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Abstract

We present the first Open Gravitational-wave Catalog, obtained by using the public data from Advanced LIGO’s
first observing run to search for compact-object binary mergers. Our analysis is based on new methods that
improve the separation between signals and noise in matched-filter searches for gravitational waves from the
merger of compact objects. The three most significant signals in our catalog correspond to the binary black hole
mergers GW150914, GW151226, and LVT151012. We assume a common population of binary black holes for
these three signals by defining a region of parameter space that is consistent with these events. Under this
assumption, we find that LVT151012 has a 97.6% probability of being astrophysical in origin. No other significant
binary black hole candidates are found, nor did we observe any significant binary neutron star or neutron star—black
hole candidates. We make available our complete catalog of events, including the subthreshold population of

candidates.
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1. Introduction

The Advanced LIGO gravitational-wave observatories (Abbott
et al. 2016g) performed their first observing run (O1) from 2015
September 12 to 2016 January 19. This provided a total of 51.5
days of coincident observations from the two detectors located in
Hanford, WA and Livingston, LA. The binary black hole (BBH)
mergers observed in this observing run have been reported by the
LIGO and Virgo Collaborations (LVC) in Abbott et al. (20164,
2016d, 2016e). These BBH detections have been independently
studied by Green & Moffat (2018), Roulet & Zaldarriaga (2019),
and Antelis & Moreno (2018).

Since the publication of the results by Abbott et al. (20164,
2016i), improvements to the data-analysis methods used
(Abbott et al. 2016¢) have been implemented (Dal Canton &
Harry 2017; Nitz et al. 2017; Nitz 2018). Using these
improvements, we re-analyze the Ol data and provide—for
the first time—a full catalog of candidate events from a
matched-filter search for compact-binary coalescences using
the O1 data, which we call 1-OGC. This catalog provides
estimates of the significance of previously known events and a
ranked list of subthreshold candidates. Although not significant
by themselves, these subthreshold candidates can be correlated
with archival data or transient events found by other
astronomical observatories to provide constraints on the
population of compact-object mergers (Ashton et al. 2018;
Burns et al. 2018).

Our catalog is based entirely on public, open data and
software. We use the LIGO data available from the Gravita-
tional Wave Open Science Center (Vallisneri et al. 2015) and
analyze the data using the open-source PyCBC toolkit (Dal
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Canton et al. 2014; Usman et al. 2016; Nitz et al. 2018c¢).This
toolkit was also used by one of the two analyses described in
Abbott et al. (2016c¢). The lowest-mass sources targeted in our
search are neutron star binaries with total mass m; + m, =
2 M. The search space extends to BBH systems that produce
gravitational waveforms longer than 0.15 s from 20 Hz. This
corresponds to a total mass up to 500 M, for sources with high
mass ratios and spins where the component aligned with the
orbital angular momentum is positive and large. For binaries
with negligible spin, this corresponds to total mass <200 M.,
The search space also includes neutron star—black hole binaries.
After applying cuts for data quality (Abbott et al. 2016b, 2018),
a total of 48.1 days of coincident data are searched for signals.

The three most significant signals in the catalog correspond
to GW150914 (Abbott et al. 2016e), LVT151012 (Abbott et al.
2016a, 2016e), and GWI151226 (Abbott et al. 2016d),
respectively. No other astrophysically significant signals are
observed. In the analysis of Abbott et al. (2016a), LVT151012
was the third-most significant event, but it was not sufficiently
significant to be labeled as an unambiguous detection. With the
improved methods employed here, the false alarm rate (FAR)
of this candidate improves by an order of magnitude and it
should be considered a true astrophysical event. The analyses
of Abbott et al. (2016a, 2016i) restricted the astrophysical
search space to binaries with a total mass less that 100 M. Our
analysis extends this target space to higher-mass signals. No
additional signals are detected in this region of parameter
space, consistent with the results of Abbott et al. (2017g).

A second observing run (02) of the Advanced LIGO
detectors took place from 2016 November 30 to 2017 August
25 (Abbott et al. 2016f). The Virgo gravitational-wave detector
also collected data for part of this period, starting from 2017
August 1. The detections reported in this second observing run
thus far include three additional BBH coalescence events
(Abbott et al. 2017b, 2017d, 2017¢) and a binary neutron star
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merger (Abbott et al. 2017a). However, the full O2 data set has
not yet been released. The catalog presented here is therefore
restricted to the first observing run, Ol.

Our paper is organized as follows: In Sections 2 and 3, we
summarize our analysis methods, including the parameter space
searched, the detection statistic used for ranking candidate
events, and our method for calculating the statistical signifi-
cance of events. The search results are summarized in
Section 4. Our full catalog and released data are described in
Section 5 and are available online as supplementary materials.’
In this paper, we focus on the detection of compact objects.
Since no new astrophysical events have been observed, we do
not consider measurement of the signals’ parameters and refer
to Abbott et al. (2016a) and Biwer et al. (2019) for discussion
of the detected events’ source-frame properties. Consequently,
we quote binary mass parameters in the detector frame in
this work.

2. Search Methodology

To search for gravitational waves from compact-object
mergers, we use matched filtering (Allen et al. 2012)
implemented in the open-source PyCBC library (Dal Canton
et al. 2014; Usman et al. 2016; Nitz et al. 2018c). Our methods
improve on the analyses of Abbott et al. (2016a, 2016c, 20161)
by imposing a phase, amplitude, and time delay consistency on
candidate signals; an improved background model; and a larger
search parameter space (Dal Canton & Harry 2017; Nitz et al.
2017; Nitz 2018).

