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ABSTRACT

Zavarygin et al. (2018) compiled a list of 15 deuterium abundance measurements, discarded two because the remain-

ing 13 measurements are then consistent with gaussianity, and found that the weighted mean baryon density (Ωbh
2)

determined from the 13 measurements is mildly discrepant (1.6σ) with that determined from the Planck 2015 cosmic

microwave background anisotropy data in a flat cosmogony. We find that a median statistic central estimate of Ωbh
2

from all 15 deuterium abundance measurements is a more accurate estimate, is very consistent with Ωbh
2 estimated

from Planck 2015 data in a flat cosmogony, but is about 2σ lower than that found in a closed cosmogonical model

from the Planck 2015 data.
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1. INTRODUCTION

By the time the Universe was a few minutes old, the

strong force had fused together neutrons and protons

and synthesized the light nuclei. In the standard cos-

mological model the primordial light nuclei abundances
depend only on Ωbh

2 (here Ωb is the baryonic matter

density parameter and h is the Hubble constant in units

of 100 km s−1 Mpc−1). Consequently, primordial light

nuclei abundance measurements can be used to deter-

mine Ωb, and Ωb determined using different light nuclei
must agree, if the standard model is correct.

Deuterium is particularly valuable in this regard as

its predicted abundance is quite sensitive to the value

of Ωbh
2. Spectroscopic analysis of absorption of quasar

light by foreground low-metallicity gas clouds is used to

estimate the primordial deuterium to hydrogen abun-

dance, (D/H)p.
1 Zavarygin et al. (2018), hereafter Z18,

have compiled a list of 15 (D/H)p measurements.

1 The analysis focuses on Lyman absorption lines produced by
the gas clouds. The deuterium Lyman lines are at slightly shorter
wavelengths than those of hydrogen. The difference in absorption
at these two sections of wavelengths determines D/H.

With the assumption of a cosmological model, Ωbh
2

can also be determined by fitting the cosmologi-

cal model to observational data, such as cosmic mi-

crowave background (CMB) anisotropy measurements
(Planck Collaboration 2016b). Comparisons between

Ωbh
2’s determined from different data is a particularly

compelling test of the standard cosmological model, and

this can also be used to constrain other cosmological

model parameters.
Z18 argue that two of their 15 measurements are out-

liers, if their 15 measurements were drawn from a Gaus-

sian distribution. Discarding these two measurements

Z18 determine a weighted mean Ωbh
2 using the remain-

ing 13 deuterium abundance measurements. They note

that this value differs at 1.6σ from that determined

by using the Planck 2015 TT + lowP + lensing CMB

anistropy data (Planck Collaboration 2016b).

Non-gaussian data compilations are not that rare
(Bailey 2017). Well-known examples include Hubble

constant measurements (Chen et al. 2003; Bethapudi & Desai

2017; Zhang 2018), 7Li abundance data (Crandall et al.

2015; Zhang 2017), LMC and SMC distance obser-
vations (de Grijs et al. 2014; Crandall & Ratra 2015),

and the Milky Way R0 and Θ0 parameter mea-
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surements (de Grijs & Bono 2016; Camarillo et al.

2018a; de Grijs & Bono 2017; Rajan & Desai 2018;

Camarillo et al. 2018b). Since gaussianity is assumed

in parameter estimation (e.g., Samushia et al. 2007;
Samushia & Ratra 2010; Farooq et al. 2015), much

effort has been devoted to testing for intrinsic non-

gaussianity (Park et al. 2001; Planck Collaboration

2016a, and references therein), as distinct from non-

gaussianity introduced by the measurement procedure.
Conventional techniques cannot be used to analyze

data with non-gaussian errors (Gott et al. 2001; Bailey

2017); this was one of the motivations for the develop-

ment of median statistics (Gott et al. 2001). Median
statistics does not make use of the errors on individual

measurements and so is not affected by incorrect errors.

On the other hand, since it does not use this information

it is less constraining than a weighted mean analysis.

Perhaps the most well known example of the use of
median statistics is its application to the measurement of

the Hubble constant (Gott et al. 2001; Chen et al. 2003;

Chen & Ratra 2011; Rajan & Desai 2018). In this paper

we apply median statistics to Z18’s compilation of 15
(D/H)p measurements.

