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ABSTRACT
Voice interfaces are increasingly becoming integrated into a variety
of Internet of Things (IoT) devices. Such systems can dramatically
simplify interactions between users and devices with limited dis-
plays. Unfortunately, voice interfaces also create new opportunities
for exploitation. Specifically, any sound-emitting device within
range of the system implementing the voice interface (e.g., a smart
television, an Internet-connected appliance, etc) can potentially
cause these systems to perform operations against the desires of
their owners (e.g., unlock doors, make unauthorized purchases, etc).
We address this problem by developing a technique to recognize
fundamental differences in audio created by humans and electronic
speakers. We identify sub-bass over-excitation, or the presence of
significant low frequency signals that are outside of the range of
human voices but inherent to the design of modern speakers, as a
strong differentiator between these two sources. After identifying
this phenomenon, we demonstrate its use in preventing adversarial
requests, replayed audio, and hidden commands with a 100%/1.72%
TPR/FPR in quiet environments. In so doing, we demonstrate that
commands injected via nearby audio devices can be effectively
removed by voice interfaces.
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1 INTRODUCTION
The Internet of Things (IoT) holds the potential to increase automa-
tion in our daily lives. Devices ranging from connected appliances
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that report when groceries are low to smart thermostats that can
anticipate desired temperature changes offer great convenience to
their users. Given that many of these devices have either limited
or entirely lack traditional interfaces, an increasing number now
incorporate voice commands as their primary user interfaces. Voice
interfaces not only simplify interaction with such devices for tra-
ditional users, but promote broader inclusion for both the elderly
and those with disabilities [30].

Voice interfaces also introduce a number of security problems.
First, few devices actually authenticate their users. Instead, if a
command can be understood by a voice-enabled device, it simply
executes the request. Any insecure sound-emitting IoT device (e.g.,
a networked stereo system or smart TV) near a voice interface may
be used to inject commands. An adversary need not necessarily
compromise nearby devices to launch a successful attack – voice
controlled devices have already been intentionally [21] and un-
intentionally [23] activated by nearby televisions. Second, while
some devices are considering the use of biometrics for authentica-
tion, this solution fails in many important cases. For instance, off
the shelf tools [2, 9] allow attackers to generate audio targeting
specific speakers. Moreover, even if biometrics can protect against
these attacks, they do nothing to prevent against replay. Fundamen-
tally, wherever speakers exist, audio can easily be injected to induce
voice-interfaces to perform tasks on behalf of an adversary.

We address this problem in this paper by developing techniques
that distinguish between human and electronic speakers.1 Specifi-
cally, we identify a feature of audio that differs between the human
vocal tract and the construction of modern electronic speakers.
Our analysis shows that electronic speakers induce what we re-
fer to as sub-bass over-excitation, which is the presence of very
low-frequency components in the audio waveform that are not
naturally produced by humans. This phenomenon is instead a con-
sequence of the enclosures in which electronic speakers are housed.
We demonstrate that this feature is a reliable indicator in detecting
electronic speakers.

Our work makes the following contributions:
• Identify sub-bass over-excitation phenomenon: Using
signal processing, we identify a frequency band present in
the audio generated by electronic speakers. We discuss why
sub-bass over-excitation occurs and develop the energy bal-
ance metric to effectively measure it.
• Experimental evaluation of phenomenon based detec-
tor: After explaining sub-bass over-excitation, we construct
a detector that differentiates between organic and electronic
speakers in low noise (TPR : 100%; FPR : 1.72%) and high

1To overcome the overloaded term “speaker”, we refer to humans as “organic speakers”
and manufactured devices that emit audio as “electronic speakers”.
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noise (TPR : 95.7%; FPR : 5.0%) environments. We also con-
textualize why these false positive rates are acceptable based
on reported usage data.
• Analysis of Adversarial Commands: We demonstrate
that our detector can accurately identify the speaker as or-
ganic or electronic even in the presence of recent garbled
audio injection attacks [15] and codec transcoding attacks.

We note that the sub-bass over-excitation is not simply a phe-
nomenon limited to a certain class of electronic speakers. Rather,
it is a fundamental characteristic of the construction all electronic
speakers, be they of high or low quality. Without an adversary gain-
ing physical access to a targeted environment and replacing the
electronic speakers with custom-made devices (which, as we will ex-
plain, would add significant noise to produced audio), our proposed
techniques dramatically mitigate the ability to inject commands
into increasingly popular voice interfaces.

The remainder of the paper is organized as follows: Section 2
provides context by discussing related work; Section 3 offers back-
ground information necessary to understand our techniques; Sec-
tion 4 details our hypothesis and assumptions; Section 5 describes
the sub-bass over-excitation phenomenon and provides a confirma-
tion test; Section 6 provides a detailed evaluation using multiple
electronic speakers and test subjects; Section 7 discusses attempted
mitigations and related issues and Section 8 provides concluding
remarks.

2 RELATEDWORK
Voice assistants [3, 4, 6, 7] are helpful in many ways, ranging from
setting alarms or asking for the weather to making purchases or
changing a thermometer’s temperature. Unfortunately, these de-
vices are vulnerable to command injection by any audio source
loud enough to be heard by the built-in microphone. For example,
a recent Burger King TV commercial was able to activate nearby
Google Assistants [21], while a reporter triggered various Amazon
Echo devices by reading a command from the teleprompter [23].
Although these incidents were not meant to cause serious harm,
more severe attacks could allow an adversary to gain access to a
building by opening smart locks [5], place orders [3, 8], or make
financial transactions on behalf of the owner without explicit con-
sent [10, 18]. Additionally, since voice assistants trigger with an
activation phrase from any audio source, researchers have also
demonstrated ways to inject malicious commands to these devices
by generating sounds inaudible [37] or incomprehensible [15, 35]
to humans hearing.

