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ABSTRACT

Zavarygin et al. (2018) compiled a list of 15 deuterium abundance measurements, discarded two because the remain-
ing 13 measurements are then consistent with gaussianity, and found that the weighted mean baryon density (Q,h?)
determined from the 13 measurements is mildly discrepant (1.60) with that determined from the Planck 2015 cosmic
microwave background anisotropy data in a flat cosmogony. We find that a median statistic central estimate of Qyh?
from all 15 deuterium abundance measurements is a more accurate estimate, is very consistent with €,h? estimated
from Planck 2015 data in a flat cosmogony, but is about 20 lower than that found in a closed cosmogonical model

from the Planck 2015 data.
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1. INTRODUCTION

By the time the Universe was a few minutes old, the
strong force had fused together neutrons and protons
and synthesized the light nuclei. In the standard cos-
mological model the primordial light nuclei abundances
depend only on Q,h? (here €, is the baryonic matter
density parameter and & is the Hubble constant in units
of 100 km s~! Mpc™'). Consequently, primordial light
nuclei abundance measurements can be used to deter-
mine {2, and €2, determined using different light nuclei
must agree, if the standard model is correct.

Deuterium is particularly valuable in this regard as
its predicted abundance is quite sensitive to the value
of Qyh?. Spectroscopic analysis of absorption of quasar
light by foreground low-metallicity gas clouds is used to
estimate the primordial deuterium to hydrogen abun-
dance, (D/H),." Zavarygin et al. (2018), hereafter Z18,
have compiled a list of 15 (D/H) , measurements.

1 The analysis focuses on Lyman absorption lines produced by
the gas clouds. The deuterium Lyman lines are at slightly shorter
wavelengths than those of hydrogen. The difference in absorption
at these two sections of wavelengths determines D/H.

With the assumption of a cosmological model, A2
can also be determined by fitting the cosmologi-
cal model to observational data, such as cosmic mi-
crowave background (CMB) anisotropy measurements
(Planck Collaboration 2016b). Comparisons between
Qyh?’s determined from different data is a particularly
compelling test of the standard cosmological model, and
this can also be used to constrain other cosmological
model parameters.

718 argue that two of their 15 measurements are out-
liers, if their 15 measurements were drawn from a Gaus-
sian distribution. Discarding these two measurements
718 determine a weighted mean Q,h? using the remain-
ing 13 deuterium abundance measurements. They note
that this value differs at 1.60 from that determined
by using the Planck 2015 TT + lowP + lensing CMB
anistropy data (Planck Collaboration 2016b).

Non-gaussian data compilations are not that rare
(Bailey 2017). Well-known examples include Hubble

constant measurements (Chen et al. 2003; Bethapudi & Desai

2017; Zhang 2018), "Li abundance data (Crandall et al.
2015; Zhang 2017), LMC and SMC distance obser-
vations (de Grijs et al. 2014; Crandall & Ratra 2015),
and the Milky Way Ry and Oy parameter mea-



surements (de Grijs & Bono 2016; Camarillo et al.
2018a; de Grijs & Bono 2017; Rajan & Desai 2018;
Camarillo et al. 2018b). Since gaussianity is assumed
in parameter estimation (e.g., Samushia et al. 2007;
Samushia & Ratra 2010; Farooq et al. 2015), much
effort has been devoted to testing for intrinsic non-
gaussianity (Park et al. 2001; Planck Collaboration
2016a, and references therein), as distinct from non-
gaussianity introduced by the measurement procedure.

Conventional techniques cannot be used to analyze
data with non-gaussian errors (Gott et al. 2001; Bailey
2017); this was one of the motivations for the develop-
ment of median statistics (Gott et al. 2001). Median
statistics does not make use of the errors on individual
measurements and so is not affected by incorrect errors.
On the other hand, since it does not use this information
it is less constraining than a weighted mean analysis.

Perhaps the most well known example of the use of
median statistics is its application to the measurement of
the Hubble constant (Gott et al. 2001; Chen et al. 2003;
Chen & Ratra 2011; Rajan & Desai 2018). In this paper
we apply median statistics to Z18’s compilation of 15
(D/H), measurements.

