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Abstract—As the amount of data produced by HPC applica-
tions reaches the exabyte range, compression techniques are often
adopted to reduce the checkpoint time and volume. Since lossless
techniques are limited in their ability to achieve appreciable data
reduction, lossy compression becomes a preferable option. In this
work, a lossy compression technique with highly efficient encod-
ing, purpose-built error control, and high compression ratios is
proposed. Specifically, we apply a discrete cosine transform with
a novel block decomposition strategy directly to double-precision
floating point datasets instead of prevailing prediction-based
techniques. Further, we design an adaptive quantization with
two specific task-oriented quantizers: guaranteed error bounds
and higher compression ratios. Using real-world HPC datasets,
our approach achieves 3x–38x compression ratios while guaran-
teeing specified error bounds, showing comparable performance
with state-of-the-art lossy compression methods, SZ and ZFP.
Moreover, our method provides viable reconstructed data for
various checkpoint/restart scenarios in the FLASH application,
thus is considered to be a promising approach for lossy data
compression in HPC I/O software stacks.

Index Terms—Lossy Compression, Checkpoint/Restart, DCT

I. INTRODUCTION

HPC applications periodically produce extremely large
amounts of data, mainly for snapshotting their states for
possible failure/restart and post-simulation data analysis [1],
[2]. Storing these raw data generated on supercomputers incurs
an excessive overhead of storage space and I/O time. For
example, a total of 170 terabytes of CESM (Community Earth
System Model) data is being produced for CMIP5 (Coupled
Model Intercomparison Project), and multiple petabytes of
data will be generated for the upcoming CMIP6 experi-
ments [3], [4] per entire run. At the same time, however, a
supercomputer like Yellowstone [5] has only tens of petabytes
of centralized file system and data storage, with less than 100
GB/s of aggregated I/O bandwidth.

Compression techniques can help mitigate the burden during
the data I/O phase by reducing checkpoint data size, thereby
shortening the checkpoint (I/O) time [6]–[9]. Traditional loss-
less compression techniques, while preserving 100% of data
fidelity, are not able to achieve appreciable data reduction on
floating-point scientific data [10]–[15]. For example, the loss-
less compressors used in MCRENGINE [14], ISOBAR [15],
and Welton et al. [13] achieved only about 1.15x–1.6x com-
pression ratios which do not meet the demanding datasize
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reduction requirement. Lossy compression, which has been
widely used in image, video, and audio compression, can
realize higher compression ratios than lossless ones. To date,
lossy compression has not been widely adopted in the scientific
domain for several reasons: scientific domain knowledge is
required for the design of efficient lossy compressors, high
compression precision on scientific data is demanded, and
the viability of reconstructed data from lossy compressors
in scientific workflows such as checkpoint/restart is not well
quantified.

On the other hand, lossy compression, which has been
widely used in image, video and audio compressions, can bring
a higher compression ratio than lossless one. Though it will
introduce errors which are not easy to bound, recent studies
have found that scientific data can actually tolerate some error-
bounded loss in their simulation data accuracy [6]. Moreover,
errors, to some extent, are inherent in scientific simulations
where they can be generated from inaccurate scientific sen-
sors [16]–[19]. Thus, applying lossy compression can mitigate
the overall overhead faced by today’s HPC systems.

Existing lossy compression techniques used for scientific
data often apply strategies such as prediction, binary represen-
tation, data transform, and vector quantization. Di and Cap-
pello [20] proposed a technique called SZ, where predictable
data were represented based on several curve-fitting models
and unpredictable datasets were compressed using a binary
representation analysis. Tao et al. [20], [21] extended SZ by
employing an adaptive quantization mechanism to improve
the accuracy of their prediction-based compression algorithm.
The limitation of the prediction-based compressors is that they
were data dependent. The compression performance would de-
grade if the simulation data exhibited less structure [22], [23].
Lakshminarasimhan et al. [24] proposed a technique called
ISABELA, where the B-Spline transformation was applied on
sorted data. However, the compression ratio of ISABELA was
limited due to the sorting process. NUMARCK [25] adopted
quantization mechanisms on the change ratios between consec-
utive checkpoints, but it could not ensure compression error
within the bounds. Yuan et al. [26] presented a parallelized
version of [25], but it had a drawback of its large memory
requirement.

The above-mentioned challenges motivate us to design
a lossy compressor that is efficient, error bounded, able
to achieve high compression ratios, and viable for check-



point/restart. In this work, we propose a novel block decom-
position strategy and combine it with the well-known discrete
cosine transform (DCT) on double-precision floating point
datasets directly. The reason for choosing DCT is because
it has high decorrelation efficiency [9], [27], and its inverse
has the same spectrum as the original data [28]. The major
contributions of our approach presented in this paper are
described as follows:

1) With the proposed novel block decomposition strat-
egy directly applied to floating-point numbers, the modified
transform-based technique not only efficiently decorrelates
data content but also eliminates potential computational over-
heads, such as sorting or ordering coefficients, while achieving
high compression ratios. Combining DCT with customized
decomposition, which improves the ability of DCT to distin-
guish dominant coefficients, and quantization, we were able to
achieve comparable compression ratios with high efficiency.

2) An adaptive quantization customized with our decom-
posed DCT coefficients is designed, in which users can select
the compressor modes based on their task requirements: either
guaranteed maximum relative errors within specified bounds
(by an error-controlled Quantizer-EC) or high compression
ratios within acceptable error rates (by a quantization table
based Quantizer-QT). Strict error control in original (spatial)
domain is achieved in transform-based lossy compressors.
The quantizer is determined for each checkpoint by learning
the distribution of high-frequency DCT coefficients. We also
create a customized encoding model that exploits increased
redundancies in bin indexes by our quantization table designed
for block-based DCT coefficients, improving compression
ratios further.

