Accepted Manuscript

Hundness versus Mottness in a three-band Hubbard-Hund model: On the
origin of strong correlations in Hund metals

K.M. Stadler, G. Kotliar, A. Weichselbaum, J. von Delft

PII:
DOI:
Reference:

To appear in:

Received date :
Accepted date :

S0003-4916(18)30279-3
https://doi.org/10.1016/j.a0p.2018.10.017
YAPHY 67783

Annals of Physics

16 October 2018
25 October 2018

ANNALS
(2]

PHYSICS

Please cite this article as: K.M. Stadler, et al., Hundness versus Mottness in a three-band
Hubbard-Hund model: On the origin of strong correlations in Hund metals, Annals of Physics
(2018), https://doi.org/10.1016/j.a0p.2018.10.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.aop.2018.10.017

*Manuscript

Click here to view linked References

Hundness versus Mottness in a three-band Hubbard-Hu .d model:
on the origin of strong correlations in Hund metals ™

K. M. Stadler®*, G. Kotliar®, A. Weichselbaum®¢, J. von 1 ~Ift’

ysics Department, Arno ommerfe enter for Theoretica ysics and Cente  for INanoScience,
% Physics D t t, Arnold S ld Cent Th tical Physi d C f Sci
Ludwig-Mazimilians- Universitat Minchen, 80333 Minchen, .c. nany
bDepartment of Physics and Astronomy, Rutgers University, Piscatar ay, I, . 2254, USA
¢Condensed Matter Physics and Materials Science Department, Brookhaven Nationa. ~~bc atory, Upton, New York 11973,
USA

Abstract

Hund metals are multi-orbital systems with moderate Coulon.. inte.action, U, among charges and size-
able Hund’s rule coupling, J(< U), that aligns the spins in different ¢ ‘bitals. They show strong correlation
effects, like very low Fermi-liquid coherence scales and intrigui. - incr aerent transport regimes, resulting in
bad-metallic behavior. But to what extent are these strong cor. ~lations governed by Mottness, i.e. the block-
ing of charge fluctuations close to a Mott insulator tran~***~  22. 1) induced by U, or by Hundness, a new
route towards strong correlations induced by J? To answe. *his question, we study the full phase diagram
of a degenerate three-band Hubbard-Hund model or . Rathe iattice at zero temperature using single-site
dynamical mean-field theory and the numerical renorm. li- ation group as efficient real-frequency multi-band
impurity solver. Hund metal behavior occurs in t '~ min mal model for a filling close to ngy = 2, moderate
U and sizeable J, the “Hund-metal regime”. In pa-tic lar, strong correlations manifest themselves there
by an unusually low quasiparticle weight. Ge  -=~lizii.~» our previous results on this model, we show that
“spin-orbital separation” (SOS) is a generic Hunu'~-coupling-induced feature in the whole metallic regime
of the phase diagram for 1 < ng < 3 and sizeable J. (here orbital screening always occurs at much higher
energies than spin screening below which ceriw *-liquid behavior sets in. The low quasiparticle weight can
then be directly explained in terms of th Hund’s coupling-reduced Fermi-liquid scale. We carefully analyze
the effect of J (Hundness), and the effrct or e JVIT at ng = 2 and ng = 3 (Mottness) on the energy scales
and the nature of SOS. In the Hund- netr. reqime, far from any MIT, Hundness — the localization of large
spins — is shown to be the key player *~ .ndu e strong correlations. There, physical properties are governed
by a broad incoherent energy reg me ot /S where intriguing Hund metal physics occurs: large, almost
unscreened spins are coupled to .ci. ~med orbital degrees of freedom. With increasing proximity to an MIT
correlations are further enhanced and tu. Fermi-liquid scale is further reduced. However, in the Hund-metal
regime, this effect of Mottne,s it minor. In contrast, very close to the MIT at ngy = 2, the incoherent
spin-orbital separation regin. is .trongly downscaled and becomes negligibly small, whereas Mottness — the
localization of charges — | scome. Jominant in inducing strong correlations. Close to the MIT at ng = 3,
the SOS regime widens 1 p be :aus~ the orbital degrees of freedom get blocked by the formation of an S=3/,
impurity spin, but its na. e cb .nges: the orbital and spin dynamics get decoupled. Our results confirm
Hundness as a distins . waechai. sm towards strong correlations in the normal state of Hund metals, leading
to various interestin - implic. tions for the nature of electronic transport.

Keywords: Hund- sss, .7..ud metal, multi-orbital model, Mott-insulator transition, numerical
renormalization group, 'ynamical mean-field theory
PACS: 71.10.Fa, 71.27.- -a, 71.30.4+h, 75.20.Hr
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1. Introduction and Motivation

1.1. Bad-metal superconductors

Iron-based high-temperature superconductors [1, 2] (HTSCs) are “bad meta's”. On the one hand, in
their superconducting state (with critical temperatures up to 56K [3, 4, 5]), they < = p -rfect conductors with
dissipationless supercurrents; on the other hand, in their normal state they cor 'ict s. “nrisingly badly. But
which fundamental physical mechanism causes this bad-metallic behavior? T-teres. ngly, this bad-metallic
behavior is not found in conventional BCS-like superconductors, but it is re nin - ~nt of the unconventional
normal state of (doped) cuprate HTSCs. These are known to be strongly ~or elated and the conventional
superconducting mechanism based on electron-phonon coupling is most 1i'~ly n. " strong enough to generate
their high critical temperatures.

There is firm evidence that strong correlation effects play a key role 1. iron-b .sed HTSCs, as well. In their
paramagnetic phase, these materials exhibit anomalous and bad tr2 __pory ..operties that are characterized
by very low Fermi-liquid (FL) coherence scales [6, 7, 8, 9]. Abov : th- r. scale puzzling non-Fermi-liquid
(NFL) behavior [10, 6, 11, 12, 13, 7, 14, 15, 8, 9, 16, 17] occurs in a 1. ge in’ ermediate (paramagnetic) energy
window, typically at or slightly below room temperature, togethc. wiwn poorly screened, large fluctuating
local moments, as observed in observed in X-ray emission spe-troscopy measurements [18, 19, 20]. At higher
temperatures, the resistivity reaches unusually large values tha. ~xce .d the Mott-Toffe-Regel limit [6, 9]. In
accordance, various experiments revealed particularly large m. < enhancements [21, 22, 23, 24, 25, 26, 8, 9,
16, 27, 28, 17].

1.

1.2. Hundness versus Mottness in multi-orbital bad + ..

Since the “standard model” of a Fermi liquid in conc ~.sed matter theory breaks down in the presence of
strong correlations, both the superconducting and .. baa metal normal state are still poorly understood in
the iron-based HTSCs. In particular, one widely but -on._oversially debated fundamental question pertains
to the origin of strong correlations: is it “Hunu ~=s.” ~ “Mottness”?

Cuprate HTSCs are widely considered as dopeu ~harge-transfer Mott insulators [29, 30]. Strong corre-
lations arise here due to Mottness: the proximity to a Mott-insulator transition (MIT), i.e. a transition at
a critical interaction strength U, from an 1ncrew. ingly correlated) metal to an insulator, which is driven by
a large Coulomb repulsion, U. In theor. ical de criptions, the original multi-band electronic structure of
cuprates is usually reduced to a low-er :rgy ew. - .ive (two-dimensional) one-band Hubbard model, such that
U acts only between electrons in one orb’.al rer lattice site and the MIT occurs at half-filling for undoped
cuprates.

In contrast, doped and undop d iron-bused HTSCs are (bad) metallic materials with an effective multi-
band description that allows fc  an ditional type of interaction: Hund’s rule coupling, J (Hundness),
which favors the alignment of ¢ "»s in ditrerent orbitals on the same (iron) atom and consequently correlates
the electron hopping in term . of ; non-trivial interplay of orbital and spin degrees of freedom [6, 7, 31, 32].
In iron-based HT'SCs and oth.  nulti-band materials, the strong correlation effects may thus be caused by
either Hundness, or Mott .ess or a combination of both.

Therefore, the follow ag ¢ aest’on has been raised: [7, 33] what is the role of “Hundness versus Mottness”
as origin of strong correlatio. ~ ir multi-orbital bad metals? Here we address this question from a fundamental
model-based point o’ view: we investigate the zero-temperature properties of a toy model, the degenerate
three-band Hubbara Hund 1 odel Hamiltonian (3HHM) [32, 34, 31], using single-site dynamical mean-field
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theory (DMFT) and a highly-efficient multi-band numerical renormalization group (M !G) impurity solver
[35, 36, 37, 32] to tackle the correlated many-body problem. Our study is based or 1.~ following state of
research on multi-band models.

2. Scope and Aim

2.1. Hund metals

For a long time strong electronic correlations in materials have excl sive' ; be:n associated with the
proximity to a MIT evoked by U, i.e. to the suppression of charge fluctuati. s. The MIT was extensively
studied in one-band systems [38, 39, 40, 41], including the cuprate HT >us. But a MIT also occurs at any
integer filling of multi-orbital materials. Examples are various 3d (anc 4d) tra: sition metal oxides with the
prototypal Mott material V503 [42, 43, 44, 45, 34].

Soon after the discovery of the iron pnictides [1, 2], it was realiz d the* the special multi-orbital character
of these HTSCs (and many other strongly correlated materials) a. v, for 1 new mechanism towards heavy
effective masses: Hundness [6]. This new class of materials was < *bbed “".und metals” [46, 47] and includes
multi-orbital materials like iron pnictides and chalcogenides [6, 4u, 7, 15, 14, 48, 47, 49, 50], as well as
various transition metal oxides of the 3d and 4d series, such « - ruther ates [51, 52, 53, 7, 47, 54, 55]. Hund
metals are characterized by rather broad bands leading to s -eabic ~1und’s coupling strengths compared to
only moderate Coulomb interactions, which are strongly screene:. ‘n these materials due to the large spatial
extension of the correlated orbitals [56, 52].

Interestingly, bad-metal behavior can be found in essen., ~lly all these Hund metals. Although the
importance of Hund’s coupling in realistic materials is . 1cre u...gly being appreciated there is still an ongoing
debate whether Hundness or Mottness is the key plaver 1. cenormalizing the electron masses of Hund metals.
This debate is strongly driven by the fact that, inde »u, “tri.ing analogies in the (doping-temperature) phase
diagrams of cuprate and iron-based HTSCs hint to rarus a common framework. For instance, in both
cases superconductivity emerges in the vicinity +* au :...coherent metallic regime with NFL properties and
unconventional spin dynamics. So, ultimately, unde. tanding the normal state of Hund metals might lead
to deeper insights into the superconductine ~chanism in HT'SCs.

2.2. Hund models

A very basic approach to address t'ie is ue o1 “Hundness versus Mottness” in Hund metals is to study the
paramagnetic phase diagram of Hu: “ar .-Ke .amori-like model Hamiltonians (for a review, see Ref. [47]).
These take into account two spin .nd m. *ple (N,) orbital degrees of freedom, a Coulomb interaction, U,
and, most importantly, a finite f (. “magnetic Hund’s coupling, J. Hund-metal physics is then captured by
these models for a filling, ng, close to 1e charge away from half-filling: ngy ~ N, + 1. This is motivated
by the particle-hole asymmet  y ¢ " real Hund materials. For instance, the average occupancy of the five Fe
3d orbitals is d6 for the und mecd stoichiometric parent compounds of almost all iron-based HTSC families
[50]. Small to moderate rysta. feld splittings, as well as hole or electron doping lead to variations in
the occupancy, such the. th = electron densities can range between 5.5 and 6.3 electrons per iron atom
[50, 46]. Assuming a fully “'.ed e, duplet, this leaves nq ~ 2 electrons for three active to4 orbitals. Similarly,
ruthenates have an av_.uge h.." 1g of approximately four electrons in ¢4-orbitals.

Here we study t 1e mim nal model [7, 31] with relevance for Hund metals, the 3HHM, presented in
Sec. 2.6. It involver three Jegenerate orbitals. We thus fully neglect any material-specific details like
crystal-field split'..g or realistic band structures, although undoubtedly present in real materials. Our aim
in this study is o focus attention on the most generic aspects of Hundness and Mottness in the maximally
simple context o. full o oital degeneracy, in order to reveal which many-body effects can be understood on
this simple = ~el level and which ones require full information of the electronic structure. Since Hund’s
rule coupling s - nly effective for a site occupation that is larger than one electron (and smaller than one
hole), we simula e fillings 1 < ng < 3 with particular emphasis on ng = 2. (By the particle-hole symmetry
of the model with respect to half-filling, this also describes the fillings 3 < ng < 5.)



Figure 1: Schematic sketch of the n4-U phase diagram for the 31.""™M at finite J. We only show half of the phase diagram,
as it is symmetric with respect to half-filling. The shading reflects the \, "asiparticle (QP) weight Z. Darker regions (large Z)
indicate good metallic, lighter regions (small Z) bad-metallic ... "~~~ The black bars mark Mott insulating phases. At all
integer fillings, a MIT occurs above a (different) critical interact. n crength, Ue. Interestingly, an extended light region exists

also at moderate U < UC(Z) around ng = 2 (and reaches tc - =3, In this “Hund-metal regime” (hatched area), where most
Hund metals can be placed [53], strong electronic correlation: m._"t ether be induced by Hundness, (i) the presence of sizeable
J, or Mottness, (ii) the influence of the MIT at ng = 2 (blue a.-ow, and (iii) the influence of the MIT at ng = 3 (red arrow),
or a combination of theses scenarios.

2.83. Phase diagram and bad-metal regime

Our work is motivated by the result of vari us single-site dynamical mean-field theory (DMFT) [51,
53, 57, 47] and slave-boson [33, 58, 5] stu.’'~s Of degenerate three-band Hubbard-Kanamori-type models
that reproduced basic Hund metal r aysi s: in the ng-U phase diagram at finite J, they found strongly
correlated, bad-metallic behavior in . ~ xte' ded region around a filling of ny = 2, which we dub “Hund-
metal regime” (hatched area in T1g. 1 av noderate U < 6(2)). Naturally, bad-metallic behavior (light
regions in Fig. 1) occurs close tr the MIT at ng = 2, but interestingly, it also ranges down to rather small
Coulomb interaction strengths 77 < US“, provided that Hund’s coupling .J is sizable (in a sense defined at
the end of section 2.6.1). Mr st H ind metals can be placed there, around one charge away from half-filling
and at moderate U. Further, ./ © bad-metallic regime (light area) also reaches out to the insulating state at
half-filling, ngy = 3, where che MI1 develops already at a very low critical interaction strength, UC(S).

Bad-metal behavior ar festc itself by a small quasiparticle (QP) weight Z. Based on a coherent FL
QP picture, Z quantifies the e ght of the coherent quasiparticle peak (QPP) of the local spectral function
(correlated density o states, Within DMFT and slave-boson methods, the inverse QP weight is equivalent to
the electronic mass e. hancen ent, Z~! = m* /m, and thus serves as measure for strong electronic correlations.
For Hund models ~ith 7 > 3 bands, equivalent regions of low Z (hatched area) were revealed around all
integer fillings 7 < ng - N, [47, 33, 58], but they are most prominent at ng = N. + 1 (see supplement of
Ref. [33]).

We note that in ...c presence of crystal-field splitting Z and the filling can acquire an orbital dependence:
various simu. “tio’ > (09, 12, 11, 46, 7, 60, 61, 62, 63, 64, 48, 65, 33, 66, 67] and measurements [8, 27, 9, 28, 17]
suggest the occ crence of orbital differentiation and even orbital selective Mott phases (OSMP), depending
on the type and strength of the splitting [64, 67]. In the phase diagram, both effects seem to intensify
with increasing J, increasing U, and decreasing distance to half-filling. A thorough understanding of the
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physics of degenerate multi-orbital models is a prerequisite for exploring these effects of orbital selectivity.
However, pronounced orbital differentiation is considered to be relevant only for soms 1. nd metals, e.g. for
ruthenates. In contrast, for iron-pnictides, it might be less important. In the class of the iro.. based HTSCs,
only iron chalcogenides are expected to be at the verge of an orbital-selective M" [ | 6, 61]. Interestingly,
many materials with large orbital differentiation are either no superconductors oi ~h’sit only low transition
temperatures: indeed, large orbital differentiation is argued to be harmful for . merce ~ductivity [46].

2.4. The Hund-metal problem

In principle, three scenarios seem possible to induce strong correlation. ~:cts and to lead to the bad-
metallic behavior (low Z) in the Hund-metal regime (hatched area in Fi- 1) ot « 3HHM also sufficiently far
way from any Mott insulating state (black bars in Fig. 1):

(i) Hundness: sizeable J is the key player to induce strong correla*ion., ~**’, considerable electronic mass
enhancements.

(ii) Mottness at ng = 2: the interaction-induced MIT at one c! ~rge aw=, from half-filling, ngy = 2, triggers
the strong correlations (blue arrow in Fig. 1).

(iii) Mottness at ng = 3: the strong correlations are emanatea * = t¥ ¢ half-filled Mott insulator (red arrow
in Fig. 1).

Scenario (i) suggests a new route towards strong corre.. +ions: Hundness. Sizeable Hund’s rule coupling,
J, leads to the formation of high-spin states and to +he supp. 2ssion of Z. It goes back to Ref. [6] and is
supported in various publications [46, 68, 7, 53, 47, 5= 55 10, 32, 34].

UéNC*l) is large while U has moderate values for

Scenario (ii) is not much discussed in the litere e, a.
Hund metals.
Scenario (iii) is motivated by the cuprate pi~+tnre ¢ doped half-filled Mott-insulators and advocated by

several authors [12; 33, 58, 50]. In this scenario ."e existence of finite J would have a subordinate role in
correlating the electrons by lowering Uc(f ).

Although all the model calculations ¢i .ed a. 9ve confirmed that strong correlation effects dominate the
Hund-metal regime of the phase diagrar their o' ‘gin and nature have been under debate even for this toy
model until today, either based on diff rent , “v ical interpretations or just on inconsistent terminology. In
particular, scenarios (i)-(iii) have bee  dis ussed in the context of (D1) the existence of a spin-freezing phase
[51], (D2) the “Janus-faced” influence ~f {un‘ ‘s rule coupling [53, 57, 47], and (D3) various proximity effects
of the half-filled MIT [33, 58, 50 such a. Jund’s-coupling-induced Fermi-liquid instabilities [58]. In this
work we will add a new and very . <ic aspect to the discussion: (D4) spin-orbital separation (SOS) [32].
We will show that the phenomena (D1), (D2), and (D3) are directly connected to (D4), and will — based on
this insight — study scenarios (i)-1 ii) by revisiting (D1)-(D3) from the perspective of SOS in Sec. 2.7.

(D1) Spin-freezing phase

The so-called spin-fre :zin‘, ph#se characterizes the Hund-metal regime in terms of a spin-spin correlation
function with an unusuan, <low (imaginary-time) decay, which does not approach zero but a constant at
finite temperature. T . vnis vic.ure, scattering off Hund’s-coupling-induced large composite and very long-
lived (or even frozer static) magnetic moments leads to the incoherent transport behavior.