2.1. Target Search Space

A discrete bank of gravitational-wave template waveforms
(Owen 1996; Owen & Sathyaprakash 1999; Brown et al. 2012)
is used to target binary neutron star, neutron star—black hole,
and BBH mergers with total mass from 2 to 500 M. (Dal
Canton & Harry 2017). The templates are parameterized by
their component masses m;, and their dimensionless spins
Xi2 = ¢S12 /Gmﬁz, where §;, are the spin vectors of each
compact object. For compact objects with component masses
greater than 2 M., the template bank covers a wide range of
spins, with X ,), € [0.998], where X/, ,,, are the components
aligned with the orbital angular momentum. For compact
objects with masses less than 2 M., the spin is restricted to
Xa.2): € [£0.05] (Brown et al. 2012). Templates that corre-
spond to sources with a signal duration less than 0.15 s (starting
from 20 Hz) are excluded due to the difficulty in separating
candidates arising from these templates from populations of
instrumental glitches (Dal Canton & Harry 2017). Conse-
quently, the total mass boundary of the search depends strongly
on the “effective spin” (Racine 2008; Ajith et al. 2011),

X1 + X2, M2

m + my

Xeff = (1)
This dependence is visible in the distribution of the
approximately 400,000 templates required to cover the space
shown in Figure 1. A dotted line in Figure 1 denotes the upper
boundary of the O1 analysis performed in Abbott et al. (2016a).
For binaries with total mass greater than 4 M., we use the
spinning effective-one-body model (SEOBNRv4; Taracchini
et al. 2014; Bohé et al. 2016) as template gravitational

3 https://github.com/gwastro/1-ogc
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waveforms. For sources with total masses less than 4 M., we
use TaylorF2 post-Newtonian waveforms with phasing accu-
rate to 3.5 post-Newtonian order and the dominant amplitude
evolution (Sathyaprakash & Dhurandhar 1991; Droz et al.
1999; Blanchet 2002; Faye et al. 2012). Our choice of template
bank discretization causes less than a 10% loss in detection rate
for any source within the boundaries of the template bank. Our
search assumes that the source can be adequately described by
only the dominant gravitational-wave mode, two component
masses, non-precessing spins, and negligible eccentricity.

2.2. Creation and Ranking of Candidate Events

For each template and each detector, we calculate the
matched-filter signal-to-noise ratio (S/N) as a function of
time p(f) (Allen et al. 2012). The template bank is divided
into 15 equal sized subbanks based on the chirp mass
M = (mymy)*"3/(m + my)'/5 of each template. A single-
detector “trigger” is a peak in the S/N time series that is greater
than 4 and larger than any other peaks within 1s. For each
subbank, the loudest 100 triggers (by p) are recorded in ~1s
fixed time windows. This method has been shown to improve
search sensitivity, while making the rate of single-detector
triggers manageable (Nitz et al. 2018b). We have found this
choice of subbanks to be an effective method to ensure the
analysis can concurrently record triggers from separate regions
of parameter space that respond differently to instrumental
noise. Other choices are possible.

We use the data-quality segments provided by the Gravita-
tional Wave Open Science Center to exclude triggers that occur
in times when there are problems with the detectors’ data
quality (Abbott et al. 2016b, 2018). In addition, very loud
transient glitches, corresponding to >1000 deviations from
Gaussian noise, are excised from the strain data according to
the procedure of Usman et al. (2016) before calculation of the
S/N time series. However, there remain many types of
transient non-Gaussian noise in the LIGO data that produce
triggers with large values of S/N (Nuttall et al. 2015; Abbott
et al. 2016b, 2018).

For every trigger with p > 5.5 we calculate the signal
consistency test, xf, introduced in Allen (2005). The statistic

Xf divides the matched filter into frequency bands and checks
that the contribution from each band is consistent with the
expected signal. The statistic takes values close to unity when
the data contain either Gaussian noise or the expected signal
and larger values for many types of transient glitches. We
impose the S/N limit as the Xf test is generally noninformative

when p < 5.5. The xf value is used to re-weight the S/N p
as (Babak et al. 2013)

p forxfgl

_ 2)
p[%(l + (Xf)3)] 1/6, for x* > 1.

ﬁ:

For single-detector triggers from templates with total mass
greater than 40 M. we apply an additional test, stg, that
determines if the detector output contains power at higher
frequencies than the maximum expected frequency content of
the gravitational-wave signal (Nitz 2018). This test is only
applied for higher-mass systems, since these templates are
shorter in duration and more difficult to separate from

instrumental noise. For other systems, we set Xf - 1. Using
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Figure 1. Component masses and spins of the templates used to search for
compact-binary mergers. Due to the exclusion of short-duration templates,
there is a dependency on the total mass searched and its effective spin. For
binary black holes with negligible spin, this implies that this study only probes
sources with total mass less than 200 M. Visible artifacts due to the
procedure for constructing the template bank do not impact performance.
Templates that we conservatively consider to produce binary black hole (BBH)
candidates consistent with known observations are shown in red as discussed in
Section 3. The upper mass boundary of the analysis performed by the LVC in
Abbott et al. (2016a) is shown as a black dotted line.

this statistic, we apply a further re-weighting as

p for x*_ < 4

r,sg

3)
f)(xf,sg /47172 for Xf,sg > 4.

ﬁ:

Candidate events are generated when single-detector triggers
occur in both the LIGO Hanford and Livingston data within
12 ms (the light-travel time between the observatories extended
by 2 ms for signal time-measurement error) and if the triggers
are recorded in the same template in each detector (Usman
et al. 2016). Following the procedure of Nitz et al. (2017), we
model the distribution of single-detector triggers from each
template as an exponentially decaying function, \(p, OV),
where OV allows the parameters of the exponential to vary as a
function of total mass, symmetric mass ratio n = mym,/M?,
and .. This fitted model allows us to rescale p to better
equalize the rate of triggers from each template.

We improve upon the ranking of candidates in Abbott et al.
(20164, 2016i) by also taking into account pS(65), which is the
expected distribution of S/N p, and p;, phase difference
&y — &> and arrival time delay 7.y — I, between the two
LIGO instruments for an astrophysical population (Nitz et al.
2017). No assumption is made about the distribution of
intrinsic source parameters in this term. The primary benefit
arises from assuming the population of sources is isotropically
distributed in orientation and sky location. The final ranking
statistic . is then calculated as

P o [logp®(8%) — log (A (g, O™) AL (py. V)] + const.
“4)

This expression is normalized so that p. approximates the
standard network S/N p. = (p? + p3)!/? for candidates from
regions of parameter space that are not affected by elevated
rates of instrumental noise. Candidates from regions affected

Nitz et al.

by elevated rates of noise triggers are down-weighted and
assigned a smaller statistic value by this method. As multiple
candidates, which arise from different template waveforms,
may occur in response to the same signal, we select only the
highest-ranked candidate within 10 s. A simpler version of this
statistic where the single-detector exponential noise model is
only a function of the template duration has also been
employed in the analysis of data from LIGO’s second
observing run (Abbott et al. 2017¢, 2017d, 2017f).