Determining the authenticity of the commands heard by the
voice assistant is an active area of research. A commonly used
method is to have a speaker recognition model that is trained using
the owner’s voice [19, 24]. However, having a single form of biomet-
ric authentication has been shown to have limitations due to the
lack of randomness it provides for generating model [25]. Worse
yet, while a trained speech model is useful, these models are also
vulnerable to replay attacks [36]. Finally, generating a sound that is
similar to the owner’s voice has been shown capable of bypassing
the speaker recognition model [22, 28]. Commercial off-the-shelf
software (e.g., Lyrebird [9] and Adobe VoCo [2]) can also be used
to generate fake commands akin to the voice of the owner.

To stop command replay attacks to voice assistants, liveliness ver-
ification can be performed by adding a video feed of the user’s facial
expression as input [11, 16, 27]. This method of proving liveliness
has beenwidely studied in the field of information fusion [12, 17, 29].
While adding a camera source decreases the chance of malicious
command injection, it also increases the chance of rejecting a real
command and requires the addition of a video channel to devices,
many of which do not come readily equipped with cameras. More-
over, cameras potentially introduce new threats to many environ-
ments.

In previous work, we used a secondary device controlled and
colocated with the owner of a voice operated device to authenti-
cate incoming commands [14]. However, this technique requires
an additionally device which may make it unsuitable for certain
applications.

In this paper, our goal is to determine whether a sound is being
played through an electronic speaker or if the sound originates
from organic human speech.

3 BACKGROUND
3.1 Structure of the Human Voice
Figure 1 illustrates the structures that create a human voice. The
human voice is created by the complex interaction of various parts
of the human anatomy. Sounds are produced by a combination
of the lungs, the larynx, and the articulators (the tongue, cheeks,
lips, palate, throat, and nasal cavity). The lungs force air over the
rest of the vocal tract allowing it to produce sound. The larynx
contains the vocal cords which are responsible for the generation
of the fundamental frequency2 present in the voice. Since the vocal
cords are located at the bottom of what is essentially a closed
tube, the fundamental frequency induces an acoustic resonance.
This resonance generates harmonic frequencies of the fundamental
frequency as it travels up and out of the human speaker’s vocal
tract. The articulators then alter the waveform generated by the
vocal cords in order to produce the wide range of sound present in
human speech. Specifically, articulators block or greatly diminish
the amplitude of certain harmonics for different parts of speech.
Engineers often simplify the human vocal tract into the Source-filter
Model [31].

In the Source-filter Model, the human vocal tract is modeled
as an underlying sound that is being filtered. Typically, women
and men have fundamental frequencies between 165-255Hz and 85-
180Hz respectively. [13, 34]. By generating a frequency (x ) within
a closed tube, the column of air will vibrate not just at the given
frequency, but at every harmonic frequency higher than that (2x ,
3x , ... nx ). The rest of the vocal tract acts as a filter, removing certain
harmonics in order to produce various sounds. While this model is
a very simplistic view of the biological mechanisms that produce
the human voice, it will suffice for our purposes in describing the
bio-mechanical system that defines the human voice.

The acoustic waveform generated by a human speaker is defined
by the physical characteristics of their vocal tract. For example,
men typically have larger vocal cords than women, which vibrate
at a lower rate and thus cause men to have lower pitched voices.

2A person’s fundamental frequency is the lowest frequency present in their voice.

124



Hello, Is It Me You’re Looking For? Differentiating Between
Human and Electronic Speakers for Voice Interface Security WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Lips Tongue

Nasal Cavity

Vocal Cord

Teeth

Figure 1: Air coming from the vocal cords passes through
the larynx, which generates the fundamental frequency of
human voice. This sound then passes through the mouth
where articulators further refine the speech. The lips, teeth,
tongue, and nasal cavity make up the articulators in this fig-
ure.
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Figure 2: To produce sound, magnets oscillate the speaker’s
diaphragm. The spider is responsible for connecting the
speaker to the enclosure in away that allows freemovement
of the speaker without separation from the enclosure.

However, we can still make some generalization about the average
human speaker despite the great variation in physical characteris-
tics. Since articulators do not add new frequency components, the
fundamental frequency is the lowest frequency that can be present
in a human voice. This generalization will become the basis for our
technique later in the paper.

3.2 Electronic Speaker Design
In Figure 2, we show a simplified diagram of a modern electronic
speaker. These speakers reproduce sound by oscillating a diaphragm
in an appropriate way to reproduce the recorded sound. The di-
aphragm displaces the air nearby and causes a pressure wave to
propagate away from it. To oscillate the diaphragm, the electronic
speaker uses an electromagnet, called the voice coil, attached to
the rear of the diaphragm and located inside the magnetic field of
a permanent magnet. The voice coil will induce a magnetic field
when current is applied to it. The interactions between the voice
coil’s and the permanent magnet’s fields will induce a force onto the
voice coil and the diaphragm, causing it to move. The final critical
component to a basic electronic speaker is the spider, a spring that
attaches the oscillating coil and diaphragm assembly to the case.

The spider must allow the diaphragm to move as freely as possible
while also ensuring that the diaphragm does not separate from
the case. In addition, it must ensure that the voice coil/diaphragm
assembly return to its neutral point when not in the presence of
a magnetic field. The material selection of the spider has a large
impact on the overall performance of the electronic speaker.

