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Electron mobility in graphene without invoking the Dirac equation
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The Dirac point and linear band structure in graphene bestow it with remarkable electronic and
optical properties, a subject of intense ongoing research. Explanations of high electronic mobility
in graphene often invoke the masslessness of electrons based on the effective relativistic Dirac-
equation behavior, which are inaccessible to most undergraduate students and are not intuitive for
non-physics researchers unfamiliar with relativity. Here, we show how to use only basic concepts
from semiconductor theory and the linear band structure of graphene to explain its unusual
effective mass and mobility, and compare them with conventional metals and semiconductors. We
discuss the more intuitive concept of transverse effective mass, which emerges naturally from these
basic derivations, and which approaches zero in the limit of undoped graphene at low temperature
and is responsible for its extremely high mobility. © 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5092453

I. INTRODUCTION

Graphene is often described in superlatives, with a multitude
of extreme electronic, mechanical, and chemical properties of
interest in disparate fields of research.'™ This increasingly
motivates exposure to graphene science at the undergraduate
level,* with excellent pedagogical resources introducing the cal-
culation of its unique Dirac-point band structure,® explaining
novel transport phenomena such as Klein tunneling,” and even
outlining experimental demonstrations of the unique wave
mechanics of honeycomb lattices in ripple tanks.®

Of graphene’s extreme properties, its exceptional electrical
conductivity and mobility, arising from the effective massless-
ness of electrons in the Dirac band structure are often dis-
cussed.” Explaining the high mobility from a low effective
mass is easily accessible at an undergraduate level with stan-
dard semiconductor physics derivations of Drude theory.'®
However, explaining why the Dirac band structure corresponds
to massless carriers is somewhat more challenging, and has not
yet been discussed clearly in a pedagogical context.
Specifically, the Dirac band structure contains a linear disper-
sion relation E=uvzp, corresponding to a constant electron
speed v = OE/Op = vp, independent of the momentum. Here,
vp ~ 8.3 x 10° m/s is the Fermi velocity of graphene, the
velocity of electrons at the Fermi energy up to which states are
filled with electrons.'! Naive application of the conventional
semiconductor definition of effective mass, which corresponds
to (m*)~" = 9v/dp = 0 as we discuss below in further detail,
leads to the opposite result of infinite mass! (See Fig. 1.)

Research papers invoke seminal work'? that demonstrated
that electron transport in graphene is essentially governed by
the Dirac equation, with the charge carriers mimicking rela-
tivistic particles with zero rest mass. In the relativistic pic-
ture, linear dispersion corresponds to massless carriers by
recognizing that E2 = (mc2)* + (pc)* for a particle of mass
m reduces to E =pc when m=0. However, this is only an
analogy® and must be applied very carefully to graphene. For
graphene, the electrons have a constant velocity vy~8.3
% 10°m/s ~ /400, as discussed above, instead of the speed
of light c. Importantly, there is no Lorentz invariance for car-
riers in graphene: the frame in which the carbon nuclei are at
rest is special! Therefore, explaining masslessness of gra-
phene carriers using relativity, though valid when done
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correctly, will likely lead to confusion especially at the intro-
ductory undergraduate level. Moreover, it is not an intuitive
explanation for students from related fields in chemistry,
materials science, or electrical engineering, who are all
increasingly likely to encounter graphene in their careers.

Pedagogical descriptions that try to avoid the relativistic /
Dirac explanation often rely on alternate definitions of the
mass that work correctly for graphene, e.g., cyclotron effective
mass,13’14 quarternion effective mass,15 etc. While these defini-
tions work for a reason, as we will discuss below, they do not
provide an intuitive picture of how electrons in graphene con-
duct remarkably well. Most importantly, some of these alter-
nate approaches attempt to redefine the effective mass as the
ratio of the momentum to velocity,13 m* = p/v, rather than the
ratio of force to acceleration, m* = F /a = Op/Ov. Such alter-
nate definitions are correct only for a parabolic band structure,
where the mass is independent of the momentum and the two
expressions above become equivalent.

