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I. Introduction

HE classical theory of Theodorsen [1] and its later extensions [2]

developed closed-form expressions for the unsteady aero-
dynamic forces on a piecewise-continuous rigid and impermeable
airfoil undergoing small-amplitude harmonic motions in a uniform
incompressible flow. These analyses separated the total fluid
forces or moments into circulatory and noncirculatory parts, which
correspond to the contribution of the unsteady shedding of vorticity
into the wake and the nonlifting hydrodynamic sloshing of fluid
about the airfoil, respectively [3]. Following the same approach,
Gaunaa [4] developed a general theoretical framework to predict the
aerodynamic loads on unsteady thin deformable airfoils. These
unsteady fluid forces also contribute fundamentally to the airfoil gust
response problem [3,5] and to the aerodynamic noise generation from
gust encounters [6] and vortex—structure interactions [7].

The aerodynamic theory of noncirculatory forces on moving bodies
in a steady flow has previously been studied for impermeable flexible
panels with various leading- and trailing-edge boundary conditions in
both supersonic and subsonic flows [8§—14]. Accordingly, the mode of
instability depends on the boundary conditions as well as the Mach
number. In subsonic flows that are of present interest, panels fixed at
both ends are predicted to lose stability by divergence [8—10], and there
is an explicit dependence of this instability on the local panel curvature.
However, cantilevered panels fixed at the leading edge and free at the
trailing edge lose stability by flutter [10,13], which has been confirmed
experimentally [10]. The present Note contributes to this literature by
furnishing the aerodynamic loads on an oscillating porous panel to
enable aeroelastic stability predictions.

The aerodynamic impact of a chordwise variation in porosity was
investigated theoretically by Hajian and Jaworski [15-17] for
stationary airfoils, and closed-form solutions were found by
requiring only that the porosity distribution was Holder continuous;
Holder continuity includes as a subset continuously-differentiable
classes of porosity distributions common to most airfoil designs of
practical interest. However, the unsteady motions of an airfoil with
chordwise porosity gradients have not yet been considered, which is
an essential step in studying the unsteady aerodynamics and the
aeroacoustics of realistic porous airfoils. Porous treatments have
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been shown in previous studies to reduce turbulence noise generation
from the edges of wings and blades [18-22], which also engender
a loss of aerodynamic performance and suggest a potential
aerodynamic—aeroacoustic tradeoff.

This Note extends the analyses of Hajian and Jaworski [15-17,23]
to determine the unsteady noncirculatory forces on an arbitrarily
deforming panel with a Holder-continuous porosity distribution. An
analytical expression for the noncirculatory pressure distribution is
presented and evaluated for the special cases of uniform and variable-
porosity panels undergoing harmonic deformations, in which special
attention is paid to the influence of the panel end conditions. These
results constitute the first major step toward a complete linearized,
unsteady aerodynamic theory for lifting porous bodies, which
may have potential application to the performance estimation of
biologically inspired swimmers and fliers and to the future assessment
of aeroelastic stability and flow noise production of porous airfoils.

II. Mathematical Model

Consider a baffled thin panel undergoing prescribed unsteady
motions in a two-dimensional steady, incompressible flow. For
noncirculatory forces, it is sufficient to consider the single-sided flow
illustrated in Fig. 1, as neither a vortex sheet nor the Kutta condition
are imposed here. Supposing a chord length /, mean flow speed U,
and fluid density p, all terms are nondimensionalized using [, /U,
and pU? /2 as the length, time, and pressure scales, respectively.