3) We compare our compressor with state-of-the-art com-
pressors, SZ-1.4 and ZFP, using six scientific datasets from
three real scientific applications, FLASH [29], CMIP5 [30],
and Nek5000 [31], [32]. Our experimental results demon-
strated that our compression approach achieves compara-
ble performance with regard to compression ratio, compres-
sion accuracy (Maximum Relative Error, Normalized Root-
Mean-Square Error (NRMSE), the Peak Signal-to-Noise Ratio
(PSNR), and Pearson correlation) and compression speed. On
the evaluated data, our compressor achieves 3x–38x compres-
sion ratios while ensuring user-specified error bounds.

4) Lastly, we reconstruct the data from two solvers (Sedov
and Cellular) in FLASH, and investigate them under several
checkpoint/restart scenarios. It is shown that restarts from
lossy state are viable without any application disruptions, and
the propagation of single and compounding errors remain
within the user-specified error bounds. This demonstrates that
our compression technique can seamlessly work for check-
point/restart in FLASH application workflows.

II. BACKGROUND

A. Discussion of Prior Work

Datasets generated by HPC applications usually exhibit
diverse characteristics, and thus the compression performance
may vary largely in different applications. Prior studies such as

ZFP [9] have demonstrated that transform-based compression
can provide high data decorrelation efficiency. Because this is
desirable, researchers have been attracted to apply transforms
(well utilized in JPEG, JPEG2000 [33], and MPEG [34]) to
various HPC datasets.

Woodring et al. [35] used the JPEG 2000 technique on
climate data compression, and Belmon et al. [36] used wavelet
transform for spacecraft data compression. However, these
works were limited to evaluating datasets from only one
specific domain. Sasaki et al. [37] applied the Haar wavelet
transform (HWT), and Li et al. [38] applied the Cohen-
Daubechies-Feauveau wavelet transform (CDF 9/7) in their
compressors. However, HWT requires multiple levels of de-
composition while CDF 9/7 is limited to the levels of trans-
forms for information compaction. Yeo et al. [39] and Ratnakar
et al. [40] applied discrete cosine transform (DCT) for its high
efficiency on data volume rendering, however, their approaches
are less capable of bounding errors. It should be noted that
applying JPEG or MPEG techniques directly in scientific data
compression will usually introduce a large number of errors.
Therefore, quantifying errors and proving the viability of the
compressors for checkpoint/restart become important. Though
Sasaki et al. [37] and Woodring et al. [35] showed certain
precision of their compressors, their techniques were limited
to exhibiting the stability and viability for checkpoint/restart
mechanisms. ZFP [9] employed its own optimized data trans-
form rather than using existing discrete ones, however, the
reconstruction errors were not strictly bounded in ZFP, and
the compression ratio was optimized mainly for 2D or 3D
structured datasets.

B. Discrete Transforms

There are several well-known transforms such as dis-
crete cosine transform (DCT), discrete wavelet transform
(DWT), Cohen-Daubechies-Feauveau (CDF), and Fast Walsh-
Hadamard (FWHT) that can be applied in a lossy com-
pressor. While selecting the appropriate transform type for
HPC datasets (in floating-point numbers) or designing an
optimized transform like [9] is challenging, one should note
that most of the commonly used discrete transforms share the
same beneficial property: many natural signals have concise
representations of original data after transforms.

We illustrate this property by using the “rlds” dataset from
CMIP5 (shown in Figure 1a). Figure 1b shows the distribution
of coefficients (in frequency domain) after applying a discrete
transform (the Haar from DWT is used as an example). The
trend sub-signal on the left half of Figure 1b shows a concise
representation of the original data. The sub-signal on the right
half of the figure presents its variations (defined as high-
frequency coefficients), which are significantly smaller than
the original datapoints. This is because discrete transforms
tend to redistribute the energy contained in the signal and
condense most of the energy into a small number of dominant
coefficients (defined as low-frequency coefficients). The en-
ergy represents the data information, and the sum of squares
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Fig.1:Thedistributionofrldsdatasetinvariousforms.(a)
originaldata.(b)afterapplying1-levelHaarwavelettrans-
form(HWT).(c)afterapplying3-levelHWT.(d)comparison
betweentheoriginalandreconstructeddatawith3-levelHWT
(discardinghigh-frequencycoefficients).

ofthemagnitudesofthecoefficientsusuallyrepresentsthe
totaldatainformation[22].

For moreconciserepresentationsoftheoriginalsignal
intransform-basedcompression,adecompositionprocess
(e.g.,multi-leveldecomposition)iscommonlyimplemented.
Thisprocessinvolvesarecursiveapplicationofpartitioning
andtransformingonhigh-frequencycomponents,whichis
compute-intensive.Forinstance,Figure1cshowsthedistri-
butionofcoefficientsafterapplying3-leveldecomposition.
Itisobservedthattheamountoflow-frequencycoefficients

Fig.2:AnillustrationofblockdecompositionwithDCTusing
therldsdataset.Our methodisapplicabletodataofany
dimensionsasweregardallofthemasflatteneddata.

inFigure1cislessthanthatinFigure1b,andalsothe
valuesoflow-frequencycoefficientsinFigure1carehigher.
Thisindicatesthateachoftheselow-frequencycoefficients
(shownontheleftinFigure1c)carriesalargerpercentageof
informationfromtheoriginaldata.
Theabove-mentioneduniquefeaturesofdiscretedatatrans-
formsinspiredustodesignatransform-basedlossycom-
pressor. Wedesignedourcompressorwiththefollowingkey
questionsinmind:1)Howdowecapturedominantcoefficients
withoutincurringcompute-intensivesteps,suchasrecursive
transforms?2)Sinceweknowthatmostofthetransforms
arelosslessandtheerrorsareintroducedduringthequanti-
zationortheeliminationofhighfrequencycoefficients(as
showninFigure1d),howdowecontroltheerrorsduring
quantizationwhileachievinghighcompressionratios?3)What
istheimpactoflossycompressioninreal-worldapplication
workflows?