The spin-freezing . ~ena’.o was introduced in 2008 in a first (finite-temperature) DMFT study [51] of
the ng-U phase aagram of a degenerate three-band Hubbard-Kanamori model using a Quantum Monte
Carlo (QMC) i1 purity olver. Later it was extended to (realistic) five-band calculations for iron-pnictides
[11, 12, 14, 19] (¢ ™o strating the importance of Hund’s rule coupling and electronic correlations for the
formation o. «.. ' moments in the paramagnetic phase [19]) and to models with crystal-field-splitting [66]
and spin-orbiv < upling [69]. In 2015 it led to the proposal of a fluctuating-moment-induced spin-triplet
superconducting mechanism for strontium ruthenates and uranium compounds [70].

The transition into the Hund-metal regime was first interpreted as a quantum phase transition from a
paramagnetic metallic FL phase (at small ngy and/or small U) to an incoherent metallic NFL phase with
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frozen local moments (at larger ng and/or larger U) [51]. Since 2011, the existence of a F 1, ground state (with
fully screened local moments) has been anticipated in the Hund-metal regime and has 1" to the picture of a
spin-freezing crossover at finite temperatures — although the complete decay of the imaginar, time spin-spin
correlation function to zero has not been explicitly demonstrated until recently 71) because, in general,
QMC solvers do not have access to low enough temperatures [53, 14]. However, a ~ew QMC technique using
(super) state-sampling [71] was able to show the FL ground state in the spin ™eezi._ vhase for fillings up
to ng = 2.63.

Spin-freezing has been assumed to originate, in principle, from (i) Hv «dne - However, similar to Z,
the spin-freezing phenomenon is considered to be strongly doping depei. '=n’ and is very pronounced in
the vicinity of the half-filled Mott insulator [51, 70]. Interestingly, the cr~ssove. towards spin-freezing near
ng = N, — 1 is characterized by a steep drop of Z as a function of n, . A de ailed quantitative analysis if
and how the spin-freezing phenomenon is connected to Z, induced by (i) Hu i«dness and/or influenced by
Mottness of kind (ii) or (iii) has not yet been performed. One reasc - for v... 1s that the mass enhancement
could only be computed in an approximate manner because the )M s¢ ver did not reach the FL regime
[70]. Further, data was only available on the imaginary Matsubara ..eque cy axis.

(D2) Janus-faced influence of Hund’s rule coupling

The “Janus-faced” influence of Hund’s rule coupling was ~ ma, - re,ult of a first more detailed DMFT+QMC
study of the phase diagram of the degenerate three-band Hub. ~rd-Kanamori model [53, 57, 47] (including
a realistic classification of various 3d and 4d transition .c.a uades via their mass enhancements). A de-
tailed exploration in terms of the QP weight, Z, revealed th.- Hund’s coupling induces apparent conflicting
tendencies at ng = 2. On the one hand, increasing J , ... ~*~< metallicity by shifting the critical interaction
strength, Uéz), of the MIT at ny = 2 to higher values. Jn the other hand, at moderate U, increasing J
reduces Z, supporting scenario (i) that Hund’s-cd -, ling- nduced strong correlations lead to bad-metallic
behavior far from a Mott phase. Together, this Janu. -fac .d behavior results in an interesting MIT for size-
able J upon increasing U that is qualitatively ¢ «c..~* "om the MIT of one-band and multi-band Hubbard
models without Hund’s coupling: starting from a we. "ly correlated metal at small U, the system first evolves
into a strongly correlated metal which is stable for an extended range of U values and characterized by very
small Z, before it eventually reaches the "/[ott 1. ulating phase at large UC(2).

The degenerate three-band study of 1.~f. [53. 57] was followed by similar analyses for up to five bands,
both with [47, 33, 58] and without [72. 13, 60, .~, orbital degeneracy, revealing qualitatively similar behavior
as in the three-band case. For degen rate moc'zls, Janus-faced behavior emerges for any integer filling away
from single and half-filling.

But even for the degenerate t' ~ee-bana model the origin of the Janus-faced behavior has not been fully
revealed. Obviously both the Q! P its 'f and the opening of the insulating Mott gap are affected at the same
time by changing J. Previous _ ~dies [53, 57, 47, 50] quantified these changes by performing a Hubbard-
I-type analysis for the gap r eper lence and by calculating Z to characterize the QPP. However, without
access to (reliable) real-freque..  spectral data, the Hubbard-I predictions could never be explicitly verified
and the physical origin ¢ the low Z could only be speculated about. A connection to the low coherence
scale in Hund metals v ‘s & sumr .d but never proven, and the nature of the incoherent regime remained
unclear. Although considei. ! . clear connection between spin-freezing and the Janus-faced behavior has
not yet been demons .rated. Moreover, we note that the value of Z can have an error of up to 10% in these
DMFT+QMC simul tions (s e supplement of Ref. [53]), also strongly affecting the values of U..

We therefore conclu - *Lat both scenarios (i) and (ii) should be revisited. In particular, the Janus-faced
behavior has to e dis. tangled by identifying a measure for Mottness (ii) which does not change with J,
in order to stud - the pi re effect of Hundness (i), and to analyze the difference in nature between strongly
correlated Hund nic s at moderate U and strongly-correlated systems close to the MIT. Scenario (iii) will
be considere.’ n .. ontext of (D3).



(D3) Prozimity to the half-filled MIT

At half-filling, ng = 3, UC(S) is strongly reduced. The region of low Z in Fig. 1 direc .ly . ~rts at the border
of the MIT at ng = 3 and extends, even at moderate U, from there to ng = 2 wi*h Z sligutly increasing
when passing from ngy = 3 to ng = 2. Such a filling-dependence is observed in sir .ulat ons and experiments
of iron-based superconductors: their correlations are enhanced with hole-doping (1.. © yproaching half-filling)
[73, 27, 65, 19, 74]. Furthermore, also the spin-freezing phenomenon [51] is stro. ~ly ac >ing dependent: the
spin freezing phase occurs in the vicinity of the half-filled MIT.

Motivated by this behavior it has been argued in Ref. [33, 58, 50] tb «t t} - . »pression of Z around
ng = 2 at moderate U is connected to the MIT at half-filling, ny = 3. In pa. '~ ar, the effect of suppressing
intra-orbital double occupancy by J has been regarded as a direct link +. .he M. ™ at ng = 3 [33]. However,
it has been noted that in contrast to the one-band Hubbard model, the reu iction of Z in Hund metals
does not imply the general suppression of charge fluctuations (far frc n the JIT, as shown in Ref. [34])
and Z is thus not a good measure for the latter: the origin of lov . ana 1ts filling dependence is subtle.
Again, DMFT+NRG real frequency data can help to further inv »sti- ate ‘his issue by complementing the
slave-boson approaches of Ref. [33, 50] and quantitatively revealing the connection between spin-freezing
and Z.

We note that for non-degenerate models, low Z is argued '~ be ind .ced by the “proximity to a half-filled
MIT”, as well, but here, the half-filled MIT denotes an or™ital . '~ ¢ive Mott transition: when an orbital
is individually half-filled it can become insulating, independe.. 'v of the other orbitals [65]. This orbital
decoupling effect is enhanced by Hund’s coupling, but w « not pe discussed further in this work.

In a slave-boson study [58] of degenerate and non-degener..’ » multi-band Hund models, a zone of negative
compressibility, k¢ = %—T < 0, is observed at zero te npe. e for nonzero J in the ng-U phase diagram,
above U > U,, reaching (depending on N.) from halt-~ ling towards ny = N, + 1. The transition from
Kel > 0 to ke < 0 is realized through a diverg. ..~ ot the compressibility, which occurs in the phase
diagram together with a strong reduction in Z. In .he ubsence of symmetry breaking in the model, this
divergence is interpreted as a genuine thermoa, ~au... *‘und’s-coupling-induced instability towards a phase
separation. The enhancement of ke has even been « ~ued to be directly connected to the enhanced critical
T. of HTCS [59, 57, 64, 58]. This strong “*atement of a negative compressibility is solely the result of
slave-boson approaches (rotationally inv .riant .»rm of the Kotliar-Ruckenstein slave-bosons for the full
Hubbard-Kanamori model involving two . ~nds, ' nd slave-spin mean-field approximation for the Hubbard-
Kanamori model without spin flip and pair ho, ing term involving up to five bands). It has so far not been
validated by another (zero-temperat re) aetlhod.

In order to investigate if the sur pre. *on f Z in the Hund-metal regime is mediated by the MIT at half-
filling and to check if a negative ¢/ mpressibuity is a generic Hund’s-coupling-induced effect (i.e. independent
of details of the model and the 1 retho ) we will also study scenario (iii), the effect of the MIT at ng = 3 on
Z and K.

(D4) Spin-orbital separation (S)

Besides the phenome .a (M1), (D2), and (D3), also a Hund’s-coupling-induced coherence-incoherence
crossover with increasir. ' te aper «ture has been discussed as a new and generic normal state property of
Hund metals in the literatu. [/ 7]. Further an incoherent frequency regime with power-law exponents in
the self-energy was r :vealed for 1.5 < ng < 2.5, which is most pronounced at ng = 2 [51, 7]. The incoherent
temperature and fre uency - egime was proposed to be induced by two degrees of freedom that behave in
different ways: th~ ~rbi..’ Legrees of freedom are quenched and fluctuate very rapidly while the spin degrees
of freedom are ' nquenhed and fluctuate albeit slowly (accordingly the local spin susceptibility has Curie-
Weiss form and - large tatic value) [7, 34]. An analytic RG analysis in the Kondo regime [31] provided a
simple understanding of the origin of the incoherent regime and established how the Kondo scales depend
on the repres ‘ute .iu..s of the spin and orbital operators.

However, su. «, several issues needed to be clarified: in particular, the DMFT+QMC calculations could
not reach sufficiei tly low temperatures to fully reveal the FL phase. To settle this issue, zero- (and finite-)
temperature, real-frequency DMFT+NRG calculations were performed in 2015 in Ref. [32] for the 3HHM

7



of Eq.(1) at ng = 2. These calculations clearly confirmed that, at zero temperature, f iite Hund’s coupling
leads to SOS [see Fig. 13(a)] — a two-stage screening process, in which orbital screening ov mirs at much higher
energies than spin screening — thus strongly reducing the coherence scale below which a FL jround state is
formed. Importantly, at intermediate energies above the coherence scale, a broad ir coh rent regime opens up
involving screened, delocalized orbitals which are non-trivially coupled to almost . ~sc eened, large, localized
spins. The incoherent frequency regime is strongly particle-hole asymmetric and ‘ispla, - approximate power-
law behavior in the self-energy for positive real frequencies only, leading to a~nare. * fractional power laws
on the imaginary Matsubara axis. SOS also occurs in pure impurity cs.cul: ' ~ns without DMFT self-
consistency. With increasing temperature, SOS in frequency space trans.“te to a coherence-incoherence
crossover for temperature-dependent quantities. Only recently, this tw~ ~tage ~rossover was confirmed in
realistic DFT+DMFT+QMC simulations of the temperature depende .ce of i e thermopower, entropy [55]
and the local spin and orbital susceptibilities [34] for SroaRuO4. SCR is th' s considered to be relevant
not only for degenerated toy models but also for realistic Hund ms ' _rials Caturing tetragonal crystal-field
splitting of the t, orbitals.

However, in Ref. [32] SOS was studied only at ngy = 2 for a s..all sr. of parameters U and J, which
(as will be shown in Fig. 6) lie at the border of the coexistence 1. ion of the phase diagram, thus close to
the MIT. Therefore many open questions remained: Is SOS » generic >henomenon of Hund metals? Where
does it occur in the phase diagram and how is it influenced by " ap . the proximity to the MIT at ng = 2
and ng = 37 How is it connected to the phenomena of (D1)-(.>?2) and how to the low Z in the Hund-metal
regime? And most importantly, what is the origin of “"Z, .. aario (i), (ii), or (iii), or a combination of
these?

2.5. Aim of this paper

The aim of this work is to identify the origin ‘.. stro. g correlations in the Hund-metal regime of the
3HHM, based on real-frequency data, and to develc» 1.uom this a global, unified and consistent scenario
for strong correlation effects in Hund metals. 0. ™ we study scenarios (i)-(iii), i.e. “Hundness versus
Mottness”, by scanning the full phase diagram o. “he SHHM at zero temperature, using DMFT+NRG.
In DMFT the lattice model (the 3HHM) is mapped self-consistently onto a quantum impurity model [the
Anderson-Hund model (AHM) of Eq. (& 1)], w ich we solve with NRG, a powerful real-frequency multi-
band impurity solver. NRG is well suite. “or the nvestigation of Hund and Mott physics as it both reveals
the spectral properties of Hund meta’s dowwn “, its very low coherence scales and still captures the main
features of the Hubbard side bands. " /e t! us provide, for the first time, detailed and unbiased real-frequency
spectral data in a large parameter sp. - of che phase diagram instead of only measuring the strength of
strong correlations by analyzing t e behav.or of Z, as done in previous studies [53, 57, 47, 33]. This allows
us to reveal the origin of those ¢ rrei.. *ons and the physical nature of the incoherent regime in Hund metals.

The paper is structured as “ 'lows. ln Sec. 2.6 we give a detailed description of our model and discuss
its local multiplet level strv ture at ng = 2 (in particular its dependency on J) and at ng = 3. The
DMFT+NRG method is intro. ced in Appendix Appendix A. In Sec. 2.7 we present our main insights: we
will show that the low Z .n the h.nd-metal regime results directly from the suppression of the coherence
scale due to SOS. SOS t” erefyre f rms the basis of our main study and scenarios (i)-(iii) will be investigated
from that perspective. In p. -tic ular, we follow a three-fold approach in Sec. 2.7. We revisit (D1) the spin-
freezing phase in Sec 3, (D?) tne Janus-faced influence of Hund’s rule coupling in Sec. 4, and the influence
of (D3) the MIT at = alf-fillir 3 in Sec. 5, and explain these aspects step by step within the SOS framework.

2.6. Model and vletho -
For our 3HH. 1 we v e the Hamiltonian of Refs. [7, 31, 32, 34] in the form



ﬁHHM = Z (—,uﬁi + I:Iint[d;ru]) + Z tc?jydjw (1&)
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This is a minimal version of the generalized Kanamori Hamiltonian ¢ * Ref. [« 7], with U(1),, x SU(2), x

SU(3),,, symmetry for its charge (ch), spin (sp) and orbital (orb) deerees . ¢ _edom. CZIU creates an electron
on site ¢ of flavor (1) v = (mo), which is composed of a spin (o =1,/* . d an orbital (m = 1,2, 3) index.
Niy = CZZTU(ZZ-U counts the electrons of flavor v on site i. 7i; = Y. 7, s thr total number operator for site i
with ng = (f;), and S, its total spin, with components Sf’ =Y dzzmgéagg,c@mgl, where o are Pauli
matrices. We study a Bethe lattice with degenerate bands each o bandwidth W = 4¢, i.e we assume
negligible crystal field splitting and a uniform hopping amnlitu’~ ¢ - estricted to nearest-neighbor hopping

between the same kind of orbital and spin degrees of freedom. . ~th the chemical potential u and the hopping

amplitude ¢ are then equal for all flavors, leading to a ' _.Z, JU6)y symmetric kinetic term in Eq. (1a).
t = 1 serves as energy unit. .
The onsite interaction term, Hj,, incorporates H: ..0"~ »vle and Mott physics in its most basic form and

reduces the symmetry to SU(2),, x SU(3),,, for J > .t was first introduced by Dworin and Narath in
a generalization of the Anderson impurity model . stuc - magnetic impurities [75]. The first three terms
of Eq. (1b) are density-density interactions. U is t.e .. *raorbital Coulomb interaction between electrons
with opposite spins in the same orbital, U — J < 7 the interorbital Coulomb interaction between electrons
with opposite spins in different orbitals, and U — 2.” *he Coulomb interaction between electrons with parallel
spins in different orbitals, where the interorbital Coulomb interaction is further reduced by the ferromagnetic
coupling J due to Hund’s first rule that f.vors “he alignment of spins. The last term of Eq. (1b) is a spin
exchange term.

The generalized Kanamori Hamiltor ian 0. Re .. [47] involves some additional terms not present in Eq. (1),
which reduce the SU(3),,, symmetry in t.e orbital sector to SO(3)_,,. However, these additional terms do
not affect the low-energy physics, sinc - “aey .re irrelevant in a renormalization group sense [76].

Eq. (1c) is a more compact n cation «” Eq. (1b) and summarizes the two main aspects of our model.
The first term is known to trigs or . "ott physics, whereby U penalizes double occupancy of orbitals. The
second term directly reflects Hind’s firs. rule: it favors a large spin per site for J > 0. Note that the third
term only shifts the chemical pot: ntial, u.

We choose p such that we o' cain a total filling per lattice site, ng = (f;), of 1 < ng < 3. For ng > 1,
Hund’s first rule reduces t'.e aton.. ~ ground state degeneracy and thus strongly influences the physics of the
system. The orbital and ,pin degr-es of freedom of electrons can show very distinct behavior and conspire in
a highly non-trivial way, le. ting co striking new phenomena like spin-orbital separation [32]. In contrast, at
half-filling, ng = 3, a .undamencally different ground state emerges: a large spin state is formed and orbital
degrees of freedom ¢ e fully locked [47].

We treat the 3HEM of £q. (1) with single-site DMFT and use full-density-matrix (fdm)NRG [35] as
real-frequency ir .purity solver. For methodological details and further definitions of physical quantities used
in the main pay °r, see + ppendix Appendix A.

2.6.1. Mult. «we. *—cture at filling ng = 2

The physic | pehavior of the system depends in a crucial manner on the multiplet structure of the local
Hamiltonian, an. can change in dramatic ways when parameters are tuned such that level crossings occur
[77]. This section is therefore devoted to a detailed discussion of this multiplet structure.
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Figure 2: Local multiplet structure of a single 3HHM site at filling ng = 2 using p - p2, with U=U- %J as specified in
Eq. (2). The energies for J = 0 are indicated by the thick grey levels, whic.. ~re split when turning on J as indicated. The
individual multiplets are given labels g for “ground state”, h for hole-like, and e fo. electron (particle) like, which are specific to
the current filling, here ngy = 2. Each multiplet is followed by its symme.. - labels S, ¢) and the combined multiplet dimension
of spin times SU(3), with the SU(2) spin S and SU(3) representation ¢ = (q1,.. " = (q192). The grey downward arrows indicate
a lowering of the energy levels by the Hund’s term —JS?Z.). The shown mut.. -let structure is complete for ngy = 1,2, 3. Together

with the vacuum state at ng = 0 and the symmetry relative to L. --uuung, this yields a total number of states (respective to

ng=0,6and 1,5and 2,4and 3) of 2- (1 x1)+2-(2x3)+2-(1xb . 3x3)+1-(2x8+4x 1) =64 =43 ie. the complete

state space of three spinfull fermionic levels. Note that 1-par’’ '~ excitat.ons from g2 (yellow lines) cannot reach the S = 3

2
multiplet el.

