
Technical Notes
Noncirculatory Fluid Forces on Panels

with Porosity Gradients

Rozhin Hajian∗ and Justin W. Jaworski†

Lehigh University, Bethlehem, Pennsylvania 18015

DOI: 10.2514/1.J057269

I. Introduction

T HEclassical theory of Theodorsen [1] and its later extensions [2]

developed closed-form expressions for the unsteady aero-

dynamic forces on a piecewise-continuous rigid and impermeable

airfoil undergoing small-amplitude harmonic motions in a uniform

incompressible flow. These analyses separated the total fluid

forces or moments into circulatory and noncirculatory parts, which

correspond to the contribution of the unsteady shedding of vorticity

into the wake and the nonlifting hydrodynamic sloshing of fluid

about the airfoil, respectively [3]. Following the same approach,

Gaunaa [4] developed a general theoretical framework to predict the

aerodynamic loads on unsteady thin deformable airfoils. These

unsteady fluid forces also contribute fundamentally to the airfoil gust

response problem [3,5] and to the aerodynamic noise generation from

gust encounters [6] and vortex–structure interactions [7].
The aerodynamic theory of noncirculatory forces onmoving bodies

in a steady flow has previously been studied for impermeable flexible

panels with various leading- and trailing-edge boundary conditions in

both supersonic and subsonic flows [8–14]. Accordingly, the mode of

instability depends on the boundary conditions as well as the Mach

number. In subsonic flows that are of present interest, panels fixed at

both ends are predicted to lose stability by divergence [8–10], and there

is an explicit dependence of this instability on the local panel curvature.

However, cantilevered panels fixed at the leading edge and free at the

trailing edge lose stability by flutter [10,13], which has been confirmed

experimentally [10]. The present Note contributes to this literature by

furnishing the aerodynamic loads on an oscillating porous panel to

enable aeroelastic stability predictions.
The aerodynamic impact of a chordwise variation in porosity was

investigated theoretically by Hajian and Jaworski [15–17] for

stationary airfoils, and closed-form solutions were found by

requiring only that the porosity distribution was Hölder continuous;

Hölder continuity includes as a subset continuously-differentiable

classes of porosity distributions common to most airfoil designs of

practical interest. However, the unsteady motions of an airfoil with

chordwise porosity gradients have not yet been considered, which is

an essential step in studying the unsteady aerodynamics and the

aeroacoustics of realistic porous airfoils. Porous treatments have

been shown in previous studies to reduce turbulence noise generation
from the edges of wings and blades [18–22], which also engender
a loss of aerodynamic performance and suggest a potential
aerodynamic–aeroacoustic tradeoff.
This Note extends the analyses of Hajian and Jaworski [15–17,23]

to determine the unsteady noncirculatory forces on an arbitrarily
deforming panel with a Hölder-continuous porosity distribution. An
analytical expression for the noncirculatory pressure distribution is
presented and evaluated for the special cases of uniform and variable-
porosity panels undergoing harmonic deformations, in which special
attention is paid to the influence of the panel end conditions. These
results constitute the first major step toward a complete linearized,
unsteady aerodynamic theory for lifting porous bodies, which
may have potential application to the performance estimation of
biologically inspired swimmers and fliers and to the future assessment
of aeroelastic stability and flow noise production of porous airfoils.

II. Mathematical Model

Consider a baffled thin panel undergoing prescribed unsteady
motions in a two-dimensional steady, incompressible flow. For
noncirculatory forces, it is sufficient to consider the single-sided flow
illustrated in Fig. 1, as neither a vortex sheet nor the Kutta condition
are imposed here. Supposing a chord length l, mean flow speed U,
and fluid density ρ, all terms are nondimensionalized using l, l∕U,
and ρU2∕2 as the length, time, and pressure scales, respectively.