We first examine the gaussianity of the Z18 data com-

pilation. In agreement with Z18, we find that the full

15 measurements data set is non-gaussian, while their

favored truncated set of 13 measurements is consistent
with gaussianity. We then argue that the less precise

median statistics summary estimate for Ωbh
2 for all 15

measurements is a more accurate representation of the

data than is the more precise weighted mean summary
estimate for the truncated data set of 13 measurements.

We find that the median statistics Ωbh
2 determined from

(D/H)p measurements is very consistent with those de-

termined from other cosmological data in the context of

spatially-flat cosmogonies, but is about 2σ lower than
those determined from cosmological data when using

non-flat cosmogonies.

2. DATA

Z18 have collected 15 D/H measurements from vari-

ous sources. These are listed in Table 1 of our paper.

Table 5 of Z18 provides more information about these

measurements.
Z18 note that the “scatter in D/H measurements ex-

ceeds that expected on the basis of the statistical error

estimates.” They analyze this compilation of 15 D/H

measurements using a modified Least Trimmed Squares
(LTS) procedure, chosen to discard the two most de-

viant of these 15 measurements. This procedure iden-

tifies the Pettini & Bowen (2001) and Srianand et al.

(2010) measurements as the outliers. Z18 find the

weighted mean of the remaining 13 measurements is

(D/H)p = (2.545 ± 0.0025) × 10−5 (1σ error; we find

2.544 instead of 2.545) and the corresponding reduced

χ2 is unity.

Table 1. D/H measurements from Z18

Quasar D/H(×105) References

HS 0105+1619 2.58+0.16
−0.15 Cooke et al. (2014)

J0407-4410 2.8+0.8
−0.6 Noterdaeme et al. (2012)

Q0913+072 2.53+0.11
−0.10 Cooke et al. (2014)

Q1009+2956 2.48+0.41
−0.13 Zavarygin et al. (2018)

J1134+5742 2.0+0.7
−0.5 Fumagalli et al (2011)

Q1243+3047 2.39± 0.08 Cooke et al. (2018)

J1337+3152 1.2+0.5
−0.3 Srianand et al. (2010)

SDSS 2.62± 0.07 Cooke et al. (2016)

J1358+6522 2.58± 0.07 Cooke et al. (2014)

J1419+0829 2.51± 0.05 Cooke et al. (2014)

J1444+2919 1.97+0.33
−0.28 Balashev et al. (2016)

J1558-0031 2.40+0.15
−0.14 Cooke et al. (2014)

PKS1937-1009 2.45+0.30
−0.27 Riemer-Sørenson et al. (2015)

PKS1937-101 2.62± 0.05 Riemer-Sørenson et al. (2017)

Q2206-199 1.65± 0.35 Pettini & Bowen (2001)

3. ANALYSIS

Z18 note that at least one of the 15 measurements

listed in Table 1 has smaller error bars than it should

have if the measurements were drawn from a Gaussian

distribution. In this Section we quantitatively confirm

that the 15 measurements (All 15) are distributed non-
gaussianly, while the truncated set of 13 (Truncated 13)

favored by Z18 are gaussianly distributed. We then ar-

gue that a median statistics determination of a central

estimate and error bars of the All 15 set is a better es-
timate of (D/H)p than is the Z18 LTS weighted mean

and error bar of the Truncated 13 set.

To study the gaussianity of a data compilation we need

to use a central estimate of the data. We consider three

here: the median, weighted mean, and arithmetic mean
central estimates.

Median statistics does not make use of the individ-

ual measurement errors. Consequently, the uncertainty

of the summary central value (the median) determined
using median statistics will be larger than that of the

weighted mean (which makes use of the individual mea-

surement errors). The median is defined as the value

with half of the individual measurements above it and
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half below it. Gott et al. (2001) showed that for Mi,

i = 1, 2, ..., N , independent measurements, the proba-

bility of the true median being placed between measure-

ments Mi and Mi+1 is

P =
2−NN !

i!(N − i)!
. (1)

The 1σ (2σ) error range about the median is the range

that includes 68.27% (95.45%) of the probability under

P . For asymmetric distributions, upper and lower error
bars are computed.

