid. Non-group III E2 UBC13, 27, 36,
16, and 17 were used as control. As shown in Figure 3A and
Supplementary Figure S4A, all group III E2 members interacted

with SIPUBI13 while the control and empty vector did not.
Western blot confirmed the expression of the protein of the
bait (SIPUB13 U-box) and the prey (i.e., the E2 proteins been
tested) in the yeast cells (Supplementary Figure S4B). This result
corroborates that only group III E2s but not E2s from other
groups interact with SIPUB13 (Supplementary Figure S4). To
further examine whether SIPUB13 interacts with the group III E2
proteins in vivo, BiFC assay was performed in N. benthamiana
protoplasts. Tomato group III members UBC10 and UBCI2
were randomly selected and non-group III E2 enzyme UBC13
was used as control for the assay (Figure 3B). As shown
in Figure 3B, fluorescence signal was observed in protoplasts
co-transfected with UBCI0-nYFP and PUBI3-cYFP or UBCI2-
nYFP and PUBI3-cYFP, indicating that SIPUBI13 interacted
with UBC10 and UBCI12 in vivo. By contrast, no fluorescence
signal was observed in protoplasts co-transfected with UBCI0-
nYFP and cYFP-EV (empty vector), UBC12-nYFP and cYFP-EV,
UBC13-nYFP and PUBI3-cYFP or nYFP-EV and PUBI13-cYFP.
To ensure that the failure of UBC13 to interact with SIPUB13
was not due to problem with the UBCI13-nYFP construct, the
interaction of UBC10, 12 and 13 with the tomato E1, UBA1 were
further tested using BiFC. As shown in Figure 3B, fluorescence

A Bait B
SIPUB13-
U-| box

1
]

SIUBC8

SIUBC9 - m

siuscio (1L

SIUBC12m mm
swwsczs [ [FIH
siwacz2e [JIIH [THL
snuscso mn]
SIUBC31 [nm
SIUBC38m []Im
SIUBC39m [I[m
SIUBC40 il
1]

Prey

SIUBC13
swscz7 [T B
siuscas [ LI [HHH

ev (LN [(EEEK

bright field image. Scale bar = 20 pm.

SIUBC10-nYFP +

SIUBC10-nYFP +
SIPUB13-cYFP

SIUBC12-nYFP +

SIUBC12-nYFP +
SIPUB13-cYFP

SIPUB13-cYFP

SIUBC13-nYFP +
SIPUB13-cYFP

SIUBC10-nYFP +
SIUBA1-cYFP

SIUBC12-nYFP + Sy 1
SIUBA1-cYFP |
SIUBC13-nYFP +
SIUBA1-cYFP

FIGURE 3 | Group Ill E2s interact with tomato SIPUB13 in vivo. (A) Members of the group Ill E2s interact with the U-box domain of tomato SIPUB13 in yeast
two-hybrid. Empty vectors and non-group Il E2s were used as the negative control. (B) SIUBC10 and SIUBC12 of group IIl E2s interact with SIPUB13 in the BiFC
assay. Non-group Il E2 SIUBC13 was used as negative control. Different construct pairs were transiently co-expressed in protoplasts isolated from N. benthamiana
leaves. Cells were examined with a confocal microscope under bright or laser light to detect cells and green fluorescence, respectively. The empty vector expressing
N- and C-terminus of YFP (nYFP-EV and cYFP-EV) were used as negative control. EV, empty vector; FL, fluorescence; Chl., chlorophyll autofluorescence; Bright,
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was observed in protoplasts where the tomato E1 gene, UBAI was
co-transfected with UBC10, 12 and 13, respectively, indicating the
proteins of E1 and the E2s were expressed in the protoplasts and
interacted as expected.