A. Porous Boundary Condition

In the problem illustrated in Fig. 1, the background flow velocity
and panel normal velocity can be written in nondimensional form as

Ugow = iin the upper half-plane and U p,pe = 02,/ atlg, respectively,
where the function z, (x, ¢) defines the mean surface of the deforming
panel. To obtain the two-dimensional boundary condition along a
porous panel, consider the local seepage flow rate directed along the
unit normal to the panel surface w,,

Wy = (V(f} + Uﬂow - Upanel) n (1)
where ¢ is the perturbation velocity potential. The linearized normal

unit vectoris 1 = (—(dz,/0x), 1), and the perturbation flow velocity
on the upper panel surface is

dz, 0z,
—_— 2
ox + ot @

w(x, ) = w, +

where w(x, t) = 0¢/0z|,_y+. Because of the absence of the mean
flow on the lower half-plane, the term dz,, /dx is dropped when Eq. (2)
is evaluated at z = 07

For a panel with a Darcy-type porosity distribution under conditions
that permit omission of nonlinear flow and acoustic effects
(cf. [24-26]), the local flow rate is linearly proportional to the porosity
and the pressure distribution across the porous medium [17,27]:

w, = SORWAP( 1 0

Here, 6 = pUC is the dimensionless porosity parameter [17], C is the
porosity coefficient, R(x) is a dimensionless function defining the
porosity distribution, and A p(x, ) is the dimensionless pressure jump
(lower minus upper) across the panel. Comparison of the relationship
between the local pressure jump Ap and seepage velocity w, against
the standard Darcy boundary condition [28] allows the product CR(x)
to be defined in terms of physical parameters:

/. \
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Fig. 1 Schematic of a thin, porous panel in one-sided flow of speed U
that is undergoing prescribed unsteady deformations z,(x,#) and has
seepage velocity w, (x,f). The coordinates are scaled by the panel chord
length.

CR(x) = “)

K
und
The symbol y denotes the fluid viscosity, and k, n, and d represent the
permeability, open area fraction, and thickness of the porous material,
respectively, all of which may vary with chordwise location x.

B. Derivation of Singular Integral Equation

The panel and its surrounding baffle separate the fluid domain into
two potential flow fields ¢; and ¢, that are valid in either the half-
plane above or below the panel, respectively. Using an approach
similar to that of Kornecki et al. [10], each potential field represents
the noncirculatory influence of the panel with a distribution of
sources of which the strengths are related to the velocity boundary
condition on each side of the panel. The Darcy porosity condition (3)
then couples the flows on each side and furnishes a singular integral
equation for the pressure jump across the panel.

The velocity potential ¢; valid in the upper half-plane may be
written in the form [3,10]

hwzn =y [ HEouE-9 + 2 ©

where the source strength H is twice the normal flow velocity on the
panel (cf. [3] pp. 257-258),

6

0z, 07,
ox ot

H,(x,t)=2( +4

Similarly, the velocity potential ¢, for the lower half-plane has the
same form as Eq. (5) but with a source strength of opposite sign,

Hmn_—4w+§ﬂ )

Recall that the 0z, /dx term is omitted here due to the absence of a
mean flow in the region below the panel. The pressure jump across
the panel, Ap = p, — p;, is then determined from the linearized
Bernoulli equation applied on the upper and lower panel surfaces:

0 0
p«x¢)==—2({%l+_gg) ®
O
patxt) = =22 ©)
z=0"

The combination of Egs. (2-9) yields a singular integral equation
of the second kind for the pressure jump across the panel,

Ap(x,t)=
(][lwd@rz / R(AP(E.1) Ix—éld6)+f(x’f)
T

o x=¢
(10)
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where
2 ()
roe =2 (1890 a1 8 [+ %52 ) - elac)
an
@0—% ﬁl (12)

These equations recover the result derived by Kornecki et al. [10]
in the special case of impermeable panels (6 = 0) when the effect of
acoustic action on the lower surface, i.e., the dz, /9t term in Eq. (7), is
neglected. However, for porous panels, Eq. (10) depends on both x
and ¢ and cannot be solved directly in its present form. Application of
a Fourier transform in time yields an ordinary singular integral
equation identical to the canonical singular integral equation (109.1)
in the work by Muskhelishvili [29], which can be written in the form
of a Fredholm integral equation of the second kind and solved
analytically using a Liouville-Neumann series [30]. To complete the
analysis, the inverse Fourier transform of the solution determines
the noncirculatory pressure distribution for an arbitrary panel
deformation history.

The next section pursues the solution for porous panels undergoing
harmonic motions of a single frequency, from which a Fourier series
in time may be used to construct the unsteady pressure distribution on
panels with an arbitrary deformation history.