A. Porous Boundary Condition

In the problem illustrated in Fig. 1, the background flow velocity
and panel normal velocity can be written in nondimensional form as

Uflow � î in the upper half-plane andUpanel � ∂za∕∂tk̂, respectively,
where the function za�x; t� defines themean surface of the deforming
panel. To obtain the two-dimensional boundary condition along a
porous panel, consider the local seepage flow rate directed along the
unit normal to the panel surface ws,

ws � �∇ϕ� Uflow − Upanel� ⋅ n̂ (1)

where ϕ is the perturbation velocity potential. The linearized normal
unit vector is n̂ � �−�∂za∕∂x�; 1�, and the perturbation flow velocity
on the upper panel surface is

w�x; t� � ws �
∂za
∂x

� ∂za
∂t

(2)

where w�x; t� � ∂ϕ∕∂zjz�0� . Because of the absence of the mean
flowon the lower half-plane, the term ∂za∕∂x is droppedwhenEq. (2)
is evaluated at z � 0−.
For a panel with a Darcy-type porosity distribution under conditions

that permit omission of nonlinear flow and acoustic effects
(cf. [24–26]), the local flow rate is linearly proportional to the porosity
and the pressure distribution across the porous medium [17,27]:

ws �
1

2
δR�x�Δp�x; t� (3)

Here, δ � ρUC is the dimensionless porosity parameter [17], C is the
porosity coefficient, R�x� is a dimensionless function defining the
porosity distribution, and Δp�x; t� is the dimensionless pressure jump
(lower minus upper) across the panel. Comparison of the relationship
between the local pressure jump Δp and seepage velocity ws against
the standard Darcy boundary condition [28] allows the product CR�x�
to be defined in terms of physical parameters:
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CR�x� � κ

μnd
(4)

The symbolμ denotes the fluidviscosity, and κ,n, andd represent the
permeability, open area fraction, and thickness of the porous material,
respectively, all of which may vary with chordwise location x.

B. Derivation of Singular Integral Equation

The panel and its surrounding baffle separate the fluid domain into
two potential flow fields ϕ1 and ϕ2 that are valid in either the half-
plane above or below the panel, respectively. Using an approach
similar to that of Kornecki et al. [10], each potential field represents
the noncirculatory influence of the panel with a distribution of
sources of which the strengths are related to the velocity boundary
condition on each side of the panel. The Darcy porosity condition (3)
then couples the flows on each side and furnishes a singular integral
equation for the pressure jump across the panel.
The velocity potential ϕ1 valid in the upper half-plane may be

written in the form [3,10]

ϕ1�x; z; t� �
1

4π

Z
1

0

H1�ξ; t� ln ��x − ξ�2 � z2� dξ (5)

where the source strengthH1 is twice the normal flow velocity on the
panel (cf. [3] pp. 257–258),

H1�x; t� � 2

�
ws �

∂za
∂x

� ∂za
∂t

�
(6)

Similarly, the velocity potential ϕ2 for the lower half-plane has the
same form as Eq. (5) but with a source strength of opposite sign,

H2�x; t� � −2
�
ws �

∂za
∂t

�
(7)

Recall that the ∂za∕∂x term is omitted here due to the absence of a
mean flow in the region below the panel. The pressure jump across
the panel, Δp � p2 − p1, is then determined from the linearized
Bernoulli equation applied on the upper and lower panel surfaces:

p1�x; t� � −2
�
∂ϕ1

∂t
� ∂ϕ1

∂x

�����
z�0�

(8)

p2�x; t� � −2
∂ϕ2

∂t

����
z�0−

(9)

The combination of Eqs. (2–9) yields a singular integral equation
of the second kind for the pressure jump across the panel,

Δp�x;t��
δ

π

�
⨍ 1

0

R�ξ�Δp�ξ;t�
x−ξ

dξ�2
∂
∂t

Z
1

0

R�ξ�Δp�ξ;t�ln jx−ξjdξ
�
�f�x;t�

(10)

where

f�x; t� � 2

π

�
⨍ 1

0

g�ξ; t�
x − ξ

dξ� ∂
∂t

Z
1

0

�
g�ξ; t� � ∂za

∂t

�
ln jx − ξj dξ

�

(11)

g�x; t� � ∂za
∂x

� ∂za
∂t

(12)