III.PROPOSEDLOSSYCOMPRESSOR

A.BlockDecompositionwithDCT

Inourcompressor,weselectDiscreteCosineTransform
(DCT)(themostcommonlyusedDCT-II)asourtransform
method.SinceDCTitselfdoesnotclearlyfavoranyfre-
quencies(asshowninFigure3a),wedesignanovelblock
decompositionstrategy,asillustratedinFigure2.Theinspira-
tioncomesfromJPEGandMPEGtechniques,wherethefirst
pixelofanimage(i.e.,thetopleftpixelina2Dimage)or
thefirstframeofavideoisstoredasthemostinformative
contentduringcompression.Inasimilarway,weconsider
thefirstDCTcoefficientasthemostinformativecoefficient
(i.e.,DCcoefficientwhichcontainszerofrequency),andthe
remainingcoefficientsastheACcoefficients(containnon-zero
frequencies).
Inourdecomposition,wefirstpartitiondataintosmall
blocks.Specifically,wechoosetheblocksizeof64asitcanbe
usedas8×8in2Dand4×4×4in3D.ThenweapplyDCTon
block-basedcoefficients.Next,wecollecttheDCcoefficient
fromeachblock,organizethembasedontheblocksequence
order,andconsiderthemaslow-frequencycoefficientsforthe
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Fig.3:ThedistributionofDCTcoefficients.(a)afterapplying
DCTtransform.Notethatweshowthecoefficientsinrange[-
500,500]forillustrativepurposesonly.Theactualcoefficients
areinrange[-8.4879e+03,3.3362e+04].(b)afterapplying
blockdecompositionwiththeblocksizeof8.Notethatthe
blocksizeof8(insteadoftheblocksizeof64)isusedhere
toshowitssimilarityto3-levelHWT(asshowninFigure1c)
intermsofcoefficientdistribution.

entiredata.TheremainingACcoefficientsareconsideredas
thehigh-frequencycoefficients. Wenotethattheblocksize
affectsnotonlyprecisionbutalsocompressionratiosand
availabilityofparallelism. Wealsonotethat,whileonecan
employrecursiveDCT,butitgiveslowercompressionratios
becauseofanextraindexandsorting/orderingcoefficients.

Figure3bshowsthedistributionofDCTcoefficientsafter
applyingourblockdecompositionstrategy.Thisindicatesthat
ourdecompositionstrategyisabletoimprovetheabilityof
DCTtodistinguishdominantfrequencycoefficients.Also,
basedontheexperimentsontherldsdataset,wefoundthat
thetransformationtimeofaDCTwithblockdecomposition
(blocksizeof64)wasanaverageof3xfasterthanthat
ofa6-levelHWT(N-levelHWTtransformsorDCTwith
blockdecompositionsizeof2N willgeneratelow-frequency
coefficientswiththesamelengthof1/2N
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).Therefore,by
applyingablockdecompositionstrategywithDCT,weavoid
notonlythestorage-consumingsortingstepduringtransform
butalsotime-consumingrecursivetransforms.

Anotheradvantageofourblockdecompositionstrategyis
thatthegradientsofsmallblock-baseddatacouldbesmaller
thanthatofanentirecheckpoint(singleiteration).Asaresult,
applyingDCTonblock-baseddatacouldbemoreaccurateand
efficient,andincurslessmemoryoverheadduringencoding
thanonanentirecheckpoint.

Moreover, weapplyanexponentnormalizationonthe




















 





(a)Quantizer-EC

(b)Quantizer-QT

Fig.4:Overviewofourproposedquantizers.

blockdecomposedcoefficientsbyaligningdatavaluestoa
commonexponentandexpressingeachvaluewithreference
tothelargestexponent.Thisalignmentunifiestherangeof
transformedcoefficientssothatasmallernumberofindices
arerequiredduringencoding.

B.QuantizationTechnique

Sincethemajorityoforiginaldatainformationispreserved
inasmallnumberoflow-frequencycoefficients,westore
themasisandadoptaproperquantizationtechniqueonthe
high-frequencycoefficients.Inthissection,weproposean
adaptivequantizationwithtwotask-orientedquantizers(shown
inFigure4):eitherguaranteedmaximumrelativeerrorswithin
specifiedbounds(Quantizer-EC)orhighcompressionratios
withinreasonableerrorrates(Quantizer-QT).Sincecheckpoint
dataevolvesassimulationgoes,ourquantizerisdetermined
foreachcheckpointbylearningthedistributionoftransformed
high-frequencyDCTcomponents.

a)Quantizer-EC:Quantizer-ECisanadjustableerror-
controlled(EC)quantizer,whereuserscancontrolcompres-
sionerrorsbyselectingtheirdesiredbound,denotedasP(in
termsofrelativeerror),andatotalnumberofbins,C.Then
aglobalboundGP isfixedto[−P∗C,P∗C]. Weevenly
partitiontheglobalboundGP intoCbins,andthewidth
ofeachbinisequaltotwiceoftheerrorboundP.Ifthe
valueofacoefficientiswithinacertainbinrange,thenit
isapproximatedasthebin’scentervalue.Bydoingthis,the
maximumerrorintroducedafterquantizationwillbesmaller
thanthespecifiederrorboundP.Forcoefficientsoutsidethe
globalboundGP,weeithersavethemasistoensureaccuracy
orapplyanextratruncationtoimprovethecompression
ratio.Algorithm1outlinesthisquantizationmethodindetail.
AlthoughusingalargerCcanpotentiallyreduceerrors,we
fixCto255(28−1)becausealargernumberofbinsrequires
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Algorithm 1 The algorithm of Quantizer-EC.
Input: DTH : high-frequency coefficients.

I: the number of checkpoint iteration.
J : the number of high-frequency coefficient in each iteration.
P : a user-specified error bound.
B: bin.
C: bin index.

Output: DT ′
H : approximated coefficients.