) f 7

The local Hamiltonian of a single site i is given " .|’ = Hiy [dzy] — pn;. With focus on the specific

filling ng = 2, this Hamiltonian can be written -

220

loc

= (i —2)% - JS? — (1 — p2) i — 20 . (2)
=dpe

with po = 2(U — J). Here the Coulom! intei. ~t7on in the first term on the r.h.s. has been written such that
for = pg, i.e. S =0 and small J, t'ds F amiltonian clearly favors the desired filling of ng = 2. By writing
the local states space in terms of svi. » try aultiplets, the above Hamiltonian reduces to one-dimensional
multiplet blocks and hence alrear y beco.. s diagonal. The symmetry labels of SU(3) follow the Dynkin
convention where the irreducible re, -esentation ¢ = (q1,¢2) = (g1g2) corresponds to a Young diagram with
¢1 + g2 (g2) boxes in its first (second) row.

For the case u = po, the .nul ‘plet structure of the local Hamiltonian in Eq. (2) is sketched in Fig. 2.
There the two low-energy m. 'ti/lets at ng = 2 are labeled by gl and g2, also referred to as the g-levels.
The actual ground state - ultiple. g1 is in triplet configuration across two out of the three orbitals. The
singlet configuration g2, ,plit off b an energy 2.J, also includes the pair singlets within a single orbital. This
therefore results in a totar . dgo = 6 symmetric states described by the single irreducible multiplet ¢ = (20).
By removing an elect on, this icads to the hole-like level, denoted by h. It contains just one electron, ng = 1,
which can be in any spin an ! orbital, hence S = !/5 and the defining representation ¢ = (10). Conversely,
by adding a particle v. the -multiplets, one obtains half-filling ngy = 3. This allows states with one particle
per orbital, resu’.ing ir one S=3/5 multiplet, labeled el with (S,q) = (%, 00), and two S=!/5 multiplets. By
symmetry, the itter on s need to be grouped with the six S = !/, multiplets with a double and a singly
occupied orbital 1. “~ ' ¢ single SU(3) multiplet ¢ = (11) with 8 states total, forming the single multiplet e2.

In what .. — we now slightly alter the chemical potential towards finite dus in Eq. (2), using the
specific choice 7 5 = —%. This raises the e-levels in Fig. 2 and lowers the h-level by equal amounts relative
to the g-levels a. ng = 2, to the extent that level A and el become aligned, i.e. degenerate. This simplified
setting is the reason for our choice of dps.

The resulting excitation energies from the ground state multiplet g1 can be simply determined from
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Fig. 2 while also accounting for the plain shift due to dus in Eq. (2),

o Wg)5+(Eel_Egl):%_Jv
+ W =+(Ba—Ep)=Y+2J, (32)
A w) = —(Bn — Ep) = —wiy

where we added the superscript (2) to these transition frequencies for later ref .. vce to mphasize the current

setting of having ng = 2 (this filling is implicit for the g-, e-, and h-multiple lab .s. the present discussion,

for readability). The signs in Egs. (3a) are taken in consistency with the de.’~ tion of the spectral function

A(w), and is thus opposite for particle- and hole-like excitations. The -ymbols .o the left will be used in

Sec. 4 and Sec. 5 to mark the positions of the multiplet excitation ene ‘gies in he spectral function A(w).
Similarly, also the transition energies w.r.t. level g2 are simply deri. ~d fre a Fig. 2,

+ 583 = 4(Bey — Epp) =3 —27= ¥ (3b)
A oY = —(BEp—Ep)=wP +2J  —(Y 3J),
where we note that the transition (Dg) = —(D,(lz) is forbidden .. = 1-parf .cle spin-half excitation processes.

The above picture of well-separated ground-state multipic < breaks down entirely, once wg) in Egs. (3a)
becomes negative, i.e. levels h and el cross gl as the new oronne  tate. Hence we will mostly constrain our
discussion to the regime J/U < 0.5. This regime, neverti. 'ess, already reaches up to extraordinarily large
Hund’s coupling from a materials point of view wherr ane typ..ally encounters J/U < 0.2 [47].

For J « U, the g-levels are typically considered w 1l-¢ parated from the e- and h-levels. However, this

picture already breaks down earlier, namely once the dey nerate el- and h-levels pass across g2. According
to the excitation energies in Egs. (3b), this occurs a. '7751) = 0 which defines the crossover energy scale
J* = %. The regime J 2 J* quantifies what w~ mean by sizeable Hund’s coupling in the 3HHM at ng = 2.

There for J 2 J*, we expect a qualitative change ™ the emerging physics of the 3SHHM.

2.6.2. Multiplet structure at filling ng = 3
We now focus on the filling ng = 3 w'.h the I amiltonian

= Ylhi—)* = JS] — (u— ps) i —
——

=dops

720

loc

[V Re]

U, (4)

and psz = gU — 3J. By constrv tion, g —= pug, i.e. duz = 0 directly leads to a particle-hole symmetric
excitation spectrum, and there'ore . exact half-filling at ng = 3. The multiplets in Fig. 2 are shifted
relative to each other for differ = - ny sucn that ng = 3 becomes the new ground state symmetry sector with
the lowest energy excitation in 7 ;4 = 2 and 4 split off symmetrically by U /2 at J = 0. Hence the g- and
e-multiplets in the previous di. ssion for ngy = 2 as in Fig. 2 acquire the new respective labels h and g here
at ng = 3.

In the following we mly iocv, on the case of sizeable J, and there, for simplicity, only on the lowest
levels h, g, and e at ns = 2, > /, respectively. The level g has maximal spin S = 3/, linked with an orbital
singlet configuration ¢ = (0" |tevel el in Fig. 2]. The lowest hole level h at ng = 2 has (S, ¢) = (1,01) [i.e.
level g1 in Fig. 2]. " he lowr st particle level e at ng = 4 is given by (S,q) = (1,10), i.e. the particle-hole
transformed level b

The excitati m enei vies from the ground state multiplet g at © = p3 can be simply determined from
Eq. (4), analogc s to Ec. (3a),

* w£3) =+(E.—Ey) = %+J7 (5)
o w,(f’) = (B, — E,) = —w®,

where the reference point of a filling of ny = 3 is implied, yet also explicitly indicated with the superscript
in the transition frequencies. We will refer to them in Sec. 5.
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2.7. Overview of Results

In the following three sections we present our real-frequency-based DMFT+NRC res. '*s for the SHHM.
In Sec. 3 we reveal the connection between SOS and spin-freezing. We argue that ~-hile botn terminologies
describe in principle the same Hund physics, the latter term has the drawback t’.at i was proposed based
on QMC results that did not account for a Fermi-liquid ground state. In Sec. o« v study the U-J-phase
diagram at ng = 2 and systematically disentangle the Janus-faced effects of (i) .”"ndnc 5 and (ii) Mottness.
Thereby we quantitatively explain the existence of the low QP weight, Z - SU. which is revealed to
occur in the whole metallic regime, but at different scales. We explain tf : dif ci.~ze between Hund- and
Mott-correlated systems. In particular, we show that sizeable J leads to '~w Z also far away from the
MIT at ngy = 2 and opens up a large incoherent frequency regime where _..irigui.. 3 Hund-correlated physics
occurs: large, almost unscreened spins are coupled to screened orbit | degre s of freedom. In Sec. 5, we
study the doping-dependence of Z and the compressibility, k¢;. We « “mons rate that, in principle, SOS
also occurs and determines the low Z behavior at intermediate fill'ugs, 1 < ng < 3. We give evidence that
SOS is generically based on a two-stage screening process involvii ¢ t! ¢ fo mation and the full screening of
effective 3/, spins. The details of this process, however, vary wit® filuing. * ¢ is shown to be positive at finite
J for all fillings and values of U, that we have studied. Thus we a. "1me that no Hund’s-coupling-induced
instabilities emerge in the system.

Overall, we scan the parameter space of the phase diagre m in « = orthogonal directions (indicated by the
arrows in Fig. 1): we either vary ny (along the horizontal direcv. n of the red arrow) for different parameter
sets of U and J as in Sec. 3 and Sec. 5, or we vary U (a. g wne vertical direction of the blue arrow) and J
for fixed ng = 2 as in Sec. 4.

To summarize, we will develop a global picture i -, ° -rbital separation that strongly supports (i)
Hundness as a new mechanism towards strong correlati * s in the normal state of Hund metals.

3. Spin-freezing and spin-orbital separat’~n - t vo terminologies for the same Hund physics

To set the scene, we first revisit SOS [32] and expi..'1 its connection to the spin-freezing theory introduced
in 2008 in a finite-temperature DMFT4+QM""" study [51] of the ng-U phase diagram of a degenerate three-
band Hund model.

3.1. Spin-orbital separation at ng = 2 revisiteu

We calculate the dynamical real-_ =g .enc' spin and orbital susceptibilities
3D (515, (6a)

Xorb = %Z<Ta”jm>w7 (6b)

Xsp

respectively, where 7 = Y A dlng%T,‘fLm,dAm/g are the impurity orbital operators with the SU(3) Gell-
Mann matrices, 7%, nort. i ed £ Tr[797%] = 20,p.

Fig. 3(a) depicts #'.. zero- mperature results of the imaginary parts, x”(w) = —%Im X(w), of the dy-
namical impurity or’ ital (de hed curve) and spin (solid curve) susceptibilities for U = 5, J = 1 and a filling
of ng = 2. The filled . ircle a d the open square mark the orbital and spin Kondo scales, T3 and T3, which
are defined as th_ peak positions of x;,, and xg,, respectively. Clearly, these two energy scales are very
distinct: in Fig 3(a) we revisit the central result of our DMFT+NRG study of the 3CAHM — spin-orbital
separation [see L . (3¢, in Ref. [32] and also Fig. 13]. Orbital screening sets in at much higher energies
than spin sc ~~ming, l’férb > TP, opening a non-trivial intermediate NFL regime exhibiting “Hund metal
physics”: slow 'y wctuating (not frozen), Hund’s-coupling-induced large spins are coupled to screened orbital
degrees of freedc m. The existence of large, composite spins which are only poorly screened, manifests itself
in an enhancement of Xé’p with decreasing frequencies. Interestingly, the fluctuations of these spins influence

the physics of the screened orbitals, leading to an intriguing interplay of spin and orbital degrees of freedom:
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Figure 3: (a) The imaginary part of the dynamical real-frequency orbital ;. dast :d) and spin x, (solid) susceptibility
for U =5, J =1, ng =2 and T = 0. The orbital Kondo scale Tﬁrb “lled civel , and the spin Kondo scale T;p (open
square) are defined as the peak positions of Xgrb and Xé’p? respectively, and sho, SOS, i.e. Tﬁrb > TIS(p. Grey guide-to-the-eye
lines indicate Fermi-liquid power laws. (b) The imaginary-time impu "*v orbita orbital (7'(r)7'(0)) (dashed) and spin-spin
(8(1)5(0)) (solid) correlator plotted as a function of the rescaled ims ~inary “im 7. T for the same parameters as in (a), but
at different temperatures. The solid yellow and blue curves show spin-tre ~ing: <§(T)§(O)> approach large constant values at
times 7 = 1/(2T). The inset shows the zero-temperature results of " >~ 2 (dashed) and (S(7)5(0)) (solid) calculated from

(a) the real-frequency susceptibilities. Both approach zero in the r. regime at very large imaginary times. The filled circle
and the open square mark 1/T™ and 1/T3, respectively.

below TgP, X, decreases as the frequency is lo . =d, . dicating the screening of the orbital degrees of
freedom. However, for w > T3P, /7, does not follow "L . aling, as the orbital degrees of freedom still “feel”
the slowly fluctuating, large local moments. Be v ‘-~ . 2ry small, Hund’s-coupling-reduced coherence scale,
T3 ~ 0.072, both the spin and orbital degrees o1 "eedom get fully screened and FL behavior is restored
X0 (W) o w and x4, (w) o< w, see Fig. 3(a), erey lines|.

From the real-frequency orbital and spin su ceptibility we also calculate the imaginary-time impurity
orbital-orbital and spin-spin correlators,

EOTO) = ) 10) = [ donnl)dae) e,
BOSO, = 56800 = [ dwna) @ 7

respectively, with the Bose-F asu in distribution ng(w) = 1/(e?* — 1). In the inset of Fig. 3(b) we plot
both correlators for zero ten ~ere ure and the same parameters as in Fig. 3(a). In accordance with the real-
frequency susceptibilities, “he o." ital-orbital correlator (dashed curve) is much smaller than the spin-spin
correlator (solid curve). rhe .atter approaches zero rather slowly, thus, the FL regime is only reached at
very long imaginary time. -~ > 7J0.

3.2. Spin-freezing @ ng = <

In order to under *and he connection of SOS and the spin-freezing phenomenon that was based on
finite-temperatv ¢ DMF1+QMC [51] data, we have performed similar calculations at higher temperatures
[see Fig. 3(b)]. For tem eratures well below the FL coherence scale, T < Ti, (S(7)8(0)) decays to zero
on the scale 7 = * /(27 ) (solid purple curve). For TgP > T > T:P, in contrast, (S(7)S5(0)) approaches a
large consta v . "o at times 7 ~ 1/(27") (solid yellow and blue curves). This finite-temperature finding —
a spin-spin co. "¢ .ation function which does not decay to zero at long times — was called “spin freezing” in
Ref. [51] and int. ~preted as the existence of frozen local moments leading to an incoherent metallic state.

As exemplified in Fig. 3 (a,b) and further demonstrated in this work, spin freezing was a phenomenological
interpretation of the spin-spin correlator based on a QMC solver that didn’t reach low enough temperatures
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Figure 4: (a,b) The imaginary-time impurity orbital-orbita. “7'()7'(0)) (dashed) and spin-spin (S(7)S(0)) (solid) correlators
calculated from (c) the real-frequency susceptibilities for U = 5, J = 1, and T' = 0 at various fillings ng. The filled circles
and the open squares mark l/Tf%rb and 1/TIs<p, res _euv. ly. The inset in (a) shows a zoom to better resolve the orbital-orbital

correlators. (a) For short imaginary times, th curves i r (S(7)5(0)) seem to remain constant, a phenomenon which was
interpreted as spin-freezing in Ref. [51]. (b) In . “trast. for large imaginary times, they clearly show FL behavior. (c¢) The
imaginary parts of the dynamical real-freque cy orbiv.’ ((’)’rb (dashed) and spin Xé’p (solid) susceptibilities. The orbital Kondo

scales Tﬁrb and the spin Kondo scales T:(p are v arker as filled circles and open squares, respectively. (d) The orbital Kondo

scales Tf%rb (dashed line with filled circles) w. 7 spin <ondo scales T;p (solid line with open squares) plotted versus the filling
ng. SOS is revealed for all 1 <ng < 3.

(or equivalently long enough t .. 3) to reveal the FL ground state for many parameters in the phase space.
However, the spins are not " ozer, they fluctuate slowly above T3 and get fully screened in the FL regime
below TR

Moreover, a detailed mal sis ot (T'(7)T'(0)) at ng = 2 in Fig. 3(b) shows that the orbital-orbital corre-
lators (dashed yellow an. d .she light and dark blue curves) do not fully decay to zero in the incoherent
temperature regime 7' > Ty, "ut remain finite, as well (as opposed to the statement in Ref. [51]). This
finding supports the nterprc "ation obtained from the real-frequency orbital susceptibility and further revises
the spin-freezing pici we: th orbital degrees of freedom are screened below T < TP, but they are not fully
decoupled from tF_ spin wynamics.

3.8. Spin-freezir.> for v rying ng

Original’ , -“*hout access to the FL ground state, it was argued that the Hund-metal regime of the phase
diagram in F1. 7 1s a spin-freezing NFL phase and that a quantum phase transition connects a paramagnetic
FL phase (at sm. 1 ng and small U) and a paramagnetic NFL phase featuring frozen local moments (at larger
ng and larger U) [51].
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In Fig. 4 we revisit this transition with our NRG solver at T" = 0. We calculat’ the imaginary-time
orbital-orbital and spin-spin correlators for intermediate U = 5, J = 1 and vary ., “rom 1.02 to 2.92.
Indeed, at short times, 7 < 25, our DMFT4+NRG results in Fig. 4(a) seem to confirm . .is FL-to-NFL
transition. For ng < 2, (5(7)S(0)) decays to zero (solid purple and green curves) - hil at larger ng it grows
and remains finite (solid red to yellow curves), seemingly indicating frozen local . ~or ents.

However, in contrast to QMC solvers, we have direct access to exponentia. long *imes (low tempera-
tures) and can explicitly reveal the existence of a FL ground state for any given flling. ™ Fig. 4(b) we confirm
that for sufficiently long times, 7 > 1/T3, (S§(7)5(0)) approaches zero fr: al “lings, 1 < ng < 3 (solid
curves). Equivalently, all real-frequency spin susceptibilities exhibit FL be.. vir ¢ below T3 [Xep (W) X w, see
Fig. 4(c), grey line]. Clearly, the NFL regime is not governed by the previmity ~ a quantum critical point.

The general existence of a FL ground state for all fillings was lat ;r con) ~tured [53, 14, 70] and only
recently demonstrated [71] based on DMFT+QMC Hund-model studie: and st m freezing was reinterpreted
as the existence of long-lived magnetic moments. Instead of a qus ._um p..use transition, a “spin-freezing
crossover” from a FL to a NFL state at finite temperatures was s gge’ .ec. [70] (which is called “coherence-
incoherence crossover” by others [6, 7, 32]). The present work demo..-trate , directly and completely that the
time-dependence of orbital-orbital and spin-spin correlation func..~ns reveal FL behavior in the long-time
limit for all fillings 1 < ng < 3.

3.4. Spin-orbital separation for varying ng

Interestingly, we observe in Fig. 4 that SOS, i.e. L.~ > 1, occurs at all fillings 1 < ng < 3 (in
Ref. [32], it was only explicitly revealed at ng = 2). TR 1 found to be strongly doping dependent [see
Fig. 4(c,d), open squares]. It decreases very fast w. n ... -osing filling ngy — 3, such that the decay of
(S(7)8(0)) with imaginary time becomes very weak a1 1s therefore almost invisible on short time scales
[Fig. 4(a), e.g. solid, yellow curve]. In contrast, . - is « 'most independent of the filling [see Fig. 4(c,d),
filled circles]. It even increases slightly from ng = 2 "0 1., = 3. In summary, this leads to an intermediate
regime of SOS that expands with larger ng — « w..”" towards smaller energies [Fig. 4(d)].

Based on these insights we conclude that SO>S '« a generic feature in the whole Hund-metal regime,
evolving with ng in the following way. With increasing nq, larger local moments form in the intermediate
SOS regime and lead to the increase of t'.e ma. mum of x{, (or equivalently (S(7)5(0))) [see solid curves
Fig. 4(a-c)]. At the same time, T}" is .. vered, oecause, heuristically, it is more difficult to screen these
larger spins. In contrast, the height o' X/, (v. equivalently (7'(7)T(0))) decreases with increasing ng — 3
[see dashed curves in Fig. 4(a-c) and mse, of “a)]. This reflects the reduction of the phase space for orbital
fluctuations due to the formation ~f la. "o s* 1ns composed of electrons in different orbitals. Consequently,
the interplay of spin and orbital + ~erees ot reedom is diminished for ng close to 3.

This first crude analysis of car re. ‘ts with varying ng will be refined in Sec. 5. There, we will show in
more detail how it is connecte .  ~ the SOS scenario introduced above for ng = 2.