2.3. Statistical Significance

The statistical significance of candidate events is estimated
by measuring empirically the rate of false alarms. To measure
the noise background rate, we generate additional analyses by
time shifting the data from one instrument with respect to the
other by multiples of 100 ms. Since this time shift is greater
than the maximum astrophysical time of flight between
observatories, any candidates produced in these analyses are
false alarms. This time shift is much greater than the
autocorrelation length of our template waveforms of O
(1 ms). The time-slid analyses are produced following the
same procedure as the search; this is a key requirement for our
analysis to produce valid statistical results (Abbott et al.
2016c¢). The equivalent of more than 50,000 yr of observing
time can be generated from 5 days of data.

To provide an unbiased measure of the rate of false alarms at
least as significant as a potential candidate, the single-detector
triggers that compose the candidate event should be included in
the background estimation (Capano et al. 2017). However,
when a real signal with a large p. is present in the data, the rate
of false alarms for candidate events with smaller 7. tends to be
overestimated. This is due to the fact that the loud single-
detector triggers from the real event in one detector form
coincidences with noise fluctuations in the other detector,
producing loud coincident background events. As in Abbott
et al. (2016a), an unbiased rate of false alarms can be achieved
by a hierarchical procedure whereby a candidate with large p. is
removed from the estimation of background for candidates with
smaller p.; we use this procedure here.

3. Evaluating Candidates Based on the Astrophysical
Population

We find two candidate events with FAR <1 per 50,000 yr,
corresponding to GW150914 and GW151226. Although FAR
does not give the probability that an event is an astrophysical
signal, we can be confident that these events were not caused
by chance coincidence between the detectors. It is possible that
these events were caused by a correlated source between the
detectors. However, detailed follow-up studies of GW150914
and GW151226 found no correlated noise sources between the
detectors that could be mistaken for a gravitational wave
(Abbott et al. 2016b, 2016d).

We conclude that GW150914 and GW151226 are astro-
physical in origin and use them to constrain the rate of real
signals. A “true discovery rate” (TDR) can be constructed for
less significant events. The TDR is defined as

7(.)

TDR(p) = ———,
P =T + 7y

&)
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where 7(p.) is the rate that signals of astrophysical origin are
observed with a ranking statistic > 7. (the “true alarm rate”) and
F(p.) is the FAR.

The TDR is the complement of the false discovery
rate (Benjamini & Hochberg 1995) and can be used to estimate
the fraction of real signals in a population. For example, if
TDR(p.) = 0.9, it means that 90% of events with a ranking
statistic >>p. are expected to be real signals. The TDR is also
independent of the observation time.

Note that TDR is not the probability that a particular event is
a signal of astrophysical origin Fgy,. For that, one needs to
model the distribution of signals and noise at a given .. In this
work, we use a simple model of these distributions as a
function of the ranking statistic p.. Models incorporating
additional parameters are also possible, but we do not consider
them here. As a function of 3., B can be computed as

AsPs(p,)
AsPs(p,) + AyPy(p)

BISITO (ﬁc) - (6)

where Ps(p.) and Py (p.) are the probabilities of an event having
ranking statistic 7. given the signal and noise hypotheses,
respectively (Guglielmetti et al. 2009; Farr et al. 2015; Abbott
et al. 2016h). Ag and Ay are the rates of signal and noise
events.

Since no binary neutron star or neutron star—black hole
candidates are obtained from a search of the O1 data, here we
restrict the calculation of both the TDR and B, to BBH
observations. We include signals with total mass M > 10 M,
mass ratio my/m, < 5 (where m; > m,), and dimensionless
Spins [ X, 5,/ < 0.5. These choices are based on a combination
of what has been observed (Abbott et al. 2016a, 2017¢, 2017d,
2017f) and what is expected from models of isolated binary-
star evolution (“field” binaries). The mass distribution of field
binaries is dependent on a number of unknown parameters,
such as the metallicity of the environment (Belczynski et al.
2014). Generally, it is expected that most binaries are close to
equal mass, as typically less than 1 in O(10%) simulated binaries
have a mass ratio >5 in models of field-binary evolution
(Dominik et al. 2015). The majority of observations of nearby
X-ray binaries have yielded black holes with masses greater
than 5 M., which has led to speculation of a “mass gap”
between 3 and 5 M, (Ozel et al. 2010; Farr et al. 2011;
Kreidberg et al. 2012). The signals detected so far by LIGO and
Virgo are consistent with this: the smaller component mass in
the lowest-mass system known to date, GW170608, has an
estimated mass of 71’% M., (Abbott et al. 2017d).

The spin distribution of black holes is not well constrained
(Reynolds 2014). The component spins of the most significant
BBHs detected by LIGO and Virgo are only weakly
constrained (Abbott et al. 2016a). The best measured quantity
related to spin is x.. All of the BBH gravitational-wave
signals detected so far have || < 0.2. A binary with low x4
may still have component masses with large spin magnitudes, if
the spins are antiparallel or are purely in the plane of the binary.
However, it seems unlikely that this would be the case for all of
the detections made so far. Hence, we include signals that have
component spins with |x(; 5| < 0.5. This is consistent with
recent population synthesis models, which indicate that black
holes must have low natal spin in order to obtain a distribution of
X that satisfies gravitational-wave observations (Belczynski
et al. 2017; Wysocki et al. 2018).

Nitz et al.

To estimate the rate and distribution of false alarms that arise
only from the region consistent with this selected population of
BBH mergers, we must determine which templates are
sensitive to these sources. It is necessary to analyze a simulated
set of signals as the template associated with a particular event
is not guaranteed to share the true source parameters. We find
that the region of the template bank defined by M > 8.5 M.,
myp > 2.7 Mg, and . < 0.9 is effective at recovering this
population of sources. This region is shown in Figure 1 in red.