1: for i = 1, 2, . . . , I do
2: Evenly partitioning global bound [−2P ∗ 255, 2P ∗ 255] into 255 bins
3: for j = 1, 2, . . . , J do
4: if DTH i, j ∈ Bi,c, c = 1, 2, . . . , 255 then
5: DTH i, j′ ← approximation (center value of Bi,c)
6: else
7: DTH i, j′ ← DTH i, j
8: end if
9: end for

10: end for

extra encoding steps in addition to Huffman coding for the bin
index. Smaller bin sizes also can be used but we find using 255
(or 1-byte) maximizes compression ratios and efficiency with
our encoding scheme. This binning strategy is straightforward
and can be applied to high-frequency coefficients from other
transforms like wavelets.

It should be noted that the binning mechanism described
above is applied in the frequency domain (i.e., DCT co-
efficients), not in the spatial domain (i.e., original data).
Therefore, extra errors could be introduced during the inverse
transform for reconstructing data from lossy state. If the maxi-
mum compression errors (the difference between reconstructed
data and original data) must be guaranteed within the user-
specified error bound P , a revised error bounding method
is needed. This strict error guarantee is dependent on the
transform employed because each transform has a different
inverse transform property. For DCT, its inverse transform
has the same computation as the non-inverse one, which is
calculated as the sum of weighted coefficients. Mathematically
speaking, the new max error in the spatial domain is then
calculated as

√
N times the max error in the frequency domain

(where N is the block size). Therefore, users need to set their
error bound to P /

√
N in the frequency domain such that,

after inverse transforming, the compression errors are bounded
within P in the original domain. This makes DCT with
Quantizer-EC (namely DCT-EC) a conservative yet efficient
compressor.

b) Quantizer-QT: Quantizer-EC described so far applied
the quantization to AC coefficients (high-frequency) directly.
However, there is an opportunity to improve compression
ratios further by applying various quantization methods to AC
coefficients so that the number of bits required for encoding is
reduced. This is inspired by the property of discrete transforms
wherein spatial frequencies represent the detailed information
of the original data. In other words, if the original data values
are spatially smooth (which is common in many scientific
applications that model physical phenomenon), a block in the
DCT domain will have smooth high-frequency coefficients
(i.e., with small variations).

To verify whether there is exploitable smoothness in high-
frequency coefficients, we take the rlds and Eddy datasets
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Fig. 5: The distribution of DCT block coefficients. (a) and (b)
show the overlay of all blocks in a single checkpoint after
applying transform and exponent normalization on rlds and
Eddy datasets with block size of 64.

(described in Table I) as examples and plot the overlays of
their block coefficients, as depicted in Figure 5a and Figure 5b,
respectively. Note that these two figures show the overlays of
all the blocks of a single checkpoint after applying the data
transform, not the distribution of the checkpoints shown in
step d of Figure 2. Our investigation of these plots leads to
several findings.

First, most distributions of block coefficients demonstrate
two distinctive patterns: 1) the DC coefficient (the first block
coefficient) contains most of the data information, and the
remaining ones are either small values or zeros (as depicted
in Figure 5a); and 2) besides the first dominant coefficient,
there are a few secondary-informative coefficients, or spikes
(as depicted in Figure 5b). To confirm the occurrence of these
patterns in scientific datasets, we define two cases: Case 1 is
when DC coefficient carries more than 90% of the total energy
of a block, and Case 2 is when Case 1 is not applicable but
the top three dominant coefficients carry more than 90% of
the total energy. Our statistical analysis indicates that there
is an average of 62.67% occurrence of Case 1 and 16.95%
occurrence of Case 2 on six evaluated datasets (described in
Table I). The total occurrence of Case 1 and Case 2 illustrates
that most of the data information can be represented by a
small number of coefficients. In other words, most of the block
coefficients are small in magnitude (i.e., smooth) and contain
less data information.

Second, it is worth mentioning that different checkpoint
data in the same dataset show a similar block pattern (i.e.,
the transformed coefficients capture temporal redundancy).
Also, the secondary-dominant coefficients (spikes) are always
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Algorithm 2 The algorithm of Quantizer-QT applied to block
coefficients in a single iteration.
Input: BA: AC block coefficients.

qt: quantization table (initial value are set to zeros).
M : the number of blocks.
N : the number of block coefficient in each block, also the number of qt’s coefficient.

Output: BA′: approximated coefficients.
for n = 1, 2, . . . , N do

2: for m = 1, 2, . . . ,M do
if abs (BAn,m) ≥ qtn,1 then

4: qtn, 1← abs (BAn,m)
end if

6: end for
end for

8: BAn,m′ ← BAn,m
qtn,1 , apply algorithm EC on BAn,m′

clustered/oscillated around similar positions, as shown in Fig-
ure 5b. Therefore, if we can model the repetitive pattern from
one checkpoint into a quantization table, then it can be applied
to the blocks showing the same patterns in other checkpoints.
Exploiting the same spatiotemporal pattern not only simplifies
our quantization step (e.g., elimination of a zigzag order used
in JPEG), but also reduces the number of bits required to
represent coefficients.

Since most of the block coefficients show descent smooth-
ness and repetitiveness (as mentioned in above findings),
we design a quantization table qt in our quantizer, namely
Quantizer-QT. We generate qt by finding the maximum
value of the nth coefficient over all the blocks and build a
quantization table of length N − 1, where N is the block
size and n ≤ N . Note that the DC coefficients of the
blocks are not included in this step as they are saved as
is. As outlined in Algorithm 2, qt is calculated as qtn,1 =
max {|BAn,1| , |BAn,2| , |BAn,3| , ..., |BAn,m|}, where m is
the total number of decomposed blocks and the input data
is a one-dimensional floating-point array. All AC coefficients
are then converted into a global bound and quantized using
Quantizer-EC after being divided by qt.