Here, we describe an alternate pedagogical approach to
explain massless electrons in graphene, where we retain the
standard definition of effective mass from semiconductor the-
ory, albeit the full tensorial version. We demonstrate how to
work through this definition to understand how graphene’s
effective mass and mobility vary with doping and temperature,
and how it contrasts for conventional metals and semiconduc-
tors. We show how to arrive at the concept that the transverse
effective mass, rather than the usual longitudinal one, domi-
nates transport in graphene, and is the mass that approaches
zero near the Dirac point in graphene. The approach presented
here should be suitable for intuitively explaining the remark-
able electronic properties of graphene—a topic of continuing
research interest—at the senior undergraduate level.

II. DERIVATIONS

Electrons in materials with a band structure or dispersion
relation E(k) have group velocity v = OE/Jp and momentum
p = hk, using only basic principles in quantum mechanics.
When an electric field is applied to the material, the electric
force accelerates the electrons and generates a current. For
the same force, lighter electrons will be accelerated more,
and will result in higher mobility and conductivity.
Consequently, the mass relevant for determining conduction
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Fig. 1. Schematic band structure of (a) a free-electron metal, (b) a parabolic-
band semiconductor, (c) doped graphene and (d) undoped graphene, with
band velocity (E vs p slopes) and effective mass (inverse E vs p curvature)
annotated. The shading denotes the Fermi occupation factors of electrons.
Naively, the linear band structure yields zero curvature and an infinite effec-
tive mass in graphene, rather than zero or a low value.

by electrons is the ratio of force F to acceleration a (exactly
as in Newton’s second law). Now F = dp/dr and a = dv/ds,
which yield
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the well-known expression in semiconductor theory that the
effective mass is the inverse of the curvature of the band
structure E(k).lo’11 The curvature and effective mass are both
finite (non-zero and not infinite) for metals and semiconduc-
tors, as shown in Fig. 1. However, for graphene, the linear
band structure has seemingly zero curvature corresponding
to an infinite effective mass, in stark contrast to the massless
carrier explanation for its high mobility.

The simplest correct explanation for massless electrons in
graphene lies within the standard definition, but necessitates
the full tensorial Version,lo’11

(m*) "' = iv;v;E(/?). 2)

The mass tensor is just a matrix that connects how changes
of momentum and velocity are related, dp' = m* - dv, or
equivalently dv = (n‘z*)_l;dﬁ, which are not in the same

direction for a general E(k). For two-dimensional graphene
near the Dirac point, the above definition reduces to

Ok, Ok,
o Jur R0

Straightforward evaluation of the derivatives yields

1 R

S N
(') =1 O, O,

B kk

B R+ (R+i)Y?

Rl kk k?
@+@W2 @+@W2

“

292 Am. J. Phys., Vol. 87, No. 4, April 2019

_ UF p? 7po,V (5)
= —3 _ 5 s
p pxpy p}(

using p = Jik. With the definition

—sinchosgi)) ©)

cos’¢

.
= sin“¢
M = .
(¢) ( —sin ¢ cos ¢
the inverse effective mass tensor can be written in polar
coordinates as
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As with any symmetric tensor, the inverse mass tensor is
best characterized in its principal axes or eigenvectors, so
that it becomes diagonal. Solving the characteristic equation
det[(m*)~" — 21] = 0 yields the two eigenvalues

;“ = {Ouv_F}v (8)
p

and their corresponding eigenvectors can be derived to be
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The first eigenvector is exactly p, the unit vector along the
momentum. This principal direction therefore corresponds to
changes in momentum parallel to the momentum direction,
which is a “longitudinal” change. The corresponding inverse
mass eigenvalue is 0, therefore implying that the longitudinal
mass m; — 0o, which is exactly the result we obtained in the
non-tensorial analysis.