To estimate the true rate 7, we use the two significant events
observed during O1, GW150914, and GW151226. We do not
use any of the O2 events because the full data are not yet
available for analysis, making it difficult to obtain a consistent
rate estimate. The total analysis time in Ol was ~48 days,
giving 7~ 15yr~!. Given the uncertainty in this estimate
based on only two events, we take the rate of observations as a
Poisson process and choose the lower 95% bound on 7 . This
yields a 7= 2.7 yr—!. For the calculation of the TDR we use
this value for all events, independent of their ranking statistic.
This means we likely underestimate the TDR for events quieter
than GW151226 and GW150914, but this is a conserva-
tive bias.

To estimate the probability that a given event is astrophysical
in origin By, we model the distribution of signals and noise as
a function of g. It is reasonable to approximate the signal
probability distribution Fs(7.) as ocf)c_4 (Schutz 2011; Chen &
Holz 2014). We normalize the signal number density AgPs(p.)
so that the number of signals with p. greater than or equal to

some threshold ﬁj is ~2.7 yr~!. We make the conservative

choice to place ﬁj at the value of the next largest . value after
GW150914 and GW151226.

To approximate the noise number density AyFy(7.), we
make a histogram of the 7. values of false alarms arising from
our selected BBH region. We use only the false alarms that are
uncorrelated with possible candidate events to ensure an
unbiased estimate of the mean FAR (Capano et al. 2017). We
fit an exponential decay to this histogram from 8 < p. < 9.2.
For p. much less than 8, AyPy is not well modeled by an
exponential due to the effects of applying a threshold to single-
detector triggers. We note, however, there is only a 50% chance
that an event is astrophysical at j. ~ 8.6, and this chance
quickly becomes negligible with decreasing 7. The result of
this procedure is shown in Figure 2. We caution that P, for
candidates with p. > 9.2 will be sensitive to the form of the
model chosen as it is not constrained by empirically measured
false alarms.

While we do not assess the astrophysical probabilities of
sources outside our selected BBH region, we are not precluding
that such sources exist. Our By, is compatible with any model
of the true BBH source distribution that allows for a signal rate
to be at least as high as our estimate within the chosen region.
This holds irrespective of whatever other kinds of sources may
also be permitted.

4. Results

The results presented here are generated using the data from
the first observing run of Advanced LIGO, which ran from
2015 September 12 to 2016 January 19. We divide the 16 kHz
LIGO open data into nine consecutive periods of time and
search each time period independently so that each analysis
contains roughly five days of observing time. This time interval
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Table 1
Candidate Events from the Full Search for Compact-binary Mergers in O1 Data

Designation Julian Date FAR’I(yr) P 1% oL my mo Xeft

1509144-09:50:45UTC 2457279.910665 >66,000 18.45 19.67 13.38 44.21 32.16 0.09
151226+03:38:53UTC 2457382.652426 >59,000 11.62 10.73 7.43 14.83 8.50 0.24
1510124-09:54:43UTC 2457307.913420 24 9.06 6.96 6.71 30.75 12.89 —0.05
151019+400:23:16UTC 2457314.516585 0.060 8.39 6.81 5.47 14.93 1.27 0.11
150928+-10:49:00UTC 2457293.951122 0.042 8.37 6.05 6.34 2.53 1.02 —0.70
151218+18:30:58UTC 2457375.271929 0.029 8.24 7.11 5.38 31.29 2.35 —0.00
1601034-05:48:36UTC 2457390.742504 0.026 8.22 6.01 6.60 9.75 7.29 0.49
151202+01:18:13UTC 2457358.554740 0.025 8.23 6.54 5.73 40.42 1.77 —0.26
1601044-03:51:51UTC 2457391.661424 0.021 8.19 5.80 6.39 6.76 1.10 —0.51
151213+400:12:20UTC 2457369.508985 0.019 8.22 5.70 7.24 11.12 3.30 —0.79
1509234-07:10:59UTC 2457288.799711 0.014 8.20 6.78 5.84 2.14 1.08 0.65
151029+13:34:39UTC 2457325.066149 0.014 8.21 6.83 5.23 2.19 1.07 —0.27
1512064-14:19:29UTC 2457363.097291 0.013 8.17 5.80 6.37 100.60 1.64 0.98
151202+15:32:09UTC 2457359.147751 0.012 8.14 5.93 6.41 6.33 1.18 —0.59
1510124-06:30:45UTC 2457307.771774 0.011 8.19 6.74 5.70 3.16 1.73 —0.15
151116+22:41:48UTC 2457343.446120 0.010 8.14 5.79 6.64 2.00 1.04 —0.45
1511214-03:34:09UTC 2457347.649138 0.010 8.12 6.48 5.78 7.43 1.00 —0.86
150922+05:41:08UTC 2457287.737317 0.010 8.16 6.05 6.34 2.78 1.02 0.17
151008+-14:09:17UTC 2457304.090202 0.008 8.16 5.84 6.10 46.38 1.19 0.38
151127+402:00:30UTC 2457353.584101 0.008 8.10 6.28 5.44 39.12 2.01 0.99

Note. Candidates are sorted by FAR evaluated for the entire bank of templates. The FAR of the top two candidates is limited only by the amount of background time
estimated and only differ due to the variation in time available in their respective analyses to create background. The parameters of the template associated with each
candidate are listed. Note that these are not intended as a rigorous estimation of the source parameters. Masses are given in the detector frame.

Normalized Count

Fitted Noise Model
Conservative Rate Signal Model
LVT151012

Measured False Alarms

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6
Ranking Statistic p,.