An electronic speaker’s design performance can be evaluated
by looking at its frequency response curve. A frequency response
curve describes how well an electronic speaker generates a given
frequency. This curve is directly related to the physical characteris-
tics of the electronic speaker. Namely, an electronic speaker that
can accurately reproduce low frequencies will struggle to reproduce
higher frequencies and vice versa. The reason that this trade off
exists has to do with how energy is transferred by a wave. In order
to understand why this occurs, imagine two electronic speakers,
one playing a 30Hz tone and one playing a 3000Hz tone. If both
electronic speakers have the same excursion (physical oscillation
distance) and diaphragm size, then the electronic speaker playing
the 3000Hz tone will cause the same pressure wave as the other
electronic speaker 100 times more often. Since each pressure wave
carries a set amount of energy, the 3000Hz electronic speaker will
output 100 times more energy than the 30Hz electronic speaker
and thus will be significantly louder to a listener. In order for a
30Hz electronic speaker to produce just as much acoustic energy
as the 3000Hz electronic speaker, it needs to produce more en-
ergy per wave. This is possible by increasing a combination of the
diaphragm’s size and the excursion distance so that the 30Hz elec-
tronic speaker is displacing 100 times more air per oscillation than
the 3000Hz electronic speaker. However, this has consequences
on the other components of the electronic speaker. Since the di-
aphragm is displacing more air per oscillation, the voice coil will
need to be larger to induce a stronger magnetic field and the spider
will have to become stiffer to accommodate the higher amounts
of momentum from the heavier voice coil and diaphragm. If the
new larger electronic speaker plays a higher frequency, say 3000Hz,
the higher dampening from the stronger spider would drastically
reduce the amount of excursion the electronic speaker can achieve,
thus reducing the amount of energy output and making higher
tones significantly quieter than the lower tones. This is why many
sound systems separate speakers for different frequency ranges.

Lastly, electronic speaker designers have to deal with the effects
of the enclosure or case. Since every material has a resonance or
natural frequency, an electronic speaker designer must account
for its enclosure’s vibration. Typically these enclosures resonate
at somewhere in the sub-bass (20-80Hz) region. Audio engineers
design enclosures such that their resonance frequency is in this range to
minimize its impact on the sound. The sub-bass region is so low in the
frequency spectrum that it is generally experienced as a pressure
rather than being heard in the traditional sense. It is important
to note that the enclosure will resonate whenever the electronic
speaker is producing sound since it is being used as the anchor
point for the spider.

4 HYPOTHESIS AND ASSUMPTIONS
Speech originating from an organic speaker is defined by a funda-
mental frequency that exists in the bass region, leaving the sub-bass
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Figure 3: This is the construction of our metric. The left most graphs show the FFT generated from the same command played
via both an organic and electronic speaker. The electronic speaker has an over excited sub-bass region. The cropping in the
middle graphs is done to cut down the overall area under the curves. Additionally we can see in the cropped graphs that the
electronic speaker is also losing frequency components in the bass region (right side of the graph). Finally, the energy curve
represents the integration and normalization of the windowed FFT.We can see that the electronic speaker accumulates energy
more rapidly then the organic speaker does. Our final energy balance metric is evaluated at the cutoff frequency that divides
the sub-bass and bass regions.

region devoid of energy. In contrast, audio created by an electronic
speaker will have more energy in the sub-bass region due to the
resonance of the enclosure. The electronic speaker is said to have
driven components in the sub-bass region since some part (the
enclosure) is actively creating these frequencies. By detecting the
relative amount of energy in the sub-bass region we can differenti-
ate between electronic and organic speakers.

4.1 Security Model
We use the remainder of this section to describe our setting and
adversary.

Adversary: Our adversary’s goal is to inject audio commands to
a target device that has a voice interface. We assume a remote ad-
versary capable of compromising any electronic device in the room
except the device implementing the voice interface. The simplest
adversary would leverage devices such as TVs and radios through
commercials or content that the user actively turned on. Alterna-
tively, more advanced adversaries could comprise multiple devices
around the target device. These compromised devices could then
inject audio into the space without the user’s consent. This type of
adversary could have access to a wide range of different electronic
speakers; ranging from smart TVs, computers, IP enabled webcams,
or high quality speaker systems. Additionally, the adversary does
not have physical access to the device. This constraint prevents
the adversary from inserting their own speaker near the target de-
vice. However, we believe that this is a minor constraint since with
physical access an adversary could trivially perform commands by
speaking.

Microphones: In order to detect an electronic speaker’s increased
sub-bass components, our microphones must meet the following
properties. First, the microphones must be capable of accurately
detecting frequencies in the sub-bass region (20-80Hz). Second, the

microphones must have a known frequency response curve. Micro-
phones, just as electronic speakers, behave differently at different
frequencies. By knowing the frequency response curve of the mi-
crophones we are able to compensate for any error the they may
incur while recording the audio. Lastly, we require that the micro-
phones be under our control. This requirement ensure that the data
coming from the microphone has not been tampered with. Without
this property an adversary could trivially defeat our technique by
removing any sub-bass components before passing the audio along
to be verified.

Electronic Speakers: In our model, the adversary can have nearly
full control over the electronic speaker that is playing the audio.
An adversary can control the electronic speaker’s location, volume,
and directionality. Additionally, an adversary could have a range of
commercially available electronic speaker to be used to play the au-
dio. As discussed in Section 3, electronic speakers are designed with
audio quality in mind. This implies that all enclosures will resonate
in the sub-bass region to prevent affecting any of the other more
important acoustic regions. The adversary’s only strict constraint
is that they cannot physically alter the speaker. If an adversary al-
tered the speaker’s enclosure so that its resonant frequency moved
outside of the sub-bass region, our technique could be defeated.