However, now we have the second eigenvector which is
perpendicular to p, corresponding to changes in momentum
perpendicular to the momentum direction, which is a
“transverse” change. The corresponding inverse mass eigen-
value is vg/p, corresponding to a transverse mass my = p/vg.
As we approach the Dirac point p — 0, the transverse mass
my — 0. Therefore, at the Dirac point, electrons in graphene
have an infinite longitudinal mass, but are massless in the
transverse direction.

This result can also be understood intuitively, directly from
the linear dispersion relation, E(p') = vg|p|. The corresponding
velocity ¥ = V;E(p) = vpp, is always parallel to the momen-
tum g, but has a constant magnitude vy independent of p. As
shown in Fig. 2(a), when the momentum is changed in the lon-
gitudinal direction, the momentum direction p is unchanged, so
the velocity direction and magnitude remain unchanged. No
change in velocity with changing momentum yields zero
inverse mass and an infinite longitudinal mass, m; — oco.
However, when momentum is changed in the transverse direc-
tion by Opy, the momentum and velocity directions both
change by the angle 60 = dpr/p. Since the velocity magnitude
is unchanged, the velocity vector changes by v = vpdl
= vpopr/p. Therefore, the ratio of velocity to momentum
change is vg/p which corresponds to the transverse mass,
mr = p/vr. This can also be seen comparing radial (longitudi-
nal) and transverse slices of the conical E(k) near the Dirac
point (Fig. 2(b)). The linear E(k) along the longitudinal slice
yields m; — oo, while the parabolic E(k) in the transverse slice
yields finite my. The transverse curvature increases as the
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Fig. 2. (a) Velocity (thick red arrows) is always parallel to momentum (thin
black arrows) with constant magnitude vg. Therefore, velocity is unchanged
for longitudinal changes in momentum Jp); yielding infinite longitudinal
mass my. Velocity changes direction for transverse changes opy, resulting in
a small transverse mass mzy which — 0 as p — 0. (b) Linear E(k) in the

radial (longitudinal) slice of the conical E(k) yields m;, — oo, while para-
bolic E(k) in the transverse slice yields a small m; that approaches zero as
the slice gets closer to the Dirac point.

slice gets closer to the Dirac point, resulting in my — O near
the Dirac point.

The transverse mass is closely related to the cyclotron
mass, which is the reason why the latter definition works for
graphene.'® In a magnetic field, charged particles move in
circles with centripetal force and acceleration perpendicular
to the velocity. The cyclotron mass is the ratio of force to
acceleration when they are both perpendicular to the momen-
tum (velocity) direction, which is exactly the case for the
transverse mass as discussed above.

When an electric field E is applied to a material, this
applies a force —eFE on all the electrons, resulting in an accel-
eration @ = —e(m*) " - E. As the electrons move through the
material, they scatter against defects and lattice vibrations
(phonons), which cause the velocity to randomize due to colli-
sions over the Drude relaxation time scale t. With these two
effects, the electrons pick up an average drift velocity
g = dr = —et(m*)”" - E. The ratio of drift velocity to the
applied electric field defines the mobility (excluding the sign
due to negative charge)

o= et(m*)"". (10)

The total current density in the electron is j= n(—e)s,
= nep - E, where n is the number density of electrons. The
conductivity (tensor) is defined by j = ¢ - E, which implies
¢ = nell, elucidating the mobility to be the conductivity per
unit charge density. .

In general, the effective mass m™ varies with k (i.e., p),
and hence so does the mobility. The experimentally deter-
mined mobility is therefore an average over all charge car-
riers. First, consider the case of n-doped graphene, where a
net excess of electrons over holes results in states being
occupied up to an energy Er above the Dirac point. (The dis-
cussion for excess holes with Ex below the Dirac point fol-
lows in exactly the same way, with exactly the same results,
due to the electron < hole symmetry in the band structure.)
From the linear energy relation £ = vgp, we can see that this
corresponds to a Fermi momentum pr = Er/vr and wave-
vector kp = Er/(hvr) (see Fig. 1(c)).