As an example of how Quantizer-QT works, we select
rlds and Eddy datasets to demonstrate our design. Figure 6c
and Figure 6d show the distribution of block coefficients
of rlds and Eddy after being divided by their quantization
tables shown in Figure 6a and Figure 6b. As we can see, the
resulting coefficients require much fewer bit representations
after quantization table is applied as they are much narrower in
range. Our Quantizer-QT is a mechanism for striking a balance
between loss of precision and compression ratio. Therefore,
DCT with Quantizer-QT (namely DCT-QT) is designed for
scientists who want full compression potential but with less
tight error bounds.

C. Data Encoding

The last step of our lossy compression is to encode the
data into our compressed format. In this stage, the first dom-
inant coefficient in each block is stored as its original value.
The remaining high-frequency coefficients will be quantized
and stored as their corresponding approximated values. If a
coefficient lies within the global bound, it will be stored as
the bin’s center value; otherwise, it will be saved as is for
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Fig. 6: An example quantization table for a single checkpoint
of (a) rlds and (b) Eddy. The overlay of AC coefficients after
applying individual qt to (c) rlds (d) Eddy.

guaranteeing error rates. For DCT-QT, a 1 × N quantization
table (in double-precision format) needs to be saved. An extra
1 bit is also needed to distinguish the out-of-range coefficients
and approximated coefficients. Lastly, we apply Gzip to bin
indices and dominant coefficients, which further improves the
compression ratio. While we use Gzip, the choice of using
add-ons such as Huffman, Gzip, ZSTD depends on user’s
need, i.e., higher compression ratios vs. higher compression
speed. Note that our encoding scheme can be performed on the
decomposed block, which is similar to ZFP, allowing random
read/write access to compressed floating-point data at block
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TABLEI:EvaluatedDatasetsandtheircharacteristics.

Code Dataset Description Size

CMIP5
rlds Surfacedownwellinglongwaveradiation 218MB
mrsos Moisturecontentofsoillayer 218MB

FLASH
Sedov Hydrodynamicaltestcodeinvolvingstrongshocks

andnon-planarsymmetry
576MB

CellularBurnsimulation:cellularnuclearburningproblem1.35GB

Nek5000
Eddy 2DsolutiontoNavier-Stokesequations 820MB
Vortex Inviscidvortexpropagation:teststheproblemin

earlierstudiesoffinitevolumemethods
580MB

granularity.
HuffmanencodingorGzipemployedherecanimprove

compressionratiosbyremovingredundanciesbutcanbe
time-consuming. However,ourapproachdoesnotinvolve
othercomputationally-intensivetasks.Forexample,unlike
ZFPwherefloating-pointdataisconvertedintofixed-point
representationsbeforetransform,weapplyDCTdirectlyon
floating-pointdata.DCTitselfisalsofastcomparedtoother
transformsandcanbeperformedefficientlybecauseofour
blockdecomposition.DCTtransformspeedisrelatedtodata-
sizeandlargerdatasizewillleadtoalineartimeincrease.

IV.EVALUATION

A.ExperimentalSetup

1)System:Weconductedourexperimentsonthe Mas-
sachusetts Green High Performance Computing Cluster
(MGHPCC)forrunningFLASHandNek5000applications
atvariousscalesrangingfrom64to1,024corestogen-
eratedatasetsforourexperiments. Weused MPICH-3.2
andPnetCDF-1.7.0forrunningtheevaluatedapplications
(FLASH-4.2.1andthelatestversionofNek5000solversfrom
therepository).

2)Dataset:Weusedsixreal-worldscientificdatasetsob-
tainedfromthreeHPCcodepackages:FLASH,CMIP5,and
Nek5000,asshowninTableI.Thenumberofcheckpointsis
between153and1,000dependingondatasets.Theapplica-
tionsusedinourevaluationarefromthreedifferentscientific
domains:climatesimulation,hydrodynamicsimulation,and
nuclearcombustionsimulation.Theyallproducedouble-
precisionfloating-pointdata.Forthesolversanddatasets
providedintheFLASHcode,weevaluatedthefive most
importantvariables:temperature,pressure,density,initialen-
ergy,andtotalenergyfromeachcheckpointfile.Forthe
benchmarksprovidedintheCMIP5codepackage,weused
twoatmosphericoutputsofclimatesimulations:rldsand
mrsos(storedinaseparate1Darray).Thesetwodatasetsare
knowntobehardtocompress,duetolesscorrelationbetween
neighboringdatapointscomparedtothemeshdataproduced
byconventionalsimulations,suchashydrodynamicsandfluid
dynamics.

3)EvaluatedSchemes:





































     































 

Wecomparedourcompressional-
gorithmswithtwostate-of-the-artlossycompressors:SZ(SZ
1.4)andZFP.SZrepresentsprediction-basedcompressors
whichutilizecurve-fitting,scalarquantizationandHuffman
codingtocompresspredictabledatapoints.ZFPrepresents

Fig.7:Thebargraphs(primaryy-axis)showthecompression
ratiosusingoff-the-shelfJPEGandJPEG2000techniques,
withqualityof75;ThelinegraphsshowtheEntropyof
evaluateddatasets.

transform-basedcompressorswhichincludemantissaconver-
sionandorthogonaltransformation.Otherlossycompressors
werenotevaluatedhereastheyexhibitedsimilarorless
competitiveresultstoSZandZFP[20].Losslesscompressors
werenotconsideredinourevaluationduetotheirlimitationin
compressionratios(e.g.,nomorethan2xbasedonShannon’s
theoremsummarizedin[6]).
4)EvaluationMetrics:
a)Entropy:Shannonentropy,apopularlyusedmetricin

losslesscompression,isusedtopredictthecompressibilityof
datasets.Specially,theEntropy(H inbits)ofadatasetxis
calculatedasfollows:H(x)=−

n
i=1P(xi)log(P(xi)).

b)CompressionRatioandAccuracy:Compressionratio
(CR),isusedtoevaluatethesizereductionfromcompression,
whichisdefinedastheoriginalsizedividedbythecompressed
size.To measurethedifferencebetweentheoriginaldata
andthereconstructeddata,weusethemetricsdefinedinZ-
checker[41],aframeworkforassessinglossycompressors
forscientificdata.Specifically,weuse:(1)MaximumRelative
Error(denotedasmaxθ),whichiscalculatedasthemaximum
absoluteerrordividedbythevaluerangeofthedata. We
denoteθastherelativeerrorinsteadofpointwiseerrorbecause
ofthedifferentvaluerangesexhibitedindatasets.Inour
compressionalgorithm,userscandefinetheirownrelative
errorbound(P).ForDCT-EC,therelativeerror(θ)isguar-
anteedwithintheerrorbound;(2)AverageError:Normalized
Root-Mean-SquareError(NRMSE)andMeanRelativeError
(̄θ)areusedtomeasureaveragerelativeerror;(3)Distortion
andCorrelation:ThePeakSignal-to-NoiseRatio(PSNR)and
PearsonCorrelationareusedtoevaluatecompressionerror.

