Systemic signaling in response to wounding and pathogens
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Abstract

Plants possess systemic signaling networks that allow the perception of local stresses
to be translated into plant-wide responses. Although information can be propagated via
a variety of molecules such as hormones and RNAs moving within the bulk flow of the
phloem or in the transpiration stream, the vasculature also appears to be a major
pathway whereby extremely rapid signals move bi-directionally throughout the plant. In
these cases, the movement mechanisms are not dependent on redistribution through
bulk flow. For example, self-reinforcing systems based around changes in Ca?* and
reactive oxygen species, coupled to parallel electrical signaling events appear able to
generate waves of information that can propagate at hundreds of ym/sec, These signals
then elicit distant responses that prime the plant for a more effective defense or stress
response in unchallenged tissues. Although ion channels, Ca?*, reactive oxygen
species and associated molecular machineries, such as the NADPH oxidases, have
been identified as likely important players in this propagation system, the precise nature
of these signaling networks remains to be defined. Critically, whether different stimuli
are using the same rapid, systemic signaling network, or whether multiple, parallel
pathways for signal propagation are operating to trigger specific systemic outputs

remains a key open question.



Highlights

e The vascular system provides a conduit for rapid systemic signaling of local biotic
and abiotic stresses.

e Self-reinforcing cascades of regulators such as ROS and Ca?* have the potential to
traverse the vasculature in directions not dictated by source-sink or transpiration
stream relationships.

e Electrical signals may provide a rapid signal propagation system operating in parallel

to a ROS-based network.



Introduction

Biologists have long known that plants show the ability to perceive events locally and
then translate them into distant, often plant-wide reactions. Such systemic plant
responses are classified into broad categories based on the triggering stimulus:
systemic acquired resistance (SAR) to pathogens (reviewed in [1]), systemic wound
responses (SWR) to damage and herbivory (reviewed in [2]) and systemic acquired
acclimation (SAA) to abiotic stresses (reviewed in [3]). The theme behind these plant-
wide response networks is that the signals generated by a local stimulus lead to distant
parts adapting more efficiently to subsequent stresses of the same (or often of different)
nature. For SAR, this effect can translate into the mounting of a more rapid and efficient
defense response [4][5] and for SAA, local stressing of one leaf can lead to the ability to
withstand high levels of e.g., light and heat stress in other leaves (e.g., [6,7]). Such
changes can even be passed from generation to generation, providing a significant
advantage to the “primed” offspring [8-10] and potentially even to those offspring’s own
progeny [8]. In the case of SAR, these transgenerational effects are likely being
mediated via a salicylic acid (SA) -dependent epigenetic mechanism centered on RNA-

directed DNA methylation [11].

For a localized stress to trigger such long-range responses requires signaling
networks that integrate activities across the entire plant body. The cells of the vascular
system are emerging as likely central conduits for such rapid, long-distance information
exchange. Indeed, the vasculature has long been recognized as an information

superhighway, providing systemic interconnection between distant organs to coordinate



physiology and development. This long-range signaling is thought to be accomplished
through the exchange of a host of signals ranging from proteins and RNAs to hormones
and metabolites carried by the flow of the transpiration and translocation streams
[12,13]. However, we are only now just beginning to understand the makeup of a
parallel machinery that uses signals such as reactive oxygen species (ROS), Ca?* and
electrical changes that is also likely using the vasculature to propagate stress-related

information throughout the plant at speeds of hundreds of um/sec (Figure 1).