These equations recover the result derived by Kornecki et al. [10]
in the special case of impermeable panels (δ � 0) when the effect of
acoustic action on the lower surface, i.e., the ∂za∕∂t term in Eq. (7), is
neglected. However, for porous panels, Eq. (10) depends on both x
and t and cannot be solved directly in its present form. Application of
a Fourier transform in time yields an ordinary singular integral
equation identical to the canonical singular integral equation (109.1)
in the work by Muskhelishvili [29], which can be written in the form
of a Fredholm integral equation of the second kind and solved
analytically using a Liouville–Neumann series [30]. To complete the
analysis, the inverse Fourier transform of the solution determines
the noncirculatory pressure distribution for an arbitrary panel
deformation history.
The next section pursues the solution for porous panels undergoing

harmonic motions of a single frequency, from which a Fourier series
in timemay be used to construct the unsteady pressure distribution on
panels with an arbitrary deformation history.

III. Solution for Porous Panels Undergoing
Harmonic Motions

The noncirculatory fluid forces are now studied for porous

panels with harmonic motions, such that za�x; t� � za�x�eiωt and
Δp�x; t� � p�x�eiωt, wherep�x� is a complex-valued function andω
is the dimensionless frequency. The integral equation (10) can nowbe
reduced and rearranged into the ordinary singular integral equation

p�x�� δR�x�
π
⨍ 1

0

p�ξ�
ξ− x

dξ� 1

πi
⨍ 1

0

k�x;ξ�p�ξ�dξ� f�x� (13)

where

k�x; ξ� � 2ωδR�ξ� ln jx − ξj � iδ
R�ξ� − R�x�

ξ − x
(14)

f�x� � 2

π
⨍ 1

0

dza�ξ�
dξ

�
iω ln jx − ξj � 1

x − ξ

�
dξ

� 2iω

π
⨍ 1

0

za�ξ�
�
2iω ln jx − ξj � 1

x − ξ

�
dξ (15)

A comparison of Eq. (13) with the canonical singular integral
equation (109.1) in [29] identifies a set of auxiliary functions,

G�x� � 1 − iδR�x�
1� iδR�x� (16)

Γ�x� � 1

2πi
⨍ 1

0

logG�ξ�
ξ − x

dξ

� −1
π
⨍ 1

0

tan−1�δR�ξ��
ξ − x

dξ (17)

and the fundamental function,

Z�x� �
�������������������������
1� δ2R2�x�

q
eΓ�x�

Y2
k�1

�x − ck�λk (18)

which enable an analytical solution. Constant values ck denote the
positions of the panel endpoints, c1 � 0 and c2 � 1, and λk are

Fig. 1 Schematic of a thin, porous panel in one-sided flow of speed U
that is undergoing prescribed unsteady deformations za�x;t� and has
seepage velocity ws�x;t�. The coordinates are scaled by the panel chord
length.
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integers to be determined based on the conditions given in [29]

for singular integral equations on open contours. At each endpoint,

real-valued constants αk and βk are determined by

αk � iβk �
1

2πi
logG�ck� � ∓

1

π
tan−1�δR�ck�� (19)

where the upper sign corresponds to c1 � 0 and the lower sign

corresponds to c2 � 1. This expression is real valued and identifies

β1 � β2 � 0. The panel endpoints are termed special ends if αk is an
integer, which is valid only for nonporous panels when δ � 0; hence,
λk � αk � 0 (cf. [29] p. 231). The endpoints becomenonspecial ends

for porous panels with δ > 0, where−1∕2 < αk < 1∕2 from Eq. (19).

Furthermore, at these nonspecial ends, the integers λk must be chosen

apart from �1 and satisfy the condition −1 < αk � λk < 1 to be

unique [29]. The only integers satisfying the aforementioned

conditions are λ1 � λ2 � 0. Therefore, λk � 0 for all scenarios

considered in this work and regardless of porosity, and the product

term in Eq. (18) has no bearing on the solution.
With the details of the panel endpoints established for the

fundamental function Z�x�, Eq. (13) can be finally recast into the

canonical form,

p�x� � 1

πi

Z
1

0

N�x; ξ�p�ξ� dξ � F�x� (20)

where

N�x;ξ�� 1

1�δ2R2�x�k�x;ξ�−
δR�x�

π�1�δ2R2�x��Z�x�⨍
1

−1

k�t;ξ�
Z�t��t−x�dt

(21)

F�x� � 1

1� δ2R2�x�f�x�−
δR�x�

π�1� δ2R2�x��Z�x�⨍
1

0

f�t�
Z�t��t− x�dt

(22)

Equation (20) is a Fredholm integral equation of the second kind,

which may be solved using a Liouville–Neumann series [30]:

p�x� � lim
n→∞

Xn
k�0

Λkuk�x� (23)

where Λ � −1∕πi and

u0�x��F�x�

u1�x��
Z

1

0

N�x;ξ1�F�ξ1�dξ1

..