B.EvaluationResults

1)EntropyandCompressionRatio:WefirstuseShannon
Entropyaswellastheachievedcompressionratiosfromthe
image-basedcompressiontechniques,JPEGandJPEG2000
toestimatethecompressibilityofthedatasets. Weuseoff-
the-shelfJPEGtechniquesasacompression-ratioindicator
byfixingcompressionquality.AsshowninFigure7,the
entropiesofrlds, mrsos,VortexandEddyarehigherand
theircompressionratiosarelowerthanthoseofSedovand
Cellular.Therefore,weconsiderrlds,mrsos,VortexandEddy
ashard-to-compressdatasets.Itisinterestingtonotethatthe
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(a)errorbound=1E-3

































































































     

























(b)errorbound=1E-4

(c)errorbound=1E-5

Fig.8:Thebargraphs(primaryy-axis)showcompression
ratiosforDCT-EC,SZ,andZFPwiththemaxerrorbounds
(P)of(a)1E−3,(b)1E−4and(c)1E−5.The markers
(secondaryy-axis)showdeviationsbetweenoriginaldataand
reconstructeddataintermsofNRMSEwithdifferentlossy
compressors.(bluecircle:DCT-EC,orangetriangle:SZ,grey
square:ZFP).

compressionratiosachievedbyapplyingJPEGarehigherthan
theonesfromJPEG2000.

2)CompressionRatioandErrorBound:Figure8presents
thecompressionratios(CRs)ofDCT-EC,SZand,ZFP,when
Pissetto1E−3,1E−4,and1E−5,respectively.SinceZFP
mightnotrespecttheerrorbound,forafaircomparison,we
manuallyadjustPofZFPtoguaranteethatthemaxθis
smallerthanP

































































































     





































.Whileweobserveanoveralltrendthatstricter
errorboundsgivelowerCRsasshowninFigure8,DCT-EC

Fig.9:ThebargraphsshowcompressionratiosforDCT-QT,
SZ,andZFPwhereasthemarkersshowdeviationsbetween
originaldataandreconstructeddataintermsofMeanRelative
Error(̄θ).

showsthehighestCRsforSedovandCellularforallthree
errorboundsweevaluated.Forexample,whenPis1E−3,the
CRofDCT-ECforCellularis38,whichis290%and790%
higherthanSZ’s13andZFP’s4.8,respectively.ForSedov,
withP=1E−5,theCRofDCT-ECis7.1,whichis140%and
167%higherthanSZ’s5andZFP’s4.2,respectively.Itis
alsoshownthatDCT-EChasthehighestCRsforEddyand
VortexwithPof1E−3. WeobservethatZFPhasthebest
compressionratiosformrsos,whichisoneofthehard-to-
compressdatasetsaccordingtoourentropyanalysis(discussed
inSectionIV-B1).DCT-ECdidnotperformwellwithmrsos
becauseofitscharacteristics:highentropybutlowenergy
concentrationaftertransforms.OuranalysisindicatesthatZFP
requiresfewerbitstoencodethecoefficientsinmrsosthan
DCT-ECandSZ.Figure8alsopresentstheaverageerrors(in
termsofNRMSE)forDCT-EC,SZandZFPwithPof1E−3,
1E−4,and1E−5.Itisshownthat,formostofthedatasets,
bothZFPandDCT-ECproducerelativelyloweraverageerror
thanSZdoes.DCT-ECalsoproducesalowaverageerrorwhile
achievinghighCRsonSedovandCellular.
WenextcomparetheperformanceofDCT-QTwithSZ
andZFP.SincethecoefficientsinDCT-QTareadjustedby
thequantizationtable,DCT-QTmaynotstrictlyboundthe
user-definederrorrates.Therefore,forafaircomparison,we
adjustedPandevaluatedCRsofSZandZFPbyaligningthe
meanrelativeerror(θ̄)tothesamevalueforeachdataset.As
showninFigure9,DCT-QTachievesmuchhigherCRsthan
SZandZFPonrlds,Sedov,Cellular,Eddy,andVortex.The
CRonmrsosiscloseto10,whichisquitecompetitive.
Toprovehow muchhighercompressionratioDCT-QT
couldachievewhileguaranteeingmaxθwithincertainerror
bound,wecompareDCT-QTwithSZbyadjustingSZ’sPto
maxθofDCT-QT.ThecomparisonresultshowsthatDCT-
QTcanachieveCRsof122.83,26,203.10,183.54,19.65
and62.27onrlds,mrsos,Cellular,Sedov,Eddy,andVortex,
respectively,whileSZcanachieveCRsof42.00,19.62,88.21,
141.32,16.09and59.18,respectively.(Thespecificmaxθ
issetto5E−2,1E−2,7E−2,8E−2,1.5E−2,and1E−2).
Itisshownthatwithlesstighterrorbounds,theCRof
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TABLE II: Evaluation of Peak Signal-to-Noise Ratio (PSNR (dB)) with different lossy compressors on selected datasets.

