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ABSTRACT: Uniaxial consolidation tests were conducted on reagent-grade granular salt in dry conditions at 150 C. 2D-
microscopic images, parallel to the axis of consolidation, were obtained at several stages of progressive consolidation from 15% to
3% porosity. Microstructure image analyses were performed to obtain probability density functions (PDFs) of the area, solidity,
coordination number, orientation, elongation and roundness of the grains, as well as the PDFs of the branch lengths, branch
orientations and solid volume fraction, defined locally over polygons with edges matching grain centroids. It is found that sample
deformation is mostly due to grain rearrangement and that upon consolidation, grains become less convex, and elongate in the
direction perpendicular to the loading axis. Four fabric tensors were calculated to assess microstructure anisotropy induced by grain
orientation, branch length orientation, grain solidity and local solid volume fraction. Fabric tensors were diagonal and orthogonal.
Therefore, their product was used to define a global fabric tensor, which was introduced in the expression of the stiffness tensors.
The constitutive parameters were calibrated against the consolidation tests. The approach paves the way to enrich continuum
damage and healing mechanics model with fabric descriptors that can play the role of internal variables.

various directions of space. A set of probe lines drawn at

1. INTRODUCTION 10° (Muhunthan and Chameau, 1997) or a set of parallel

Salt rock is often considered as an ideal material for
geological storage of compressed air and nuclear waste,
because of its low permeability and favorable creep
properties. Salt is a polycrystalline material made of
bonded crystals (called grains in the following). Salt
stiffness depends on rock microstructure, which changes
during the geostorage process. A micro-macro
mechanical model is proposed to predict the evolution of
stiffness, deformation and microstructure development
during consolidation.

A fabric tensor is a symmetric tensor that captures
anisotropy due to the presence of heterogeneities in a
rock. A fabric tensor can be defined in many ways to
characterize the microstructure arrangement of
geomaterials, and is usually regarded as the second
microstructure measurement, after porosity. Crack fabric
tensors were defined with space distribution, density,
shape, dimension, and orientation of cracks. A fabric
tensor was defined based on the density, dimension, and
angular distribution of branches linking particle centers
(Oda, 1982). Stereological methods were used to
characterize the distribution of directional data
(Kanatani, 1984). A fabric tensor can be determined by
calculating the local porosity on test lines drawn in

test lines in a given direction were commonly used as
test lines (Kou et al. 1998). The volume fraction, the
mean coordination number, and the correction factor
depending on grain size distribution were found to be
essential descriptors of rock microstructure, and were
introduced in the trace of fabric tensors (Madadi et al.,
2004).

A relationship between stiffness and fabric tensors was
established, with the assumption that anisotropy was
fully determined by the fabric tensor (Cowin, 1985). The
model was applied to poroelasticity, considering drained
and undrained conditions separately (Cowin, 2004). An
elasticity model based on the fabric tensor was then
proposed with two Lamé like constants only (Zysset and
Curnier, 1995). A fabric tensor based on grains
orientation was used to define a Drucker-Prager like
yield function, taking the anisotropic yielding behavior
of granular soils into account (Oda 1989).

Rock anisotropy can be due to the preferential
orientation of multiple microstructure descriptors
simultaneously. However, fabric tensors are usually
defined to account for the orientation distribution of one
descriptor only. A more global definition of fabric is
needed to properly account for microstructure



development in the expression of the stiffness tensor. In
this study, a continuum mechanical model is proposed to
link salt stiffness to microstructure development, by
means of a fabric tensor that accounts for several
microstructural  sources of anisotropy. Uniaxial
consolidation test were conducted on reagent-grade
granular salt in dry conditions at 150 C. 2D-microscopic
images, parallel to the axis of consolidation, were
obtained at several stages of progressive consolidation
from 15% to 3% porosity. Microstructure image
analyses were performed to obtain probability density
functions (PDFs) of various descriptors, which are
interpreted in Section 2. In Section 3, fabric tensors are
calculated for selected microstructure descriptors. In
Section 4, we propose a relationship between these
fabric tensors and the stiffness tensor.