Audio Sample: We allow the adversary to have full control over
the audio which is played over the electronic speaker. The adver-
sary is free to add noise to the sample, filter out components of
the sample, or change relative frequency intensities of the sample.
Regardless of what the adversary does, a non-tampered speaker
will still resonate in the sub-bass region more so than an organic
speaker.
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5 DIFFERENTIATING HUMANS FROM
SPEAKERS

We seek to prove and measure the hypothesis stated in Section 4.
The simplest way to check for sub-bass over-excitation is through
visual inspection of a command’s Fast Fourier Transform as can be
seen in Figure 3. The Fast Fourier Transform (FFT) is an algorithm
that divides a signal into its different frequency components and
their amplitudes. Once again, sub-bass over-excitation is the pres-
ence of a driven component in the sub-bass region of a command.
While organic speakers fundamentally lack driven sub-bass compo-
nents, electronic speaker produce them due to enclosure resonance.
We calculate the FFT of a command being spoken by a user and
then being replayed via an electronic speaker. The sub-bass region
in the command played through an electronic speaker has a higher
intensity than the same region in the spoken command. In this
section, we outline the construction of a metric that allows us to
measure this phenomenon. Additionally, these FFTs highlight some
potential complications our metric will need to overcome. How-
ever, before we examining our metric’s construction we explain
our experimental setup.

5.1 Experimental Setup
All of our commands were recorded using a far field microphone
array (Respeaker 4-mic Array for Raspberry Pi) [32] that is similar
to arrays in devices like the Amazon Echo [3]. For simplicity we
use the Respeaker microphone array as a stand in for this devices.
The Respeaker array consists of four PCB mounted microphones
produced by Knowles. In comparison the Google Home andAmazon
Echo Dot have two and seven PCB mounted microphones produced
by TDK and Knowles respectively. Microphones can be compared
via their signal to noise ration3 (SNR). The microphones on the
Respeaker array have a lower SNR (59 DBA) than both the Google
Home (65 dBA) and the Amazon Echo Dot (65 dBA). From this we
can discern that the microphones on the Respeaker array capture
the least acoustic information out of the three microphones and is
the least capable for preforming our technique.

Our microphone array recorded each of its four microphones
onto a separate channel during testing. However, since our tech-
nique does not require multiple recordings, we disregard all but
one of the channels. This allows for our technique to be applied to
any of the aforementioned devices or any device that contains at
least one microphone.

Next we will discuss our audio preprocessing that immediately
follows the recording process.

5.2 Audio Cleaning and Preprocessing
We found that the input commands were initially noisy. Our pre-
processing involved three steps: microphone equalizing, amplitude
normalization, and noise filtering.

Our microphone array’s microphones came with a manufacturer-
provided frequency response curve. By equalizing the recorded
audio with the frequency response curve of the microphone we

3SNR is a comparison between power of the signal and the device noise. A higher ratio
means that a microphone will add less noise to the record signal; thus masking less
acoustic information with noise.

FFT

20 Hz

20 Hz 80 Hz

80 Hz

Rectangular 
Speaker

Cubic 
Speaker

Organic 
Speaker

20 Hz 80 Hz

Figure 4: The dimensions of an electronic speaker’s enclo-
sure determine the different frequencies in the sub-bass re-
gion that are over excited.

minimized the impact they had on the recorded commands. Follow-
ing the equalization, every recording was normalized (discussed in
depth in Section 5.4) so that its volume was the same. This ensured
that all the recordings are approximately the same intensity before
processing occurred.

Noise filtering was the final part of our preprocessing. We used
the noise filtering function provided by Audacity [33]. The Audacity
noise filter constructs a profile of the silence in the command. This
profile is an averaged FFT of the silence. Then, the filter uses a
sliding window over the audio to construct an FFT for each segment
of audio. For each segment the filter checks if each frequency in the
segment’s FFT is higher than the same frequency in the silence’s
FFT. If so, the filter does nothing. However, if the frequency in the
silence’s FFT is higher, the filter subtracts a set amount (48 dBs in
our case) from that frequency in the segment’s FFT. This effectively
brings that frequency close to zero and minimizes it’s impact on the
audio. It is important to note that this filter is effectively binary. For
example, imagine a room had a constant 10 dBs 100 Hz noise. When
a person with a voice that contains 100 Hz speaks at 40 dBs, the
resulting 100 Hz component of the recording is the addition of the
two sources. When the noise filter compares the silence in the room
to the point when the person is speaking, it detects that the 100 Hz
frequency is more intense than it was in the silence and leaves it
unaltered. Both the person’s and the room’s components make it
through the filter unchanged. Simply put, all driven frequencies in
the audio will pass through the noise filter unaltered.

5.3 Handling Sub-bass Variation
Capturing sub-bass variation is not a straight forward process, and
creates two primary challenges. The first of these complications
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is that different electronic speakers will over excite the sub-bass
region differently. This reflects the design of the speaker’s enclo-
sure. Specifically, the speaker enclosure’s resonant frequency is
directly related to the physical dimensions of the speaker [26]. If
an enclosure is rectangular, then it has three possible resonant fre-
quencies; one for each pair of parallel walls. Each of the resonant
frequencies is defined by the distance between those walls. For in-
stance, if an enclosure was cube, then the speaker’s three resonance
components would all be identical. This would cause the sub-bass
over-excitation to peak at a single frequency. However, if all three
dimensions were different the enclosure would have three smaller
resonant frequencies. This would cause the over-excitation in the
sub-bass to be more evenly distributed throughout the region. This
phenomenon can be seen in Figure 4. To compensate for this we
designed our metric to be resilient to the variation in the sub-bass
components driven by the electronic speakers.