3.5. The connection between s, -freezing and spin-orbital separation

In sum, we argue thr. th two terminologies, “spin-freezing” and “spin-orbital separation”, ultimately
describe the same physic. f the tund-metal regime. The large spins that appear as “frozen” at short imag-
inary times (which are ~zcess.” ': for QMC) were revealed by our real-frequency finite and zero-temperature
DMFT+NRG apprc «ch as 1. ng-lived, slowly fluctuating, large local moments in the incoherent regime, that
get fully screened at 1 ‘mg ims zinary times to form a FL ground state. In this picture, the intermediate energy
regime of Hund » _.als w.un its incoherent transport properties is governed by scattering off (almost) free,
large and long-! ved ma netic moments that are non-trivially coupled to (almost) screened orbital degrees
of freedom. A lo al spir susceptibility showing Pauli behavior at low and (quasi) Curie-Weiss behaviour at
intermediate *emperatures in Ref. [34, 78] supports this viewpoint.

We note hat various DMEFT+QMC findings on spin-freezing, such as spin-freezing in (realistic) five-
band calculatio. s for iron-pnictides [11, 12, 14, 19], spin-freezing in models with crystal-field-splitting [66],
and spin-orbit coupling [69] eventually demonstrate the importance of SOS. In 2015, a fluctuating-moment-
induced s-wave spin-triplet superconducting mechanism was proposed for Hund metals, where equal-spin
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electrons are paired in different local orbitals. It was shown to be connected to th . emergence of local
magnetic moments in the NFL regime [70]. In 2016, it was even conjectured that nc elevant model for
cuprates, the single-orbital Hubbard model on the square lattice, can be mapped onto an ffective multi-
orbital problem with strong ferromagnetic Hund’s coupling, suggesting that spir -fre. zing (or equivalently
SOS) is the universal mechanism which controls the properties of unconventiona. ~ur erconductors [79].

The insights gained above are relevant for a wide range of fillings ngy and ~terac *on strengths U and
J, as will be further demonstrated in Sec. 4 and Sec. 5. In these sections v= wu. ~Iso clearly show that,
indeed, SOS causes the numerically observed bad-metallic behavior in the 3"tHN = SOS therefore constitutes
the framework for our main study of Hund metals.

4. Janus-faced influence of Hund’s rule coupling: Hundness " ersus | lottness at ng = 2
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Figure 5: The zero-temperature pha' . diagram of the 3HHM at ny = 2 reveals three phases in the J-U-plane: a metallic
phase (squares), a coexistence regior (circic ). and an insulating phase (triangles), separated by two non-monotonic phase
transition lines, Ugp (solid red curve® ~nd Ugs (dashed black curve), obtained when initiating the DMFT self-consistency with
an insulating and metallic seed, r spec ively. The color intensity of the symbols in the metallic and the coexistence region
indicates the value of Z € [0,1]: ¢ ~lor er Z the more faded is the red color. Based on the discussion of the multiplet structure
in Fig. 2, we added guides at .” = U, ' lwe1 = wp, = 0] and J = U/6 [@p, = 0] and shaded the areas separated by these. The
crossing point of Ue; with the U/6 (cyawn circle) occurs at (U, J) =~ (7.5,1.25). We also added a guide U/14 (see text), whose
crossing point with Ug; (ors 1ge ¢ .amo  d) occurs very close to the minimum of U.; at (U, J) &~ (6.66,0.48). The black star
marks the parameters for whic. OS 1 as first been revealed in Ref. [32]. [Note that Ref. [32] used a slightly different definition
of the Coulomb energy w' ~ "t, whi.. .eeping the definition of J the same, corresponds to U = 7 here.]

In this section wu derive SOS as a consistent explanation for the extended bad-metallic behavior (low
Z) in the phase .aagram at ng = 2 that reaches from a high critical UC(Q) down to an unusually low U, i.e.
we explain the . anus-fa. 2d behavior. By introducing clear measures for (i) Hundness and (ii) Mottness we
are able to show hat ¢ zeable J, thus (i), leads to low Z also far away from the MIT at ng = 2 and opens
up a large ir = “orent SOS regime with intriguing Hund-correlated physics.

In this sec ‘o ., all results are calculated at T'= 0. Further, we note that we will neglect the superscript
(2) in UC(2) beca. se we will mainly refer to the filling, ny = 2, in the following. The few exceptions where
we refer to other fillings will be clear from the context.

16



4.1. U-J phase diagram

As an overview, Fig. 5 presents the full U-J phase diagram for ng = 2 at T' = J. e find a metallic
(squares), coexistence (circles) and insulating (triangles) region, which are separat~1 by two distinet Mott
transition lines, U, (solid red line) and U,y (black dashed line), respectively. Y/e v te that, so far, only
U2 has been studied in the context of three-band Hund models in the literature, - :ause it can be simply
derived from the QP weight Z. The black star in Fig. 5 marks the parameters ¢ the . :ain result in Fig. 3
of Ref. [32], for which SOS was revealed. It lies at the border of the coexiste: - reg..  close to Uy, raising
the question how stable this feature is at lower U.

In Landau’s Fermi-liquid theory, the quasiparticle weight

Z=(1-0,ReS(w)|wmo) ' = 2
is obtained from the frequency-dependent self-energy ¥(w), which - dire.’, accessible in NRG, and mea-
sures the inverse mass enhancement within single-site DMFT. Lz adar » “ermi-liquid theory is based on a
one-to-one correspondance between long-lived, coherent but renori.._.ized Landau QPs and the low-energy
excitations of a free Fermi gas. Z € [0, 1] reflects the weight of tu. T.orcutzian-shaped coherent QPP of the
momentum-dependent local spectral function in a first order expansior = while the additional incoherent part
has weight 1 — Z. In Fig. 5 the value of Z is indicated by the -~olor mtensity of the red squares and blue
triangles in the conducting regime U < Uls.

Similar to the case of the one-band Hubbard model *' ™ 7. shows hysteresis at low temperatures in
the multi-band case. Starting with an “insulating seed” (. [i.e. a real-frequency local spectral function
A(w), with an insulating Mott gap, A, around the Fer - '~vell, ¢che MIT transition occurs at a lower critical
interaction strength, U.;, at which A closes with decre. si*.g U. Starting with a “metallic seed” (mS) [i.e. a
metallic input spectral function with finite weight = v = 1l leads, in contrast, to a larger critical value, U.s,
above which the QP resonance is lost (accordingly 7 - 0) and a stable gap is formed with increasing U.
Therefore Z can be used to quantitatively trac’ *»e M. T at U, when initiating the DMFT loop with a mS.
The coexistence region between U, and U, is cha. ~cterized by two solutions, a metallic solution for mS and
an insulating solution for iS. This is typical for DMF I'. As mean-field approach with an iterative solution
scheme it can have more than one stable .xeu ~oint, depending on the initialization. Fig. 5 demonstrates
that the coexistence region is broad at =~ = 0, re¢ aching from moderate to large values of U; for finite but
small J, it strongly narrows, shifting tc lowe. 77 - alues; and at J > 1, it eventually approaches a fixed width
while shifting linearly with J to ever .arg’ ¢ U values [80, 81]. It is known that for J = 0 both U.; and U
grow as a function of N, at all filling. »" mu! 1-orbital models [80]. In contrast, for given N, the effect of a
finite J on U,y and Uy is strongly dlling « - sendent [53, 47]. At half-filling U, and U, is strongly reduced,
as finite J increases correlations b, forming large S = N./2 spin states that block the orbitals. For one
electron/hole, U.; and U,y increases wilt J, as J reduces the effective Coulomb interaction in the system.
At all intermediate fillings 1 - . ngy < N, the special non-monotonic dependence of U.; and U,y on J occurs,
which has been mentioned 1,, e eral previous studies (especially for U.) [53, 47, 33, 50].

This non-monotonic b’ navior =n be understood to a great extent from the local multiplet structure of
the underlying local Har ito' ian. For ngy = 2, the relation of the local multiplet structure in Fig. 2 with the
phase diagram is discusseu. * « Fir. 5 (bright blue, white and orange regimes). As pointed out with Egs. (3) in
Sec. 2.6.1, we expect * surong qualitative change in the physics of the 3HHM once @y, turns negative. For the
local multiplet struc ure, th. 1 occurs at the sizeable Hunds coupling J > U/6. Accordingly, in the 3SHHM,
one can distinguish t = ree’mes in the U-J phase diagram of Fig. 5, by relating the U, phase boundary
with the referen ¢ une .J = U/6, for which a single crossing point exists at (U, J) = (7.5,1.25) [cyan circle
in Fig. 5]. Ther fore, fo the sizeable Hund’s coupling

J>J5 2125, (8)

which we define as the “Hund regime” in the 3HHM, the high-lying A- and el-multiplets have crossed below
the g2-level. In tuis regime, a qualitatively different behavior occurs all the way up to U, as compared to
standard Mott physics. Specifically, Z is low in the entire “Hund regime” [see color shading of symbols in
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Figure 6: (a) The QP weight, Z, of the 3HHM at ng = 2, ,"~tted as a function of U, shows Janus-faced behavior when J is
increased: on the one hand, at small to moderate U, Z decreases (metallicity worsens), on the other hand, U.e (marked by
crosses) increases (metallicity improves). Each dr . v he curves represents a DMFT+NRG data point. The inset is a zoom
of the Uga-behavior. (b,c) The local spectral fur :tion, A\ ), shows a MIT with growing U for (b) J = 0 and (c) J = 1. Solid
(dashed) lines are DMFT results for a metallic  ~sulatir ;) seed. The insets zoom into the QP. For J = 1, the QP in A(w)
shows a shoulder characteristic of SOS.

Fig. 5]. In contrast, for J < J¥, /hicu ve cefer to as “good-metal regime”, Z reaches up to much larger
values [squares are colored in ints. “ive red mn Fig. 5]. More generally, one may already expect the crossover
to the Hund regime to set in earlier. . > example, considering the approaching h-level at @) ~ 26w, with
dwyg = wga —wg1 = 2J, this ~esc'ts in J = U/14 [also indicated by an orange dashed line in Fig. 5]. Its
crossing point with Ug; occv s ar and (U, J) = (6.66,0.48) [orange diamond in Fig. 5] which turns out to be
in close proximity to the yoint . here the non-monotonic behavior of U, versus J reaches a minimum, i.e.
turns around at U%™ ~ 7.66. In summary, we see that as the Hund’s coupling exceeds the moderate value
of J 2 J¥ ~ 1, the 3H1™M s dc ninated by Hund physics: sizeable J leads to a qualitative change in the
local multiplet structr-- ana *us to a strong change in the physics of the 3HHM, affecting both the phase
boundaries, U.; and U.z, ai. 1 the regime far from the MIT at much lower U, where Z is low.

The scaling of Uy and U, , for large J, eventually, is linked to a further stark change in the local multiplet
structure, namel~ . hen wue h- and e-levels actually become the new local ground states having w.; < 0.
Allowing for a sift by . inetic energy this suggests U,y ~ 2J + const. This scaling is approximated by thin
solid red and da."ed gr y lines in Fig. 6(a), respectively, and will be further corroborated in Fig. 8(c).

4.2. Janus-fu ed senuvior of Z

In Fig. 6(a) ve plot Z versus U for various values of J € [0,4]. In general, Z is finite in the metallic
phase (with an upper limit of Z = 1 for the non-interacting case) and zero in the insulating phase. U is
defined by the transition point between both phases [marked by x in Fig. 6(a)]. We note, however, that near
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the MIT Landau’s Fermi-liquid theory might break down as a valid physical descript’n of the excitations
and Z only remains as a heuristic indicator of the MIT. For all J, we observe in Fig v, ) that Z decreases
with increasing U in the metallic phase, thus strong correlation effects increase with increas.. g proximity to
Uz, as known from the half-filled one-band Hubbard MIT. However, the strengt 1 o1 correlations strongly
differs for different values of J. For small J, Z is still large at small to moder. ~ U, while for large J, Z
is generally small [compare e.g. black and yellow curve to red or green curve in k.. 6(a)]. Moreover, J
induces competing effects. While Z strongly decreases with J at moderate 77 [sec ~ g. black to red curve
at U = 6 in Fig. 6(a)], U, increases with J (for J > 0.5, after a slight decr -ase ¢ - very small J) [see inset
in Fig. 6(a)]. We thus observe Janus-faced behavior in our data similar .~ Fef. [53]: on the one hand J
promotes bad metallicity by a loss of coherence, on the other hand it ~“omo. = metallicity by increasing
Uso. In sum, this Janus-faced behavior leads to a strongly reduced Z ‘or size.ble J in a large interval of U
(including the Hund-metal regime at ng = 2) [as seen e.g. for the red v greer curve in Fig. 6(a)]. We will
clarify its physical origin and nature in the following by disentangl’__ the . posing Janus-faced effects.

4.8. Real-frequency study of MIT at zero and finite J

For each data point in our U-J phase diagram, NRG yields a .. * o1 aetailed frequency-dependent infor-
mation of the system, in contrast to previous QMC or slave-boson st 1dies. This is useful, because Z only
measures the strength but not the type, Hundness or Mottness, ~f st ong correlations.

Much additional information about the MIT can be gained 1. ~ma the real-frequency local spectral function,
A(w), defined in Eq. (A.6). For example, the dual cb __..... . strongly correlated electrons is directly
reflected in the shape of A(w). In Fig. 6(b,c) we track v.» MIT in A(w), i.e. how this dual character
changes with U, for J = 0 and J = 1, respectivel =~ ™= metallic, delocalized behavior of electrons in
the solid is characterized by a finite spectral weight a. t! e Fermi level in form of a well-defined QPP [see
e.g. solid and dashed red curves in Fig. 6(b,c)]. L . -al K. ndo-type screening processes of the ground state
multiplet dominate the low-energy physics of the sel. co. “istent impurity model and lead in the 3SHHM to a
Fermi-liquid ground state with coherent QP ex ' ~*ian. in the whole metallic phase, as will be discussed in
detail later. The localized behavior of the electro..” is manifest at high energies in terms of local (atomic)
multiplet excitations which are broadened by the solid-state environment and form the Hubbard side-bands
(see discussion of Fig. 7). At small to mod rate 77, these incoherent high-energy bands are close to the Fermi
level and even overlap, and the QPP is " road. V ith increasing U, the Hubbard side-bands move to larger
|w| and the QPP narrows [compare rec vers. b ue curves in Fig. 6(b,c)]. Above U, or U, (depending on
the seed) the DMFT self-consistency ope s a Mott gap in A(w) around the Fermi level, the QPP vanishes
and A(w) then consists solely of the .~ -ene gy bands [see e.g. black curve in Fig. 6(c)]. Heuristically, this
decrease of the QPP width with i'.creasing J is tracked by the QP weight, Z, as the peak height is pinned
to a fixed value at zero frequenc (. “ttinger pinning [82, 83]) for all U < U..

As part of the MIT, we also directly ubserve the coexistence region Uy < U < U, in Fig. 6(b,c). While
the purely metallic and the - ares - insulating phase have only one solution of the DMFT self-consistency,
independent of the seed, we "~ two differing solutions in the coexistence region, an insulating for iS and
a metallic one for mS, res .ective, see dashed versus solid purple and blue curves in Fig. 6(b,c)]. We note
that NRG is perfectly sv.ted .or pinpointing U,y and U,y via A(w), as its energy resolution is exponentially
refined around the Fermi . el apturing the QPP down to its smallest width. Thus the iterative DMFT
procedure does not ' reak down before its solution becomes thermodynamically unstable. However, the
broadening of discre e spect. al data in NRG might minimally shift additional spectral weight to the Fermi
level, thus artificially =t o» .y slightly shifting the coexistence region to larger U values.

At first glanc ., the MITs for J = 0 and J = 1 seem to behave overall similarly with changing U. However,
we find striking differen es between the spectra in Fig. 6(b) and Fig. 6(c), corresponding to the black and
blue lines in Fig. 22} _espectively.

As discu. ~ol hove, Z is much lower for the J = 1 MIT than for the J = 0 MIT. Accordingly, we observe
qualitative dit r nces in the shape of the QPP. For finite J, in Fig. 6(c), the QPP has a shoulder at negative
frequencies and « slight kink at positive frequencies. The shoulder (and the kink) drastically narrow the top
of the QPP while the bottom remains broad. These features are present for all values of U, but they are
more pronounced for smaller U, for which the overall width of the QPP is broader [see inset of Fig. 6(c)].
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Figure 7: (a) Insulating and (b) metallic local spectral function, A(w), for J =2 Jbtal .ed from DMFT+NRG (solid) and via
Hubbard-I approximation (dashed). The symbols, as specified in the legend correspon to the local multiplet excitations listed
in Egs. (3a). The inset in (b) shows results for J = 0. Here, the symbols cor.. monu additionally to the transition frequencies
in Egs. (3b), i.e triangles and pluses also correspond to @, and @e2. In order to di ctly compare the Hubbard-I approximation
with the log-Gaussian broadened DMFT+NRG results, we convolutea .” = Hubl wrd-I spectral function with a log-Gaussian
broadening Kernel of width a = 0.4, as defined in Ref. [35].

At J = 0, however, these features are absent [see Fig. 6(b) . nd its inset]. From Ref. [32] we know that the
shoulder emerges due to SOS, which only occurs for f ..° 7> u. Fig. 6(c,d) thus give a first hint that there
is a direct connection between the Janus-faced low Z a. 1 5OS.

Further, we find differences in the shape of t. . Hul ard side-band bands. For J = 0 there are two
bumps in Fig. 6(b). The lower Hubbard band at 1.°gu.'ve frequencies is less pronounced than the upper
Hubbard band at positive frequencies. With gre - “~~T]_ *he distance between these Hubbard bands increases,
reminiscent of the single-band Hubbard model. r - J = 1 there are in principle two Hubbard side-bands,
as well, in Fig. 6(c), however the band at positive frequencies consists of two bumps, so that, at large U,
we observe three peaks altogether. For s .iall (7 the negative frequency and the lower positive frequency
peaks are hidden in the QPP [red curve n Fig. ¢ ¢)] and only one positive-frequency bump is visible. But
with growing U > 4 the lower peak is shituc ' t, lower frequencies and the two-peak structure at positive
frequencies clearly develops [see pury e, b'ae and black curves in Fig. 6(c)].

4.4. Peak structure of Hubbard be «ds: Hu. ard-I analysis

The peak structure of the F abbe 1 bands (at zero temperature) can be fully understood in terms of
a Hubbard-I approximation ¢ “he lattice Green’s function, i.e. from its local multiplet excitations, as
demonstrated in Fig. 7. (Th's wa stated in previous studies but never demonstrated explicitly, due to the
lack of reliable real-frequency .~ a [53, 47, 50]. So far, a similar real-frequency analysis was only carried out
for a three-band Hund m- del at n, = 1 using Fork Tensor Product States as real-time DMFT solver [84]).

To obtain the local r ulti ,let - xcitations spectrum of the underlying atomic problem, i.e in the “atomic
limit”, ¢ = 0, we diagonaliz. “he 1ocal Hamiltonian as discussed in Sec. 2.6.1 with Eq. (2) and schematically
depicted in Fig. 2.