Tomato PUB13 Works With Group Ill E2s

to Ubiquitinate FLS2 in Vitro

The Arabidopsis AtUBCS, a member of the group III E2s was
shown to work with AtPUBI3 in ubiquitinating FLS2 in vitro
(Lu et al.,, 2011). Interestingly, our results indicated that only
group IIT members of tomato E2s work with SIPUB13 to catalyze
ubiquitination (Figure 2). It is thus intriguing to find out whether
other members of tomato group III E2s work with SIPUB13 in
the ubiquitination of the tomato FLS2. Similar to the previous
study (Lu et al, 2011), we utilized the recombinant, MBP-
tagged kinase-domain (MBP-FLS2-KD) of tomato FLS2 as the
substrate for the in vitro ubiquitination assay. We used the
MBP protein alone as the control. The results indicated that,
in the presence of tomato E1, ubiquitin, SIPUB13, and required
co-factors, MBP-FLS2-KD was ubiquitinated in reactions that
contain group III E2 enzyme UBCS8, 10 and 12, respectively
but was not modified by ubiquitination in the reaction that
contains the non-group III yet close-related outsider E2 UBC27
(Zhou et al.,, 2017) (Figure 4). The MBP protein alone was
not ubiquitinated by SIPUB13 in reactions in which UBCS, 10
and 12 and 27 were presented, respectively. The presence of
polyubiquitinated forms of FLS2-KD, MBP-FLS2-KD-(Ub)n in
reactions where member of group III E2s is presented whereas
lack of the signal in reactions where UBC27 is presented indicate
SIPUB13 work specifically with group III E2s to ubiquinate
FLS2-KD.

Knocking Down Group lll E2s Enhanced
flg22-Induced Callose Deposition and

Diminished Degradation of FLS2

In Arabidopsis, PUB13 was found to attenuate FLS2-mediated
plant immune signaling including the H,O, production, callose
deposition and the induction of immune responsive genes by
targeting FLS2 for ubiquitination and subsequent degradation
(Lu et al, 2011). Arabidopsis plants harboring a defective
PUBI13 (publ3 mutant lines) display increased callose deposition
compared with wild type plants after being treated with flg22
(Lu et al., 2011). The tomato group III E2 enzymes were found
to be essential for PTI (Zhou et al., 2017). The specificity of the
group III E2 enzymes toward tomato PUB13 thus prompted us
to posit that their cooperation with PUB13 in the ubiquitination
of FLS2 would be part of their role in the regulation of PTIL
To test this, we used callose deposition as the readout to reveal
whether knocking-down of group IIT E2 genes would affect the
role of PUB13 in plant PTI. The same batches of group III E2
genes-silenced and non-silenced control plants, respectively as
previously described (Zhou et al., 2017) were used for the test.
To determine the effectiveness and specificity of knocking down
group III E2 genes by VIGS in N. benthamiana, the expression
of the twelve group III E2 genes and two randomly selected,
non-group III E2 genes was determined by semi-quantitative

PCR as previously described (Zhou et al., 2017). As shown in
Supplementary Figure S5, the group III genes were specifically
and effectively silenced in the group III E2 genes-silenced (TRV-
group IIT) plants. We detected the callose deposits in the group
III E2 genes-silenced plants and the non-silenced control plants
(TRV) upon 40 pM flg22 treatment. The result indicated that
group III E2 gene-silenced plants had nearly doubled callose
deposition compared to that in non-silenced control plants
(Figure 5A), indicating the attenuation of PTI signaling by
PUBI13 was significantly impaired in these plants.