The second complication is the variation in the sub-bass with re-
spect to time. That is, an electronic speaker may produce more sub-
bass during a given phoneme of a command than another. This is
due to how the different frequency component of a phoneme excite
the enclosure’s resonance. Simply put, certain frequencies will cause
the enclosure to resonant more than others. A command recorded
from an organic speakers may also contain additional sub-bass from
various backgrounds sources. Sources including bumps and knocks
in the background can cause higher than normal amounts of sub-
bass to be present. These temporary inconsistencies in sub-bass will
cause the command’s FFT to misrepresent the amount of sub-bass
present in the commands. Once again, our metric was constructed
in such manner so that it is robust to this complication.

5.4 Metric Construction
Step 1: The construction of our metric begins with applying a
sliding window to the recorded audio. Thewindow size was selected
to be 0.1 seconds long with no overlap. We address window size
selection shortly. By applying a sliding window to the input audio,
we make our metric robust against sub-bass variation with respect
to time. We do this by computing a metric for every window and
normalization of the sample at the end. This normalization step will
be discussed at the end of this section. Figure 3 shows an overview
of how our metric is calculated for a single window.
Step 2: Next we compute an FFT with 4096 output points for each
window. FFTs average frequency amplitude across the sample they
are applied to which makes them susceptible to outliers. By win-
dowing the audio command we can prevent outlying amounts of
sub-bass from background noises or certain phonemes from skew-
ing our data. Once again, this is handled by the normalization at the
end of this section. Each FFT is then cropped down to contain only
frequencies between 20 and 250 Hz. There is a trade off between
the size of the sliding window and the FFT. The larger the FFT the
more data points we have within our cropping frequency range.
However, larger FFTs require more audio samples (time) as input
and become more susceptible to outliers in the sub-bass region.
Our window and FFT size selection allows us to maintain a large
enough number of points in this frequency range (21 points) while
having a short enough time window to become robust to sub-bass

outliers.4 The cropping of the FFT makes changes in the sub-bass
region easier to detect. This statement will be clarified later in this
section.
Step 3: Next, we integrate over the cropped FFT to create a spectral
energy curve. The spectral energy curves represents the total energy
of the audio in the 20-250 Hz range. This curve is then normalized
so that the area underneath the curve is equal to one. This makes
the value at any point along the curve equal to the cumulative
distribution function.
Step 4:We define a cutoff value where the normalized energy curve
is evaluated. In other words, we selected a point along the curve
that defines the separation of the sub-bass and bass regions. An
example cutoff value can be seen in the last panel of Figure 3. In our
tests we chose a cutoff value of 80 Hz. At that point, our normalized
energy curve evaluates to the total percentage of energy that is
present in the sub-bass. This is equivalent to the following equation:

enerдy balance metric =
ESub-bass Reдion

ETotal Evaluated Reдion
(1)

where ESub-bass Reдion represents the energy accumulated in the
sub-bass region and ETotal Evaluated Reдion is the energy accumu-
lated in the whole region being examined (20-250 Hz). Examining
the sub-bass region in this way, allows our metric to be robust
against the various different enclosure shapes as described in Sec-
tion 5.3.Whether the sub-bass over-excitation is spread out or concen-
trated into a single peak, the amount of energy present in that region
will remain approximately the same.

It is at this point that the earlier cropping of the FFT has an
impact. By cropping the FFT, the sub-bass region becomes a larger
portion of the total energy represented. This means that smaller
changes in the amount of spectral energy in the sub-bass region will
result in larger changes to the normalize energy balance. Addition-
ally, the FFT cropping allows us to pick up on a second phenomenon
that is common with small and low end speakers: they struggle to
reproduce bass frequencies. This means that electronic speakers
produce too much energy in the sub-bass region, while simultane-
ously having too little energy in the bass region. This causes the
energy curve from an electronic speaker to further deviate from
that of an organic speaker.
Step 5: Finally, our metric must handle variation in the sub-bass
with respect to time as discussed earlier in this section. In order
to prevent outlying sub-bass components from affecting the final
energy balance, we fit the accumulated energy balances to an nor-
mal distribution by removing outliers based on the skewness of
our data. Once our data’s skew is approximately zero, we select the
median value from the data as our final energy balance metric.

6 EVALUATION
We evaluate the performance of our normalized energy balance
metric. For testing we collected samples from eight human speak-
ers, four male and four female. We believe that eight speakers is
sufficient given that our technique is not attempting to identify
the individual speakers. We include both male and female speakers
to ensure we have a wide range of speaker pitches. To properly
validate our energy balance metric we instead need a large amount

4The average phoneme length for a speaker falls somewhere between 100-300ms [20].
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Figure 5: The energy balance metric for both environments shows similar values. However, organic speakers show a higher
energy value in high noise environments than in low noise environments. The increase in energy is an artifact of the noise
filtering process having to remove large amounts of background noise.

of spoken phrases. To satisfy this, we recorded each speakers speak-
ing eight different command phrases.5 These commands were then
recorded and played back through eight commercially available
electronic speakers that capture a range of different speaker :x

speakers used including (A) Music Angel, (B) HP Computer
Speakers, (C) Dynex TV, (D) Acer Predator monitor speakers, (E)
Samsung Sound Bar, (F) Insigna TV, (G) MacBook Air, and (H) Bose
Wave. To determine the effects of background noise on our detec-
tion method, we repeated each of the commands in environments
that had low (e.g., normal bedroom) and high (e.g., office space
with white noise generators at 50dB and scattered conversations)
background noise levels. In total we obtained 1204 samples: 605
sample points (58 for organic and 547 for electronic speakers) in a
low background noise environment and 599 (60 for organic and 539
for electronic speakers) in a high background noise environments.6

We contacted our Institutional Review Board (IRB) regarding
the use of human voices. Because the analysis in this work was
effectively about electronic speakers and not the people themselves,
they indicated that no further IRB review or approval was necessary.