III. Solution for Porous Panels Undergoing
Harmonic Motions

The noncirculatory fluid forces are now studied for porous
panels with harmonic motions, such that z,(x, ) = z,(x)e’®" and
Ap(x,1) = p(x)e'™, where p(x) is a complex-valued function and @
is the dimensionless frequency. The integral equation (10) can now be
reduced and rearranged into the ordinary singular integral equation

5R(x)][ 17(5) ][k( p@)de=f(x) (13)

where
k(x,&) = 2w5R(&) ln |x — &] + 5M (14)
2 [Ydz, (O (. 1
o0 =2 15 (1ot ) o
+21_a) Za(f)(le ln|x =& +;) dé (15)
7 ¢

A comparison of Eq. (13) with the canonical singular integral
equation (109.1) in [29] identifies a set of auxiliary functions,

1 —i6R(x)
G0 = iR () (16)
_ 1 [110gG®)
r(x)_eri][o E—x de
—1 [1tan"![6R(&)]
= — —d 17
= ][0 Fx ¢ (17

and the fundamental function,

2
Z(x) = 1+ R ()" [ ] (x = o) (18)
k=1

which enable an analytical solution. Constant values ¢, denote the
positions of the panel endpoints, ¢c; =0 and ¢, = 1, and 4; are
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integers to be determined based on the conditions given in [29]
for singular integral equations on open contours. At each endpoint,
real-valued constants ; and f; are determined by

L.log G(cy) = iltan’l[éR(ck)] (19)
2ri n

(075 =+ l/}k =
where the upper sign corresponds to ¢; = 0 and the lower sign
corresponds to ¢, = 1. This expression is real valued and identifies
P1 = P> = 0. The panel endpoints are termed special ends if a; is an
integer, which is valid only for nonporous panels when § = 0; hence,
A = o = 0(ctf. [29] p.231). The endpoints become nonspecial ends
for porous panels with § > 0, where —1/2 < a; < 1/2 from Eq. (19).
Furthermore, at these nonspecial ends, the integers 4, must be chosen
apart from £1 and satisfy the condition —1 <a; + 4, <1 to be
unique [29]. The only integers satisfying the aforementioned
conditions are 4; = 4, = 0. Therefore, 4, = 0 for all scenarios
considered in this work and regardless of porosity, and the product
term in Eq. (18) has no bearing on the solution.

With the details of the panel endpoints established for the
fundamental function Z(x), Eq. (13) can be finally recast into the
canonical form,

p@ + - [ N ap@ s = o 0)
where
SR(x) kL)
N9 = 1+52R2( )k( x.8) A1+ R (x)] ()][ Zo -0
1)
SR(x) £(0)
Fe) = 1+#wuﬂ‘*'u+#mun()fzma—n
22)

Equation (20) is a Fredholm integral equation of the second kind,
which may be solved using a Liouville-Neumann series [30]:

Ap(x,t=0)
5 L
. . X
0.4 0.6 0.8 110
6=0.5
=0.2 — o6=1
a)
Ap(x,t=11)
6=0.5
6=0.2 — 6=1
. . . X
0.4 0.6 0.8 1.0
_5F
c)

p(x) = lim " Afuy(x) (23)
n—oo k:0

where A = —1/zi and
ug(x) =F(x)

1
mm=LNwawmma

1 1
M®=AmANmmMﬁ®mN@¢MHM%wdé
(24)

Expressions (23) and (24) together constitute the general solution
for the noncirculatory pressure distribution over a porous panel with
porosity distribution R(x) undergoing harmonic oscillations in a
single-sided flow.