To further determine whether knocking down of group III
E2s impaired the function of SIPUBI13 in attenuating signaling
of PTI, we investigated the role of the group III E2s in PUB13-
promoted degradation of FLS2. We expressed the kinase domain
of tomato FLS2 (FLS2-KD) in protoplasts that were derived
from the same batch of group III E2 genes-silenced and non-
silenced control plants, respectively mentioned in Figure 5A and
examined the degradation of FLS2-KD by the endogenous PUB13
through monitoring the accumulation of FLS2-KD protein in
the presence or absence of flg22 treatment. To ensure equal
efficiency of transfection of the protoplasts we included an
unrelated E2 null mutant Fni3C89G (i.e., SIUBC13C89G) as
control (Mural et al., 2013). Compared with non-flg22-elicited
sample, treatment with flg22 promoted the degradation thus
less accumulation of FLS2-KD in protoplasts derived from non-
silenced control plants (Figure 5B), which is similar to what was
observed in a previous study in Arabidopsis (Lu et al.,, 2011).
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FIGURE 4 | Tomato PUB13 works with group Il E2s to ubiquitinate FLS2-KD.
FLS2-KD was ubiquitinated in the presence of GST-SIPUB13 and a member
of group Ill E2 in in vitro ubiquitination assay. The assay was performed with
recombinant E1, E2, GST-SIPUB13, ubiquitin (Ub), and MBP-FLS2-KD.
Reactions with non-group Ill E2 UBC27 were used as control. The MBP
protein was used as control for the substrate. This experiment was repeated
two times with similar result.
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FIGURE 5 | The group Il ubiquitin E2 enzymes are essential for PUB13 in attenuating flg22-triggered immune signaling. (A) Callose deposition in group Il ubiquitin
E2 genes-silenced (TRV-group /i) and non-silenced TRV control (TRV) N. benthamiana plants 24 h after infiltration with 40 M fig22, 40 uM figll-28, and 2.5 x 108
CFU/mI P, flub5, respectively. Representative microscopic views of callose formation at the infiltrated leaf area are shown. Numbers below each image represent the
mean number of callose formation in at least 36 microscopic views (n > 36) from two biological replicates with standard deviation indicated. The experiment was
repeated two times with similar results. (B) PUB13-promoted degradation of FLS2 kinase domain (FLS2-KD) in group IIl ubiquitin E2 genes-silenced (TRV-group /ll)
and non-silenced TRV control (TRV) N. benthamiana protoplasts. HA-fused FLS2-KD was expressed in protoplasts derived from corresponding plants with or
without 1 uM flg22 treatment. The accumulation of FLS2-KD was detected by immunoblot. The HA-fused FniSC89G was used as internal control for equal
transfection of the protoplasts. Numbers under the image denote the relative expression level of FLS2-KD in different lanes, with the expression in TRV-group il
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However, no detectable flg22-promoted degradation of FLS2-
KD was observed in protoplasts that were derived from group
III E2 genes-silenced plants, which supports the notion that
group III E2 are required for PUB13-mediated degradation of
FLS2. Interestingly, the level of FLS2-KD protein accumulation
was higher in protoplasts derived from group III E2 gene-
silenced plants than in protoplasts derived from non-silenced
control plants regardless of being treated with flg22 or not
(Figure 5B), which implies group III E2s also involve in other
pathway(s) that contribute to the stability of FLS2 independent
of flg22-elicited signaling. Taken together, these results indicate
that group III E2 enzymes are employed by the E3 activity of
PUBI13 in promoting the degradation of FLS2 to regulate flg22-
elicited PTT.

Knocking Down of Group lll E2s
Promoted Induction of the RbohB Gene
During the Immunity-Associated Early

Oxidative Burst

The Arabidopsis null mutant for respiratory burst oxidase
homolog D (RbohD), the gene that is mainly responsible for
production of rapid apoplastic ROS in response to PAMP exhibits
much less callose deposition than the wild type plant after flg22
treatment (Zhang et al., 2007). The increased callose deposition
in group III E2s-silenced plants thus prompted us to examine
the expression pattern of the RbohB gene, the functional ortholog
of Arabidopsis RbohD in N. benthamiana in group III E2 genes-
silenced and non-silenced control N. benthamiana plants (Nuhse

Frontiers in Plant Science | www.frontiersin.org

May 2018 | Volume 9 | Article 615


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Zhou and Zeng

Cognate Ubiquitin E2s for PUB13

450 A
400 A *
350 A
300 A
250 A
200 A
150 1
100 -

50 4

o TRV
mm TRV-group Il

Relative expression

Oh 05h 1h 3h 6h 10h 13h 24h

FIGURE 6 | The expression of the RbohB gene in flg22-treated

N. benthamiana leaves. Real time PCR (qRT-PCR) analysis of the expression
of the N. benthamiana RbohB gene at the indicated time points after
treatment with 40 uM fig22. The experiment was performed with three
technical repeats in each of the three biological replicates. Asterisks denote
significant difference (P < 0.05) in the expression level of the RbohB gene on
group Il E2 genes-silenced and non-silenced control plants.

et al.,, 2007). The expression of RbohB displayed two peaks of
induction at 1 and at 10 h post-infiltration (HPI) of 40 pM flg22
within a 24 h period on both group III E2 genes-silenced and non-
silenced control plants, with the first peak significantly stronger
than the second one (Figure 6). However, the expression level
of RbohB was higher roughly during the first peak (at 0.5, 1,
and 6 HPI) but lower during the second peak (at 10, 13, and 24
HPI) on group III E2 genes-silenced plants compared with the
non-silenced control plants (Figure 6).