6.1 Calculation Threshold and Performance
Evaluation

Figure 5 shows the energy balance metric (derived in Section 5.4) for
each sample in both testing environments. A qualitative analysis
of these graphs shows that organic speakers are more likely to
have a lower energy balance than electronic speakers. To determine
if the audio sample comes from an organic or electronic speaker,
a detector can be built around this phenomena by choosing an
optimal threshold limit as a minimum value for electronic speakers.

Before evaluation our detector, we need to derive a threshold
limit for our energy balance metric to determine if the audio is
coming from an organic rather than an electronic speaker. Figure 6
shows the distribution of the energy balance metric that comes

5We placed our command phrases in Appendix A.
6We discarded audio samples that had errors in recording which were discovered after
data collection.
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Figure 6: The distributions of the calculated energy balance
metric between organic and electronic speaker are different
in both environments tested.

from both organic speakers and electronic speakers in both testing
environments. Since there is an overlap in the distributions for both
environments, determining an optimal threshold for our metric
requires a trade off between false positives (i.e., organic speakers
identified as electronic speakers) and true positives (i.e., electronic
speakers identified as electronic). To do that, we calculated ROC
curves, which give us the performance of our detector under var-
ious threshold limits. Figure 7 shows the performance trade off
of the detector in environments with low and high background
noise levels. The accuracy of distinguishing between organic and
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Figure 7: The ROC curves for the speaker detector shows
that our metric can easily differentiate between organic and
electronic speakers in environments with low and high lev-
els of background noise.

electronic speakers can be measured by calculating the area under
the curve (AUC) of each ROC curve, with AUC values closer to 1.0
signifying better performance. From this figure, we calculated the
AUC of both environments to be 0.9995 and 0.9912 for low and high
noise levels respectively. These values tell us that our detector has
excellent accuracy in terms of distinguishing between organic and
electronic speakers at a wide range of threshold values. However,
since our use case application is to prevent injection attacks to voice
assistants, we must optimize to have a high true positive rate (TPR)
while still retaining reliable performance (i.e., not stopping actual
organic commands). We define a reliable performance as having
a false positive rate (FPR) no greater than 5.0%, which equates to
1 every 20 organic commands being rejected. For reference, most
voice assistant users place four voice commands on a daily basis [1].
With the currently set FPR, these users can expect command rejec-
tion once every five days. We believe this is a reasonable trade-off
because when a command is rejected, the user can simply repeat it.

In Figure 8, we show the performance output for possible energy
balance threshold limits. For low noise environments, we choose a
threshold value of 0.2280 and achieve a FPR of 1.72%while having a
TPR of 100.0% (Figure 8a). For reference, by choosing this threshold
for our energy balance metric, we would correctly stop all injection
attacks coming from electronic speakers while minimizing the per-
formance degradation of voice assistants by only stopping 1 every
58 organic voice commands (once every two weeks).

For high noise environments, we choose an energy balance
threshold limit of 0.2345, and achieve our performance reliabil-
ity FPR of 5.0%. However, in this environment our TPR decreases
to 95.7%. The drop in accuracy can be attributed to a decrease of
performance in organic speakers rather than an increase of per-
formance in electronic speakers. We believe the increase in FPR is
due to the noise filter used in preprocessing, which removes bass
components in the organic speakers voice. As we mentioned in
Section 5.2, noise filtering is a crucial step of our detection mecha-
nism and is binary by nature: if a component of an organic speaker
was unable to break the intensity threshold, it was removed. Since
female speakers generally contain less intense bass components,
we believe the filter removed all traces of the bass components from
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Figure 8: Picking a threshold level requires a trade off be-
tween performance and detection rates. These graphs show
the True and False Positive Rates for both environments
over a range threshold values. We chose our thresholds (the
vertical black line) to reach a performance rate of 95%while
keeping a false positive rate to a minimum.

their voices, which caused their energy balance metrics to skew
higher. If true, then we would expect the male speakers to have
a similar performance as before. To test this hypothesis, we used
the highest male energy balance as a threshold and reanalyzed the
data to get a TPR of 99.2%. This TPR confirms the drop in accuracy
was caused by the preprocessing filter in a high noise environment.
This accuracy can be maintained by simply having the speakers
speak loud enough to overcome the effects of the noise (i.e., setting
a minimum volume threshold for acceptable commands).

6.2 Statistical Significance
We showed how our technique is able to differentiate audio be-
tween electronic speakers and organic speakers. To demonstrate
that our differentiation technique is statistically significant, we use
an independent sample t-test. This is a null hypothesis test that
determines if the mean of two populations are equal. For our ex-
periments, the null hypothesis would indicate that our technique
does not differentiate between organic and electronic speakers in a
statistically significant way.