The weighted mean has the benefit of using the in-

dividual measurement errors with the risk that some

of them might be inaccurate (Podariu et al. 2001). For
Mi±σi measurements with errors σi, the weighted mean

central value is

Mwm =

∑N
i=1 Mi/σ

2
i

∑N
i=1 1/σ

2
i

, (2)

and the weighted mean standard deviation is

σwm =
1

√

∑N
i=1 1/σ

2
i

. (3)

We also use the arithmetic mean central estimate

Mm =
1

N

N
∑

i=1

Mi, (4)

with standard deviation

σm =

√

√

√

√

1

N2

N
∑

i=1

(Mi −Mm)2. (5)

Table 2 lists these central estimates with 1σ error bars

for the D/H data in Table 1. The weighted mean error

is half as big as the smallest individual error in Table 1

while the symmetrized median error is about 30% larger
than the smallest individual error in Table 1.

Table 2. Central estimates and 1σ error bars for D/H
(×105) measurements

Central Estimate Truncated 13 All 15

Median 2.51+0.07
−0.06 2.48+0.05

−0.08

Arithmetic mean 2.456 ± 0.063 2.32± 0.108

Weighted mean 2.544 ± 0.025 2.53± 0.025

3.1. Error Distributions

The central estimates are used to construct error dis-

tributions. For each central estimate and uncertainty,

MCE ± σCE, a new error distribution data set is created

by utilizing

Nσi
=

Mi −MCE
√

σ2
i + σ2

CE

. (6)

This formula assumes that the central estimate is not

correlated with the data.
For gaussianly distributed measurements and for a

weighted mean central estimate computed from these

measurements, the pull that correctly accounts for the

correlations is

Nwm− =
Mi −Mwm
√

σ2
i − σ2

wm

. (7)

See the Appendix of Camarillo et al. (2018a) for a

derivation of this expression.

To simplify the analysis, this new error distribution
data set is then symmetrized about 0.2 An error dis-

tribution is created for each central estimate; these are

used for gaussianity tests.

3.2. Gaussianity Tests

In this subsection we study the two data sub-
compilations of Table 1, the All 15 set and the Trun-

cated 13 set which excludes the Pettini & Bowen (2001)

and Srianand et al. (2010) measurements, to determine

whether they are non-gaussian or gaussian. We do this
by comparing their error distributions to four widely

used distributions.

The first distribution we consider is the Gaussian dis-

tribution, defined with a mean of zero, and standard

deviation of 1. Its probability density function (PDF) is

P (|N|) = 1√
2π

exp(−|N|2/2), (8)

with 68.27% (95.45%), or 1σ (2σ), of the probability

lying within |N | ≤ 1 (|N | ≤ 2).
The second distribution we compare the error distri-

butions to is the Laplace, or Double Exponential, distri-

bution. It is characterized by a sharp peak, and longer

tails than a Gaussian distribution

P (|N|) = 1

2
exp (−|N|), (9)

with 68.27% (95.45%), or 1σ (2σ), of the probability

lying within |N | ≤ 1.2 (|N | ≤ 3.1).

2 This is done by copying its negative back into itself and di-
viding by 2, creating a symmetric distribution centered at 0, with
standard deviation equal to 1.
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Table 3. KS Test Probabilities

Truncated 13 All 15

Dist. Sa pb nc Sa pb nc

Median

Gaussian 1 0.999 1 0.809

0.867 0.999 1.269 0.999

Laplacian 1 0.943 1 0.869

0.796 0.999 1.306 0.996

Cauchy 1 0.385 1 0.921

0.464 0.991 0.836 0.981

Student’s t 1 0.999 2000 1 0.992 2

0.76 0.999 3 1.25 0.999 28

Weighted Mean +

Gaussian 1 0.999 1 0.885

1.012 0.999 1.224 0.999

Laplacian 1 0.997 1 0.999

0.926 0.999 1.162 0.999

Cauchy 1 0.517 1 0.948

0.496 0.992 0.672 0.999

Student’s t 1 0.999 22 1 0.999 2

1.01 0.999 111 0.94 0.999 2

Weighted Mean −

Gaussian 1 0.997 1 0.613

1.093 0.999 1.464 0.999

Laplacian 1 0.999 1 0.966

0.995 0.999 1.316 0.999

Cauchy 1 0.604 1 0.950

0.531 0.993 0.682 0.999

Student’s t 1 0.999 7 1 0.999 2

0.96 0.999 4 1.11 0.999 2

Arithmetic Mean

Gaussian 1 0.999 1 0.238

1.005 0.998 1.949 0.981

Laplacian 1 0.994 1 0.338

0.991 0.995 1.731 0.876

Cauchy 1 0.612 1 0.722

0.629 0.965 1.05 0.770

Student’s t 1 0.999 69 1 0.722 1

1.00 0.998 69 1.94 0.981 123

aThe scale factor S fixed to 1 or that which maximizes p.
bThe probability (p-value) that the data doesn’t not come
from the PDF.
cStudent’s t distribution parameter n.