Only electrons within a few kg of the Fermi energy con-
tribute to electronic conduction in materials. Intuitively, only
these electrons have empty states available to “move” to,
being close to the energy at which electronic states transition
from filled to empty (Fig. 3(a)). In fact, a more detailed
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Fig. 3. (a) Fermi function and (b) its derivative for undoped and doped gra-
phene. Shaded regions indicate the contribution to conduction, proportional
to the Fermi function derivative. (c) Transverse effective mass in graphene
as a function of electron energy, which is distributed around a non-zero
value for doped graphene, but around zero for undoped graphene.

analysis based on the Boltzmann transport equation and the
relaxation time approximation'' shows that the contribution
to conduction is proportional to the derivative of the Fermi
function (Fig. 3(b)). If the number density of electrons due to
doping is high enough that Ep > kT, then all the electrons
that contribute to conduction have approximately the same
magnitude of momentum, pr. Correspondingly, they all have
transverse mass mr & pp/vp = Ep/vfE (Fig. 3(c)), while the
longitudinal mass remains oo (as shown above for all gra-
phene electrons).

When the effective mass is anisotropic, the well-known
simplified expression for mobility u = et/m* remains valid
provided an appropriate average of m" in all directions is
used. In particular, m" should be the harmonic mean of all
directions, i.e., if the contributions are m,, m,, and ms in
three perpendicular directions (principal axes), the net effec-
tive mass should be (m*)™" = (m;' +m;' +m3;')/3. For
example, in Silicon, m; = 0.89 and there are two equal
transverse values (in 3D) my; = mpp = 0.19. The corre-
sponding average value for mobility will then be m* = 0.26.
For graphene, we now have my = oo and mr = pr/vr (just
one in 2D), which yields

% 2 pr 2EF
A (o
L T F U

which is twice the transverse value. Correspondingly, we
expect the mobility to be et/m* = etvs./(2EF).

We can alternatively derive this result by averaging the
mobility contributions due to all electrons contributing to
conduction on this “Fermi circle” of radius pp. This amounts
to an average over ¢
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by substituting Egs. (7) and (6), and noting that the angular inte-
grals fozn d¢ cos’¢p = fozn d¢sin’¢p = m and J"Ozn d¢ cos ¢ sin ¢
= 0. This also corresponds to an isotropic mobility et /m*, with
the effective m* = 2pg/vp = 2Ep/ v% as argued above.

In pure (undoped) graphene, the electronic states switch
from being occupied to unoccupied at the Dirac point (Figs.
1(d) and 3(a).) The contribution to conduction, proportional
to the Fermi function derivative (Fig. 3(b)) as discussed
above, is centered near E = 0. Unlike the doped case, the cor-
responding effective mass is no longer of similar magnitude
throughout the energy range with contributions to conduc-
tion, as shown in Fig. 3(c). In particular, the effective mass
in the center of the distribution at the Dirac point is zero,
while it is non-zero and linearly increasing away from the
Dirac point. Therefore, we need to average over the carriers
proportional to the Fermi function derivative to estimate the
mobility for undoped graphene.

For undoped graphene with the Fermi energy at the Dirac
point, E=0, the occupation of electrons is given by the
Fermi function

1
fE) = ———F% (14)
1 =
+ exp %
with derivative
E
exp ——
kgT 1 E
IE _ B — h2
F(E) el ENZ dhgT S 2kgT
B < —|—exp kB—T>
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We can therefore determine the average mobility of undoped
graphene as

dpdp,f’ (vep) (") (5)
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where we switched the integrals over momenta to polar coor-
dinates and substituted x = vpp/(2kpT) to simplify the inte-
gral over p. The integrals over x are standard definite
integrals that evaluate to the constants 1 and In2 in the
numerator and denominator, respectively, while the final
term is exactly what we evaluated above to be 1/2. Putting
that all together yields

2 2
et 1 1 etV

— o= —F (17)

=

Note that the average mobility is isotropic (scalar) as
expected and corresponds to an averaged effective mass

p— (41n Z)kBT’ )

2
which is directly proportional to temperature. This is because
the transverse mass my x p, and the average magnitude of
momentum for electrons in graphene at finite temperature
o T. This is in sharp contrast to conventional metals and
semiconductors, and even doped graphene with Ep > kT as
considered above, where the effective mass depends only
weakly on temperature.