The positions of the pes s in the Hubbard bands shown in Fig. 7 are well captured by the discrete
multiplet excitations 1. %2~ ed by the symbols provided with Eqs. (3). Thus the structure of the incoherent
side-bands can t > unde stood from atomic physics. In order to explicitly demonstrate this, i.e. to reproduce
the form of the Hubbar . bands, we use the Hubbard-I approximation around the atomic limit to disperse
the atomic eigensv.’ oy embedding them in a lattice environment. In this approximation the lattice self-
energy is rep ace. . Eq. (A.5) by the purely atomic self-energy corresponding to the limit ¢ = 0 in Eq. (1):
Y(w) = Latom( s The atomic self-energy is given by Laiom(w) = w + p — G,L . (w) in terms of the atomic
Green’s function, Gaom(w) = Y, Pm/(w —war +901), summing over the atomic multiplet excitation poles
with pys the probability for a one-particle excitation from the ground state into the excited state M.
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The resulting Hubbard-I spectral functions are plotted with dashed lines in Fig. 7. T ae insulating DMFT
spectral function for U = 11.5 and J = 2 is reproduced very well [Fig. 7(a)]. The strr cu. ~es of the Hubbard
bands in the metallic states for U = 8.5 and J = 2 [Fig. 7(b)] and for U = 10.5 and J = 0 [ins t of Fig. 7 (b)]
are still matched reasonably well, but the QPP is not captured at all within the ~1ub »ard-I approximation
because finite-lifetime effects are not contained in the purely real atomic self-ern.. oy For smaller U in the
metallic regime, thus for a broader QPP in the spectral functions, the deviati. »s be. 7een the DMFT and
the Hubbard-I results therefore naturally increase.

The atomic excitation energies listed in Egs. (3) fully explain the qu .ita * ~lv different structure of
the corresponding Hubbard bands: while two bumps are well-separated a. 1 v ronounced at J = 0 (with a
larger peak at positive frequency due to the higher degeneracy of the com~spo. “ng atomic excitation), the
three-peaked Hubbard bands form a broad incoherent background for 1zeable J, because J shifts the inner
side-peaks at we1 = —wp, = % — J towards the Fermi level, while the neak a weo = % + 2.J is shifted to
higher frequencies. This difference was also recently revealed for + ., arc.coypal correlated materials, the
Mott material VoOg3 and the Hund material SroRuQOy4 [34]. We n ite t'.av additional structures at the low-
energy edges of the Hubbard bands with doublon-holon origin [R5] w.¢ prir cipally expected, but presumably
a higher resolution using adaptive broadening [86] and/or exten. e z-averaging [87] would be needed to
resolve them.

4.5. The “bare gap” as a measure of Mottness

In a next step we use the atomic excitation spectra fo sizeaple J 2 J to derive a measure of Mottness.
Following Refs. [53, 57, 47, 50], we define the “bare gap”, Ay = we; —wp, = U — 2.J, as the distance between
the lowest atomic excitations at positive and negativ. uc. ~cies. [Incidentally, A, is equal to the atomic
interaction of the energetically most favored atomic con.’« aration in line three of Eq. (1b)]. Up to an offset,
Ap measures the distance to the MIT. In this sen. - ** is imilar to the true Mott insulating gap A which
closes at the MIT. Here A = w™ —w™ is defined from .he ¢« iterion that A(w) < 1073 holds for w™ < w < w™.

In the inset of Fig. 8(a) we plot A versus ' (.~ :3) for various values of J and derive U, from the
closure of the Mott insulating gap, A(U.;) = 0 (ma."d by crosses) using a well-suited linear extrapolation
to the data points. Obviously, U.; strongly depends on J (as seen already in Fig. 6). However, when A is
plotted versus A, [see Fig. 8(a)] the diffe ent L. =s lie ever closer to each other at large J and the critical
value of the bare gap, A¢! = U,; —2.J, a., voache a constant value, W; = 4.8. This is also demonstrated in
Fig. 8(b). For large J > J7, the critic [ inter«. " 1on A¢! (solid red line) is J-independent. Consequently, A,
serves as measure for Mottness, in t} ¢ se' se that W3 — Ay quantifies the distance to the MIT at Uy (Agh).
Thus, the larger Ay, the closer the sy.' »m i, to the MIT and the stronger the influence of Mottness. We
demonstrate that this idea also w ks for a.a mS: for J > JJ, AgQ = U, — 2J approaches a constant value
W1 = 6.3 [see dashed black line mn r.- 8(b) and x-signs in Fig. 8(c)]. We thus switch from U to Ay(J,U)
as independent parameter in ' following to quantify Mottness. However, we note that for J < J7, Ag!
and A§? do still depend on , th s A, breaks down as a simple measure for Mottness for small J in the
above sense. _

The reason for the A;”" with ¢ = 1,2 becoming a constant for large J can again be roughly understood by
simply looking at the lo al r altiriet structure, where for J > U/2 the excited levels h and el actually pass
across gl (see discussion av md of Sec. 2.6.1). Therefore one may expect a qualitative change of behavior
at Ay, = U — 2J ~ ccast, as already mentioned in Sec. 4.1.

The finite offset ‘or A§' can be explained with the Hubbard criterion [88] for the breakdown of the
Mott insulating stote, . ™ u uses A = Ay — W(J) = 0 to conclude that A" = W (J): the system becomes
metallic when t e effec“ive kinetic energy in the system, W(J ), is large enough to overcome the energy
cost of hopping, ¢iven !y the energy scale of the bare gap A,. W(J ) sets the scale for the dispersion of
the Hubbard bands «ud can be regarded as the effective bandwidth of the system. As shown in Fig. 8(b),
W(J) has a ‘arg: vaiue W(0) = 7.3 at J = 0 and decreases with increasing but small .J, approaching a
constant W, = .8 for sizeable J > J¥ . From Fig. 2 we know that at the SU(6) symmetric point J = 0 the
atomic excitation spectrum becomes more degenerate: g2 becomes degenerate with g1, and thus also a true
ground state; furthermore, all three excited levels h, el, and e2 become degenerate. Accordingly, the widths
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Figure 8: (a) Mott insulating gap, A, as a function of the -ve gap, A, = U — 2J, for several values of J. Each dot on the
curves represents a DMFT+NRG data point using iS. The lines are linear fits from which the critical Agl values (pluses) are
defined as A(A§!) = 0. The inset shows the sar - . = as a function of U. (b) A¢! and A2 as functions of J: both first
decrease roughly exponentially at small J < J* [see alsc Sec. 4.7] and then approach fixed values, Wi = 4.8 (thin solid red
line) and W2 = 6.3 (thin dashed grey line), resp. *ively, ¢ large J > J% . (c) Z is plotted as a function of Ay to disentangle
the Janus-faced behavior of Fig. 6(a): the .ope o1 7 tecreases with increasing .J, while AEQ = Wy is J-independent for
sizeable J > J (and grows with decreasin' .J fc J < J¥ ). Thus Z is small far away from the MIT due to Hundness rather
than Mottness. The dashed yellow lines a. = qu «drat’: and linear fits to the J = 0.5 behavior of Z at small U and larger U,
respectively. The inset is a zoom of the / 82—bb, ~vic . (d) Z is plotted as a function of J, for two fixed values of Ay, indicated
by the thin black and red lines in (c). T set: same Jata in a semilog-plot of Z, revealing its roughly exponential decrease with
increasing J for J < J;, whereas Z i- ver, -mall but rather constant for J > J;.

of the Hubbard bands, i.e. ©7(J", are larger at small J, because more hopping processes are allowed than
for J > JY. In contrast, .izeab. .J favors high-spin states, reducing the atomic ground state degeneracy
by quenching its orbital .{uct iations and blocking many excitations. We note that a similar analysis was
performed in Refs. [47, o ]

As in Ref. [47], we .cacluac ¢hat the non-monotonic behavior of U,y can be summarized as follows: with
growing J, U, decr ases at 'mall J due the reduction of the kinetic energy by orbital blocking, whereas it
increases again at la1_= J, d .e to the reduction of A; by reducing the energy cost for the double occupancy
of different orbit- .>. The vurnaround occurs around .J ~ 1, i.e. when J is on the order of the lattice hopping,
t = 1. At the s me tim , as we point out at the end of Sec. 2.6.1, the non-monotonic behavior in U, can
also be directly ."mked .o a qualitative change in the underlying multiplet structure: the turn-around of
U, coincide  —ith the point in the parameter regime where the ‘excited’ levels h and el pass across the
‘low-energy’ 1. 7€' g2 1 the metallic regime J > U, /6. This occurs when J 2 1. The behavior of Uy, which
is similar to U.; will be revisited and explained in Sec. 4.8 in the context of SOS.
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4.6. Hundness as origin of strong correlations

In contrast to previous studies, we now use A, as a measure for Mottness in Fi-. & 1) to disentangle
the Janus-faced effects of J in Z and to analyze the “pure” effect of Hundness for <*rong coirelations.

Fig. 8(c) shows Z versus A, for various values of J. We observe that, as visible tor . = 0.5, the reduction
in Z with Ay first follows a quadratic behavior for small A, < 4J (which coinciac . ith U < 6J) followed,
as visible for all values of J, by a linear behavior for moderate A, up to Ay~ “for » = 0.5 this behavior
is illustrated by fits, shown as the upper and lower dashed yellow lines, resr = *ivery, For J > JZ, Ag2 is
J-independent [see inset of Fig. 8(c)], and Wy — A, again measures the dis .anc . *he MIT.

For fixed Ay, we observe in Fig. 8(c) that increasing J reduces Z, with tu. < :cay in Z significantly slowed
down for J > J7; (see inset).

The data along the thin red and black vertical lines is further sur marizec in Fig. 8(d). Note that the
curve for A, = 5.5 already proceeds midway in between U, and U, i1. the cc :xistence region in Fig. 5 for
large J (e.g., see intercept at J = 0 for their linear extrapolation) wuereas A, = 3.5 is still in the metallic
phase.

Interestingly, for fixed Ay, the overall suppression of Z with ‘ncreasine J is more pronounced for smaller
Ay, where the values of Z are still very large for small J, but sti. ~gly reduced for large J [compare e.g.
the Z values following the thin vertical lines for A, = 3.5 a1 1 A, = . .5 in Fig. 8(c) or compare black and
red curve in Fig. 8(d)]. This behavior can be inferred from *he 1. =~ _tant insight that increasing J reduces
the slope of Z when plotted as a function of A, (or U) in Fig. ‘<) for all J > 0, while A§? is first reduced
and then approaches a fixed value. As another major re. v or thus work we thus summarize: for sizeable J,
7 is strongly lowered also far from the MIT, at small Ay, vc ~use Hundness promotes the reduction of the
slope of Z. The latter effect holds for any nonzero » 'ye..  blue, red and green curve in Fig. 8(b)], even
independently of the fact whether A, is a valid measui > of Mottness (green and red curve) or not (yellow
curve). Therefore, Hundness, i.e. scenario (ii), is . orig ™ of strong correlations in the Hund-metal regime
far from the MIT at ng = 2.

In the next section, we focus also on small - < "* As seen in Fig. 8(d), in this regime, Z is reduced
roughly exponentially with increasing J (see also . <et). However, here, we cannot fully disentangle the
Janus-faced behavior of Z using Ay.

4.7. Spin-orbital separation in the U-J 1. 2se dic yram

In order to better understand the strong . duction of Z at small J and to reveal the physical nature
causing the low Z for J > JJ, we r w ¢ ster .atically analyse the underlying DMFT+NRG real-frequency
spectral data in the metallic (and - oexw.'=ur 2) region of the U-J phase diagram. In particular, we consider
Xowp(w) and x& (w), the imaginar, narts of the dynamical impurity orbital and spin susceptibilities, defined
in Egs. (6), the local spectral {unctio. A(w), and the imaginary part of the self-energy, Im 3 (w), defined
in Eqs. (A.4). Similar to Ref .., we plot x/y,(w) and xZ,(w) in Fig. 9(a) and Fig. 10(a) to deduce Tg™
and T3 from their respecti e m xima. A(w) is plotted in Fig. 9(b-d) and Fig. 10(b-d), and Im X(w) in
Fig. 9(e,f) and Fig. 10(e,f) In = ‘e. 9 Ay = 3.5 is fixed and J is varied, while in Fig. 10 J = 2 is fixed and
U (Ayp) is varied [the latt r is similar to Fig. 6(c), there for J = 1].

SOS, i.e TgP > Ty’ cccur in the whole metallic regime for nonzero .J, as seen in Fig. 9(a) and
Fig. 10(a). It is a ger~vic ¢ . equence of finite Hund’s coupling in particle-hole asymmetric multi-band
systems, as anticipa‘ :d eari - on [89]. Since Ty is finite, the ground state is a FL [see thin grey |w|!-guide-
to-the-eye lines in }'e. 9(a) and Fig. 10(a)] for all values of U and J at ngy = 2, independently of the
proximity to the »""T. .l strongly contradicts the spin-freezing phase scenario proposed in Ref. [51], but
confirms the ex: ectatic ‘s of Refs. [6, 53, 7, 14].

For fixed Ay, ‘he SO » regime opens up with increasing J [the maxima of x{,(w) are shifted to smaller |w|
in Fig. 9(a)] This eucct is accompanied by the formation of a shoulder at w < 0, and a weak kink at w > 0
in A(w), whi h v urow the top of the QPP [see Fig. 9(b-d)], and reveal a strong particle-hole asymmetry
in the system. . ccordingly, the imaginary part of the self-energy, Im ¥(w), develops a pronounced shoulder
(bump) in the SG3 regime at w < 0 [Fig. 9(e)], and a kink at w > 0 [Fig. 9(e)], as well. Note that the kink is
only visible for J > 1, while at smaller J, Im X(w) seems to follow apparent power-laws [as indicated by the
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Figure 9: (a) The imaginary , > .s of ae dynamical impurity orbital and spin susceptibilities, |x/,, (w)| (dashed) and [x{},(w)]
(solid), (b-d) the local sp- ‘ral tu. ~ 1on A(w), and (e, f) the imaginary part of the self-energy, Im 3 (w), for fixed A, = 3.5
and various choices of J (a) T " (filled circles) and T}" (open squares) are defined from the maxima of x//, (w) and x|, (w),
respectively. With incre sing J > 0, an SOS regime clearly develops, Torb > |w| > T3P, with complex NFL behavior. x// . (w)
follows an apparent |w!3/% |~ ,aw in the SOS regime (dashed grey guide—to—the—eye line)7 which we believe is just a cross-over
behavior (see discv sion in Sec. 5.5). Below Tf(p, the expected |w|' FL power-law behavior sets in, indicated by a solid grey
guide-to-the-eye li e. (b,c,d With increasing J a SU(6) Kondo resonance in A(w) splits into a SU(3) Kondo peak (shoulder
for w < 0 and kink ‘or w > 0) and a sharp SU(2) Kondo QPP, reflecting two-stage screening of orbital and spin degrees of
freedom due to SOS. ....se features are shown on (b) linear and (c,d) logarithmic frequency scales for (c) negative and (d)
positive freque cies. | Im X (w) is plotted versus (e) negative and (f) positive frequencies. Solid grey guide-to-the-eye lines
indicate |w|? FL ~c ver-law behavior and apparent |w[3/2 behavior at w < 0, the magenta guide-to-the-eye line in (f) shows an
apparent fractiona, »ower law at w > 0 for J = 0.5. The latter fractional power laws presumably originate just from a cross-over
behavior. The symbuls, as specified in the legend in (b), correspond to the local multiplet excitations listed in Egs. (3a). For
J =0, triangles and pluses also correspond to the transition frequencies in Egs. (3b), i.e to @, and @ea.
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Figure 10: Similar data . in ¥ g. 9, but for fixed J = 2 and various choices of U (Ay), plotted as a function of w/TiZp on a
logarithmic frequer y scale in (a,c,d,e,f), and in (b) as a function of w on a linear frequency scale. All curves are identical for
\w/TIip\ < Tﬁrb/f > a2 20 wile, nevertheless, the low-energy physics moves to smaller energies with increasing U on a linear
scale (panel b). (c-.> Thus, QP Hund features” in A(w/T%’) and Im X(w/T}) are independent of U in both the rescaled SOS
regime, and the rescas. * 7 . regime for |w| < TP (narrow, sharp peak in A(wTy’)). The symbols, as specified in the legend in
(b), corresponn v -~ '~cal multiplet excitations listed in Egs. (3a).
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magenta guide-to-the-eye line for J = 0.5 in Fig. 9(f) and observed in Fig. 3(b,e) of T ef. [32]]. For J =0,
the QPP is formed by one broad SU(6) Kondo resonance. With increasing .J, this K 1.~ resonance is split
into a narrow SU(2) spin Kondo resonance on top of a wider SU(3) orbital Kondo reso.. mce (e.g., the
shoulder), corresponding to spin and orbital screening, respectively [see Fig. 13(7, fo a schematic sketch].
The orbital features become strongly particle-hole asymmetric with increasing . wi'n lesser effects on the
spin resonance. Thus, SOS is manifest in a two-tier QPP with a wide base and ~ nai1. w “needle” of (half-)
width TP and T3F, respectively. We see from the behavior of TZ" in Fig 9(a) “at the “full” width of
the QPP is rather stable with increasing J (at least for negative frequencie ). 1 ~nntrast, the width of the
needle strongly reduces with J [compare e.g. red and black curves in Fig. >'b- 1)].

We note that the orbital and spin screening in the SHHM are non-tri--al sc. ~ening processes that differ
from standard SU(N) Kondo-type screening processes. The Kondo mo el cor. sponding to the 3HHM with
specific representations of the impurity spin and orbital operators ha. been - jorked out in Refs. [31, 90],
e.g. resulting in a ferromagnetic bare spin coupling. In particular, = _omp...., protracted RG flow has been
revealed where orbital and spin degrees of freedom are not decoup’ :d, I aa. 1g to a subtle spin-orbital Kondo
effect (see also Fig. 13): first, at higher energies, the intermediate-coupling NFL fixed point of an underlying
effective 2 (spin)-channel SU(3) Cogblin-Schrieffer model is reache ' wuere the ferromagnetic spin coupling
is quenched. Then, at much lower energies, the spin couplire renorn alizes to an anti-ferromagnetic value
and the RG flow results in a strong-coupling FL fixed point. 1+ ~ J =0, the Kondo model reduces to the
single-channel antiferromagnetic SU(3 x 2) Cogblin-Schrieffe, model. Therefore, when for J > 0, we refer
to a SU(3) orbital and a SU(2) spin Kondo resonance, ¢ . .. . — 0, to a SU(6) Kondo resonance, we have
this non-trivial spin-orbital Kondo effect in mind.