.

un�x��
Z

1

0

· · ·

Z
1

0

N�x;ξ1�N�ξ1;ξ2� · · · N�ξn−1;ξn�F�ξn�dξn · · · dξ1
(24)

Expressions (23) and (24) together constitute the general solution

for the noncirculatory pressure distribution over a porous panel with

porosity distribution R�x� undergoing harmonic oscillations in a

single-sided flow.
For uniformly porous panels, R�x� � 1, and the associated

noncirculatory fluid forces for this uniformly porous body with

harmonic deformations can be determined from Eq. (23) with

N�x; ξ� � 2ωδ

1� δ2
ln jx − ξj − 2ωδ2

π�1� δ2�
�

x

1 − x

��1∕π�tan−1δ

× ⨍ 1

0

ln
��y − ξ

��
y − x

�
1 − y

y

��1∕π�tan−1δ
dy (25)

and

F�x� � f�x�
1� δ2

−
δ

π�1� δ2�
�

x

1 − x

��1∕π�tan−1δ

× ⨍ 1

0

f�y�
y − x

�
1 − y

y

��1∕π�tan−1δ
dy (26)

Note that the Liouville–Neumann series is not strictly ordered

based on the smallness of the porosity parameter δ, and the first term
of the series, u0�x� � F�x�, incorporates the effects of porosity. It is

b)a)

d)c)
Fig. 2 Pressure distribution for nonporous and uniformly porous panels oscillating on simple supports with za�x� � sinπx and frequency ω � 1 at
different instants in time: a) t � 0, b) t � π∕2, c) t � π, and d) t � 3π∕2.
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further noted that the Liouville–Neumann series converges rapidly
for small porosity values of aerospace interest, as will be discussed in
the next section.

IV. Discussion

The solution for a panel vibrating at a single frequency [Eq. (23)] is
now evaluated numerically to examine the effects of panel deformation
shape and chordwise variation in porosity on the noncirculatory
pressure distribution. The examples presented here use sinusoidal or
quartic panel shapes to approximate the deformations of a panel with

simple or clamped supports, respectively, and the results for a square-
root porosity gradient are compared against the case of uniform
porosity. The numerical results presented involve only the leading-
order term p�x� ≈ u0�x� � F�x� in the solution, as the remaining
terms are typically orders of magnitude smaller in practice. The
magnitude of the second term in the Liouville–Neumann series relative

to the first term is approximately O�10−1� when δ � 1, which

decreases toO�10−3�when δ � 0.1. Note that expected values of the

porosity parameter in low-speed applications are δ � O�10−2�, as
measured experimentally by Geyer et al. [18] and analyzed by Hajian
and Jaworski [17]. The pressure distributions for δ values of this

b)a)

d)c)
Fig. 4 Comparison of noncirculatory pressure distributions for nonporous (δ � 0), uniformly porous (R�x� � 1, δ � 0.5), and variable porosity

(R�x� � 1 −
���

x
p

, δ � 0.5) panels oscillating on simple supports with za�x� � sinπx andω � 1 at different instants in time: a) t � 0, b) t � π∕2, c) t � π,
and d) t � 3π∕2.

b)a)

d)c)
Fig. 3 Pressure distribution for nonporous and uniformly porous clamped panels oscillating with displacement za�x� � 16�x4 − 2x3 � x2� and
frequency ω � 1 at different instants in time: a) t � 0, b) t � π∕2, c) t � π, and d) t � 3π∕2.
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magnitude do not show appreciable differences when compared to
the nonporous case. Therefore, larger values of δ are considered here
to illustrate the effects of increasing porosity on the pressure
distribution more clearly.
Figures 2 and 3 show the real part of the pressure solution