max θ
rlds mrsos Sedov Cellular Eddy Vortex

DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 76.85 67.01 64.83 83.25 70.56 66.34 81.14 84.53 67.27 76.89 73.51 64.98 72.08 70.49 64.77 75.79 68.67 64.77
1E−4 97.30 91.05 84.79 104.58 94.58 85.647 104.41 101.20 86.55 96.91 91.86 84.83 92.83 88.57 84.77 95.77 86.69 84.77
1E−5 120.81 109.08 Inf 124.88 112.66 106.35 127.94 121.28 107.81 117.98 121.98 109.42 115.70 106.63 Inf 118.51 104.70 104.82

TABLE III: Evaluation of Pearson correlation with different
lossy compressors on selected datasets.

max θ
rlds mrsos

DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 ≥1-10−7 ≥1-10−6 ≥1-10−6 ≥1-10−8 ≥1-10−7 ≥1-10−6

1E−4 ≥1-10−9 ≥1-10−9 ≥1-10−8 ≥1-10−10 ≥1-10−9 ≥1-10−8

1E−5 ≥1-10−12 ≥1-10−11 ≥1-100 ≥1-10−12 ≥1-10−11 ≥1-10−10

max θ
Sedov Cellular

DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 ≥1-10−7 ≥1-10−8 ≥1-10−6 ≥1-10−7 ≥1-10−7 ≥1-10−6

1E−4 ≥1-10−10 ≥1-10−9 ≥1-10−8 ≥1-10−9 ≥1-10−9 ≥1-10−8

1E−5 ≥1-10−12 ≥1-10−11 ≥1-10−10 ≥1-10−11 ≥1-10−12 ≥1-10−11

max θ
Eddy Vortex

DCT-EC ZFP SZ DCT-EC ZFP SZ
1E−3 ≥1-10−7 ≥1-10−6 ≥1-10−6 ≥1-10−7 ≥1-10−6 ≥1-10−6

1E−4 ≥1-10−9 ≥1-10−8 ≥1-10−8 ≥1-10−9 ≥1-10−8 ≥1-10−8

1E−5 ≥1-10−11 ≥1-10−10 ≥1-100 ≥1-10−11 ≥1-10−10 ≥1-10−10

DCT-QT increases faster than that of SZ. The high CRs
achieved by DCT-QT can help scientists who have special
needs on checkpoint reduction but with fewer constraints on
error precision. Overall, both DCT-EC and DCT-QT show
remarkably higher compression ratios for FLASH datasets
(multi-physics, hydrodynamic code) and provide comparable
results for the other datasets.

3) Distortion and Correlation: Table II and III show the
PSNRs and the Pearson correlation coefficients for DCT-EC,
SZ and ZFP. From Table II, we can see that with P of
1E−5, all three compressors obtain PSNRs higher than 100.
Compared with SZ and ZFP, DCT-EC obtains a higher range
between 110 and 120 on most datasets. From Table III, we can
see that all three compressors have “five nines” [42] or better
correlations with all three P s. For DCT-QT, it obtains PSNRs
of no more than 50 and Pearson correlations of no more than
0.9999 on six datasets (with max θ of around 1E−3), which
shows its limitation in compression precision compared with
DCT-EC.

4) Distribution of Compression Errors: Figure 10 shows
the distribution of relative errors for DCT-EC, SZ, and ZFP
with P of 1E−4. We can see that the distribution of com-
pression error for SZ is nearly uniform while those for ZFP
and DCT-EC are nearly normal. Moreover, DCT-EC is more
conservative with regard to the accuracy requirement, which
is due to its transform property discussed in Section II-B and
Section III-B. Also, from the cumulative distribution function
(CDF), we can see that more compression errors are centered
around zero for DCT-EC than SZ and ZFP. This illustrates that
DCT-EC introduces less errors than SZ and ZFP in a given
P . We observe similar trends with P of 1E−3 and 1E−5.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative Compression Error 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
u
n
ts

(a) SZ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative Compression Error 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
u
n
ts

(b) ZFP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative Compression Error 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
u
n
ts

(c) DCT-EC

Fig. 10: The distribution of relative error (θ), with P=1E−4,
for (a) SZ (b) ZFP (c) DCT-EC (similar trend in DCT-QT). The
primary y-axis shows the error histogram and the secondary
y-axis shows the cumulative distribution function (CDF).

5) Impact on Checkpoint/Restart: In real simulation runs,
the errors of successive results after restarting from failures
may or may not converge. Therefore, evaluating the impact of
errors introduced by lossy compression against the original
values at each time step is critical, even if all evaluated
compressors provide a mechanism to guarantee error bounds.
Since DCT-EC, SZ and ZFP are designed for scientists who
have high compression precision demands, we choose them
for real simulation workflow comparison. To quantify the
impact of errors, we obtain their compressed restart files and
compare with their actual restarts. Since the higher CRs on
Sedov and Cellular datasets are very promising, we use Sedov
and Cellular solvers available in FLASH for comparison.
Specifically, we evaluate the restart of Sedov and Cellular at
time step 25 and 195, respectively, and run them until the
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(a)Cellular(singlerestart)































































































 

 

 

(b)Sedov(singlerestart)

(c)Cellular(multiple,orcompound,restart)

Fig.11:Themaximumrelativeerrorvariationduringsimula-
tiontimestampsintwosolversinFLASH.They-axisshows
themaximumrelativeerrorbetweenthedatageneratedfrom
restartusingreconstructeddataandtheoriginaldata.Note
that,in(a)and(b),therestartpointsofSZandDCT-ECshow
valuenohigherthan1E−5.

simulationends. Wehavetriedtherestartfrom1tothefinal
stepsandobservedthesameeffectbecauseeachstep,after
restart,solvesthesameSedovexplosionproblem.Wechoose
step25and195toreflecttherandomness.Theevaluationsare
donewitherrorboundPof1E−3,1E−4,and1E−5
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(a)Compression













































(b)Decompression

(c)

Fig.12:(a)Compressionand(b)Decompressionspeed(MB/s)
usingDCT-EC,SZandZFPwithPof1E−3.Similartrends
wereobservedwithPof1E−4and1E−5.(c)Breakdownof
compressionanddecompressiontimewithPof1E−3.