We first examine the gaussianity of the Z18 data com-
pilation. In agreement with Z18, we find that the full
15 measurements data set is non-gaussian, while their
favored truncated set of 13 measurements is consistent
with gaussianity. We then argue that the less precise
median statistics summary estimate for Qyh? for all 15
measurements is a more accurate representation of the
data than is the more precise weighted mean summary
estimate for the truncated data set of 13 measurements.
We find that the median statistics Qyh? determined from
(D/H),, measurements is very consistent with those de-
termined from other cosmological data in the context of
spatially-flat cosmogonies, but is about 20 lower than
those determined from cosmological data when using
non-flat cosmogonies.

2. DATA

718 have collected 15 D/H measurements from vari-
ous sources. These are listed in Table 1 of our paper.
Table 5 of Z18 provides more information about these
measurements.

718 note that the “scatter in D/H measurements ex-
ceeds that expected on the basis of the statistical error
estimates.” They analyze this compilation of 15 D/H
measurements using a modified Least Trimmed Squares
(LTS) procedure, chosen to discard the two most de-
viant of these 15 measurements. This procedure iden-
tifies the Pettini & Bowen (2001) and Srianand et al.
(2010) measurements as the outliers. Z18 find the

weighted mean of the remaining 13 measurements is
(D/H), = (2.545 £ 0.0025) x 10~° (1o error; we find

2.544 instead of 2.545) and the corresponding reduced
2

X* is unity.
Table 1. D/H measurements from Z18
Quasar D/H(x10%) References

HS 0105+1619  2.58701¢ Cooke et al. (2014)
J0407-4410 2.8708 Noterdaeme et al. (2012)
Q09134072 2537018 Cooke et al. (2014)
Q100942956  2.48101% Zavarygin et al. (2018)
J1134+5742 2.0707 Fumagalli et al (2011)
Q124343047  2.39+£0.08 Cooke et al. (2018)
J1337+3152 1.2%95 Srianand et al. (2010)
SDSS 2.62+0.07 Cooke et al. (2016)
J1358+6522 2.58 £0.07 Cooke et al. (2014)
J14194+0829  2.51+0.05 Cooke et al. (2014)
J1444+-2919 1.9715:33 Balashev et al. (2016)
J1558-0031 2.40191% Cooke et al. (2014)

PKS1937-1009  2.4579:39
PKS1937-101 2.62+0.05 Riemer-Sgrenson et al. (2017)
Q2206-199 1.6540.35 Pettini & Bowen (2001)

Riemer-Sgrenson et al. (2015)

3. ANALYSIS

718 note that at least one of the 15 measurements
listed in Table 1 has smaller error bars than it should
have if the measurements were drawn from a Gaussian
distribution. In this Section we quantitatively confirm
that the 15 measurements (All 15) are distributed non-
gaussianly, while the truncated set of 13 (Truncated 13)
favored by Z18 are gaussianly distributed. We then ar-
gue that a median statistics determination of a central
estimate and error bars of the All 15 set is a better es-
timate of (D/H)  than is the Z18 LTS weighted mean
and error bar of the Truncated 13 set.

To study the gaussianity of a data compilation we need
to use a central estimate of the data. We consider three
here: the median, weighted mean, and arithmetic mean
central estimates.

Median statistics does not make use of the individ-
ual measurement errors. Consequently, the uncertainty
of the summary central value (the median) determined
using median statistics will be larger than that of the
weighted mean (which makes use of the individual mea-
surement errors). The median is defined as the value
with half of the individual measurements above it and



half below it. Gott et al. (2001) showed that for M;,
1 = 1,2,..., N, independent measurements, the proba-
bility of the true median being placed between measure-
ments M; and M, is

2-NN!
Saw-ar W

The 1o (20) error range about the median is the range
that includes 68.27% (95.45%) of the probability under
P. For asymmetric distributions, upper and lower error
bars are computed.