Tomato Group llIl E2 Enzymes Also Work
With the Immunity-Associated E3 Ligase
CMPG1

Previous studies have suggested certain members of the group
III E2 enzymes are highly active, processive and can work with
many RING/U-box type E3s. In fact, members of the group III
E2s including AtUBCS8 (Lu et al., 2011; Liao et al., 2017), AtUBC9
(Zhu et al, 2015) and the human homolog of group III E2s,
UbcH5b (Yang et al.,, 2006; Trujillo et al., 2008; Wang et al.,
2015) have been most often utilized to detect the E3 activity of
plant RING and U-box E3 ligases in the in vitro ubiquitination
assays. The above data that silencing group III E2 enzymes
leading to increased callose deposition on N. benthamiana plants
24 h after 40 pM flg22 treatment (Figure 5A) is seemingly
contradict with our earlier discovery that knocking-down of the
group III E2 genes significantly diminishes PTT in the cell death
suppression assay (CDSA), ROS production and pathogenic
bacteria growth assays (Zhou et al., 2017). A possible explanation
for this seemingly inconsistence is that group III E2 enzymes
work with many immunity-associated E3 ligases that are involved
in different aspects of immune signaling in PTI. The results that
both the Pst effector AvrPtoB (Zhou et al., 2017) and tomato
SIPUB13 work with members of group III E2s in regulating plant
immunity indeed support this notion. To further test this, we

used Nicotiana tabacum CMPG1, NtCMPG1 (Gonzalez-Lamothe
etal., 2006; Gilroy et al., 2011) as an example by checking whether
NtCMPGI work with members of group III E2s in the in vitro
ubiquitination assay. As shown in Figure 7, in the presence
of tomato El, ubiquitin, NtCMPG1 and required co-factors,
reactions that contain member of group III tomato E2 enzymes
UBCS8, 9, 10, 11, 12, 28, 29, 30, 31, 38, 39, and 40, respectively
produced strong poly-ubiquitin signal that was shown as high
MW smear. By contrast, weak signal with MW less than that of
GST-NtCMPGI (~ 76 kD) was detected in reactions that contain
UBC1, 2, 3,41,7,4,5, 6,13, 13-2, 20, 22, and 35, akin to what was
observed in the reactions where SIPUB13 was used as the E3 ligase
(Figure 3). These results indicated that NtCMPG1 works with
group IIT E2s only for catalyzing ubiquitination, supporting the
hypothesis that group III E2 enzymes work with many E3 ligases
to regulate different aspects of PTT in plants.

DISCUSSION

In this study, we cloned the tomato SIPUBI3 gene and
demonstrate that only members of the group III E2s serve as the
cognate E2s for the E3 activity of SIPUB13. We also demonstrate
that knocking-down of the group III E2 genes enhanced callose
deposition and promoted the induction of RbohB gene for the
immunity-associated early oxidative burst upon 40 uM flg22
treatment, which is in consistence with previous results that
Arabidopsis publ2 and publ3 mutants displayed increased ROS
production and callose deposits than the wild type plants (Lu
et al, 2011). Additionally, we indicate PUB13 works with group
III E2s to ubiquinate FLS2 in the in vitro ubiquitination assay
(Figure 4) and group III E2 enzymes are employed by the
E3 activity of PUB13 in promoting the degradation of FLS2
after flg22 treatment (Figure 5B), which supports the notion
that group IIT E2s play an important role in PUB13-mediated
modulation of PTI. These results not only implicate group III
E2s in PUB13-mediated immune signaling but also build the
foundation for further mechanistic characterization of SIPUB13
in the regulation of PTT in tomato.