First,weobservethattheoverallexecution,intermsofthe
numberofsimulationstepstoconverge,isnotaffectedbythe
reconstructeddata.Bothsolversendatthesamesimulation
timestepsastheoriginalexecutions.Thisdemonstratesthat
theerrorinthereconstructeddataisnotsignificantlyinfluenc-
ingthemathematicalformulasthateachsolveriscomputing.

Next,weevaluatehowtheerrorintroducedbyeachcom-
pressortranslatesintoerrorsintheactualscientificdata
anditsimpactonrealapplicationsimulations.Asshown
inFigure11a,thereconstructedrestartfileobtainedfrom
SZwithPof1E−3generatesalargespikeafter20steps
fromtherestart. Whileweconjecturethattheexactcause
ofthisspikeisrelatedtoaspecificmathematicalformula
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in Cellular, it needs further verification from the domain
scientist. From Figure 11a, we observe that the reconstructed
restart files obtained from SZ with all three P s show small
divergence. The max θ keeps increasing for all cases. We
attribute this to the inherent error distribution in SZ, where
some scientific researchers require the compression errors to
follow Gaussian white noise distribution to satisfy the viability
of simulation. From Figure 11a, we also observe that, for all
reconstructed restart cases, the relative error for ZFP or DCT-
EC becomes relatively stable after a couple of simulation time
steps and finally shows the trend of decaying. With the highest
allowable error rate (P= 1E−3), DCT-EC shows a quicker
stabilization than the other two compressors. A similar trend
is also observed for Sedov, as shown in Figure 11b. With
the lowest error rate (P = 1E−5), all three compressors show
slower convergence, and thus more simulation steps are needed
before they stabilized.

In addition, we evaluate the effect of compounded errors
with P of 1E−3 on Cellular using the following restart
scenarios: (1) two successive restarts (which is similar to
[43]), at time step 195 and 196, and (2) two restarts at two
different time intervals (second restart at time step 230). Both
scenarios show that the compounded errors overlap with the
errors generated from the original restart, which is encouraging
because all three compressors work well with multiple restarts.
DCT-EC shows minimal impact of compounded errors and
remains below the error bound P .

All of these results demonstrate that both solvers (Sedov and
Cellular) worked well with various checkpoint/restart scenar-
ios (single or multiple restarts) in FLASH without disrupting
the original execution time and without a noticeable deviation
from numerical convergence. Therefore, as far as FLASH
solvers are concerned, all compressors do not require users
to adjust data for consistency after a restart.

6) Compression Throughput: Figures 12a and 12b present
the average compression and decompression speeds (excluding
disk I/O) on all evaluated datasets using DCT-EC, SZ, and
ZFP, with P of 1E−3. As shown in these figures, DCT-EC
and ZFP outperform SZ on most datasets. This indicates that
transform-based compression is overall faster than prediction-
based compression, at least for the datasets evaluated in this
work. It should be noted that DCT-EC includes Gzip encoding
on indices, while ZFP does not. It is also shown in the figures
that the decompression speeds are faster than compression
speeds on all three compressors, showing a promising result
for HPC workloads since data is compressed once and decom-
pressed frequently. Figure 12c, on the other hand, shows the
breakdown of DCT-EC. We can see that the encoding time
including encoding is around 60% of the total compression
time. For DCT-QT, the quantization takes an average of 26.3%
of the total compression time on all evaluated datasets.

7) Scalability: Table IV presents the scalability results of
the compression and decompression time (excluding the I/O
time) of DCT-EC (with P of 1E−3) on dataset Celluar while
varying the number of threads from 2 to 16. We ran each
experiment ten times and used the average time. As shown

TABLE IV: Scalability of compression and decompression.

Number of Comp Comp parallel Decomp Decomp parallel
threads speedup efficiency speedup efficiency

2 1.99 99.5% 1.99 99.5%
4 3.98 99.5% 3.97 99.25%
8 7.88 98.5% 7.87 98.38%

16 14.7 91.88% 14.9 93.13%

in the table, the parallel efficiencies for both compression
and decompression are at least above 91.8% and have almost
linear speedup with an increasing number of threads. We
attribute this linear speedup to the block-based approach in our
compressor design. For example, DCT transform can be done
in parallel with the decomposed blocks. Subsequent block-
based filtering and quantization can be also done in parallel
without any communication among the distributed blocks. In
order to calculate the exact file offset for locally encoded
data for writing, our method needs to perform parallel prefix
operations, which is straightforward to parallelize. Overall, we
believe that our proposed method is scalable at a production
level.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a lossy compression technique.
Specially, we apply DCT with a novel block decomposition
strategy and design an adaptive quantization with two task-
oriented quantizers: Quantizer-EC and Quantizer-QT. We com-
pare our compressor with SZ-1.4 and ZFP, using six scientific
datasets from three real scientific applications. Our com-
pression approach achieves comparable performance, showing
3x–38x compression ratio while guaranteeing user-specified
error bounds on the evaluated datasets. Moveover, we investi-
gate the reconstructed data from two solvers under several
checkpoint/restart scenarios. It is shown that restarts from
a lossy state are viable without any application disruptions,
and the propagation of single and compounding errors remain
within the user-specified error bounds. We empirically demon-
strate that our compression technique can seamlessly work
for checkpoint/restart employed in the FLASH application
workflows and thus is considered as a promising approach
for lossy data compression.

In our future work, we plan to expand the proposed com-
pression technique in several ways. First, we plan to improve
the compression ratio of our technique by optimizing the
quantization model. We also want to improve the compres-
sion quality of our technique on larger datasets. Lastly, we
plan to incorporate our compression mechanism into various
layers in the HPC I/O software stack, including MPI-IO [44],
PnetCDF [45], HDF5 [46], and ADIOS.
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