The weighted mean has the benefit of using the in-
dividual measurement errors with the risk that some
of them might be inaccurate (Podariu et al. 2001). For
M;+0; measurements with errors o;, the weighted mean
central value is

S, M;/o?
Mym = —N - 5

Zi:l 1/‘71'2

and the weighted mean standard deviation is

; (2)

= (3)

Zij\il 1/‘71‘2

We also use the arithmetic mean central estimate
1

with standard deviation

1 N
Om — —Z(Mz _Mm)Q' (5)

Table 2 lists these central estimates with 1o error bars
for the D/H data in Table 1. The weighted mean error
is half as big as the smallest individual error in Table 1
while the symmetrized median error is about 30% larger
than the smallest individual error in Table 1.

Table 2. Central estimates and lo error bars for D/H
(x10°) measurements

Central Estimate Truncated 13 All 15
Median 2.5115-0¢ 2.4815:0°
Arithmetic mean 2.456 +0.063 2.32 £+ 0.108
2.544 +0.025 2.53 +0.025

Weighted mean

3.1. Error Distributions

The central estimates are used to construct error dis-
tributions. For each central estimate and uncertainty,
Mcg £+ ocg, a new error distribution data set is created
by utilizing
— M (6)
L Vol tote
This formula assumes that the central estimate is not
correlated with the data.

For gaussianly distributed measurements and for a
weighted mean central estimate computed from these
measurements, the pull that correctly accounts for the
correlations is

No

Mi - Mwm
\% 01'2 - Uarm
See the Appendix of Camarillo et al. (2018a) for a
derivation of this expression.

To simplify the analysis, this new error distribution
data set is then symmetrized about 0.2 An error dis-

tribution is created for each central estimate; these are
used for gaussianity tests.

Nym- = (7)

3.2. Gaussianity Tests

In this subsection we study the two data sub-
compilations of Table 1, the All 15 set and the Trun-
cated 13 set which excludes the Pettini & Bowen (2001)
and Srianand et al. (2010) measurements, to determine
whether they are non-gaussian or gaussian. We do this
by comparing their error distributions to four widely
used distributions.

The first distribution we consider is the Gaussian dis-
tribution, defined with a mean of zero, and standard
deviation of 1. Tts probability density function (PDF) is

P(INJ) = exp(—|NJ?/2), (8)

1
V27
with 68.27% (95.45%), or 1o (20), of the probability
lying within |N| <1 (|N] < 2).

The second distribution we compare the error distri-
butions to is the Laplace, or Double Exponential, distri-
bution. It is characterized by a sharp peak, and longer
tails than a Gaussian distribution

P(N) = 3 exp (~IN)), )

with 68.27% (95.45%), or 1o (20), of the probability
lying within |N| < 1.2 (|N| < 3.1).

2 This is done by copying its negative back into itself and di-
viding by 2, creating a symmetric distribution centered at 0, with
standard deviation equal to 1.



Table 3. KS Test Probabilities

Truncated 13 All 15
Dist. S* PP n° S* PP n®
Median
Gaussian 1 0.999 1 0.809
0.867 0.999 1.269 0.999
Laplacian 1 0.943 1 0.869
0.796  0.999 1.306 0.996
Cauchy 1 0.385 1 0.921
0.464 0.991 0.836 0.981

Student’s ¢ 1 0.999 2000 1 0992 2
0.76  0.999 3 1.25 0.999 28
Weighted Mean +

Gaussian 1 0.999 1 0.885
1.012  0.999 1.224 0.999
Laplacian 1 0.997 1 0.999
0.926 0.999 1.162  0.999
Cauchy 1 0.517 1 0.948
0.496 0.992 0.672  0.999

Student’s ¢ 1 0.999 22 1 0999 2
1.01 0999 111 094 0.999 2
Weighted Mean —

Gaussian 1 0.997 1 0.613
1.093  0.999 1.464 0.999
Laplacian 1 0.999 1 0.966
0.995 0.999 1.316 0.999
Cauchy 1 0.604 1 0.950
0.531 0.993 0.682  0.999
Student’s ¢ 1 0.999 7 1 0999 2

0.96 0.999 4 1.11  0.999 2
Arithmetic Mean

Gaussian 1 0.999 1 0.238
1.005 0.998 1.949 0.981
Laplacian 1 0.994 1 0.338
0.991 0.995 1.731 0.876
Cauchy 1 0.612 1 0.722
0.629 0.965 1.05 0.770

Student’s ¢ 1 0.999 69 1 0.722 1
1.00  0.998 69 1.94 0.981 123

%The scale factor S fixed to 1 or that which maximizes p.

bThe probability (p-value) that the data doesn’t not come
from the PDF.
CStudent’s ¢ distribution parameter n.