For uniformly porous panels, R(x) =1, and the associated
noncirculatory fluid forces for this uniformly porous body with
harmonic deformations can be determined from Eq. (23) with

208> X (1/z)tan™'s
N [/ ——
(x.8) = 1+52 b= ¢l = (1+52)(1—x)
1|y — 1- (1/m)tan™'s
X][ |y §|( y) dy (25)
0o y—x y
and

_ f(x) o x O\ (/mtan"'s
F(x) = 1+52_”(1+52) (l—x)

% ][1 f) (1 —y)(l/ﬂ)tan"&dy 26)
0y —X y

Note that the Liouville-Neumann series is not strictly ordered
based on the smallness of the porosity parameter 8, and the first term
of the series, uy(x) = F(x), incorporates the effects of porosity. It is

Ap(x,t=17/2)
4t
/- —
2 /
0 02 0.4 0.6 8 10"
20 50 6=05 -
6202 — &=1
4+
b)
Ap(x,t=3717/2)
4 50 6=0.5
6=0.2 — 6=1 -
2 L
0 L L L L L X
0.2 0 0. 0.8 1.0
—2K
N
—4+
d)

Fig. 2 Pressure distribution for nonporous and uniformly porous panels oscillating on simple supports with z,(x) = sin zx and frequency v = 1 at

different instants in time: a) t = 0,b) ¢t = z/2,¢)t = x,and d) ¢ = 3x/2.
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further noted that the Liouville-Neumann series converges rapidly
for small porosity values of aerospace interest, as will be discussed in
the next section.

IV. Discussion

The solution for a panel vibrating at a single frequency [Eq. (23)] is
now evaluated numerically to examine the effects of panel deformation
shape and chordwise variation in porosity on the noncirculatory
pressure distribution. The examples presented here use sinusoidal or
quartic panel shapes to approximate the deformations of a panel with

Ap(x,t=0)

8r ~

6
4l
2

7 — 520 6=0.5 n
2 6=02 — 6=1
O vl 1 )

-2
-4
-6
-8

c)

simple or clamped supports, respectively, and the results for a square-
root porosity gradient are compared against the case of uniform
porosity. The numerical results presented involve only the leading-
order term p(x) = ug(x) = F(x) in the solution, as the remaining
terms are typically orders of magnitude smaller in practice. The
magnitude of the second term in the Liouville-Neumann series relative
to the first term is approximately O(10~!) when & = 1, which
decreases to O(107%) when § = 0.1. Note that expected values of the
porosity parameter in low-speed applications are § = O(1072), as
measured experimentally by Geyer et al. [18] and analyzed by Hajian
and Jaworski [17]. The pressure distributions for § values of this

Ap(x,t=17/2)
3 -

0.8 1.0
— 6=0 6=0.5
-2r 6=02 — =1
=
-3t
b)
Ap(x,t=371/2)
3,
S
2 — 6=0 6=0.5
6=0.2 — 6=1
'] L
0.8 1.0

Fig. 3 Pressure distribution for nonporous and uniformly porous clamped panels oscillating with displacement z,(x) = 16(x* — 2x3 + x?) and
frequency @ = 1 at different instants in time: a) f = 0,b) t = z/2,¢)t = w,and d) ¢t = 37/2.

Ap(x,t=0)
—_—
5,
| . . . Loy
— 6=0
-5 6=0.5 (variable)
6=0.5 (uniform)
a)
Ap(x,t=m1)
[ — o6=0
5 6=0.5 (variable)
6=0.5 (uniform)
0 1 1 1 1 1 X
—5t
—
©)

Ap(x,t=17/2)
4 -
/\\
2 .
0 1 1 L 1 1 X
— 5=0
-2 6=0.5 (variable) Y
6=0.5 (uniform) T
4L
b)
Ap(x,t=3717/2)
4 -
— 6=0 a
) 5=0.5 (variable) -
6=0.5 (uniform)
0 1 1 1 1 1 5%
_2,
N
4l

d)

Fig. 4 Comparison of noncirculatory pressure distributions for nonporous (6 = 0), uniformly porous (R(x) = 1, § = 0.5), and variable porosity
(R(x) = 1- ,/x,8 = 0.5) panels oscillating on simple supports with z,(x) = sin zx and @ = 1 at different instants in time: a) ¢ = 0,b) ¢t = z/2,¢)t = =,

and d) t = 3x/2.
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magnitude do not show appreciable differences when compared to
the nonporous case. Therefore, larger values of  are considered here
to illustrate the effects of increasing porosity on the pressure
distribution more clearly.