Information flow: RNAs, proteins and metabolites

A wide spectrum of potential signaling molecules have been seen moving in the
vasculature ranging from hormones and metabolites to proteins and RNAs (reviewed in
[12,14]) that all have the potential to be carrying systemic information. The challenge
now is to define specific information-carrying molecules from those caught up in the
mass transit from, e.g., source to sink [15] and from those that may represent the
cellular debris of the developmental transition from proto-phloem, with its full array of
cellular components, to the much reduced architecture of the mature sieve element.
Recently, for RNAs, a structural motif that may define motility within the vasculature has
been reported, providing hints towards a mechanism for specificity and potentially for
specific information flow. Thus, endogenous plant mRNAs containing tRNA-like
structures (TLS) have been seen to be preferentially trafficked through the phloem [16].
mRNAs that are not normally seen in the phloem could be engineered to be transported
once this TLS “stem-bulge-stem-loop” structure had been added. Positive stranded

RNA viruses also appear to use TLS-like motifs to potentiate their transit through the



phloem. At first glance, this type of movement seems like it should be limited to the
source to sink bulk flow of the translocation stream. Yet, grafting experiments have
shown long-distance RNA movement that does not simply mirror these source-sink
relationships (e.g., [17]), implying an alternative motility machinery. The possibility that
plants possess such a multi-directional macromolecule transport system that permeates
the plant body and carries a specific subset of information carrying molecules may
sound unlikely. However, the PIN, AUX/LAX, ABCB system driving polar auxin
movements (reviewed [18]) provides one example of this kind of system being

hardwired throughout plant tissues.

Multidirectional information flow: from small molecules to electrical signals and

self-reinforcing waves

For SAR, many, structurally diverse small molecules have been proposed to underlie
the systemic nature of induced resistance including: methyl salicylate, glycerol-3-
phosphate, azelaic acid, pipecolic acid, dehydroabietenal, nitric oxide and S-
nitrosoglutathione (Figure 1; reviewed in [19]). However, despite much investigation, the
precise identity of the transmitted signal still remains elusive. Likewise, for SWR,
jasmonate-related molecules were initial candidates for potential systemic, phloem
mobile signals, but de-novo synthesis is now thought to be a key source of jasmonates
in the systemic leaves [20]. Indeed, signal transmission (as judged by systemic
induction of jasmonic acid synthesis and related defense gene induction) occurred in <
1 min in Arabidopsis (e.g., [21,22]) and in patterns that although largely mapping to the

immediate direct vascular connections between leaves also show responses between



leaves where there is not thought to be a directly connected vasculature (e.g., [23]),
implying a possibly alternative underlying machinery to small molecule exchange via the
sieve tubes.

In the case of SWR, electrical coupling has emerged as a likely core component of
the systemic signaling system (reviewed in [24]). Propagation of electrical signals
circumvents the limitation on delivering chemical messengers in the phloem
translocation stream where, e.g., signaling of herbivore attack must often propagate
from sink tissues (e.g., [25]). Similarly, a self-reinforcing/regenerating signaling system
such as ROS production or Ca?* influx (reviewed in [26]) does hold the potential to
propagate signals in directions not dictated by the mass flow of vascular contents. For
example, the electrical signals that are transmitted through the phloem in response to
herbivory of Arabidopsis plants travel at hundreds of um/s in directions that are not
simply dominated by the source/sink relationships between leaves [27]. Thus, fast and
slow depolarizations propagated via the phloem to immediate neighbor leaves of the
wounded leaf, whereas more distant leaves only received slow depolarizations. Two
isoforms of the glutamate receptor-like (GLR) ion channel family, GLR3.3 and 3.6 are
known to be key elements of the systemic component of electrical wound signaling in
Arabidopsis [23], including the propagation of both fast and slow phloem depolarizations
induced by the wounding of caterpillar feeding [27]. These observations are consistent
with a feed-forward amplification system of ion influx propagating systemic information.
In contrast, GLR3.5 appears to be required to limit the spread of these electrical signals
to non-neighbor leaves [28] suggesting a complex interplay of ion fluxes acting to both

amplify and inhibit the propagation machinery. How such interactions play out at the



cellular level is a key unanswered question. In addition, wound-triggered action
potentials can propagate in the phloem even in the g/r3.3 gIr3.6 double knockout [24]
hinting at the potential richness of the landscape of the electrical signals that can move
within this tissue.