Δp�x; t� � p�x�eiωt for nonporous and uniformly porous panels
(ω � 1) and compare the effects of a sinusoidal panel displacement
za�x� � sin πx representative of simple end supports against one that

is clamped at both ends, as described by za�x� � 16�x4 − 2x3 � x2�.
In both cases, the aerodynamic pressure distributions on nonporous
panels (δ � 0) are symmetric about the midchord location at t � 0.
Figures 2 and 3 both indicate that the introduction of porosity breaks
the left–right symmetry of the pressure distribution at t � 0, reduces
the pressure peak, and shifts the peak location toward the trailing edge
for increasing values of the porosity parameter δ. It is generally
observed that the noncirculatory pressure distribution on uniformly
porous panels retains the singular or regular behavior of their
nonporous counterpart at the leading edge. A singular behavior
always occurs for uniformly porous panels at the trailing edge; this
singularity at x � 1 arises from the second term of F�x� in Eq. (26)
for δ > 0. The noncirculatory pressure distribution over the clamped
panel in Fig. 3 is regular at the leading edge for all instants of time
shown. However, Fig. 2 indicates a leading-edge singularity for the
simple-supported panel at times t � 0 and t � π.
Figure 4 compares the numerical results for the pressure

distribution over a nonporous panel, uniformly porous panel

(δ � 0.5), and a panel with porosity distribution R�x� � 1 −
���
x

p
(δ � 0.5); these cases are all produced for ω � 1 with sinusoidal
panel deformations za�x� � sin πx at different instants in time.
Similar to the uniform porosity results given previously, the
introduction of a porosity gradient along the chord also breaks
the left–right symmetry of the pressure distribution at t � 0, reduces
the pressure peak, and shifts the peak location toward the trailing
edge. However, the reduction in the pressure peak and magnitude of
the shift of the peak location in the variable porosity panel are less
than for the uniformly porous panel. At the leading edge, the singular
behavior of the nonporous panel at t � 0 and t � π is retained in the
variable porosity case, as is the regular behavior at t � π∕2 and
t � 3π∕2. However, in contrast to the uniformly porous case, a panel
with the given porosity gradient behaves like a nonporous panel at the
trailing edge and does not generate a singularity there. This regular
behavior is obtained here by choosing a porosity function that
vanishes at the trailing edge, i.e., R�1� � 0.

V. Conclusions

From linearized aerodynamic theory, a Fredholm integral equation
is derived and solved analytically as a Liouville–Neumann series for
the noncirculatory pressure distribution on an oscillating porous
panel in a uniform incompressible flow. The fundamental integral
equation results from the application of a Darcy-type porosity
boundary condition that has a Hölder-continuous spatial distribution
along the chord. The pressure distribution is determined explicitly for
the case of a single frequency, which can be used to determine the
pressure distribution resulting from arbitrary panel deformations
with a Fourier series in time. To demonstrate these analytical results,
the noncirculatory pressure distributions for vibrating panels on
simple or clamped supportswith either uniformor variable chordwise
porosity distributions are presented and compared. Porosity breaks
the well-known left–right symmetry of the nonporous pressure
distribution, reduces the pressure peak, and shifts the peak location
toward the trailing edge for increasing values of the dimensionless
porosity parameter δ. The magnitude and aftward shift of the peak
are affected by the prescribed chordwise porosity gradient. The
noncirculatory pressure distribution over the clamped panel is regular
at the leading edge for all time instants considered, but a simply-
supported panel with sinusoidal displacement generates a pressure
singularity at the leading edge. At the leading edge, porous panels
retain the singular or regular behavior of their nonporous counterpart.
A singular behavior is always observed at the trailing edge for porous
panels, with the exception of cases in which the porosity vanishes at

the trailing edge. The choice of a porosity function that vanishes at the
trailing edge recovers the regular behavior of the pressure field
observed for nonporous panels. Results from this analysis are
anticipated to enable future aeroelastic stability calculations for
flexible, perforated panels and to form a more complete theoretical
basis to study the unsteady aerodynamics and noise generation of
porous structures based upon the unique attributes of natural fliers
and swimmers.
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