Figures 2 and 3 show the real part of the pressure solution
Ap(x,t) = p(x)e’ for nonporous and uniformly porous panels
(w = 1) and compare the effects of a sinusoidal panel displacement
7,(x) = sin zx representative of simple end supports against one that
is clamped at both ends, as described by z,,(x) = 16(x* — 2x3 + x?).
In both cases, the aerodynamic pressure distributions on nonporous
panels (6 = 0) are symmetric about the midchord location at ¢ = 0.
Figures 2 and 3 both indicate that the introduction of porosity breaks
the left-right symmetry of the pressure distribution at t = 0, reduces
the pressure peak, and shifts the peak location toward the trailing edge
for increasing values of the porosity parameter 8. It is generally
observed that the noncirculatory pressure distribution on uniformly
porous panels retains the singular or regular behavior of their
nonporous counterpart at the leading edge. A singular behavior
always occurs for uniformly porous panels at the trailing edge; this
singularity at x = 1 arises from the second term of F(x) in Eq. (26)
for § > 0. The noncirculatory pressure distribution over the clamped
panel in Fig. 3 is regular at the leading edge for all instants of time
shown. However, Fig. 2 indicates a leading-edge singularity for the
simple-supported panel at times t = 0 and t = 7.

Figure 4 compares the numerical results for the pressure
distribution over a nonporous panel, uniformly porous panel
(6 = 0.5), and a panel with porosity distribution R(x) = 1 — \/x
(6 = 0.5); these cases are all produced for @ = 1 with sinusoidal
panel deformations z,(x) = sinzx at different instants in time.
Similar to the uniform porosity results given previously, the
introduction of a porosity gradient along the chord also breaks
the left-right symmetry of the pressure distribution at t = 0, reduces
the pressure peak, and shifts the peak location toward the trailing
edge. However, the reduction in the pressure peak and magnitude of
the shift of the peak location in the variable porosity panel are less
than for the uniformly porous panel. At the leading edge, the singular
behavior of the nonporous panel at = 0 and ¢ = x is retained in the
variable porosity case, as is the regular behavior at t = z/2 and
t = 37 /2. However, in contrast to the uniformly porous case, a panel
with the given porosity gradient behaves like a nonporous panel at the
trailing edge and does not generate a singularity there. This regular
behavior is obtained here by choosing a porosity function that
vanishes at the trailing edge, i.e., R(1) = 0.

V. Conclusions

From linearized aerodynamic theory, a Fredholm integral equation
is derived and solved analytically as a Liouville-Neumann series for
the noncirculatory pressure distribution on an oscillating porous
panel in a uniform incompressible flow. The fundamental integral
equation results from the application of a Darcy-type porosity
boundary condition that has a Holder-continuous spatial distribution
along the chord. The pressure distribution is determined explicitly for
the case of a single frequency, which can be used to determine the
pressure distribution resulting from arbitrary panel deformations
with a Fourier series in time. To demonstrate these analytical results,
the noncirculatory pressure distributions for vibrating panels on
simple or clamped supports with either uniform or variable chordwise
porosity distributions are presented and compared. Porosity breaks
the well-known left-right symmetry of the nonporous pressure
distribution, reduces the pressure peak, and shifts the peak location
toward the trailing edge for increasing values of the dimensionless
porosity parameter 6. The magnitude and aftward shift of the peak
are affected by the prescribed chordwise porosity gradient. The
noncirculatory pressure distribution over the clamped panel is regular
at the leading edge for all time instants considered, but a simply-
supported panel with sinusoidal displacement generates a pressure
singularity at the leading edge. At the leading edge, porous panels
retain the singular or regular behavior of their nonporous counterpart.
A singular behavior is always observed at the trailing edge for porous
panels, with the exception of cases in which the porosity vanishes at

the trailing edge. The choice of a porosity function that vanishes at the
trailing edge recovers the regular behavior of the pressure field
observed for nonporous panels. Results from this analysis are
anticipated to enable future aeroelastic stability calculations for
flexible, perforated panels and to form a more complete theoretical
basis to study the unsteady aerodynamics and noise generation of
porous structures based upon the unique attributes of natural fliers
and swimmers.
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