The group III E2 enzymes are required for PUBI13 in
attenuating FLS2-mediated PTI, as manifested by the increased
callose deposition on group III E2 genes-silenced N. benthamiana
plants 24 h after 40 pM flg22 treatment (Figure 5A). This
result is seemingly inconsistent with our previous discovery that
knocking-down of the group III E2 genes significantly diminishes
PTI in the CDSA, ROS production and pathogenic bacteria
growth assays (Zhou et al., 2017). Several factors would explain
this apparent discrepancy. Firstly, the group III E2 enzymes
can work with many other immunity-associated plant E3 ligases
besides PUB13 and these E3 ligases may reside in different
signaling pathways and contribute differentially to various PTI
responses. The results that tomato group III E2 Enzymes work
with tobacco U-box E3 NtCMPGI1 (Figure 7), and Pst effector
AvrPtoB (Zhou et al., 2017) in catalyzing ubiquitination support
the notion. Additionally, different subsets of the group III E2
enzymes might be the major requirement for different members
of these E3 ligases. The efficiency of knocking down each of
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FIGURE 7 | NtCMPG1 works specifically with group Ill E2s in vitro. GST-NtCMPG1 was tested with 34 purified tomato E2 proteins (Zhou et al., 2017) in in vitro
ubiquitination assay to determine its specificity of toward ubiquitin E2s. Tomato E2 protein used in each reaction is shown above the lane by their UBC number and
the minus marker (-) denotes the absence of any E2 enzyme in the reaction. The presence of high MW smear of ubiquitinated proteins as detected by Western blot
using anti-FLAG antibody indicates E2-E3 specificity. The numbers on the right denote the molecular mass of marker proteins in kilodaltons.
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the group III E2 genes on the group III E2 genes-silenced
N. benthamiana plant varied significantly, ranging from 40%
to nearly 95% (Zhou et al, 2017). Accordingly, an unequal
effect on each of these E3 ligases and the signaling pathways on
which they act may occur in the group III E2 genes-silenced
N. benthamiana plants, which allowed for the detection of
seemingly contradictory readouts of different responses of PTI.
The result that only induction of the PTI-activated reporter
genes Wrky28 and Pti5 were affected but Gras2 and Acre3l
remained unaltered on the flg22-treated group III E2 genes-
silenced N. benthamiana plant (Zhou et al., 2017) supports this
explanation. It is also noteworthy that the time interval after flg22
treatment at which we conducted the two assays (ROS production
and callose deposition assays) and the concentration of flg22
we used for the two assays were different as we followed the
optimized parameters for these two assays on N. benthamiana
(Nguyen et al., 2010). Finally, it has been found that there is
no correlation between callose deposition and the overall plant
immunity in some cases (Frei dit Frey et al., 2014). Unlike
individual immune response, such as ROS production and callose
deposition, the readout of CDSA and pathogenic bacteria growth
assay on the TRV-group IIl-infected plants reflects the ultimate
outcome of a combination of different PTI responses and the
overall effect of knocking down the group III E2 genes. The
diminishment of PUB13-promoted degradation of FLS2-KD in
group III E2 genes-silenced cells (Figure 5B) confirms the

requirement of these E2 enzymes for PUB13 in promoting the
ubiquitination and subsequent degradation of FLS2-KD.