The third distribution we use is the Cauchy, or
Lorentz, distribution. It’s shaped similarly to the Gaus-
sian distribution, but has longer and thicker tails, with
68.27% (95.45%), or 1o (20), of the probability lying
within |[N| < 1.8 (|N| < 14). It is described as

1 1

P(IN|) = T1ITNE (10)

The final distribution is the Student’s ¢ distribution.
It’s centered around 0, and has an additional parame-
ter, a positive integer n. At n = 1 this distribution is
the Cauchy distribution, and as n approaches infinity it
approaches the Gaussian distribution. The Student’s ¢
PDF is

I[(n+1)/2] 1

PIND = 2t/ v WP (1

In addition to the standard forms of the PDFs in
Egs. (8) — (11), we also consider scaled distributions
where we replace |N| in the formulae above by |N|/S
where S is the scale factor.

In our analyses here we allow S to vary in steps of
0.001 from 0.001 to 2.5. For the Student’s ¢ distribution
we lower the number of steps by varying S in steps of
0.01, and also vary n from 1 to 2000 in steps of 1.

We use the Kolmogorov-Smirnov (KS) test to com-
pare the error distributions to the PDFs. The KS test
utilizes the D-statistic, which is the largest difference
between the cumulative distribution function of the er-
ror distribution and of the PDF under consideration.
The D-statistic is then used in the inverted Kolmogorov
distribution, to determine the p-value

p=2 (-1) e ", (12)
=1
where 011
2= (\/N+O.12+W)D. (13)

The p-value is the probability that the D-statistic could
be smaller than measured given a similar data set. In
general terms, the higher the p-value the more similar
the two distributions. More precisely, the p-value is the
probability that the data doesn’t not come from the
PDF it is being compared to. Our PDF comparison
results are listed in Table 3.

Focusing first on the All 15 data set, we see that the
Gaussian distribution is not a reasonable fit unless the
scale factor is pulled away from unity. This agrees with
the Z18 finding that at least one D/H measurement in
Table 1 has smaller error bars than expected if they were
drawn from a Gaussian distribution. The other All 15



Table 4. Comparison between Q,h* determined from (D/H), and from CMB anisotropy and other data

CMB data alone

CMB and other data

Cosmogony Qph? WM o Median o Qph? WM o Median o
Flat ACDM 0.02225 40.00023 1.5 0.34 0.02232 £0.00019 1.8 0.51
Nonflat ACDM  0.02305 40.0002 4.1 2.1 0.02305 £+0.00019 4.1 2.1
Flat XCDM  0.02229 £0.00023 1.6 0.43 0.02233 £0.00021 1.8 0.52
Nonflat XCDM  0.02305 £0.0002 4.1 2.1 0.02305 £0.0002 4.1 2.1
Flat ¢CDM 0.02221 40.00023 1.4 0.26 0.02238 £+0.0002 2.0 0.64
Nonflat CDM  0.02303 £0.0002 4.0 2.1 0.02304 £+0.0002 4.0 2.1

results in Table 3 confirm that the All 15 data set is
non-gaussian. Considering the Truncated 13 data re-
sults in Table 3, we see that they are quite consistent
with gaussianity, as found by Z18. This is a consequence
of the removal of the outlying Pettini & Bowen (2001)
and Srianand et al. (2010) measurements. We empha-
size however, that there is no guarantee that these two
measurements are incorrect. All we know for sure is that
in the All 15 compilation the error bars are such that
these 15 measurements cannot have been drawn from a
Gaussian distribution. In such a situation it is best to
use a median statistics estimate of the summary central
value and error bars, instead of using an approach such
as LTS that results in a more precise summary central
estimate that might possibly be less accurate.