We separated our data by environments (low and high back-
ground noise), set our confidence interval to α = 0.05, and then
performed the test on each environment. We also calculated r-effect,
which tells us the strength of our findings (with > 0.5 meaning
large effect) and Cohen-d, which tells us how large the effect of the
phenomena would be (with > 0.8 meaning large).
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Low Background Noise. In total we had 58 organic and 547 elec-
tronic samples. The Cohen-d value for our sample sets was 4.16with
an r-effect of 0.901 indicating a large effect size and our calculated
p-value was < 0.001 with a power of 1. These results demonstrate
an extreme likelihood of a statistically significant difference be-
tween both sample sets. Since the populations’ means differ, we can
reject the null hypothesis and confirm our results are statistically
significant.

High Background Noise. In total we had 60 organic and 539 elec-
tronic samples. The Cohen-d value for our sample sets was 3.71with
an r-effect of 0.880 indicating a large effect size and our calculated
p-value was < 0.001 with a power of 1. These results demonstrate
an extreme likelihood of a statistically significant difference be-
tween both sample sets. Since the populations’ means differ, we
can again reject the null hypothesis and confirm our results are
statistically significant.

6.3 Adversarial Input
We tested our detector with two different attack vectors for voice
command injections.

Hidden Commands. We passed audio samples from 10 different
hidden commands [15] that were provided to us by the authors.
These audio files were specifically made to trick voice assistants to
recognizing commands even if the commands themselves were not
discernible to humans. Since the audio samples were artificially cre-
ated, we could only play them through electronic speakers (rather
than organic). We again tested samples7 in environments with low
and high background noise levels. The minimum value for the en-
ergy balance metric for the adversarial samples was 0.2601 (shown
in Figure 9). By using the threshold limits derived earlier in this
section, we were able to correctly detect (and reject) each audio
sample as an electronic speaker.

Codec Transcoding Attacks. We used lossless wav encoding in
all previous experiments. However, an adversary may attempt to
bypass our mechanism by using alternate encoding schemes. For
instance, an adversary can inject commands to voice assistants by
playing the command itself from a phone call. In this case, because
the audio comes from a phone call, the audio must first go through
a codec that compresses the audio before it gets sent through the
cellular network. Alternatively, because GSM codecs remove both
high and low frequencies, an adversary may believe this approach
can fool our detector. To test our detector under this attack vector,
we passed a sample set of our collected audio through a GSM-
FR codec and then measured the energy balance metric of the
compressed audio. Again, in Figure 9, we show the energy balance
value for each compressed audio sample. These samples are easily
detected even with energy balance limit set to the derived high
noise threshold.

6.4 Evaluation Summary
In Section 4, we set out to determine whether audio originates
from an organic speaker or an electronic speaker by measuring the
energy balance of an audio sample. Our evaluation shows that after
7For this analysis, we played the sound through the (A) Music Angel and (B) HP
computer speakers.

Audio Samples0.20

0.22

0.24

0.26

0.28

0.30

E
ne

rg
y 

B
al

an
ce

 M
et

ric

electronic
GSM compression

Figure 9: The energy balance metric is able to correctly de-
tect all adversarial input as electronic speakers.

deriving the energy balance threshold for low noise environments,
our detector is able to correctly detect audio with a false positive
rate of 1.72%. Similarly, after deriving the energy threshold for high
noise environments, our detector correctly detects audio with a
reasonable false positive rate of 5.0%. These values correspond to
days or weeks between falsely rejected commands. Finally, the best
available adversarial evasion techniques were also easily defeated.

7 DISCUSSION
7.1 Limitations
All experiments were performed with commercial off-the-shelf
speakers designed for optimal sound quality. An electronic speaker
that was not designed for sound quality could produce resonance
frequencies that would cause a false negative; however, the goal of
commercial electronic speakers is to reproduce sound for human
hearing. In other words, a speaker that could reliably be misclassi-
fied by our metric would be intentionally manufactured to do so.
This specially designed speaker would produce low-quality/high
noise audio making it unlikely to be purchased by customers or sold
by a reputable manufacturer. An adversary would therefore have
to manufacture the speaker themselves. While homemade speakers
are common today, and adversary would still need to place their
speaker near the device they are trying to compromise. In order to
place their speaker, an adversary would need physical access to the
target device which is outside our adversarial model as defined in
Section 4.1.

An adversary could also potentially modify an existing speaker
to reliably misclassify, however this would have adverse effects on
the sound quality and be noticeable to a user. Additionally, altering
the speaker would not be feasible for many adversaries [21, 23]
given the complex nature of speaker design. Altering a speaker
that is already located near the target device would also require
physical access to the location of the speaker. Once again, the need
for physical access is outside the capability of our adversary.

Our technique is also vulnerable if an adversary can control the
silence that our noise filtering is based on. An adversary could
construct the silence to contain large amounts of energy in the
sub-bass region. This would cause our noise filter to designate
higher amounts of sub-bass as noise, potentially masking and then
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removing an electronic speaker’s over-excitation. To prevent such
an attack, we could sample the silence during device’s initial setup.
This constricts the attack window of an adversary to the short
initialization phase of the device’s life. If the background noise
around the device later changes, the user would have to reinitialize
the silence sampling in a secure manner. In practice, this could be
done via a physical button or smartphone application.

7.2 Speaker Quality
Our experiments were performed using a wide range of different
speakers. We believe that the speakers used are representative of a
wide range of commercially available speaker. Broadly, electronic
speakers can be broken into two distinct categories, single driver
and multi-driver systems. Single driver systems contain electronic
speakers that are responsible for producing the full frequency range.
In contrast, multi-driver systems have different electronic speaker
dedicated for different frequency ranges. Our test set included both
classes.