In Arabidopsis, GLRs are a 20-member family of ligand (possibly amino acid) gated,
most likely Ca?*-permeable ion channels [29-32]. Application of exogenous amino acids
has also been shown trigger elevations in cytosolic Ca?* and alterations in membrane
potentials that are dependent on GLR function (e.g. [30,33]), consistent with a close
relationship between the GLRs and the Ca?* and electrical components of systemic
signaling. Defining the endogenous ligands of these channels could therefore provide
important insight into the signal propagation mechanism. For instance, GLR1.2 is
thought to be gated by the non-structural amino acid D-serine [34] as part of a pollen
tube guidance mechanism, suggesting not only the classic 20 proteinergic amino acids,
but also related molecules could be playing roles in these signaling events. For
example, pipecolic acid is an unnatural amino acid linked to phloem-related triggering of
SAR but any potential relationship to GLR action is as yet poorly defined.

The machinery decoding these signaling events can be extremely fast. Thus, local
application of high light or heat stress can trigger RNA transcript abundance changes in
60 sec or less [35]. These rapid changes in transcript levels are dependent in part on
ABA and ROS signaling cascades that are closely linked to the systemic element of
SAA [35]. However, they are not altered in mutants in RBOHD. RBOHD has been
shown to be a critical player in systemic Ca?* and ROS waves (e.g., [36,37]) suggesting

that although the propagation and response elements of this particular systemic



signaling network may share components such as Ca?* and ROS, the precise molecular
machinery underlying each part of the network is likely distinct. One key question arising
from such studies is how far this model for a self-reinforcing ROS and Ca?* wave-based
transmission machinery, and especially the molecular elements that support it, applies
to the phloem. The phloem is known to propagate wound-related electrical signals (as
described above) and e.g., wounding triggers Ca?* changes in the vasculature [38,39],
likely the phloem [40]. However, not all attacks on the plant leaf trigger propagating Ca?*
signals [41] and whether a systemic ROS wave [37] is traversing the sieve tubes,

companion cells or other tissues has yet to be precisely defined

Signal transmission via the xylem

While the living cells of the phloem present obvious candidates for the rapid
propagation of signals, what of the transpiration stream of the xylem? These cells are
dead at functional maturity and the mass flow of liquid is occurring in the apoplastic
space. It is clear that, much like the bulk flow of translocation in the phloem, the
transpiration stream does carry many bioactive molecules from nutrients to hormones.
However, mature xylem elements present a barrier to propagating electrical or
ROS/Ca?*-based signals as these cells are dead at functional maturity. A physical
pressure-related signal has been proposed to propagate in the xylem, where e.g.,
wounding would cause a break in the tension of the transpiration stream that would
rapidly propagate throughout the vessel system [42,43]. Such mechanical signaling
could trigger stretch sensors in the membranes of adjacent cells, the so-called “squeeze

cell hypothesis” [44]. This systemic, mechanically-based signaling provides an



attractively plant-oriented signaling network based on the unique characteristic of the
transpiration stream but has proven difficult to design experiments to directly test.
Recent work modeling the propagation of variation potentials (electrical signals that
propagate systemically in response to wounding, reviewed in [26]) also suggests that it
may be bulk flow of a chemical messenger rather than a hydraulic signal that can carry
the long-distance wound signal to distant tissues via the xylem [13]. It is also important
to remember that vascular bundles incorporate not only the transmitting cells of the
xylem and phloem but an array of associated living parenchyma cells that could play
key roles in signaling. For example, LOX6 is known to be a key enzyme in systemic
induction of the jasmonic acid production that is triggered by long-range electrical
signaling in response to wounding. LOX6 is specifically expressed in a subset of xylem
parenchyma cells called xylem contact cells [44], suggesting an interplay between the
phloem-based and xylem associated signaling networks. These xylem-associated cells
would also be ideally suited to receive a mechanical signal from the loss of
transpirational tension or a chemical signal carried in the transpiration stream as
outlined above. Similarly, although in response to local salt stress of the root systemic
changes in Ca?* are visible in the veins (i.e. vasculature) of the aerial parts of the plant
[45], it is the cortex and endodermis around the vasculature that show root-wide Ca?*
changes [46]. Thus, it is possible that multiple parallel signals could be being
transmitted through distinct tissue conduits, offering the possibility to greatly enhance

the specificity of any subsequent response.