2. MICROSTRUCTURE
ANALYSIS

A series of consolidation tests were performed on
reagent-grade granular salts in dry conditions, at 150 C.
The diameter of salt particles ranged between 0.300mm
and 0.355mm. The sample was 6.426cm high and
1.905cm in diameter. The tests were conducted at a
constant rate of 0.034mm/s. The relation between
vertical stress and vertical strain is presented in Fig.1:
with the increase of vertical stress, salt exhibits higher
stiffness and lower porosity.
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Fig. 1. Consolidation test results
Microscopic images were acquired at four stages of the

consolidation test, when samples reached 15%, 10%, 6%
and 3% porosity (Fig.2).

(c) 10% total porosity

(d) 15% total porosity

Fig. 2. Microstructure images of salt samples (white area:
salt grains, black area: voids, red lines: branches linking
the centers of two grains in contact)

Nine microstructure descriptors were studied to
characterize the evolution of microstructure during
consolidation (Table 1).

Table 1. Microstructure descriptors

Descriptors Definition
Grains are represented by virtual
. ellipses with same second moment.
Grain . .
. . The orientation is the angle between
orientation . . .
the major axis of the ellipse and the
horizontal axis of the image.
Branch The angle between a branch and the
orientation horizontal axis of the image
Grain area The area of a grain
Branch length The leggth of segmel}ts l.mkmg the
centroids of two grains in contact
The ratio of the area of a particle
Roundness over the area of a circle whose
diameter equals to the length of the
virtual ellipse’s major axis
The ratio between the minor and
Elongation major axes of the virtual ellipses
representing the grains
Local solid Solid volume fraction over a
volume polygon with edges matching grains
fraction centroids.
Solidity The ratio of grain area over the area




of the grain’s circumscribed circle

Coordination
number

The number of grains in contact
with a given grain

The probability distribution functions of the nine
descriptors are presented in Fig. 3, in which 0° is the
direction of horizontal axis, which is also the direction of
the minimum principal stress.
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Fig. 3. Probability density functions of the microstructure
descriptors

According to Fig.3(a), grain orientations are initially
relatively uniform, but salt grains take a preferential
grain orientation under compression: the major axis of
grains rotates to align with the direction of minimal
principal stress. Fig. 3(b) shows branch orientations are
more uniform than grain orientations throughout the
consolidation process, with a slight preferential
orientation parallel to the direction of the minimum
principal stress.

Based on Fig.3(c), the PDFs of grain area of samples at
different porosity levels are similar. The volumetric
deformation of salt particles’ does not seem to contribute
to the overall deformation of the sample. The decrease of
total volume under compression mainly results from
grain reorganization and void collapse. Similar
conclusions can be drawn from the distribution of branch
lengths, shown in Fig.3(d). The shape of branch length’s
PDFs is close to a normal distribution, whose mean
value is slightly lower than 300mm. The distribution of
branch length does not change much during
compression. As microscopic images analysis is done in
2D, a large domain would have to be imaged to have a
representative description of 3D anisotropy induced by
lengths or areas. Thus we will not use grain area or
branch length as fabric descriptors in the following.

The PDF of local solid volume fraction is presented in
Fig.3(e). Lower local solid volume fraction means larger
void in a polygonal area within the image. With the
compaction of the sample, local solid volume fraction
increases, and the distribution of void size becomes
uniform. Grain solidity, which describes grain’s
convexity, decreases during consolidation (Fig.3(f)):
dislocations and indentations under high contact forces
can explain the loss of grain convexity.

The PDFs of roundness and elongation are related: the
lower the roundness, the lower the elongation (Fig.3(g)
and Fig.3(h)). Roundness decreases with porosity, which
indicates that grains become less spherical under the
effect of high contact forces. Since the grain size
distribution does not depend on porosity, we conclude
that grains undergo deviatoric deformation and
potentially indentation from highly stressed contacts.
Fig.3(i) confirms that a decrease of porosity increases



the probability of contact between grains, and therefore,
increases grains coordination number.

Based on the results presented above, we select grain
orientation, branch length orientation, local solid volume
fraction and solidity to characterize microstructure
development during consolidation.

3. FABRIC TENSOR FORMULATION
According to Oda (1989), the fabric tensor Fj is
expressed as:

E. = aninjE(Q)dQ

i

(i,j=1,23)....... (1)

where n1, ny, n3 are projections of a unit vector n on the
Cartesian reference coordinates; (2 is the whole solid
angle corresponding to a unit sphere, and equals to
4m; E(€2) 1is a probability density function.