Certain members of the group III E2s including AtUBCS8 (Lu
et al.,, 2011; Liao et al., 2017), AtUBC9 (Zhu et al., 2015) and
the human closest homolog of the group III E2s, UbcH5b (Yang
et al., 2006; Trujillo et al., 2008; Wang et al., 2015) have been
used most often in in vitro ubiquitination assays for testing the E3
ligase activity of RING and U-box E3 ligases from different plant
species, which has led to the belief that these E2s are promiscuous
in vitro due to they are highly active and processive (Callis, 2014).
However, other members of the group III E2s also specifically
interact with AvrPtoB and SIPUB13 in vitro and in vivo and are
required for their role in plant immunity (Figure 5 and Zhou
et al.,, 2017), which raise the possibility that the group III E2s
are employed by plants as the core set of E2s that work with
many E3 ligases and they possess specificity toward many RING
and U-box type E3s. In this regard, it is not surprising that only
group IIT E2s work with NtCMPGTI in the in vitro ubiquitination
assay (Figure 7). Additionally, the members of group III are
highly homologous intra- and inter-species (Zhou et al., 2017),
which may partially explain their promiscuousness. Functional
characterization of group III E2s suggested redundancy among
group III members for their role in the suppression of plant
immunity by AvrPtoB and in PTI (Zhou et al., 2017). On the
other hand, the level of affinity for individual members in group
III toward a specific E3 may be different from each other in vivo
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thus different members contribute differentially to the biological
function of a specific E3. The AtUBCS8 gene displays quantitative
difference in expression at different tissues/organs under different
plant growth conditions (Kraft et al., 2005). The tomato UBCI11,
28, 29, 39, and 40 were found to likely play a more significant
role in PTT than other group III members (Zhou et al., 2017).
These results support the notion that different members of
group III likely contribute differentially to PTI. Identification
and functional characterization of the E3 ligases that display
differential specificity toward individual members of group III
E2s would shed light on the fine-tuning of various signaling
pathways through group III E2s.

In addition to immune signaling, the Arabidopsis and rice
PUB13/SPL11 has also been implicated in ABA and SA signaling
(Antignani etal., 2015; Kong et al., 2015) and plant flowering time
control (Liu et al., 2012), suggesting that PUB13 regulate multiple
processes in these plants. It is yet unknown whether tomato
PUBI13 functions similarly. Further functional characterization
of tomato PUB13 would help answer the question and facilitate
uncovering crosstalk between plant immunity and development
if tomato PUB13 is found to be also involved in development and
hormone signaling.

AUTHORS CONTRIBUTIONS

BZ designed and performed the experiments, analyzed the data,
and wrote the article. LZ designed the experiments, analyzed the
data, and wrote and edited the article.

FUNDING

This work was supported in part by the University of Nebraska—
Lincoln start-up fund to LZ, the U.S. Department of Agriculture
National Institute of Food and Agriculture (Grant No. 2012-
67014-19449 to LZ), and the National Science Foundation
(Grants No. I0S-1460221 and No. I0S-1645659 to LZ).

ACKNOWLEDGMENTS

We thank James R. Alfano for sharing the fluorescence
microscope for callose diposition assay, Jonathan D. Jones for

REFERENCES

Antignani, V., Klocko, A. L., Bak, G., Chandrasekaran, S. D., Dunivin, T., and
Nielsen, E. (2015). Recruitment of PLANT U-BOX13 and the PI4Kbetal/beta2
phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important
roles during salicylic acid-mediated plant defense signaling in Arabidopsis.
Plant Cell 27, 243-261. doi: 10.1105/tpc.114.134262

Azevedo, C., Santos-Rosa, M. J., and Shirasu, K. (2001). The U-box protein family
in plants. Trends Plant Sci. 6, 354-358. doi: 10.1016/S1360-1385(01)01960-4

Callis, J. (2014). The ubiquitination machinery of the ubiquitin system. Arabidopsis
Book 12:e0174. doi: 10.1199/tab.0174

Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A.,
et al. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and

sharing the NtCMPGI clones, and Christian Elowsky and You
Zhou for assistance with the confocal microscope.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00615/
full#supplementary- material

FIGURE S1 | The Phylogenetic tree of 61 Arabidopsis PUB proteins and 21
tomato homologous proteins of AtPUB12 and 13. The unrooted phylogenetic tree
was generated by the neighbor-joining method using the MEGA6 program with
1000 bootstrap trials (Saitou and Nei, 1987; Tamura et al., 2013).