The possibility of functional coupling between xylem- and phloem-based long-range

signaling systems is hinted at in some other systemic phenomena. For example,

10



nitrogen status and response is integrated by mobile polypeptide signals (C-
TERMINALLY ENCODED PEPTIDE; CEP) and CEP DOWNSTREAM 1 (CEPD1) and
CEPD2 respectively [47,48]. CEP travels from the root to shoot in the translocation
stream to signal nitrogen deprivation and CEPDs travel down from the shoot to the root
in the phloem to upregulate the plant’s soil nitrogen scavenging systems. Although CEP
peptide signals are carried through the xylem they are perceived by leucine-rich repeat
transmembrane receptors that are preferentially expressed in the phloem of the shoot
[47,49-51]. These receptors then trigger responses, such as producing CEPDs and
potentially hormones that are redistributed by the phloem (reviewed in [52]). Thus, in
this case, the long-range transmission of information and integration of root and shoot

activities involves close interactions between both xylem and phloem.

VI. Conclusions and future perspectives

There seems a high likelihood that there are multiple signals (chemical, ionic, electrical,
mechanical) traversing the vasculature, possibly through multiple cellular pathways and
conveying systemic information about local stress perception within the plant (Figure 1).
The degree to which these reflect multiple parallel signaling networks or are acting in
concert to deliver an information-rich single signal to distal tissues remains a key
question to be answered. The associated challenge will be to map these signals with
high spatial and temporal resolution as they move through the plant. Here, the
development of a toolkit of increasingly sensitive fluorescent biosensors that are also
now being developed for plant-related signaling components, holds great promise to be

able to simultaneously visualize multiple signaling components as they propagate
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systemic signals in real time. For example, engineering plants expressing both a red
shifted Ca?* biosensor and the ABAleon ABA sensor [53] has allowed simultaneous
visualization of these two regulatory elements already closely linked to the rapid
transmission of signals associated with SAA. As a wider range of such sensors is
developed and deployed, we can expect them to begin to reveal just how extensive and

integrated the information flow within the plant truly is.
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Figure 1. Local stresses such as leaf wounding or pathogen infection can elicit long-
distance signals that propagate through the vasculature to affect defense responses in
distal leaves. In local leaves, production of a structurally diverse set of chemical signals
(e.g. methyl salicylate, G3P, pipecolic acid, S-nitrosoglutathione, jasmonic acid, salicylic
acid) occurs. These signals can then potentially be: (1) transmitted to distal leaves
through the vasculature, or other symplastic transport mechanisms, or (2) trigger
downstream long-range signaling networks. Auto-propagating signals (e.g. electrical
waves, calcium waves, and ROS waves) can rapidly move to distal leaves to induce
systemic response such as de novo synthesis of defense compounds (e.g. jasmonic
acid for wounding/herbivory and salicylic acid for biotrophic pathogen infection). These
waves of information likely work in a self-reinforcing manner, by which membrane

depolarization through gating of plasma membrane ion channels may activate further
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plasma membrane calcium channels in a feed-forward loop. The GLR family of
channels appears important in this network but their precise role(s) remain to be
defined. Increased cytosolic calcium can in turn activate RBOHSs through binding to the
N-terminal EF hands on this enzyme, increasing ROS, leading to further ion channel
gating and so wave propagation. A major unanswered question at present, is how far

this model can be applied to the conducting cells of the phloem.
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