In this research, the fabric tensor depends on 2D images
analysis. As a result, equation (1) is modified into:

F=[ nnE(Q)dQ  (i,j=1,2) )

]

where Fj is a symmetric second-rank tensor; £2equals to

27. @ is proposed as the inclination angle of n, then, the
components of F; can be obtained.
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where N is the total number of measurements. Based on
the previous image analyses, the grain orientation fabric
tensors are the following:

s (02049 0.0313
G® = (6)
10.0313 0.7951
G06_'o.2507 0.0027 @
00027 0.7493
o _| 0:2947 0.0446 ®
10.0446  0.7053
s [ 03389 -0.0620 o)
T [-0.0620 0.6611

where G03, G06, G10, and G15 are the grain orientation
tensors for samples with 3%, 6%, 10% and 15% porosity

respectively. 1’312 and 1’721 in grain orientation fabric

tensors are close to 0, thus the fabric tensors can be
regarded as diagonal orthogonal tensors. The difference

between F, and F,, increases when sample’s porosity

decreases, which indicates that during consolidation,
anisotropy develops in the samples.

Similarly, branch orientation fabric tensors are
calculated as follows:
| 04373 -0.0164
= (10)
—0.0164 0.5627
w | 04742 -0.0010]
B” = (11)
| -0.0010  0.5258 |
o | 04687 —0.0025]
B = (12)
| —0.0025  0.5313 |
s | 05128 —0.0109]
B” = (13)
| —0.0109  0.4872 |

Branch orientation tensors can also be regarded as
diagonal orthogonal tensors. During compaction,
anisotropy tends to develop, but compared to grain
orientation, anisotropy brought by branch orientation is
not significant.

The fabric tensors of that describe the distribution of
local solid volume fraction and grain solidity are
obtained as follows:

F :ii(p‘”)zsin2 6" (14)
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For the local solid volume fraction fabric tensor, p is the
local solid volume fraction of each polygon and @ is the
angle between the horizontal and the line connecting a
polygon’s center with the image’s center. For the grain
solidity fabric tensor, p is the grain solidity of each grain
and @is the angle between the horizontal and the line
connecting a grain’s center with the image’s center.
Equations (17), (18), (19), (20) provide the normalized
local solid volume fraction fabric tensors:

LI 0.3765 0.0036 | _ AL 0.4710 0.0045 (17)
0.0036 0.4229 0.0045 0.5290

20 | 03815 —0.0020 ,[ 05496 -0.0028] (¢

Q1% = =0.8331 (18)
-0.0020  0.3126 -0.0028  0.4504

L1 :{ 0.3428 —0.0105}:0.8165{ 0.5142 —0.0157} (19)
-0.0105  0.3239 -0.0157  0.4858



03098 —0.0114 0.5416
S { }z 0.7563{

-0.0252 (20)
-0.0114 0.2622

—0.0252 0.4584

Matrices L have a unit trace. The local solid volume
fraction coefficient ¢, is used for normalization. As
expected, ¢, increases as porosity decreases during
compaction: o’ =0.7563, ¢,°=0.8165, ¢°=0.8331,

o =0.8941. The solidity fabric tensors are given in
equations (21), (22), (23), (24):

LS = 0.3917 -0.0023 _0.9258° 0.4570 0.0027 @1)
—0.0023  0.4655 0.0027 0.5430

12 g0 _[ 0.4671 —0.0019} _0.9384{ 0.5304 -0.0022] (22)
-0.0019  0.4136 -0.0022  0.4696 |

102 Q10 _
5 -

0.4655 —0.0150 ,[0.5233 001697 55
=0.9431 (23)
~0.0150  0.4241 0.0169 0.4767 |

152 q15 _
K] -

{0.4590 0.0092}

,10.5078 0.0010 (24)
0.0092 0.4409

0.0010 0.4922 |

The solidity fabric tensor does not exhibit any
preferential orientation. The solidity coefficient o,

decreases during compaction, which marks the decrease
of grain convexity with the decrease of porosity:

o =0.9486, °=0.9431, o*=0.9384, o"=0.9258

4. ANISOTROPIC ELASTIC MODEL

We note that in each fabric tensor, the F] component is

2
negligible in front of the diagonal components. We thus
consider that all fabric tensors are diagonal and
orthogonal, and we define a normalized fabric tensor H
to characterize the total anisotropy induced by grain
orientation, branch orientation, distribution of local solid
volume fraction, and distribution of grain solidity, as
follows:

H' =yG'BLS' (25)

¥ is a normalizing coefficient to make tr(H) equal to 1.
The second-rank fabric tensor H can be written as kI+K.
k is a scalar, and K is a traceless second-rank tensor.

According to (Zysset, 1995), the expressions of the free
energy and the stiffness tensor, as functions of &, K and
the strain E, are given as:

Y(EkK)=al®I+a,]®I+a,K®K +a,(K®I+1®K)
+a,K’®K* +aK®K+a,(I®K+K®I)
+a(K®K* +K* ®K)+a,(I®K* +K* ®1)

(26)

2:

2
p-2¥ aI1®I+a,I®I+a,KOK +a,(K®I+1BK)
OF

+a,K’®K’ +a,K®K+a,(I®K+K®I) (27)

+a (K®K*+K* ®K)+a,(I®K* +K* ®1)

in which the tensor product ® is defined as following:

- 1
A4,®B, = E(AkBW. +4,B,,) (28)

ki mi

With the assumption of sample statistical homogeneity,
a =2k a=2uk’; a,=24; a,=2uk ; c¢s=0
a;,=0; a,=2u; a,=1k; a;=0;a,=0. g and A
are Lamé like constants. Considering that the salt rock
Young’s modulus is exponentially dependent on porosity
(Turner, 1987), we propose to relate u and A to the
local solid volume fraction and the grain solidity as
follows:

U, =, exp(ma;, +na,) (29)
A, =2, exp(ma, +na,) (30)

The model is calibrated against the consolidation tests.
The Oedometer modulus is used for calibration. Due to
the limited test data we obtain 2z,+A, rather than £, and
Ao separately. Calibrated parameters are presented in
Table 2. Calibrated model trends are compared to
experimental data in Fig. 4. Microstructure image
analysis were done in 2D, and porosity measurements
were done in 3D, thus some adjustments were necessary.
For example, the porosity of one of our samples was 8%
according to microstructure image analysis and only 6%
based on the calculation of total solid mass and total
volume of the sample. Triaxial tests and 3D
microstructure images are needed to validate the model.

Table 2. Calibrated model parameters
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Fig. 3. Calibration of the elastic properties (solid line:
experimental results; red dots: calibrated model)



CONCLUSION

Micrographs were obtained at several stages of a
uniaxial consolidation test performed on dry reagent salt
at 150C. As expected, the coordination number increases
during consolidation, as well as the solid volume
fraction, defined locally over polygons with edges
matching grains’ centers. It is found that salt
deformation is mostly due to grain rearrangement.
During consolidation, grains elongate in the direction
perpendicular to the loading axis and loose convexity,
due to the probable indentation of grains in contact.
Microstructure descriptors selected from 2D statistical
analyses include orientation and ratios of length. Fabric
tensors are calculated to assess the anisotropy induced
by grain orientation, branch length orientation,
distribution of local solid fraction, and distribution of
solidity (i.e. grains’ convexity). The four fabric tensors
are diagonal and orthogonal. Therefore, their product is
used to define a unique fabric tensor H, which indicates
the overall microstructure’s anisotropy. The expression
of the free energy established by Zysset is used to
calculate the anisotropic stiffness tensor as a function of
H. Assuming sample’s statistical homogeneity, the
model depends on only two Lamé like parameters,
which depend on grain solidity and solid volume
fraction. The proposed constitutive model is calibrated
against the consolidation tests. Results exhibit the
expected trends but more experimental data is needed to
validate the model, including 3D microstructure images
and triaxial compression stress paths. This research
provides a basis to formulate fabric-enriched continuum
damage and healing models, in which the internal
variables are defined as microstructure descriptors.
Models will allow optimizing the healing conditions of
rocks used for hosting geological storage facilities.
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