Figure 2. Scaled probability distributions of assumed signals and noise as a
function of the ranking statistic 5, for the analysis containing LVT151012. Blue
shows the normalized histogram of empirically measured false alarms that are
within our selected BBH region of the template bank, Py. Red is the
exponential decay model that has been fitted to this set of false alarms,
PsAg/ Ay, normalized so that the counts can be directly compared to the noise
distribution. Orange shows the signal model based on our conservative rate of
detections. The value of g, for LVT151012 is shown as a dotted green vertical
line. The ratio of signal to noise at this value of p. strongly favors the signal
model.

is set by the disk and memory requirements of the search
pipeline, but it is sufficient to estimate the FAR of candidate
events to better than 1 in 50,000 yr. It is possible to combine
these time intervals during the analysis to improve this limit,
but we have not done so here. Our analysis is restricted to times
marked as observable by the metadata provided by the
Gravitational Wave Open Science Center. After accounting
for times that are marked as not analyzable, there remain ~48.1
days of data when both the Hanford and Livingston LIGO
instruments were operating.
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Figure 3. Candidate events with a ranking statistic 5. > 7.5 from the full search
for compact-binary mergers in O1 data. The color bar is capped at 9. The three
BBH mergers are clearly visible in the plots, while the remaining events are
largely distributed according to the density of the template bank.

The top candidate events by FAR from the full search are given
in Table 1. There are three candidates that are statistically
significant. These are the BBH mergers GW150914, LVT151012,
and GW151226, which were previously reported in Abbott
et al. (2016a, 2016d, 2016e). The FARs for GW150914 and
GW151226 of 1 per 66,000 and 1 per 59,000 yr, respectively, are
limits based on the amount of background time available in their
respective analysis. These limits are less stringent than those
reported in Abbott et al. (2016a) as we have created less
background time. There are no other individually convincing
candidates. Figure 3 shows candidate events with p. > 7.5. The
three BBH mergers stand out from the other candidate events and
are clustered in a portion of the parameter space that is analyzed
with relatively few template waveforms.
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Table 2
Candidate Events Consistent with the Selected Population of Binary Black Holes

Designation Julian Date Patro TDR FAR !(yr) . Pu oL my my Xeft

1509144-09:50:45UTC 2457279.910665 >66,000 18.45 19.67 13.38 44.21 32.16 0.09
151226+03:38:53UTC 2457382.652426 . >59,000 11.62 10.73 7.43 14.83 8.50 0.24
1510124-09:54:43UTC 2457307.913420 0.976 0.999 446 9.06 6.96 6.71 30.75 12.89 —0.05
160103+05:48:36UTC 2457390.742504 0.061 0.517 0.396 8.22 6.01 6.60 9.75 7.29 0.49
1512134-00:12:20UTC 2457369.508985 0.047 0.455 0.309 8.22 5.70 7.24 11.12 3.30 —0.79
151216+18:49:30UTC 2457373.284799 0.017 0.223 0.106 8.09 6.10 6.01 13.92 5.03 —0.41
151222+05:28:26UTC 2457378.728506 0.012 0.169 0.075 8.03 5.67 6.46 6.86 3.26 —0.74
151217+03:47:49UTC 2457373.658627 0.006 0.088 0.036 7.96 6.69 5.57 40.02 14.77 0.84
1510094-05:06:12UTC 2457304.713060 0.005 0.087 0.035 7.99 5.66 5.90 25.55 2.73 —0.05
151220+07:45:36UTC 2457376.823761 0.003 0.053 0.021 7.87 6.55 5.39 17.50 6.17 0.82
1511044-04:12:55UTC 2457330.676062 0.003 0.053 0.021 791 5.94 6.33 19.25 7.22 0.71
151120+16:20:06UTC 2457347.181049 0.003 0.047 0.018 7.86 6.11 5.44 5.49 3.10 0.79
151216409:24:16UTC 2457372.892271 0.003 0.045 0.017 7.86 5.76 5.66 58.56 20.84 0.66
151128+14:37:02UTC 2457355.109478 0.003 0.040 0.016 7.83 6.79 5.02 9.25 6.22 —0.87
1601094-08:08:42UTC 2457396.839798 0.003 0.035 0.014 7.82 5.24 6.23 24.29 3.45 —0.98
160111+22:49:34UTC 2457399.451507 0.003 0.035 0.013 7.82 5.10 6.55 5.75 343 0.23
1511244-11:25:19UTC 2457350.976339 0.002 0.033 0.013 7.81 5.65 6.27 98.89 3.89 0.45
150912+15:39:02UTC 2457278.152523 0.002 0.032 0.012 7.84 6.23 5.23 9.86 5.33 —0.01
151006+06:06:50UTC 2457301.755168 0.002 0.031 0.012 7.89 6.77 5.47 11.59 5.31 —0.05
151015+01:40:52UTC 2457310.570466 0.002 0.029 0.011 7.85 5.37 5.92 87.87 12.52 0.75

Note. There are three binary black hole mergers above a threshold corresponding to a true discovery rate of 99.92%. The third-most significant event, LVT151012, has
a 97.6% probability of being astrophysical in origin. Note that the FARs indicated do not reflect the false alarm rate for the full search, but instead for the limited
region of the template bank indicated in red in Figure 1. The FARs listed for the top two events are limited by the background time generated and so are identical to

those in Table 1.

4.1. BBH Candidates

Given that there are two BBH mergers (GW150914 and
GW151226) that are well established from their statistical
significance, we can estimate the rate of detecting BBH
mergers by this analysis. Candidate events that are consistent
with our selected BBH population are listed in Table 2. We
estimate the FAR of events for just this region of the analysis,
and using our estimate of the true rate of detections, calculate
the TDR as a function of ranking statistic. The TDR at the
ranking statistic of the fourth-most significant candidate is 0.52.
This means that only 52% of candidates with p,. at least as large
are expected to be of astrophysical origin. For each candidate
we estimate its individual probability of being astrophysical in
origin, Pwo. The fourth event has only a 6% chance of being
astrophysical. We do not report Py, and TDR values for the
top two events as these events are assumed to be signals in the
construction of these statistics.

4.2. Revisiting LVT151012

LVTI151012 was first announced in Abbott et al. (2016c),
with a FAR of 1 per 2.3 yr. Our improved methods yield a FAR
rate for LVT151012 of 1 per 24 yr. Restricting attention to our
selected BBH region, which is consistent with the other
observed BBH mergers, gives a FAR for LVT151012 in this
region alone of 1 per 446 yr. We combine this FAR with our
conservative estimate of the rate of detections to estimate that
99.92% of BBH merger candidates at least as significant as
LVTI151012 are astrophysical in origin. We also estimate the
probability that specifically LVT151012 is astrophysical in
origin to be 97.59%.