Fig. 10 shows similar data as in Fig. 9, but now f .  “ved J and different values of U (A;), plotted as
a function of w/TY in (a,c,d,e,f) and w in (b). Here, (7 7.fects T2 and T3 in the same way: their ratio,
TP )T ~ 20, is essentially independent of U, si ™ tha. the curves in Fig. 10(a) lie on top of each other
for |w| < TFP (see also the discussion of Fig. 12, an ti. expressions for the orbital and spin Kondo scales
derived in Ref. [31]). As a consequence, the st .~ af "he QPPs in A(w) and the self-energies Im 3(w) are
scale invariant for |w| < TP, too, when plotting b “h quantities as a function of w/Ty [see Fig. 10(c,d) and
(e,f), respectively], reminiscient of the universal behavior in the single-band Hubbard model. The reason
for this is that the ratio TZ /TR is const .t 1. *he underlying Kondo model [31] of the 3HHM (for a fixed
ng = 2 corresponding to a certain spin & ‘d orbit: | operator representation). This universal behavior of the
Kondo scales is not changed by the D".IF1 . -f -onsistency: the SOS is characteristic of impurity physics,
i.e. it also emerges in the impurity / M m the absence of an MIT [32]. The DMFT self-consistency just
adjusts the overall width of the QPF, "+ affe cing the value of T2, but not its internal structure, governed
by T2 /T3F. In Fig. 10(b), on a .inear 1. juency scale, the SOS features are more pronounced for larger
TP, i.e. smaller U, when comp rec. *o bare energy scales in the system.

We summarize the effect of svin-orb.cal separation at ngy = 2 in Fig. 11. There we show the structure
factor A(eg,w), as experimer call. accessible by angle-resolved photoemission spectroscopy (ARPES), for
J =0 [panel (a)] and J = 2 ~a.el (b)]. Within DMFT, A(eg,w) is directly obtained from the self-energy
S(w): Alep,w) =—1Im | +u—o — S(w)]”". The QP dispersion (white curve) is defined as the solution
to the equation w+pu —  — X 'w) =0 [91]. For fixed w, this trivially yields a single value for e, but not
necessarily a unique value . ~ w or fixed e;. Considering the latter solution(s), E(ex), for given €, then for
J = 0, F shifts linee 1y with ¢, i.e. the band corresponding to the QPP is fully characterized by a linear

FL dispersion relatic 1 with ¢ »stant slope 9Z ~ —L— ~ Z ~ T3P in the whole frequency regime plotted in

Oeg mh_g
Fig. 11(a). In contrast, = » = 2, T is reduced by more than one order of magnitude compared to J = 0.

Thus % ~ m} - is cc »stant only in a very small energy regime [as indicated by the black dashed line in
J

the inset of Fig. 21 1(b)] Further, this slope is much smaller than for J = 0, indicating a strong reduction
of the effective mass, m*, for finite J (due to Hund’s-coupling-induced strong correlations). Interestingly,
when enterin, th >uUS regime for frequencies |w| above the FL regime, the slope becomes steeper: the spin
degrees of freea m become unscreened, the QPs thus “undressed” and the effective mass smaller. For w > 0,
this change in the slope is manifest in a slight kink, followed by a rather constant behavior of g?Ek. For w < 0,
the shoulder (bump), observed in A(w) and Im X(w), leads to a somewhat artificial s-shaped dispersion, F,
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Figure 11: The structure factor, A(eg,w), at Ay, =3.5and T =0 for (a) J = 0 ar . (b, J = 2. The white curves show the QP
dispersion, E (see text for a definition). The inset in (b) zooms into the FL regune at / = 2. FL behavior is indicated by the
black dashed guide-to-the-eye line.

including a divergence in the slope and negative effective n.. ~ses | " .¢ to the Bethe lattice). In this regime,
three maxima are observed in A(ex,w) at fixed e;. All these SO features of A(ex,w) are completely absent
for J =0.

4.8. Spin-orbital separation as origin of low Z

We are now ready to reveal the connection of “OS a. 1 Z. We corroborate and summarize our findings
of the previous Sec. 4.7 by directly analyzing the biav.or of TFP and T as functions of A, and J.
Importantly, we expect, as pointed out earlier lsee Li.*tinger pinning [82, 83], here with A(w = 0) = 1/7],
that the width of the Kondo resonance scales linc. ~ly wich the QP weight Z. As we will demonstrate below,
in the Hund regime of J, this holds for the spin Konuo scale, i.e. Z o< TR for J > JZ,.

We replot the data of Fig. 8(c,d) in Fig: .2 hut now with focus on Tf{b and T} instead of Z on a linear
[Fig. 12(a,c)] and a semi-logarithmic [Fig 12(b,d) scale. For reference, we also replot our Z data, but rescale
it by a factor a(J) = T’ /Z [indicated by v. ~ do’ ¢ed grey curve in Fig. 12(c)], which is essentially the same
for all values of Ay. Fig. 12(a,b) sho v that fou fixed J, TR and Z have the same dependence on Ay, i.e.
T = a(J)Z, with a proportionalit; fac or, (J) ~ 0.36, for J > J and increasing values of a(J) > 0.36
for decreasing J < JY [see a(J) ir Fig. -2()]. Analogously, for fixed A, and varying but sizeable J > J%
in Fig. 12(c,d), we find that 73" - 236 Z.

We thus conclude, as a major resu.. of this work, that the reduction of Z in the Hund-metal regime of
Fig.1 at ng = 2 is directly lin} -a > the reduction of TY due to SOS, and that all insights gained for Z hold
for T3P, and vice versa, spec’ ical’y so for sizeable J. Based on the knowledge that the 3HHM at ng = 2 has
a FL ground state, it is of cour. - expected that Z is a measure of the coherence scale using Landau’s FL
theory (see Luttinger thr orer. above), as e.g. also pointed out in Ref. [53, 47, 50]. In this work, we have
now demonstrated quanc. »t vely Jhat and how Z and Ty are connected. Additionally, we have conclusively
identified the origin of * 'w 2 .- d the physical mechanism causing the bad-metallic transport — spin-orbital
separation.

Fig. 12(a,b) demc 'strate igain the important insight that SOS is absent for J = 0 for all values of A, (U):
Tﬁrb =T (blac' Liled vy circles and black open squares lie approximately on top of each other; the small
difference is duc to the "act that |x”, (w)| was obtained form a calculation with different NRG parameters,
i.e. stronger tru. ~atior due to numerical cost; we checked that using the same (stronger) truncation leads
to exactly 7°™ = I,¢ . But also here, TR = a(J)Z with a(J) > 1 [see dotted grey line in Fig. 12(c)] due
to the FL grc mr state. In contrast, for nonzero J, SOS with TP > Ty occurs: with increasing J, TP
is only moderac ly reduced, while 73" and thus Z are strongly reduced (at fixed A;). More importantly,
the slope of the lunear function TRY (Ay) and thus Z(Ay) is strongly reduced with increasing J [solid lines in
Fig. 12(a)], while the slope of the linear function TP (Ay) is approzimately J-independent [dashed lines in
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Figure 12: The orbital Kondo scale, ngb (dashed curves w. " big filled circles), the spin Kondo scale, TIS<p (solid curves with

open squares), and the rescaled QP weight, a(J)Z (dotted grey curve), plotted as a function of A, for various values of J

using (a) linear scale and (b) logarithmic scales “.. v. y-axis. Both Tf%rb and T;p decrease linearly with Aj, with a larger

slope for Tﬁrb if J > 0. The slope of T;p strons y decrea. »s with J, whereas the slope of Tf;rb is rather J-independent. SOS,
Tﬁrb > T;p, occurs for all Ay < Agz at J > 0, v * is o re prominent at smaller Ay. (c,d) Same quantities as in (a,b) now

plotted as a function of J for two values of s [indica. .d by vertical lines in (a)]. When J is turned on, both TZY and 73"

decrease strongly, but differently, opening » p the SOS regime at small J < J;, and saturating at J > J7;.

Fig. 12(a)]. Far away from the v.™ at small to moderate Ay, this leads to a broad SOS regime which is
extended from very low up to very large energy scales (comparable to the bare atomic excitations). When
approaching the MIT with i cre: sing Ay, both Tf{b and T} decrease linearly, but with different slopes:
the SOS regime shrinks and .- st .fted to lower energies [compare values of Tg*? and T at Ay, = 3.5 (black
vertical line) and A, = 5." (red \ ~tical line) for a fixed J > 0 in Fig. 12(a); see also the black (A, = 3.5)
and red (Ap = 5.5) curv s in fig. 12(c): for J > J¥, the distance between dashed and solid line is smaller
for larger A, = 5.5]. Durw._ this process the ratio 72" /T3 first remains constant, as can be observed on a
semi-logarithmic scal . Fig. .2(b) (blue curves). Very close to the MIT both 7™ and T3 (and thus also
Z) vanish together. Clearly, ‘he DMFT self-consistency affects the QPP as a whole and finally destroys the
QPP — including its 1. “erna’ structure — at the MIT.

We now also uiscuss in more detail the behavior of the Kondo scales and Z for fixed A, and varying J
[see Fig. 12(c,d) . At sm .l J, spin-orbital separation is turned on. The broad SU(6) Kondo QPP with large
TP = TgP splits  ~rv = ruptly with increasing .J into a SU(3) and a SU(2) Kondo resonance, reducing, after
aslight decr .. ~¢72P both TpP and Tg™P. As T} is affected much stronger, the ratio T2 /T3> grows with
increasing J, « 7¢ atually saturating for sizeable J > J¥ . In the latter large-.J regime, we observe that both
T and Ty (2 are only slightly reduced with increasing J [as already observed in Fig. 8(d) for Z], and
a(J) ~ 0.36 is J-independent, i.e. SOS is fully developed and quite stable for sizeable J, and thus Z is low.
Therefore, the main reason for lowering 73" and Z upon turning on J can be heuristically ascribed to the
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following effect: the ground state multiplet degeneracy is lifted by blocking orbital fluc ;uations through the
selection of high-spin multiplets, as discussed in Sec. 2.6.1. The resulting orbital d- gc. ~racy is still much
larger than the spin degeneracy. Consequently, local Kondo-type screening of orbital deg. .es of freedom
occurs at much higher scales than spin screening. T is only moderately whe ceas T3 and thus Z are
strongly lowered. As mentioned before, a quantitative analysis for a correspon. ¢ Sondo model is given
in Ref. [31, 90]. As the degeneracy of the FL ground state changes when .J is rneua ™n, the factor a(J) is
strongly reduced, as well, in the small-J regime [see grey dotted curve in Fi~ 12 . The reduction of Z
with increasing J is thus less severe than the reduction of T (compare so’.d li » = with small dots to solid
lines with open squares).

Since Z o T3, also the behavior of Ag? (Uy) is determined by SO¢ For " < J7, T¥ and thus A2
(Uez) first decrease with increasing J [see Fig. 12(c) and Fig. 8(b), re’ pective'v]. For J > J%, TR plotted
as a function of A, essentially saturates, accordingly also AEQ saturates 'see ble ‘k dashed curves in Fig. 6(a)
and Fig. 8(b)]. This explains why U.s behaves non-monotonously, ailar .o Ug, and shows that the bare
gap, Ay, can be used as a measure of Mottness at sizeable J botl for . n.3 and an iS.

Let us summarize the main conclusion of Sec. 4. The main effect .v indr e strong correlations in the Hund
metal regime of the SHHM at ng = 2 is Hundness rather than Mc *ness, i.e. the very abrupt turning-on of
spin-orbital separation in the presence of nonzero (sizeable) J indepen lently of the value of Ay, thus also far
from the MIT. The MIT itself, which is purely induced by the S"MF"_ self-consistency, is an additional but
subleading effect in the system, that only further lowers the s, *n and orbital Kondo scales with increasing

U. The formation of J-induced large spins is, in princ” 1., . iocal process occuring on individual lattice
sites. In contrast, the formation of a charge gap is a highly . ~n-local process that needs to self-consistently
incorporate the whole lattice dynamics (via a gapped ! . “Yization function). As a consequence of Hundness,

the nature of the incoherent transport is governed by " .nd metal physics” in the SOS regime at ng = 2:
large slowly fluctuating spins are non-trivially cou_’~d to creened orbitals (see definition in Sec. 3.1).

But when SOS is a generic effect in the metallic reon..~ of the 3HHM (and presumably of all particle-hole
asymmetric degenerate multi-band Hund mod .} in vhich sense do Hund- and Mott-correlated systems
then differ in nature?

4.9. Hund- versus Mott-correlated bad me als

Indeed, for the 3HHM at fixed and .‘zeable J, the features occuring for instance in A(w), differ, in
principle, only quantitatively when U 7, varieu. * ae Kondo scales shift as a function of U, but the qualitative
structure of the QPP does not chanrs 2. Fowever, we argue that the ratio of the bare atomic scales and the
Kondo scales (in particular T2'P), or " ase . differently, the ratio of the characteristic energy scale of the
Hubbard bands and the overall w dth of t.e QPP, sets the framework for a meaningful characterization of
Mott- and Hund-correlated syst ms: “his ratio is much larger in Mott than in Hund systems (see Fig. 13),
leading to qualitative different <" _matures, as demonstrated for temperature-dependent quantities in Ref. [34].

Hund metals (characteriz :d b moderate U, but sizeable J) are by definition far from the MIT. Their
lowest bare atomic excitation . - s, wp, and w,; are small [see discussion following Egs. (3b)]. The Hubbard
bands still overlap for mc ierate valaes of U and form a broad incoherent background in a range estimated
by Wez —wh, having wp < 0 < we1 < wea. While T; Iip and thus Z are considerably reduced, Tf%rb is comparable
to the bare atomic excitati ~ s ales. This implies a ratio of order one between T2 and the bare atomic
excitation scales [ser Fig. "3(b)]. As a consequence, the incoherent SOS window, T3 < |w| < TP, is
broad and “Hund m >tal phs sics” is relevant in a large energy window in Hund metals. For instance, the
temperature-dependen. '~~ .1 spin susceptibility of a Hund metal shows Curie-like behavior in the incoherent
regime revealing large "~calized spins [34]. The low Z of Hund metals thus implies spin localization but no
charge localizat. m. Imy 1rity physics dominates.

Multi-band Mo, _ystems (characterized by U being large compared to J) are by definition close to
the MIT. T. =1r , .. 3t bare atomic excitation scales, w, and we; are large, thus the Hubbard bands are
pronounced an.’ well separated. Both Kondo scales are small and thus the QPP narrow. Together this
implies that the . are atomic scales are much larger than T3 [see Fig. 13(c)]. Further, the incoherent SOS
window, T < |w| < Tfé”% is very small and “Hund metal physics” is almost not observable. Similar to
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Figure 13: (a) Schematic depiction of the two-stage screening v scess of SOS at filling ng = 2. First the orbital degrees
of freedom are screened below the orbital Kondo scale, Ty " by t. » formation of a large, effective, Hund’s-coupling induced
3/2-spin including a bath spin degree of freedom. Then, at a . w. spiu Kondo scale, Tlip, this effective 3/2-spin is fully screened
by the three bath channels of the 3HHM (see also the discuss. n 1or Fig. 16 in Sec. 5.5). Incoherent NFL behavior is found
for Tf(p < |w|, T < ngb, and FL behavior at energies . “io.. mi‘ (b) In Hund metals, bare atomic excitation scales, wp and
we1, and the overall width of the QPP, Tf{b, are comparabi. ‘n magnitude, while T;p and thus Z are much smaller, opening a
large relevant NFL regime in the system. (c¢) In Mott-correlated metals, we find TIS<p ~ TI%““ < wp,Wwel, such that Z is reduced
while SOS is not important.

one-band Mott systems, Z is low bece ise chai, . fluctuations are suppressed. In sum, typical Mott physics,
i.e. the DMFT self-consistency, dom aatr s.

Finally, we note that the physirs o1 - Tun. metals also strongly differs from that of generic one-band (or
multi-band) Hubbard models (wit" .J = 0) which are far from the MIT. First, the latter are weakly correlated,
whereas a Hund system is stron,ly co. -elated, despite being far away from the MIT. Second, SOS and thus
incoherent “Hund metal phys'..” only occurs for particle-hole asymmetric multi-orbital systems with at
least three-bands, fillings of = < r 4 < 2N, — 1 with ngy # N,, and, most importantly, nonzero J.

5. Proximity to the Falf-’.lled MIT: Hundness versus Mottness at 2 < ng < 3

We now study the "sping ':pendence of the QP weight, Z, and of the electronic compressibility, ke =
%—T. In particular, ve dem ustrate that SOS also occurs for 2 < ng < 3, and that it determines the low
Z-behavior there, as well. .n particular, we focus on the question how Mottness of type (iii), i.e. the
MIT at ng = 3, .ccts DUS and whether (i) Hundness or (iii) Mottness is the key player to induce strong
correlations in * ne Hun.-metal regime for ng 2 2. Further, we will show that, for all parameters studied,
no Hund’s-coupl. ~e-ind wced Fermi-liquid instabilities (negative compressibilities) occur near the half-filled

MIT of the ""7"™M. in contrast to suggestions in Ref. [58].

5.1. MIT atng =3

As mentioned before, at half-filling ng = 3, Uc(g’) is much smaller than at other fillings. This is now
explicitly demonstrated in Fig. 14(a), where we plotted A(w) at ng = 3, and J = 1 for various values of U,
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Figure 14: The zero-temperature local spectral function, A(w), (a) for ng = 3, J - and various values of U, revealing an

MIT with very small 2 < Uc(g) < 2.25, and (b) for U = 7.5, J = 1 and varying _, reve .ing how the structure of the Hubbard
side bands changes with filling. The five different markers represent the enc. v of ' atomic multiplet excitations at given ng
[for ng = 2, see Egs. (3); for ng = 3, see (5) for details and an assignment of the narkers; for ng = 2.6, the excitation energies
are adapted to p(ng)]. The insets in (a,b) zoom into the QPP.

revealing the MIT at Ng = 3. Starting from an mS and nsinoe = 1’ we deduce from our real_frequency

data the extrapolated value U C(S) ~2.140.1 at ng = 3, wn."h is strongly lowered compared to UC(22 ) — 8.8 at

nq = 2. While the region of low Z around nq = 2 rea ' -~ down to moderate values of U far below UC(QQ), ie.

far away from the MIT at ng = 2 in Fig.1, these U valu s are still larger than U, C(S) Therefore, Ref. [33, 50]
have argued that the MIT at ng = 3 might be t..- ~asc. for the low Z at moderate U < Ug) (even at
ng = 2) — a statement that will be investigated in th.- se.tion.

Further, we observe that also the structure « .. ™ HYbard bands at ng = 3 differs completely from those
at ng = 2 [compare red and black curves in Fig. . ‘‘b)]. Specifically, in contrast to the ngy = 2 results of
Sec. 4, the spectral functions of Fig. 14(a) ave particle-hole symmetric and the QPP has no shoulder, only
slight kinks (see inset). In a pictorial lan juage, m the case of ngy = 3 for larger J, the only local multiplet
is the 3/, spin, with a singlet orbital cha. >cter. !.ence orbital Kondo physics is absent (or quenched up to
energies on the order of the local mul iplet ¢..~".ations, i.e. the Hubbard bands). Therefore SOS features,
as revealed for ng = 2, are absent at aalf illins.

5.2. Peak structure of Hubbard be vds at z . ng <3

At integer filling ngy = 2 [red urv in Fig. 14(b)] A(w) consists of three peaks away from w = 0, while at
ng = 3 it has only two pronou~-ed peaks [black curve in Fig. 14(b)] that are particle-hole symmetric with
respect to w = 0. The peak pos sions at finite frequency can be understood simply from the underlying
atomic multiplet transition e.. = ies listed in Eqgs. (3) for ng = 2 and Egs. (5) for ng = 3, assuming sizeable
J.