III. RESULTS AND DISCUSSION

Table I compares the typical effective masses m*, momen-
tum relaxation time 7, and mobility u of electrons in a proto-
typical metal (silver), semiconductor (silicon), and both
doped and undoped graphene. The values for silver and sili-
con are based on experimental measurements, while that for
graphene is based on the above derivation along with a first-
principles calculated value'® of 7 ~ 2 ps for ideal undoped
graphene and t =~ 700 fs for graphene (ideally) doped to a
Fermi energy of 0.1eV (limited only by electron-phonon
scattering).

Metals have a short relaxation time because they have a
large number of states at the Fermi level, which enhances
electron-phonon scattering. Semiconductors and graphene
have much smaller density of states at the energies of elec-
trons that carry current, resulting in an increased relaxation
time by one and two orders of magnitude relative to the
metal. The typical effective mass is somewhat smaller in
semiconductors than metals, but it is two orders of magni-
tude smaller at room temperature in graphene because the
transverse mass approaches zero near the Dirac point.
Consequently, the mobility o< t/m* is smallest for metals.
Semiconductor mobilities are one-to-two orders larger due
both to larger T and somewhat smaller m*. However, in gra-
phene both factors contribute two orders making the mobility
at room temperature four orders larger!

Table I. Comparison of typical relaxation time, effective mass, and electron
mobility for metals, semiconductors, doped graphene and (undoped) gra-
phene at room temperature.

Material T (fs) m*/m, I (cm2/V -s)
Silver 30 1.0 50
Silicon 200 0.26 1400
Graphene with Er = 0.1 eV 700 0.063 2 x 10*
Undoped graphene 2000 0.018 2% 10°
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Note that despite the much higher mobilities in semicon-
ductors and graphene, the number density n of electrons in
metals is sufficiently larger that the conductivity ¢ = neu is
still much larger in metals. Specifically, in graphene, the
mobility is higher for undoped graphene due to the lower
effective mass (and additionally because of a lowered
electron-phonon  scattering rate'®) than the doped case.
However, mobility is effectively the conductivity per carrier
available for conduction, and the number of carriers is much
smaller for undoped graphene. Consequently, undoped gra-
phene has a low conductivity despite the highest mobility,
and graphene actually achieves a higher conductivity at an
optimal doping level where the increasing effective mass
and scattering rate are compensated by an increased carrier
density."

As temperature changes, the scattering time t is roughly
inversely proportional to temperature near room temperature
for pure materials, because the amplitude of lattice vibrations
increases with temperature. The effective mass is mostly
temperature dependent in metals and semiconductors, so that
the temperature dependence of mobility follows the scatter-
ing time. However for undoped graphene, the effective mass
is also temperature dependent causing an additional decrease
of mobility with increasing temperature and resulting in an
overall T2 dependence near room temperature. The temper-
ature dependence for doped graphene will be similar to con-
ventional metals and semiconductors because the average
momentum and hence the average transverse mass is set by
the doping level and not by temperature, as derived above.

IV. CONCLUSIONS

We have presented a simplified approach to explain the
remarkable mobility of electrons in graphene that relies only
on the standard semiconductor theory definition, completely
avoiding the conventionally invoked parallel to the Dirac
equation and corresponding relativistic explanation. We dis-
cussed the calculation of the tensorial effective mass, the
emergence of a zero transverse mass (but infinite longitudi-
nal mass) upon approaching the Dirac point and the corre-
sponding temperature-dependent mobilities. The full
derivations require only basic concepts from calculus, ther-
modynamics and semiconductor theory, accessible to under-
graduate students in physics, chemistry, materials science
and electrical engineering. In addition, we pictorially dis-
cussed the concept of transverse effective mass and contrast
it with the more intuitively familiar longitudinal mass, which
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is critical for understanding the unusual electron transport in
graphene.
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