Single Driver Speaker Systems. Single driver systems are common
in devices that are inexpensive or more size constrained. We expect
the vast majority of speakers in IoT devices and smartphones to
fall in this category. In our testing, the Music Angel (A), Dynex
TV (C), Acer Predator Computer Monitor (D), Insignia TV (F), and
MacBook Air (G) (Appendix B) are all single driver systems. As
discussed in Section 3, different frequency ranges require different
physical characters to produce. As a result, single driver systems
have frequency response curves with more variance and struggle
to produce intense bass components. In addition to the electronic
speaker’s sub-bass over-excitation, our energy metric also captures
the lack of bass in the audio. The decreased amount of bass com-
ponents will make the sub-bass contributions appear larger, thus
increasing the detectability of the speaker. Due to their lack of bass
and sub-bass over-excitation, single driver speakers are the easiest
for our metric to detect. Additionally, these types of speakers are
the most likely to be compromised by an adversary given their
extensive use in commodity devices.

Multi-driver Speaker Systems. Multi-driver systems are common
in more expensive and dedicated electronic speakers. These systems
contain dedicated speakers designed to produce different frequen-
cies ranges, the most common of which is a bass speaker to produce
low frequencies. The HP Computer Speakers (B), Samsung Sound
Bar (E), and Bose Wave IV (H) (Appendix B) from our testing are
all multi-driver systems. Dedicated bass speaker enclosures can be
broken into either ported (HP Computer Speakers and Samsung
Sound Bar) or non-ported (BoseWave IV) designs. Ported speakers8
are the more common of the two types, with non-ported speakers
generally only being used in single enclosure devices like the Bose
Wave IV. Ported bass speakers are designed to increase the amount
of sub-bass over-excitation generated by the speaker. The port am-
plifies the case’s resonance frequency to create a more “powerful”
bass notes that can be felt by the listener. As a direct result of this
the sub-bass region is over-excited more for a ported bass speaker
than a non-ported bass speaker.

8Ported speakers have a large open hole or “port.” These are most often found on
subwoofers.

Additionally, multi-speaker systems usually have flatter, more
natural frequency response curves. Their improved frequency re-
sponse characteristics could make them harder for our technique to
detect. However, ported bass speakers are common amongst high
end multi-driver speaker systems. As a result, our technique can
easily detect these kinds of systems due to the intentional amplifi-
cation of the sub-bass region.

In contrast, non-ported bass speakers do not amplify their sub-
bass region intentionally. This makes non-ported dedicated bass
speakers the hardest for our technique to detect. In order to detect
a non-ported bass speaker we must identify only the non-amplified
sub-bass over-excitation. In our testing, we found that the play-
back from the Bose speaker was the most similar to the original
commands, however they were still able to be reliably detected.

7.3 Audio File Manipulation
Our adversary as defined in Section 4.1 is able to manipulate the
audio that will be played over the speaker. Even with this capability,
our technique will still function as intended. This is because our
technique specifically targets artifacts produced by the speaker’s
physical design. An adversary could apply an equalizer, remove or
amplify various ranges of frequency components, add in new fre-
quency components, or any combination thereof and our technique
will still work. Regardless of how the audio is manipulated before
being played, the vibrations from playing any sound will cause the
speaker’s enclosure to resonant. This resonance is what allows our
technique to detect the electronic speaker.

8 CONCLUSION
Voice interfaces have become an essential component of IoT de-
vices used in many homes and offices. Unfortunately, the lack of
command authentication has led to various injection attacks from
different electronic speakers in its vicinity [21, 23]. These command
injections have shown to have various consequences ranging from
unauthorized used to financial exploit. To stop electronic speakers
from injecting commands, we propose a detectionmechanism based
on the sub-bass over-excitation phenomena found in all speakers
due to their enclosure casing. We demonstrate that our detection
system can distinguish commands that originate from a human
speaker from commands injected through an electronic speaker. By
distinguishing between the two, we are able to prevent such attacks.
In so doing, we dramatically reduce the ability of an attacker to
inject potentially harmful commands to the voice assistants while
having little effect on performance. To that end, we show that de-
tection systems based on this phenomena significantly improve the
security of voice assistants.
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A COMMAND PHRASES
For our experiments we used the following eight command phrases.
These were picked to simulate real queries to voice interfaces and
forced the organic speaker to enunciate each sentence. The last
entry is explicitly used to force the speaker to voice a variety of
phonemes.

(1) “O.K. Google, Browse to evil.com.”
(2) “O.K. Google, call grandma.”
(3) “O.K. Google, record a video.”
(4) “Hey Google, text John buy spam today.”
(5) “Hey Google, post I’m so evil on Twitter.”
(6) “Alexa, call grandpa.”
(7) “Alexa, textmomwhatwasmy social security number again?”
(8) “These puffy tarantulas cross bravely shepherding homeless

grouper through explosions.”

B ELECTRONIC SPEAKERS
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H

Figure 10: We ran our experiments using a wide range of
speakers that vary in quality; A: Music Angel (MSRP: 2014
- $16.99), B: HP Computer Speakers (MSRP: 2009 - $50.00),
C: Dynex TV (MSRP: 2010 - $250), D: Acer Predator monitor
speakers (MSRP: 2018 - $399), E: Samsung Sound Bar (MSRP:
2018 - $280), F: Insigna TV (MSRP: 2017 - $330), G: MacBook
Air (MSRP: 2015 - $1000), and H: Bose Wave IV (MSRP: 2017
- $499)
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