These measures both depend on our selected region of BBH
sources and our estimate of the rate of true detections, but we
believe our choices for both of these to be conservative. The
FAR of 1 per 446 yr is not a statistical statement about the

search as a whole and is used only in comparison against the
rate of real signals within this same region. Selecting different
boundaries for this region would yield a different FAR.
However, assuming that the FAR and true alarm rate are both
approximately uniform in this region, then Py, and TDR will
not change.

As data from future observing runs become available, it will
be possible to more precisely estimate this rate in a consistent
way and improve our estimate of this event’s significance. We
have modeled our signal distribution and population of false
alarms as being characterized by the ranking statistic p. alone.
An improved model could take into account the variation over
the parameter space and in time. Figure 2 shows the probability
distribution of our noise and signal models for the analysis that
contains LVT151012. Compared to the B, reported in Abbott
et al. (2016a) of 87%, our analysis has improved the ranking of
candidate events, the boundaries of our selected BBH
distribution differ from what was used there, and we use a
more conservative estimate of the signal rate. Given a Fy,
value of 97.6% we conclude that LVT151012 is astrophysical
in origin. For comparison, if we had chosen the rate of
observed mergers to be =15 yr~!, which is the linear
extrapolation of two detections in 48 days, we would find that
LVT151012 had a 99.6% probability of astrophysical origin.

5. Data Release

The 1-OGC catalog contains ~150,000 candidate events.
Our supplemental materials online provide the complete
combined set of binary neutron star, neutron star—black hole,
and BBH candidates (Nitz et al. 2018a). A separate listing of
the candidates from our selected BBH region is also made
available. Each candidate is assigned an identifying name
constructed from the date and UTC time. The vast majority of
these candidates are not astrophysical in origin. To help
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distinguish between possible sources we provide our ranking
statistic p. along with our estimate of the FAR rate for each
candidate. We also provide information such as the S/N
observed by each instrument, the time of arrival, measured
phases, and the results of our set of signal consistency tests.
The periods of time that were analyzed are also provided. We
also provide the PyCBC pipeline configuration files that allow
our analysis to be reproduced.

6. Discussion

We present a full catalog of gravitational-wave events and
candidates from a PyCBC-based, templated, matched-filter
search of the LIGO Ol open data. Our analysis represents an
improvement over that of Abbott et al. (2016a, 2016i) by using
improved ranking of candidates by considering phase, amplitude
and time delay consistency, an improved background model, and
a template bank targeting a wider range of sources (Dal Canton &
Harry 2017; Nitz et al. 2017; Nitz 2018). We independently verify
the discovery of GW150914 and GW151226 and report an
improved significance of the candidate event LVT151012, which
we claim should be viewed as a confident detection. Apart from
these three signals, none of the other candidate events are
individually significant in our analysis. All of these candidates are
listed in our catalog available at www.github.com/gwastro/1-ogc,
along with tools for exploring and using it. Complete gravita-
tional-wave event catalogs of this nature will become important
tools in multimessenger astronomy.

A larger data set from the second observing run of LIGO and
Virgo already exists. Individual detections have been pub-
lished, and short periods of data around the detections are
available publicly. However, the bulk of this data has not yet
been released publicly. It will be possible to create a similar
open catalog with the most up-to-date analysis tools when these
data are released.

We thank Thomas Dent and Sumit Kumar for useful
discussions and comments. We thank Stuart Anderson, Jonah
Kannah, and Alan Weinstein for help accessing data from the
Gravitational Wave Open Science Center. We acknowledge the
Max Planck Gesellschaft for support and the Atlas cluster
computing team at AEI Hannover. Computations were also
supported by Syracuse University and NSF award OAC-
1541396. D.A.B. acknowledges NSF awards PHY-1707954,
OAC-1443047, and OAC-1738962 for support. S.R. acknowl-
edges NSF award PHY-1707954 and OAC-1443047 for
support. R.-W. acknowledges NSF award OAC-1823378 for
support. This research has made use of data, software and/or
web tools obtained from the Gravitational Wave Open Science
Center (https://www.gw-openscience.org), a service of LIGO
Laboratory, the LIGO Scientific Collaboration and the Virgo
Collaboration. LIGO is funded by the U.S. National Science
Foundation. Virgo is funded by the French Centre National de
Recherche Scientifique (CNRS), the Italian Istituto Nazionale
della Fisica Nucleare (INFN) and the Dutch Nikhef, with
contributions by Polish and Hungarian institutes.

ORCID iDs

Alexander H. Nitz ® https: //orcid.org/0000-0002-1850-4587
Collin Capano @ https: //orcid.org/0000-0002-0355-5998
Alex B. Nielsen © https: //orcid.org/0000-0001-8694-4026

Nitz et al.

Steven Reyes @ https: //orcid.org /0000-0002-4599-6054
Rebecca White @ https: //orcid.org/0000-0002-5192-7784
Duncan A. Brown @ https: //orcid.org /0000-0002-9180-5765
Badri Krishnan © https: //orcid.org/0000-0003-3015-234X

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, PhRvX, 6, 041015

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, CQGra, 33, 134001

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016¢, PhRvD, 93, 122003

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016d, PhRvL, 116, 241103

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016e, PhRvL, 116, 061102

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016f, LRR, 19, 1

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016g, PhRvD, 93, 112004

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016h, ApJL, 833, L1

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016i, ApJL, 832, L21

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, PhRvL, 119, 161101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, PhRvL, 118, 221101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017c, PhRvL, 118, 221101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017d, ApJL, 851, L35

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017e, PhRvL, 119, 141101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017f, PhRvL, 119, 141101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017g, PhRvD, 96, 022001