FIGURE S2 | Purified tomato GST-SIPUB13 and GST-NtCMPG1 proteins as
shown by SDS-PAGE. The amount of 3 L of purified recombinant proteins of
GST-tagged SIPUB13 and NtCMPG1 were separated by 10% SDS PAGE and
stained with Coomassie Brilliant Blue. The numbers on the left denote the
molecular mass of marker proteins in kD. The red arrow denotes the band of
purified recombinant proteins.
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The presence of GST-SIPUB13 or GST enhanced the conjugation activity of
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Name

SIPUB13-UBOX-EcoRI-F

SIPUB13-UBOX-XhoI-R
SIPUB13-1F
SIPUB13-1R
SIPUBI13-2F
SIPUB13-2R
CMPG1-F

CMPGI1-R
SIUBC10-XholI-KpnI-F
SIUBC10-Stul-PstI-R
SIUBCI12-KpnI-Xhol-F
SIUBC12-Pstl-R
F-xhol-Fni3
R-BamH1-Fni3tx
SIPUBI13-XholI-KpnI-F
SIPUB13-Stul-Xbal-R
SIFLS2-KD-Kpnl-F

SIFLS2-KD-Smal-R
SIEF1a-RT-F
SIEF1a-RT-R
SIRbohB-RT-F
SIRbohB-RT-R

Supplemental Table 1 List of primers used in this study

Sequence(5'-3")
CACCGAATTCATGAGGGAGAAGTCTTCAAC
CCTCGAGTCATCGTTTGGGTGATTCAAC
CACCATGGAAGAAGGAAGAGGAGTG
TGCGGATGCTGATTTATTGG
TTTCATCCGGCCAGACTTAC
TCAGCATTCCAGGACATTTGTC
CACCATGATTGCAACATGGAGAAA
TCAAAATGTCCTTTTGAGAC
GGCTCGAGGTACCATGGCTTCGAAACGAATATTG
GGAGGCCTGCAGACCCATGGCATACTTCTGGG
GGTACCCTCGAGATGGCTTCAAAGAGGATTCAG
GGGCTGCAGACCCATTGCGTATTTCTGGG
CGGCTCGAGATGGCTAACAGCAATCTTCC
CGGGGATCCTGCACCACTAGCATATAGGC
GGCTCGAGGTACCATGGAAGAAGGAAGAGGAGTG
GAGGCCTCTAGAGCATTCCAGGACATTTGTCG
CACCGGTACCATGAAGAAGAAAAAAGTGAATGACACG

CCCGGGATCTTTTACCAAATGAGAAGGC
TCCAAAGATGGTCAGACCCGTGAA
ATACCTAGCCTTGGAGTACTTGGG
CACACACAAGAGCCAAATCCAT
AGCACCCTTAGCAAGACACACA

purpose
SIPUB13 U-Box domain cloning for yeast two hybrid
SIPUB13 U-Box domain cloning for yeast two hybrid

tomato SIPUBI3 ORF gateway cloning in pDEST15 vector
tomato SIPUBI3 ORF gateway cloning in pDEST15 vector
tomato SIPUB13 ORF gateway cloning in pDEST15 vector

tomato SIPUB13 ORF gateway cloning in pDEST15 vector
Tobacco Nt CMPGI ORF gateway cloning in pDEST15
vector

Tobacco Nt CMPGI ORF gateway cloning in pDEST15

vector
SIUBCI10 OREF cloning for constrcucting pA7-nYFP-

SIUBCI0

SIUBCI10 OREF cloning for constrcucting pA7-nYFP-
SIUBCI10

SIUBC12 ORF cloning for constrcucting pA7-nYFP-
SIUBCI2

SIUBCI12 OREF cloning for constrcucting pA7-nYFP-
SIUBCI2

SIUBC13 OREF cloning for constrcucting pA7-nYFP-
SIUBCI3

SIUBCI13 OREF cloning for constrcucting pA7-nYFP-
SIUBCI3

S1PUBI3 ORF cloning for constrcucting pA7-cYFP-
SIPUBI3 and pTEX-SIPUBI3 -HA

SIPUBI3 ORF cloning for constrcucting pA7-cYFP-
SIPUB13 and pTEX-SIPUBI3 -HA

SIFLS2-KD OREF cloning for constrcucting pTEX-SIFLS2-
KD -HA

SIFLS2-KD OREF cloning for constrcucting pTEX-SIFLS2-
KD -HA

Real-time PCR for reference gene SIEFla

Real-time PCR for reference gene SIEFla

Real-time PCR for S/RbohB

Real-time PCR for S/RbohB
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