3.3. Baryonic Density Measurements and Spatial
Curvature

By using the Coc et al. (2015) equation given in Z18
we have

1/1.657
(2.45+0.04) x 107° /

(D/H)p

Oh? = 0.02225 (14)

To the Lyman absorption error bar on Q,h? derived us-
ing this equation, we add an additional +0.00021 nuclear
data uncertainty (Coc et al. 2015) in quadrature.

Using the All 15 median central estimate of (D/H),, =
(2.48 + 0.065) x 107°, with symmetrized error, we
get Qph? = 0.02209 + 0.00041. The weighted mean
(D/H), = (2.544 £ 0.025) x 1075 for the Truncated 13
data set results in Qyh% = 0.02175 % 0.00025, in good
agreement with Z18’s Q,h? = 0.02174 £ 0.00025. The
median error bar on Qyh? is 65% larger than that on
the weighted mean and the median and weighted mean
Qph? central estimates differ by 0.7 (of the quadrature
sum of their errors).

CMB anisotropy and other cosmological data can be
used to determine Q,h?, given a cosmogonical model.
Oyh? determined using such data is sensitive to the ge-

ometry of space, being larger in the nonflat, closed mod-
els (Ooba et al. 2018a, 2017a,b, 2018b; Park & Ratra
2018a,b,c). The second and fifth columns of Table 4
list Qph? values determined assuming the cosmogonies
listed in the first column of the table (Park & Ratra
2018b,c). The second column lists values determined us-
ing Planck 2015 TT + lowP + lensing CMB anisotropy
data (Planck Collaboration 2016b), while the fifth col-
umn lists Q,h% determined using this CMB data in
conjunction with the latest Type Ia supernova appar-
ent magnitude measurements, baryon acoustic oscilla-
tion observations, Hubble parameter data, and growth
factor measurements (Park & Ratra 2018b,c).

The third, fourth, sixth, and seventh columns of Ta-
ble 4 list the number of standard deviations between
the cosmology-determined €,h2 listed in the second and
fifth columns and the (D/H),-determined ,h?, for the
Truncated 13 weighted mean analysis (third and sixth
columns) and for the All 15 median analysis (fourth
and seventh columns), in multiples of o determined by
adding in quadrature the cosmology and (D/H),, uncer-
tainties on the two Qyh?’s.

Table 4 shows that for the flat models the Truncated
13 weighted mean (D/H), determined Q,h*’s are be-
tween 1.40 and 2.0¢ lower than the corresponding cos-
mological data determined values, in agreement with the
718 findings. However, for the flat models the All 15 me-
dian statistics determined Q,h?’s are in very good agree-
ment with corresponding cosmology data determined
Qph?'s.

Interestingly, we find that for the nonflat cosmogo-
nies, the All 15 median statistics (D/H),-determined
Oph?’s are all about 2.10 lower than what the cosmol-
ogy data favor: the observed (D/H), abundance data
favor flat spatial hypersurfaces over positively curved
ones — given the cosmological constraints — at just
above 20 significance. It would be interesting to include
the (D/H), measurements in a full likelihood analysis
with the other cosmological data, along the lines of
Park & Ratra (2018b,c); this will need to be done to
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more carefully weigh the consequences of our findings
here. However, we can now qualitatively add the (D/H),
measurements to the milder evidence from reionization
(Mitra et al. 2018) and the stronger evidence from the
shape of the smaller-scale CMB anisotropy (Ooba et al.
2018a, 2017a,b, 2018b; Park & Ratra 2018a,b,c) that
favor flat over closed spatial hypersurfaces, while the
larger-scale CMB anisotropy shape and weak lensing
measurements (DES Collaboration 2017) favor closed
over flat cosmogonies (Ooba et al. 2018a, 2017a,b,
2018b; Park & Ratra 2018a,b,c).

4. CONCLUSION

Our median statistics analysis of the complete set of
15 (D/H), measurements compiled by Z18 results in an

Oyh? estimate that is very consistent with those esti-
mated from cosmological data in spatially-flat cosmogo-
nies, but is about 2¢ lower than what cosmology data
favor in closed models. A full likelihood analysis includ-
ing other cosmological data will need to be performed in
order to determine the proper significance of this result.
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