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018, CQGra, 35, 065010

Ajith, P., Hannam, M., Husa, S., et al. 2011, PhRvL, 106, 241101

Allen, B. 2005, PhRvD, 71, 062001

Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E.
2012, PhRvD, 85, 122006

Antelis, J. M., & Moreno, C. 2018, arXiv:1807.07660

Ashton, G., Burns, E., Canton, T. D., et al. 2018, ApJ, 860, 6

Babak, S., Biswas, R., Brady, P., et al. 2013, PhRvD, 87, 024033

Belczynski, K., Buonanno, A., Cantiello, M., et al. 2014, ApJ, 789, 120

Belczynski, K., Klencki, J., Meynet, G., et al. 2017, arXiv:1706.07053

Benjamini, Y., & Hochberg, Y. 1995, J. Roy. Stat. Soc., 57, 289

Biwer, C. M., Capano, C. D., De, S., et al. 2019, PASP, 131, 024503

Blanchet, L. 2002, LRR, 5, 3

Bohé, A., Shao, L., Taracchini, A., et al. 2017, APS, 95, 044028

Brown, D. A., Harry, L., Lundgren, A., & Nitz, A. H. 2012, PhRvD, 86, 084017

Burns, E., Goldstein, A., Hui, C. M., et al. 2018, arXiv:1810.02764

Capano, C., Dent, T., Hanna, C., et al. 2017, PhRvD, 96, 082002

Chen, H.-Y., & Holz, D. E. 2014, arXiv:1409.0522

Dal Canton, T., & Harry, I. W. 2017, arXiv:1705.01845

Dal Canton, T., Nitz, A., Lundgren, A., et al. 2014, PhRvD, 90, 082004

Dominik, M., Berti, E., O’Shaughnessy, R., et al. 2015, ApJ, 806, 263

Droz, S., Knapp, D. J., Poisson, E., & Owen, B. J. 1999, PhRvD, 59, 124016

Farr, W. M., Gair, J. R., Mandel, 1., & Cutler, C. 2015, PhRvD, 91, 023005

Farr, W. M., Sravan, N., Cantrell, A., et al. 2011, ApJ, 741, 103

Faye, G., Marsat, S., Blanchet, L., & Iyer, B. R. 2012, CQGra, 29, 175004

Green, M. A., & Moffat, J. W. 2018, PhL, B784, 312

Guglielmetti, F., Fischer, R., & Dose, V. 2009, MNRAS, 396, 165

Kreidberg, L., Bailyn, C. D., Farr, W. M., & Kalogera, V. 2012, ApJ, 757, 36

Nitz, A. H. 2018, CQGra, 35, 035016

Nitz, A. H., Capano, C., Nielsen, A. B., et al. 2018a, 1-OGC First Open
Gravitational-wave Catalog v1.0, Zenodo, doi:10.5281/zenodo.1493357

Nitz, A. H., Dal Canton, T., Davis, D., & Reyes, S. 2018b, PhRvD, 98, 024050

Nitz, A. H., Dent, T., Dal Canton, T., Fairhurst, S., & Brown, D. A. 2017, ApJ,
849, 118

Nitz, A. H., Harry, I. W., Willis, J. L., et al. 2018c, ligo-cbc/pycbc: 02
Production Release 19, Zenodo, doi:10.5281/zenodo.596388

Nuttall, L. K., Massinger, T. J., Areeda, J., et al. 2015, CQGra, 32, 245005

Owen, B. J. 1996, PhRvD, 53, 6749

Owen, B. J., & Sathyaprakash, B. S. 1999, PhRvD, 60, 022002

Ozel, F., Psaltis, D., Narayan, R., & McClintock, J. E. 2010, ApJ, 725, 1918

Racine, E. 2008, PhRvD, 78, 044021

Reynolds, C. S. 2014, SSRv, 183, 277

Roulet, J., & Zaldarriaga, M. 2019, MNRAS, 484, 4216

Sathyaprakash, B. S., & Dhurandhar, S. V. 1991, PhRvD, 44, 3819

Schutz, B. F. 2011, CQGra, 28, 125023

Taracchini, A., Buonanno, A., Pan, Y., et al. 2014, PhRvD, 89, 061502

Usman, S. A, Nitz, A., Harry, I, et al. 2016, CQGra, 33, 215004

Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., & Stephens, B. 2015,
J. Phys. Conf. Ser., 610, 012021