In order to study sc aariss (i° and (iii) at intermediate fillings, 2 < ng < 3, we start by investigating
the structure of the Hubba. 1 si- ebands for a filling, ng = 2.6 [blue curve in Fig. 14(b)]. We find that they
are composed of all .ve tynes of atomic multiplet excitations from both the ngy = 2 and ngy = 3 ground
states (b peaks altog sther) v ith their excitation energies adapted to pu(nd = 2.6). Overall, at intermediate
fillings, ng = 2 — 3, e “ad a smooth crossover in the structure of the Hubbard bands between their
shape at ng = 2 and n - = 3, respectively, caused by the smooth level transformation of eigenstates in the
spectrum of the local F amiltonian with changing u(ng), interchanging the ground state and varying the
probability of one | ~*’.cle multiplet excitations. In contrast, the shape of the Kondo resonances at w = 0
change dras. ca... ~hen moving from ng = 2 to ng = 3.

5.8. Spin-orbita. separation at 2 < ng < 3 as the origin of low Z
Next we gain insights from the structure of the QPP with varying ng. Similar to Fig. 4, we study the
filling dependence of TP (dashed curves) and Ty (solid curves) in Fig. 15(a) and its inset, now for three

31



different values of U. With increasing ng (decreasing distance to half-filling, 3—n,), we ,bserve an increasing
separation of both Kondo scales, i.e. an increasing ratio of Tﬁrb /TR, for all values of U. Thus SOS emerges
for all fillings 1 < ng < 3 in the metallic phase [as already indicated in Sec. 3 and the inse. of Fig. 3(f) in
Ref. [32]]. We will show, however, that the “nature” of SOS changes with ng. We cem rk that the behavior
of TP plotted versus ng in the inset of Fig. 15(a) corroborates earlier results of .*~f. 7].

We begin by considering ng = 1. We note that, in the absence of charge f. “ctua. ~ns, i.e. for the pure
Kondo limit of the AHM, and if the energy scale of charge fluctuations is muck larg. than the Kondo scales
in the 3SHHM (or AHM), the Hund’s coupling J just becomes an energy r.fset ~d hence irrelevant, such
that the SU(6) symmetry remains intact. Therefore it holds at ng = 1 ti. + 72> = T3 independent of .J
[as demonstrated for the impurity AHM in the inset of Fig. 3(f) in Ref 2] a. ? for a Kanamori model in
Fig. 6 of Ref. [76]]. In the presence of charge fluctuations at higher er ergies, ' still holds Tg™? T3> . For
example, in Fig. 15(a) for the self-consistent 3SHHM, T2 is shifted b - about a factor of 2 towards larger
values compared to T3, especially for lower values of U which er _aragc. .arger charge fluctuations (see
e.g black curves). For ng near 1, the Kondo scales are large in er ergy an ! comparable to the bare atomic
multiplet excitations scales. Thus, signatures of the QP and of ba.. ator ic physics merge in x, and X;’p
[see Fig. 16(d)]. As both quantities are affected differently by the c.. rge uuctuations due to Hund’s coupling,
their maxima, Tf%rb and T3, become shifted in energy with respect tc each other.

As the local occupation increases towards ng = 2, SOS is rn- { on, i.e the impurity’s ground state
SU(6) symmetry is split, and TR decreases by more than a 1. *or of 2 for U = 2.25 (solid black curve), of
5 for U = 5 (solid blue curve) and of 10 for U = 7.5 (50" > ..l cwive). At the same time, TP first slightly
increases, reaching a maximum at around ng = 1.5, and . »n (slightly) decreases again. For the largest
U = 7.5, this leads to a reduction of T¢'® by a factc " ~haut 4 (dashed red curve; see also inset). There
at ng = 2, a strong minimum develops in Tﬁrb and a +ho dder in T}, respectively, with increasing U (red
curves) due to the growing influence of the MIT . ng4 - 2, lowering both Kondo scales (as explained in
Sec. 4). For ng — 3, similar to the behavior in the ivsev ~f Fig. 3(f) in Ref. [32] for the impurity AHM, 73"
drops below the lowest relevant energy scale. . “he (ntrary, T2™> grows up to energy scales comparable
to the bare atomic scales in the system. This su ws that orbital fluctuations are suppressed right away
together with charge fluctuations. Hence no orbital Kondo physics can develop. What is left at half-filling,
is a large spin S=3/5 on the impurity tha’ nee.. to be screened dynamically.

Figure 15(a) also shows Z (dotted cu -es) as ¢ function of ng. We find that, similar to the case of ng = 2
in Sec. 4, Z essentially follows the be.avio. ~f /3P for 2 < ng < 3 with T3’ /Z ~ 0.4, reflecting the fact
that the ground state is a FL. Thror gho' ¢ this regime, the small values of Z can be understood, via their
proportionality to T3, to be a direct .~ sequ _nce of SOS, which ensures that T < TP, For ng — 1 the
ratio T’ /Z changes, due to stror ; changc in the ground state degeneracy [see deviations between dotted
and solid curves for ng < 2 in .he mset of Fig. 15(a)], reminiscient of the behavior of Z for small J in
Fig. 12(c).

We remark that from the ".eha ior of T’ (ng) we cannot deduce any indication for a relation between the
physics at ng = 2 and the pu._ =irs at ng = 3. On the contrary, we see markedly different physical behavior
for ng = 3 as compared tc ng = 2, ~.g. with the absence of Kondo physics in the orbital sector, and in this
sense the absence of SO, for ng -= 3. Further, the Hund-metal regime, (hatched area in Fig. 1) is special
in that there we have not . ly €S with 73" < TZP, but in addition also a dynamically generated, fairly
small value of TP, " nus, couditions there are optimal for the Hund’s coupling to align spins in different
orbitals without forr ing an « rbital singlet from the outset, allowing for a non-trivial interplay between both
spin and orbital degr. ~s of reedom, which induces SOS. We thus argue that the MIT at ng = 3 does not
trigger the low 7 arourd ng = 2.

5.4. Spin-orbitar ~nar cdon at 2 < ng < 3: QPP structure

Next we .. *he qualitative change in the structure of the low-energy quasi-particle peak due to SOS
with filling in v re detail. In Fig. 15 (b,c,d) we plotted A(w) with focus on the QPP, and in Fig. 15 (e,f)
Im ¥(w) for U = 5, J =1 and various fillings, 1 < ng4 < 3.

In Fig. 15 (b), for ng > 2, A(w) is shown on a linear frequency scale and we marked the multiplet excita-
tions of Sec. 2.6.1 and Sec. 2.6.2 [with the excitation energies adapted to u(ng)], as some of these (diamonds
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Figure 15: (a) The or ital anc spin Kondo scales, Tf{b (dashed) and Tf(p (solid), on a log-log plot versus the distance to
half-filling, 3 — ng, reve: ' the fillb z-dependence of SOS. The low QP weight Z (dotted curves) essentially follows the behavior
of T;p for 2 < ng < 3, a. ' is *.us determined by SOS. The inset shows the same data plotted versus ng on a linear scale.
(b-d) The local spe cral function A(w) for U =5, J = 1 and various choices of ng, shown on (b) linear and (c,d) logarithmic
frequency scales fc  (¢) nega ive and (d) positive frequencies. The symbols in (b) indicate atomic multiplet excitations at given
ng [for ng = 2, see Wgs. (3) for ng = 3, see (5) for details and an assignment of the markers; for 2 < ng < 3, the excitation
energies are adanted to i\ ng)]. For ng — 3, the wilg) excitations (diamonds) gain weight and replace the SOS shoulder in A(w),
which is clearly nrese .. a pure QP-like feature at ng = 2. (e,f) The imaginary part of the self-energy, Im X (w), plotted versus
(e) negative ana ‘f positive frequencies. Solid grey guide-to-the-eye lines indicate |w|?> FL power-law behavior and apparent
\w\3/2 behavior at . < 0. The latter fractional power-law presumably originates just from a cross-over behavior.
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and circles) are rather low in energy and therefore might influence the shape of the C #P. Complementary
to this, in Fig. 15 (c,d), A(w) [and in Fig. 15 (e,f) Im 3(w)] is shown on a logarithy.c "equency scale and
TP and Ty are marked by open squares and filled circles, respectively [see legend in (d,, Clearly, with
increasing ng4, the SOS regime opens up: while there is no substructure in the C P 'n A(w) for ng < 1.5
[black and blue curve in Fig. 15 (b,c,d)], a pronounced shoulder develops with i. “res sing ng 2 2 for w < 0
and a kink for w > 0. Accordingly, a shoulder (kink) emerges in Im¥(w) for =y > "5 at w < 0 (w > 0)
which develops to a pronounced bump (plateau) for ng > 2.5 [see Fig. 15 (e.f)l. In  sense, the behavior of
the SOS features with increasing 1 < ng < 3 seems reminiscent of their behr vior - *h increasing J. We note
however that the character of the shoulder in A(w) changes for ng well L ~o'd 2: the shoulder gradually

transforms into a Hubbard side band at the atomic hole excitation w,(l?’) f _ w < v 'diamonds in magenta and
red curve in Fig. 15 (b); see also inset of Fig. 14]. In contrast, the QP 2 subsu ucture narrows significantly,
e.g. for w > 0, giving rise to a single albeit still strongly asymmetric Koi 1o pea'. at ng = 2.7. A true QP-like
shoulder only occurs for fillings ng < 2.5, which we have checked in ure impurity AHM calculations, where
the Kondo scales can be tuned to lower values and QP-like and a om’ -lik ' features are well separated.

5.5. Spin-orbital separation at 2 < ng < 3: NRG flow diagrams

The nature of SOS is best revealed by the RG flows accessible to  TRG via finite-size level spectra, aka.
energy flow diagrams [see Fig. 16(a-c)]. Technically, they show - ~w *ne lowest-lying rescaled eigenlevels of
a length-I Wilson chain [92, 93] evolve with [, where “rescalec.” means given in units of w; oc A="/2 (in the
convention of Ref. [36], where A > 1 is the NRG disc’ ‘l_..lo.. parameter; see supplement of Ref. [32]).
Conceptually, these levels represent the finite-size spectrun. ~f the impurity+bath put in a spherical box of
radius R; o< AY2, centered on the impurity [92, 94]: ... " increases, the finite-size level spacing w; < 1/R;
decreases exponentially. The corresponding flow of ti.~ “inite-size spectrum is stationary (l-independent)
while w; lies within an energy regime governed by -e ot “he fixed points, but changes when w; traverses a
crossover between two fixed points. As the rescalea ~ro. nd state energy of a Wilson chain differs for even
and odd numbers [ of sites due to fermionic p ‘- th. RG flow of the system is separated into an “even”
and “odd” NRG flow diagram, both reflecting the ~ame physics of the system. In Fig. 16(a-c), we purely
concentrate on the even flow, since this permits the energetically favored global (Kondo) singlet ground
state as | — oo. We fully exploited the sy .meu.‘es U(1),, x SU(2),, x SU(3),,, of the SHHM in our NRG.
Hence each line represents a multiplet ¢ ~d the ¢ »lor of each line specifies a well-defined symmetry sector
(Q, S, q1q92), where the total charge @ i, mea. "ve { relative to half-filling, S is the total SU(2) spin multiplet
sector, and ¢ = (¢q1¢2) is the SU(3) o vita’ label.

The multiplets with significant s, ‘v or ,rbital character behave qualitatively differently in the flow
diagrams in Figs. 16(a-c) at finite s at the .ossover scales T and T (vertical dashed lines). The energy
range in between defines the SO reg me. We emphasize that the SOS regime is an entirely new intermediate
phase, which is absent for J = 0 [see insci in Fig. 16(a)], and opens up right at the Kondo scale in the NRG
flow diagram when turning n J while the energy flow at large energies and the FL fized point towards
w; — 0 remains exactly the s. . At ng = 2, the spacing between Tﬁrb and T3, though, only spans about
an order of magnitude wb'ch is to small for the level flow to display a stationary intermediate fixed point.

Above T the spec ra correspond to the high energy physics of the Hubbard bands. Below T3 the
excitation spectra reach a ~ (-fi- ed point with qualitatively identical multiplet eigenlevel structures for all
values of ng, U, and ,: they can be interpreted in terms of non-interacting single-particle excitations [see
also the |w|'-scaling >f /., - nd x/, in Fig. 16(d)].

We now focus on .e. 17 a) for ng = 2, U = 5 and sizeable J = 1 [similar to Fig. 3(g) in Ref. [32]]. As
w; drops below ~g'”, ovbital screening sets in, favoring orbital singlets ¢ = (00) [black and orange curves],
hence other mu. iplets r se in energy. For the same charge @, large-spin multiplets lie lower in energy (green
curve lies below rc ' or for @ = —2, and orange below bright blue for @ = —3). As w; drops below T3, spin
screening se ~ ..., “ovoring spin singlets and pushing up multiplets with S # 0. Now, multiplets with same
particle numb + out different spins become degenerate (compare again green and red curves for QQ = —2,
and orange and . right blue curves for Q = —3).

Interestingly, with increasing ng, where the spin-orbital regime becomes wider, a new flow behavior
slowly emerges at energies entering from (just above) T2*P: the multiplet with large spin S = 3/5 and singlet
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Figure 16: (a-c) Even NRG f ow d agrams for different fillings, (a) ng = 2, (b) ng = 2.42, and (¢) ng = 2.7. The data represents
rescaled energies of the lowes. " 1g eir :nmultiplets of a Wilson chain of length [ plotted versus the characteristic level spacing
wy o< A7/2 (see text). NRT para. ~ ars: A = 4, Fyrunc = 9, thus keeping up to D* < 5,000 U(D) charge X SU(2)g, x SU(3) oy
multiplets (correspondir 5 to ab 1t D = 155,000 states) [36, 37]. The color specifies the symmetry sectors (Q, S, q1g2) (see
text) as given in the leg ud. Num Hers above lines in the legend give multiplet degeneracies. Solid (dashed) vertical lines mark
the spin (orbital) Kondo -ale, 7 P (T@'P), respectively, where the range TP < |w| < T2 represents the SOS regime. The
inset of (a) shows, “.. comparison, the NRG flow for J =0 at U = 7.5. (d) The imaginary parts of the dynamical impurity
orbital and spin s sceptibu ‘ies, [x, (w)| (dashed) and [x,(w)| (solid) for U = 5, J = 1 and various choices of ngy. TP

(filled circles) and 2P (ope . squares) are defined from the maxima of x, (w) and x[,(w), respectively. X (w) follows an

apparent |w|3/2 power ..... m the SOS regime (dashed grey guide-to-the-eye line) for fillings 2 < ng < 2.5, which is likely just a
cross-over beh. 1o o ~n from the flows in (a,b). Below T;p, the |w|! FL power-law behavior sets in, indicated by a solid grey
guide-to-the-eye “r .. The inset is a zoom of x/; (w), revealing different “slopes” of x”/, (w) in the SOS regime for different
ng. (e) The static . cal orbital and spin susceptibilities, xgrb (dashed) and X(s)p (solid) are plotted as a function of ng for three
different values of U and J = 1. (f) The chemical potentials, p, are plotted as functions of the filling ng4, for J = 1 and various
values of U to study the behavior of the electronic compressibility k.
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orbital character ¢ = (00) [orange curve Figs. 16(a-c)], which is still outside the SC.3 regime at ng = 2
[Fig. 16(a)], moves into the SOS regime at ng = 2.42 [Fig. 16(b)], and takes ove . = ‘SOS regime’ at
ng = 2.72 [Fig. 16(c)]. At the same time, the 73" moved upward and merges with the barc atomic energy
scales. At TpP, finally, a FL develops: the large spin S = /5 is screened and moves 1pw wrd, crossing multiple
lines. The new ground state at energies below T3 is the Kondo spin singlet (bl - I 1e).

Note that the crossing of the large spin state (orange line) starts just abe = T " at ng = 2, and has
moved all the way down to TR at ng = 2.72. In particular, we also emphasize that e shoulder in A(w) for
ng = 2 in Fig. 15(c) emerges precisely around this crossing region. Therefc e tl i ~ualitative change in the
energy flow diagram is responsible that the intermediate SOS regime stro. ~lv changes its character as the
filling is increased towards ng = 3. At ng = 3 the SOS becomes trivial ir *he se. e that the orbital blocking
is immediately present due to the given filling.

Importantly, the structure of the flow below the crossing region, i.e tl. ~ transi ion behavior with decreasing
w; from the NFL into the FL fixed point is the same for all filling- = < 4., < 3. It is therefore natural to
assume that also in the SOS regime at ng = 2, the physics is go ernrs . 1 - an underlying NFL fixed point
(i.e. a fixed point that would show up for a larger SOS region as obser ed in a new analysis [90] of the
Kondo limit of the 3HHM), which also enforces the reversion of v. ~ lowest few multiplets compared to the
FL fixed point and has a S = 3/5 and (q1¢2) = (00) multiplet as grow d state.

From the NRG flow analysis we deduce the following eenc ‘= s reening mechanism of SOS, which is
visualized in Fig. 13(a) for ng = 2.

SOS is a two-stage screening process. First the orbit ' ;. ..o of freedom are quenched below the orbital
Kondo scale, TZ™. In a Kondo-screening language, describc ! in the following for ng = 2, we have S =1 in
the spin sector, while in the orbital sector, we have tk [ ~Jamental representation ¢ = (10) with dimension

3 [green lines in Figs. 16(a-c)], coupled to the 3 chanw. ls, leading to full orbital screening. As a result of
this screening process the impurity binds one elect. . ~ froi. the bath to form an orbital singlet. This electron
has a spin !/5, which combines with the local spin 1~ a.~ to ferromagnetic Hund’s coupling — to a spin 3/5.
Then, at a lower spin Kondo scale, Ty, this " . *e 5 spin is fully screened by the three bath channels of
the 3HHM. The formation of the orbital singlet ce« <es the orbital susceptibility to reach a maximum. The
resulting free spin enhances the spin susceptibility as the frequency decreases [see Fig. 9(a), Fig. 10(a) and
also Fig. 16(d)]. Since a bath electron w'.n a . »ecific orbital degree of freedom is included in the orbital
screening process, spin and orbital degr. -s of fre. dom are still coupled, leading to a highly intertwined NFL
in the SOS regime at ng = 2. The sar e scic ni g process occurs, in principle, for 2 < ng < 3 as well, but
the details vary with filling. For ng .ppraching 3, the 3/, spin is increasingly composed purely from the
impurity spin, which facilitates the tc. v atior of the orbital singlet [TI%’Cb grows in Fig. 15(a)], but is harder
to be screened (TR decreases in " ig. 15(..,. Thus the contribution of the bath electron in the screening
process becomes less important. an. *he dynamics of the spin and orbital degrees of freedom get more and
more decoupled. For ng = 3, the orbita: singlet is directly and locally formed from the impurity 3/5 spin
without any involvement fror . ba 1 degrees of freedom. Accordingly, in a weak coupling analysis [31] of the
3HHM, it is emphasized tha, "he spin Kondo scale depends explicitly on the representations of the spin and
the orbital isospin, which "s unusu ! and only occurs for complex Kondo models in which spins and orbitals
are coupled.