The third distribution we use is the Cauchy, or

Lorentz, distribution. It’s shaped similarly to the Gaus-

sian distribution, but has longer and thicker tails, with

68.27% (95.45%), or 1σ (2σ), of the probability lying
within |N | ≤ 1.8 (|N | ≤ 14). It is described as

P (|N|) = 1

π

1

1 + |N|2 . (10)

The final distribution is the Student’s t distribution.

It’s centered around 0, and has an additional parame-

ter, a positive integer n. At n = 1 this distribution is

the Cauchy distribution, and as n approaches infinity it
approaches the Gaussian distribution. The Student’s t

PDF is

P (|N|) = Γ[(n+ 1)/2]√
πnΓ(n/2)

1

(1 + |N|2/n)(n+1)/2
. (11)

In addition to the standard forms of the PDFs in

Eqs. (8) — (11), we also consider scaled distributions

where we replace |N| in the formulae above by |N|/S
where S is the scale factor.

In our analyses here we allow S to vary in steps of
0.001 from 0.001 to 2.5. For the Student’s t distribution

we lower the number of steps by varying S in steps of

0.01, and also vary n from 1 to 2000 in steps of 1.

We use the Kolmogorov-Smirnov (KS) test to com-
pare the error distributions to the PDFs. The KS test

utilizes the D-statistic, which is the largest difference

between the cumulative distribution function of the er-

ror distribution and of the PDF under consideration.

The D-statistic is then used in the inverted Kolmogorov
distribution, to determine the p-value

p = 2

∞
∑

i=1

(−1)i−1e−i2z2

, (12)

where

z =
(√

N + 0.12 +
0.11√
N

)

D. (13)

The p-value is the probability that the D-statistic could

be smaller than measured given a similar data set. In

general terms, the higher the p-value the more similar

the two distributions. More precisely, the p-value is the

probability that the data doesn’t not come from the
PDF it is being compared to. Our PDF comparison

results are listed in Table 3.

Focusing first on the All 15 data set, we see that the

Gaussian distribution is not a reasonable fit unless the
scale factor is pulled away from unity. This agrees with

the Z18 finding that at least one D/H measurement in

Table 1 has smaller error bars than expected if they were

drawn from a Gaussian distribution. The other All 15
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Table 4. Comparison between Ωbh
2 determined from (D/H)p and from CMB anisotropy and other data

CMB data alone CMB and other data

Cosmogony Ωbh
2 WM σ Median σ Ωbh

2 WM σ Median σ

Flat ΛCDM 0.02225 ±0.00023 1.5 0.34 0.02232 ±0.00019 1.8 0.51

Nonflat ΛCDM 0.02305 ±0.0002 4.1 2.1 0.02305 ±0.00019 4.1 2.1

Flat XCDM 0.02229 ±0.00023 1.6 0.43 0.02233 ±0.00021 1.8 0.52

Nonflat XCDM 0.02305 ±0.0002 4.1 2.1 0.02305 ±0.0002 4.1 2.1

Flat φCDM 0.02221 ±0.00023 1.4 0.26 0.02238 ±0.0002 2.0 0.64

Nonflat φCDM 0.02303 ±0.0002 4.0 2.1 0.02304 ±0.0002 4.0 2.1

results in Table 3 confirm that the All 15 data set is
non-gaussian. Considering the Truncated 13 data re-

sults in Table 3, we see that they are quite consistent

with gaussianity, as found by Z18. This is a consequence

of the removal of the outlying Pettini & Bowen (2001)
and Srianand et al. (2010) measurements. We empha-

size however, that there is no guarantee that these two

measurements are incorrect. All we know for sure is that

in the All 15 compilation the error bars are such that

these 15 measurements cannot have been drawn from a
Gaussian distribution. In such a situation it is best to

use a median statistics estimate of the summary central

value and error bars, instead of using an approach such

as LTS that results in a more precise summary central
estimate that might possibly be less accurate.