Wysocki, D., Gerosa, D., O’Shaughnessy, R., et al. 2018, PhRvD, 97, 043014


http://www.github.com/gwastro/1-ogc
https://www.gw-openscience.org
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-1850-4587
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0002-0355-5998
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0001-8694-4026
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-4599-6054
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-5192-7784
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://orcid.org/0000-0003-3015-234X
https://doi.org/10.1103/PhysRevX.6.041015
http://adsabs.harvard.edu/abs/2016PhRvX...6d1015A
https://doi.org/10.1088/0264-9381/33/13/134001
http://adsabs.harvard.edu/abs/2016CQGra..33m4001A
https://doi.org/10.1103/PhysRevD.93.122003
http://adsabs.harvard.edu/abs/2016PhRvD..93l2003A
https://doi.org/10.1103/PhysRevLett.116.241103
http://adsabs.harvard.edu/abs/2016PhRvL.116x1103A
https://doi.org/10.1103/PhysRevLett.116.061102
http://adsabs.harvard.edu/abs/2016PhRvL.116f1102A
https://doi.org/10.1007/lrr-2016-1
http://adsabs.harvard.edu/abs/2016LRR....19....1A
https://doi.org/10.1103/PhysRevD.93.112004
http://adsabs.harvard.edu/abs/2016PhRvD..93k2015A
https://doi.org/10.3847/2041-8205/833/1/L1
http://adsabs.harvard.edu/abs/2016ApJ...833L...1A
https://doi.org/10.3847/2041-8205/832/2/L21
http://adsabs.harvard.edu/abs/2016ApJ...832L..21A
https://doi.org/10.1103/PhysRevLett.119.161101
http://adsabs.harvard.edu/abs/2017PhRvL.119p1101A
https://doi.org/10.1103/PhysRevLett.118.221101
http://adsabs.harvard.edu/abs/2017PhRvL.118v1101A
https://doi.org/10.1103/PhysRevLett.118.221101
http://adsabs.harvard.edu/abs/2017PhRvL.118v1101A
https://doi.org/10.3847/2041-8213/aa9f0c
http://adsabs.harvard.edu/abs/2017ApJ...851L..35A
https://doi.org/10.1103/PhysRevLett.119.141101
http://adsabs.harvard.edu/abs/2017PhRvL.119n1101A
https://doi.org/10.1103/PhysRevLett.119.141101
http://adsabs.harvard.edu/abs/2017PhRvL.119n1101A
https://doi.org/10.1103/PhysRevD.96.022001
http://adsabs.harvard.edu/abs/2017PhRvD..96b2001A
https://doi.org/10.1088/1361-6382/aaaafa
http://adsabs.harvard.edu/abs/2018CQGra..35f5010A
https://doi.org/10.1103/PhysRevLett.106.241101
http://adsabs.harvard.edu/abs/2011PhRvL.106x1101A
https://doi.org/10.1103/PhysRevD.71.062001
http://adsabs.harvard.edu/abs/2005PhRvD..71f2001A
https://doi.org/10.1103/PhysRevD.85.122006
http://adsabs.harvard.edu/abs/2012PhRvD..85l2006A
http://arxiv.org/abs/1807.07660
https://doi.org/10.3847/1538-4357/aabfd2
http://adsabs.harvard.edu/abs/2018ApJ...860....6A
https://doi.org/10.1103/PhysRevD.87.024033
http://adsabs.harvard.edu/abs/2013PhRvD..87b4033B
https://doi.org/10.1088/0004-637X/789/2/120
http://adsabs.harvard.edu/abs/2014ApJ...789..120B
http://arxiv.org/abs/1706.07053
https://doi.org/10.1088/1538-3873/aaef0b
http://adsabs.harvard.edu/abs/2019PASP..131b4503B
https://doi.org/10.12942/lrr-2002-3
http://adsabs.harvard.edu/abs/2002LRR.....5....3B
https://doi.org/10.1103/PhysRevD.95.044028
http://adsabs.harvard.edu/abs/2017PhRvD..95d4028B
https://doi.org/10.1103/PhysRevD.86.084017
http://adsabs.harvard.edu/abs/2012PhRvD..86h4017B
http://arxiv.org/abs/1810.02764
https://doi.org/10.1103/PhysRevD.96.082002
http://adsabs.harvard.edu/abs/2017PhRvD..96h2002C
http://arxiv.org/abs/1409.0522
http://arxiv.org/abs/1705.01845
https://doi.org/10.1103/PhysRevD.90.082004
http://adsabs.harvard.edu/abs/2014PhRvD..90h2004D
https://doi.org/10.1088/0004-637X/806/2/263
http://adsabs.harvard.edu/abs/2015ApJ...806..263D
https://doi.org/10.1103/PhysRevD.59.124016
http://adsabs.harvard.edu/abs/1999PhRvD..59l4016D
https://doi.org/10.1103/PhysRevD.91.023005
http://adsabs.harvard.edu/abs/2015PhRvD..91b3005F
https://doi.org/10.1088/0004-637X/741/2/103
http://adsabs.harvard.edu/abs/2011ApJ...741..103F
https://doi.org/10.1088/0264-9381/29/17/175004
http://adsabs.harvard.edu/abs/2012CQGra..29q5004F
https://doi.org/10.1016/j.physletb.2018.08.009
http://adsabs.harvard.edu/abs/2018PhLB..784..312G
https://doi.org/10.1111/j.1365-2966.2009.14739.x
http://adsabs.harvard.edu/abs/2009MNRAS.396..165G
https://doi.org/10.1088/0004-637X/757/1/36
http://adsabs.harvard.edu/abs/2012ApJ...757...36K
https://doi.org/10.1088/1361-6382/aaa13d
http://adsabs.harvard.edu/abs/2018CQGra..35c5016N
https://doi.org/10.5281/zenodo.1493357
https://doi.org/10.1103/PhysRevD.98.024050
http://adsabs.harvard.edu/abs/2018PhRvD..98b4050N
https://doi.org/10.3847/1538-4357/aa8f50
http://adsabs.harvard.edu/abs/2017ApJ...849..118N
http://adsabs.harvard.edu/abs/2017ApJ...849..118N
https://doi.org/10.5281/zenodo.596388
https://doi.org/10.1088/0264-9381/32/24/245005
http://adsabs.harvard.edu/abs/2015CQGra..32x5005N
https://doi.org/10.1103/PhysRevD.53.6749
http://adsabs.harvard.edu/abs/1996PhRvD..53.6749O
https://doi.org/10.1103/PhysRevD.60.022002
http://adsabs.harvard.edu/abs/1999PhRvD..60b2002O
https://doi.org/10.1088/0004-637X/725/2/1918
http://adsabs.harvard.edu/abs/2010ApJ...725.1918O
https://doi.org/10.1103/PhysRevD.78.044021
http://adsabs.harvard.edu/abs/2008PhRvD..78d4021R
https://doi.org/10.1007/s11214-013-0006-6
http://adsabs.harvard.edu/abs/2014SSRv..183..277R
https://doi.org/10.1093/mnras/stz226
http://adsabs.harvard.edu/abs/2019MNRAS.484.4216R
https://doi.org/10.1103/PhysRevD.44.3819
http://adsabs.harvard.edu/abs/1991PhRvD..44.3819S
https://doi.org/10.1088/0264-9381/28/12/125023
http://adsabs.harvard.edu/abs/2011CQGra..28l5023S
https://doi.org/10.1103/PhysRevD.89.061502
http://adsabs.harvard.edu/abs/2014PhRvD..89f1502T
https://doi.org/10.1088/0264-9381/33/21/215004
http://adsabs.harvard.edu/abs/2016CQGra..33u5004U
https://doi.org/10.1088/1742-6596/610/1/012021
https://doi.org/10.1103/PhysRevD.97.043014
http://adsabs.harvard.edu/abs/2018PhRvD..97d3014W

	1. Introduction
	2. Search Methodology
	2.1. Target Search Space
	2.2. Creation and Ranking of Candidate Events
	2.3. Statistical Significance

	3. Evaluating Candidates Based on the Astrophysical Population
	4. Results
	4.1. BBH Candidates
	4.2. Revisiting LVT151012

	5. Data Release
	6. Discussion
	References