5.6. Spin-orbital sep  avion ar 2 < ng < 3: susceptibilities

In Fig. 16(d), w« analyz the behavior of the imaginary parts of the dynamical impurity orbital and
spin susceptibilities x .~ a4 xg,, for various fillings ng at U =5, J = 1, and in Fig. 16(e) the behavior of
the static local rbital ~nd spin susceptibilities xg = x(0) for various U at fixed J = 1. As already seen in
Fig. 4(c), with i creasin | filling between 1 < ng < 3 in Fig. 16(d), the maxima of x, (T3, marked by open
squares) increase L. ' .ght and decrease in |w|, and accordingly xg" [solid curves in Fig. 16(e)] grows with ng
for all values U +orng < 2, the enhancement of x¢" is small and just part of an upward trend if U < UC(22 )
(black und bluc curves), but develops into a shoulder if U is close to the MIT at ng = 2 (red curve). For
na > 2, xo© increuses very strongly with growing ng, almost diverging. In contrast, with increasing filling,
ng < 2, the maxima of x/, almost coincide [see filled circles in Fig. 16(d)], and x§™ is approximately

36



constant for U < 5 [see dashed black and blue curves in Fig. 16(e)]. Only for U = 7.5 much closer to ch),
XS first decreases and then strongly increases near the MIT at ng = 2, indicating .u. nresence of strong
orbital fluctuations. With increasing filling, ng > 2, the height of the maxima of v/ dellines [see filled
circles in Fig. 16(d)] and x5™ drops to zero when approaching ng = 3, for all valu s o1 U [see dashed curves
in Fig. 16(e)], reflecting the absence of orbital fluctuations at this point. We re.. ~rk that the occurence of
a maximum in x§™ has also been shown in DMFT+QMC calculations [7].

In Fig. 16(d), |w|'-FL-scaling is clearly observed in x, and x[, below Tt "~ all values of ng4, as
indicated by the solid grey guide-to-the-eye line. Within the SOS regimw: Ty -~ w < TP, Xy, shows
NFL behavior (no |w|'-scaling) [see also inset of Fig. 16(d)]. With increa.n, ng > 1 and widening SOS
regime, the “slope” of x”, (on a log-log plot) becomes steeper than in ' : FL . gime, i.e. an approximate
power-law would have a power larger than 1. For 2 < ng < 2.5, X7, reaches an approximate power of %
This, however, is presumably not a pure power law, since the SOS reg me is v ot wide enough, i.e. the RG
flows of Fig. 16(a-c) are yet far from reaching a stationary fixed » v.at in wne SOS regime. For ng > 2.5,
however, the slope is again lowered to almost 1.

Based on these observation and the RG flows we argue that inviwguin  NFL behavior with relevance for
Hund metals occurs mainly in the filling regime of approrimately * 5 S ng S 2.5. Only there, a complex
two-stage screening process couples the dynamics of spin ar 1 orbital degrees of freedom by the formation
of a large, effective Hund’s-coupling induced /5 spin inclding b .ch spin degree of freedom. Although
fully screened, the orbital degrees of freedom still “feel” the sic 71y fluctuating, large local moments, which

is reflected in the fact that, in the SOS regime in Fig. I '), we “slope” of x/, is increased compared to
FL scaling.
To summarize, we argue that the suppression of Z w. " - Hund metal regime around ng 2 2 at moderate

UkU C(S) is mainly caused by SOS, and thus by the p1 - ence of a sizeable Hund’s coupling in the system.
It is not triggered by Mottness (iii), the proximit,” .~ the MIT at half-filling, ngy = 3. Of course, as also
known from the MIT in the one-band Hubbard mode’ 2 s further lowered by the proximity to the MIT at
ng = 3, but this effect is strong only close to 7, = ¢ -~ 1is subleading in the Hund-metal regime. Further,
the physics close to ng = 3 is dominated by fully b.. ~ked orbital degrees of freedom while for Hund metals
the orbital degrees of freedom play a subtle »nle in the nature of the NFL physics.

We remark that our insights might b’ releve 1t to better understand the physics of iron pnictides with
hole and electron doping [14, 19]. For ins ~nce, f r BaFe2As2 (with a nominal d6 occupation in the parent
compound) correlations are enhanced pon ap, oaching half filling with hole-doping, achieved by replacing
Ba with K, and reduced upon electr n dr ping achieved by replacing Fe with Co [65].

5.7. Filling dependence of the cor ‘vressibuucy, Kel

We finish this section with a Jdiscus.”~n of the compressibility in Fig. 16(f). We plot u versus ng to access
the zero-temperature behavio: o. the electronic compressibility, ke = %—’:ﬁ, for finite J = 1 and for several

values of U, varying from s. ~ht'y above Uc(g’) to slightly above U 6(22) Solid (dashed) lines are the results
for a mS (iS), respectivels Norw. lly, ko has finite, positive values for metals and vanishes for insulators.
We would like to invest zate whether ke remains positive throughout, or becomes negative for ny close
to the MIT at ng = 2 0. wse co the MIT at ng = 3. The latter scenario, a zone of Hund’s-coupling-
induced negative con piessibiliy in the ng-U phase diagram, has been observed in a slave-boson study [58]
of degenerate and r »n-dege erate multi-band Hund models, for nonzero J and U > U, at T' = 0. The
divergence of ke, whe " K hanges sign, has been assumed to be connected to the enhanced critical T, of
HTCS. However ror the 3HHM, for all parameters studied in Fig. 16(f), p clearly increases monotonically
with ng. Hence the slo e, ke, is positive for all non-integer fillings, also close to the insulating phase at
ng = 2 and ng = 2 w'ere ng is fixed and thus incompressible for varying p, i.e. ke = 0. We summarize
that, for ou ." v no negative (or divergent) compressibility has been observed for the 3HHM. We note,

though, that .~ rinciple a compressibility divergence can occur very close to a MIT in certain situations
[41].
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6. Conclusion

In this work, we studied the full phase diagram of the 3HHM at zero temperature wi.. real-frequency
DMFT+NRG data. Our main goal was to reveal the origin of the bad-metallic b .ua ior (characterized by
a low quasiparticle weight Z) in the Hund-metal regime (hatched area in Fig. 7 ans to establish a global
picture of SOS.

As a main result we demonstrated that, for nonzero J and for fillings 1 < ... < 3, SOS is a generic
feature in the whole metallic (and coexistence) phase of the 3HHM, indepen .en.'v of U: turning on J opens
up a new incoherent energy regime, ngrb > |w|, T > Ty, in the system. Inte estugly, for fillings around
nqg = 2 (i.e approximately in the regime 1.5 < ng < 2.5) the SOS is snecia., as has been pointed out in
Ref. [7]. There, orbital and spin degrees of freedom are coupled and .hus b-have very distinctly: orbital
degrees of freedom are (mostly) quenched below T2 and fluctuate rap. dly, wh reas spin degrees of freedom
are unquenched, form large local moments, and fluctuate extremely slawi, P .ow, the strongly reduced spin
Kondo scale, T3, both orbital and spin degrees of freedoms are £ ly ¢ .. ~ned and FL behavior sets in.

We confirm in detail that the suppression of T} with increa.” 5 J ¢an be explained from a qualita-
tive change in the underlying local multiplet spectrum, involvi._ a r.luction in the atomic ground state
degeneracy. Z is explicitly shown to be proportional to 73, and thus small due to SOS.

In agreement with the analysis in the Kondo regime of the o."HM [,1], we argue that SOS is a non-trivial
two-stage screening process, in which orbital and spin degrees ~f freedom are explicitly coupled: below Tf{b,
the orbital degrees of freedom form an orbital singlet thro»oh ¢ formation of a large, effective, Hund’s-
coupling induced 3/5 spin — including a bath spin degrec of freedom; and below T3”, the latter is fully
screened by the three bath channels of the 3SHHM.

In the real-frequency spectral function, SOS resu.'s 1 a "two-tier” QPP peak with a narrow needle
(width o< T3") on top of a wide base (width oc T}g"™.

Based on the SOS analysis we conclude, as ma,w _~sult of this work, that in the Hund-metal regime,
at sizeable J, moderate U well below Uc(2) and “Uings -lose to ng = 2, i.e far from any MIT, Hundness, i.e
scenario (i), is the origin of bad-metallic behavior . nd governs the physics of Hund metals. This constitutes
a new route towards strong correlations very distinct from Mottness: while in the latter case charges are
localized in close proximity to an MIT, H .na.. ss implies the localization of spins but not the localization
of charges. For Hund-correlated metals [ {?b is omparable in magnitude to bare atomic energy scales of
the system, while T} (and thus Z) is “tron.'v r :duced, leading to low FL coherence scales and to a broad
incoherent SOS regime. Hundness is Jhus physics governed by the QP needle being narrow, while the QP
base remains wide. Importantly, this 2¢ me *; characterized by the non-trivial interplay of orbital and spin
degrees of freedom, induced by the specia. = jo-stage SOS screening process, which essentially dominates the
normal-state incoherence of Hur 1 .. ~tals. We remark that Mottness of type (ii) does affect the SOS when
the distance to the MIT is decreased a. fixed ng = 2, by further lowering T3 and T3, while their ratio
remains constant. Whereas 7 2™ soverns the Mott transition (which requires the full QPP to disappear),
T}, being proportional to Z oo erns the strength of correlations.

Mott-correlated metals, close ~ the MIT at ng ~ 2, are dominated by Mottness, while the SOS regime
is strongly downscaled a-.d b comres negligible.

Close to the MIT at . = 7, the SOS regime widens up because the orbital degrees of freedom get
blocked by the forma’.oa of a ;o impurity spin, but its nature changes: the orbital and spin dynamics get
decoupled. Thus, M rttness « f type (iii) does not mediate the low Z in the Hund-metal regime.

In sum, our DMF "+NR; results corroborate the physical picture of Hund metals established in Ref. [6,
7, 47] and enable . une aquantitative analysis of the real-frequency properties of their unusual incoherent SOS
regime. We shc wed the - the spin-freezing phenomenon [51] and the Janus-faced influence of Hund’s rule
coupling can be  ~nsis! :ntly explained in the framework of SOS. We also explicitly demonstrated that no
Hund’s-couy .. > induced FL instabilities (negative compressibilities) [58] occurs in our study of the SHHM
phase diagran
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Appendix A. Methods

We treat the 3HHM of Eq. (1) with single-site DMFT and use full-density-macrix (12 ")NRG [35] as
real-frequency impurity solver.

Appendiz A.1. Single-site Dynamical Mean-Field Theory

Single-site DMFT is a widely-used non perturbative many-body approach +o stic ~aly correlated systems
[82]. Its basic idea is to approximate the full non local self-energy of the corre atec '>ttice model by the purely
local, but still frequency-dependent self-energy, ¥(w), of the correspon. e self-consistently determined
quantum impurity model. In our case, we iteratively map the lattice 3¥HM " Eq. (1) onto a three-band
Anderson-Hund model (AHM) of the form

Hapn = ﬁimp + I:Ibatth‘ b (A.la)

Himp = &d N + f{int [(;” (Alb)

with the same local interaction term, ﬁim, as in Eq. (1b). VWithin th 5 mapping process, the hybridization
function I'(e) = 7>, |Vi|?d(e — &x) is determined self-cor siste. ‘v and eventually fully characterizes the
interplay of the impurity and the non-interacting three-band s, ‘~ful bath,

Hyainings = 3 (ekch i, + Vildbor, + ¢, d,]) (A.2)
kv
Here df, creates a local (“impurity”) electron of f -or v vith energy ¢4 = —p. The total spin operator S

(and S;, respectively) are lattice sums over (7; — N.\. 1. charge relative to half-filling. The average local
site occupation number ng = (7;) is a measure [ ‘b= . ttice filling per site.

The lattice dynamics is fully captured by the 1. *al retarded lattice Green’s function, Gjat(w) , which is
— after the self-consistent mapping — equal to the retarded impurity Green’s function, Gimp(w) = (d, || d}).,
imposing the self-concistency condition: raeic) = Gimp(w) = G(w). Note that we consistently drop the
flavor index v for all correlation functior. - as they are identical by symmetry for all spins and orbitals.

In this work, we study Hund metz’s oni, . the Bethe lattice, i.e. we use the semi-elliptic density of
states that occurs in this limit of in“.nite lattice coordination and neglect realistic band-structure effects,
to investigate the pure correlation ..~ ¢s o multi-orbital Mott and Hund physics. The self-concistency
condition can then be simplified t ,,

I'(w) = —t*Im G(w). (A.3)

The approximation of a pr_c., local self-energy in single-site DMF'T is strictly valid only in the artificial
limit of infinite lattice coors mat’on number. However, if interactions act only locally in a lattice system
with finite coordination nvmbe.  as in the case of Hund’s rule coupling which is adopted from local atomic
physics, single-site DMF"™ is ssumed to be an appropriate method to reproduce the correct physics. This
assumption is supportew. hv rece at cluster-DMFT calculations for Hund metals [95]. Further, single-site
DMFT is in general a»'» to « ~ ¢ure basic strong correlations effects of finite dimensional systems (like the
MIT) due to its nor -pertu ~ative character: through the energy-dependence of the local self-energy both
the itinerant and loc. lized n .ture of electrons, and thus both weak and strong correlations, can be handled
on equal footing.

This is cons’ lered t. be of utmost importance for the description of iron-based HTSCs and other Hund
metals, as very . %ely, r -ither pure atomic physics nor pure band theory does apply. In these bad-metallic
multi-orbita' svstenis, the existence and interplay of itinerant, but strongly renormalized electrons and
strongly, but ~ot (uuy localized large spin moments have to be analyzed without any method-induced bias
— even far from 'ny Mott insulating state [46, 96, 49, 19].
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Appendiz A.2. Numerical Renormalization Group

In each step of the DMFT self-consistency loop, we solve the quantum-impur'.y ~roblem Eq. (A.3)
with fdmNRG, a powerful impurity solver that offers numerically exact real-frequencv spect. .l resolution at
arbitrarily low energies and temperatures for multi-band impurity models [35, 37 97| wnd lattice models in
the DMFT context [32, 85, 98].

NRG [92, 93, 37] has a longstanding and successful history as the standar.’ toor .~ deal with impurity
models. Its basic idea goes back to Wilson’s fundamental insight [92] to introdr~e a 1. _arithmic discretization
of the noninteracting bath Eq. (A.2) of an impurity model Hamiltonian an . mz » *he discretized bath onto
a 1D semi-infinite, tight-binding chain, a “Wilson chain”, with the interac.me .mpurity site coupled to one
end. The hopping matrix elements then decay exponentially down the Wil-~n ci. ‘n and introduce an energy-
scale separation that allows for an iterative RG solution scheme basd on s. <cessive diagonalization and
truncation of high-energy states. The size of the Fock state space can th s be ke st fixed with increasing chain
length while still obtaining an exponentially increased resolution -~ the ....-energy part of the spectrum.
The resolution at high energies is, however, more coarse-grained. Ne- cry eless, our approach captures all
essential high-energy features [35].

In recent years, significant progress has been made in deveic, ing NRG into an efficient high-quality
multi-band DMFT impurity solver [32, 97, 85, 98]. Our fdmNRG solve is implemented based on the QSpace
tensor library [37] applied to matrix product states (MPS) [0y, 36] us generated in NRG. In the QSpace
tensor library, Abelian and non- Abelian symmetries are impi. mented on a generic level: the state space is

organized into symmetry multiplets, and tensors “factor” ." ... vwo parts, acting in the reduced multiplet
space and the Clebsch Gordon coefficient space, respective., Diagonalization of the NRG Hamiltonian at
each iteration step can then be done in multiplet sp . ~*her than state space, significantly reducing the

matrix sizes and hence computational cost. NRG calc. 'a 1ons with three and even more degenerate bands
[37, 97, 90] became feasible, also in the DMFT = ~text 32, 98]. For solving our 3HHM in Eq. (1), we
explicitly exploit its U(1), x SU(2), x SU(3),,, syt me ~ies. We note that also models with three (or even
more) non-degenerate bands are within the re 1 ~f NRG, using iNRG, the “interleaved” version of NRG
[97]. Tt is thus also possible to study orbital ditic. ~ntiation with DMFT+iNRG, as will be demonstrated
elsewhere [67].

The fdmNRG solver is established on a co. vlete basis set [100, 101], constructed from the discarded
states of all NRG iterations. Spectral -nction: for the discretized model are given from the Lehmann
representation as a sum of poles, and can v c.culated accurately directly on the real-frequency axis in
sum-rule conserving fashion [102] at .ero ur arbitrary finite temperature. Continuous spectra are obtained
by broadening the discrete data with . <.and .rd log-gaussian Kernel of frequency-dependent width [93, 35].

To improve the resolution of sp .ctral da. ., we “z-average” over the results obtained from several, differing
NRG runs, for which the logarit mi. discretization of the bath has been uniformly shifted with respect to
each other [87, 103]. We note that, withua DMFT, the NRG discretization scheme (originally developed for
the flat hybridization functio. T'(. ) = T'O(D — |¢|) of quantum impurity models with half-bandwidth D=1)
has to be adapted to optima.'~ .scretize the frequency-dependent hybridization functions that emerge in
every step of the self-consi .cency . ~p. Here, we use a numerically stable implementation [104] of the scheme
in Ref. [87, 105] to accu’ atel rep-esent the nontrivial continuous baths in terms of discrete bath states.

Within the DMFT+N.." - ap sroach, the resolution of spectral data can be further improved by applying
the so-called self-ene gy trick |.06]. In every step of the iterative mapping, the self-energy is calculated as
the ratio of two NR( ' correl: Sion functions [106]

Fw)
Y(w) = =——= A4
©)= gy (4.4
where F(w) = ([a, H- |d}]]||d}).. The imaginary parts of both correlators, F(w) and G(w), are fdmNRG
spectral fun. .c.. ~hile the real-parts are obtained from their Kramers-Kronig transformations, respectively.

Instead of usi. v Jhe raw NRG result G(w) for the self-consistency condition Eq. (A.3), an improved version
of the (lattice) C -een’s function is calculated via the simple analytic form

Gimpr () = — (g _Je- 4t2) (A.5)
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with £ = w + p — ¥(w), valid only for the Bethe lattice. In this work we only refer to *.e improved Green’s
function and therefore drop the index from now on: G(w) = Gimpr (w).

From the improved Green’s function, we have direct access to the real-frequencv spectre. function, also
called local density of states:

Aw) = —1m GF(w). (A.6)

All computational parameters and further details of our DMFT+NRG cauw -latious are listed in the
Supplementary material of Ref. [32].

In Ref. [32] we have already demonstrated that DMFT+NRG is perfec 1y s ste for the investigation of
the 3HHM. The exponentially enhanced resolution around the Fermi level .. olves spectral features down
to the lowest relevant energy scale of the system. In contrast to QMC - uivers the NRG solver thus reaches
the strongly reduced FL ground state in a 7" = 0% simulation of the : 10del. . t the same time atomic-like
features which constitute the Hubbbard side bands are well reproducea, ~ ¢. -3 shown in Sec. 4 and Sec. 5.
The access to real-frequency quantitities helps us to understand the nati=~ of the incoherent regime together
with NRG eigenlevel renormalization group (RG) flow diagrams th t - _veal the relevant physics at all energy
scales.
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