3.3. Baryonic Density Measurements and Spatial

Curvature

By using the Coc et al. (2015) equation given in Z18
we have

Ωbh
2 = 0.02225

[

(2.45± 0.04)× 10−5

(D/H)p

]1/1.657

. (14)

To the Lyman absorption error bar on Ωbh
2 derived us-

ing this equation, we add an additional±0.00021 nuclear

data uncertainty (Coc et al. 2015) in quadrature.
Using the All 15 median central estimate of (D/H)p =

(2.48 ± 0.065) × 10−5, with symmetrized error, we

get Ωbh
2 = 0.02209 ± 0.00041. The weighted mean

(D/H)p = (2.544± 0.025)× 10−5 for the Truncated 13

data set results in Ωbh
2 = 0.02175 ± 0.00025, in good

agreement with Z18’s Ωbh
2 = 0.02174 ± 0.00025. The

median error bar on Ωbh
2 is 65% larger than that on

the weighted mean and the median and weighted mean

Ωbh
2 central estimates differ by 0.7σ (of the quadrature

sum of their errors).

CMB anisotropy and other cosmological data can be

used to determine Ωbh
2, given a cosmogonical model.

Ωbh
2 determined using such data is sensitive to the ge-

ometry of space, being larger in the nonflat, closed mod-
els (Ooba et al. 2018a, 2017a,b, 2018b; Park & Ratra

2018a,b,c). The second and fifth columns of Table 4

list Ωbh
2 values determined assuming the cosmogonies

listed in the first column of the table (Park & Ratra
2018b,c). The second column lists values determined us-

ing Planck 2015 TT + lowP + lensing CMB anisotropy

data (Planck Collaboration 2016b), while the fifth col-

umn lists Ωbh
2 determined using this CMB data in

conjunction with the latest Type Ia supernova appar-
ent magnitude measurements, baryon acoustic oscilla-

tion observations, Hubble parameter data, and growth

factor measurements (Park & Ratra 2018b,c).

The third, fourth, sixth, and seventh columns of Ta-
ble 4 list the number of standard deviations between

the cosmology-determined Ωbh
2 listed in the second and

fifth columns and the (D/H)p-determined Ωbh
2, for the

Truncated 13 weighted mean analysis (third and sixth

columns) and for the All 15 median analysis (fourth
and seventh columns), in multiples of σ determined by

adding in quadrature the cosmology and (D/H)p uncer-

tainties on the two Ωbh
2’s.

Table 4 shows that for the flat models the Truncated
13 weighted mean (D/H)p determined Ωbh

2’s are be-

tween 1.4σ and 2.0σ lower than the corresponding cos-

mological data determined values, in agreement with the

Z18 findings. However, for the flat models the All 15 me-

dian statistics determined Ωbh
2’s are in very good agree-

ment with corresponding cosmology data determined

Ωbh
2’s.

Interestingly, we find that for the nonflat cosmogo-

nies, the All 15 median statistics (D/H)p-determined
Ωbh

2’s are all about 2.1σ lower than what the cosmol-

ogy data favor: the observed (D/H)p abundance data

favor flat spatial hypersurfaces over positively curved

ones — given the cosmological constraints — at just

above 2σ significance. It would be interesting to include
the (D/H)p measurements in a full likelihood analysis

with the other cosmological data, along the lines of

Park & Ratra (2018b,c); this will need to be done to
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more carefully weigh the consequences of our findings

here. However, we can now qualitatively add the (D/H)p
measurements to the milder evidence from reionization

(Mitra et al. 2018) and the stronger evidence from the
shape of the smaller-scale CMB anisotropy (Ooba et al.

2018a, 2017a,b, 2018b; Park & Ratra 2018a,b,c) that

favor flat over closed spatial hypersurfaces, while the

larger-scale CMB anisotropy shape and weak lensing

measurements (DES Collaboration 2017) favor closed
over flat cosmogonies (Ooba et al. 2018a, 2017a,b,

2018b; Park & Ratra 2018a,b,c).

4. CONCLUSION

Our median statistics analysis of the complete set of

15 (D/H)p measurements compiled by Z18 results in an

Ωbh
2 estimate that is very consistent with those esti-

mated from cosmological data in spatially-flat cosmogo-

nies, but is about 2σ lower than what cosmology data

favor in closed models. A full likelihood analysis includ-
ing other cosmological data will need to be performed in

order to determine the proper significance of this result.
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