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DISENTANGLEMENT VIA ENTANGLEMENT: A UNIFIED
METHOD FOR WANNIER LOCALIZATION*
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Abstract. The Wannier localization problem in quantum physics is mathematically analogous
to finding a localized representation of a subspace corresponding to a nonlinear eigenvalue problem.
While Wannier localization is well understood for insulating materials with isolated eigenvalues, less
is known for metallic systems with entangled eigenvalues. Currently, the most widely used method
for treating systems with entangled eigenvalues is to first obtain a reduced subspace (often referred
to as disentanglement) and then to solve the Wannier localization problem by treating the reduced
subspace as an isolated system. This is a multiobjective nonconvex optimization procedure, and its
solution can depend sensitively on the initial guess. We propose a new method to solve the Wannier
localization problem, avoiding the explicit use of an optimization procedure. Our method is robust
and efficient, relies on few tunable parameters, and provides a unified framework for addressing
problems with isolated and entangled eigenvalues.

Key words. Wannier functions, localization, compression, density matrix, band structure,
disentanglement

AMS subject classifications. 65705, 82D25, 65F30

DOI. 10.1137/17M1129696

1. Introduction. Localized representations of electronic wavefunctions have a
wide range of applications in quantum physics, chemistry, and materials science. They
require significantly less memory to store and are the foundation of the so-called linear
scaling methods [4, 16, 26] for solving quantum problems. They can also be used to
analyze the chemical bonding in complex materials, interpolate the band structure
of crystals, accelerate ground and excited state electronic structure calculations, and
form reduced-order models for strongly correlated many body systems [30].

In an effective single particle theory such as the Kohn—Sham density functional
theory (KSDFT) [21, 27], the electronic wavefunctions are given by the (possibly
generalized) eigenfunctions, denoted by {t;(r)}, of a self-adjoint Hamiltonian operator

H:
(1) Hipi(r) = efi(x), e € L.

Here 7 is an interval that can be interpreted as an energy window that indicates the
eigenfunctions of physical interest. These eigenfunctions are generally delocalized,
i.e., have significant magnitude in large portions of the computational domain. The
Wannier localization problem is as follows: find an approximately minimal set of
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orthonormal and localized functions {w,}, which have significant magnitude on only
a small portion of the computational domain, such that

Span{wj}siel g Vw = Span{wj}.

Following the convention in quantum physics, {w;} are called Wannier functions [3,
25, 42].
When the eigenvalues in Z are isolated, i.e.,

2 inf ; —ey| >0
(2) EiE%I,};‘i/QI|EZ Eirl )

the Wannier localization problem has been studied extensively in mathematics and
physics [3, 5, 7, 10, 11, 12, 13, 14, 19, 24, 25, 31, 34, 35, 36, 37]. Loosely speaking,
for a class of Hamiltonians H, one can construct exponentially localized Wannier
functions such that V,, = span{;}.,cz. The isolation condition is satisfied when
treating valence bands of insulating systems.

When the isolation condition (2) is violated, the eigenvalues in Z become entan-
gled. Entangled eigenvalues appear ubiquitously in metallic systems, but insulating
systems when conduction bands or a selected range of valence bands are also con-
sidered. The problem now becomes significantly more difficult: to both identify a
subspace V,, that admits a localized basis and construct such a basis.

The most widely used method to construct localized functions in this scenario
is a disentanglement procedure [41]. It first identifies V,, by minimizing a nonlinear
“smoothness functional.” Then it computes {w;} by minimizing a nonlinear “spread
functional” [31]. In both problems, the feasible set is nonconvex. While this two-step
method has been successfully applied to a number of applications [30], there is little
mathematical understanding of the disentanglement procedure. Sensitive dependence
on the initial guess along with a number of tunable parameters in the optimization
formulation gives rise to a number of practical difficulties in using this method. Often,
detailed knowledge of the underlying physical system is required to obtain physically
meaningful results.

In this paper, we propose a unified method to address the Wannier localization
problem for both the isolated and the entangled cases. Instead of an initial “dis-
entanglement” step, our method explicitly constructs a quasi-density matrix that
“entangles” the eigenfunctions of interest with the rest of the eigenfunctions in a con-
trolled manner. This has the effect of simultaneously identifying the subspace V,, and
constructing the localized basis. For the isolated case, our new method reduces to the
prior selected columns of the density matrix (SCDM) method [12], and hence we still
refer to our new, unified approach as SCDM.

The core technical contributions of this paper are the extension of SCDM to the
entangled band case through the use of a quasi-density matrix and a significantly
more simplified extension to crystal systems than that of our prior work [13]. While
our methodology can be used to treat a broad range of physical systems, the SCDM
algorithm for the isolated case will fail for topological insulators. In this setting,
the band structure is isolated, but the corresponding isolated bands do not admit
well-localized Wannier functions due to topological obstruction [5, 11, 40].

The SCDM method has several significant advantages. First, it is simple. There
are essentially no tunable parameters for the isolated case and only two parameters
in the entangled case. Second, SCDM is constructed using standard linear algebra
operations, which makes it easy to implement and parallelize. Third, SCDM is a
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deterministic, one-step procedure and does not require an initial guess. Hence, it will
not get stuck at local minima as other nonconvex, nonlinear optimization methods
may. Finally, SCDM unifies the treatment of molecules and crystals, while standard
methods often require a significantly more complex treatment for crystals. We provide
an interface to the widely used Wannier90 software package [33] and demonstrate
the effectiveness of SCDM via several examples of real materials with isolated and
entangled eigenvalues.

2. The SCDM method. We consider the effective one-body Schrodinger op-
erator X = —3A + V(r) in R? and all eigenfunctions of interest ¢;(r) € L*(R?).
This corresponds to problems involving molecules and nanoclusters, which require a
simpler setup than our forthcoming discussion of crystals.

For the isolated case, without loss of generality we assume that only the alge-
braically smallest N eigenvalues {¢;}Y ; are in the interval Z, and the corresponding
eigenfunctions {¢;}, are orthonormal. Using Dirac notation, the density matriz

P = Z|¢i><¢i|

is a rank N matrix that is the spectral projector associated with H onto the interval
Z. Notably, its kernel P(r,r’) decays rapidly as |r — r'| — oo (specifics of the decay
rates may be found in, e.g., [2, 26]). Intuitively, if we can select a set of N points
C = {r;}¥, so that the corresponding column vectors of the kernel {P(r,r;)}X, are
the “most representative” and well-conditioned column vectors of P, these vectors
almost form the desired Wannier functions up to the orthonormality condition.

In order to select the set C, we let ¥ € CNo*N denote the unitary matrix cor-
responding to a discrete representation of {1;(r)}¥ ; using their nodal values on N,
grid points.! The corresponding discretized density matrix, still denoted by P, is
given by P = UW¥*. Conceptually, the most representative column vectors can be
identified via a QR factorization with column pivoting (QRCP) [17] applied to P.
However, this is often impractical since P is prohibitively expensive even to construct
and store in memory. The SCDM method [12] leverages the fact that a good set C
can be equivalently computed via the QRCP of the matrix ¥* (see Remark 2.1) as

(3) UIMI=QR=Q[R1 R.

Here II is a permutation matrix, Q is a unitary matrix, R; € CN*Y is an upper
triangular matrix, and Ry € CV*WNe=N)  The points C = {r;}¥| can be directly
identified from the first NV columns of the permutation matrix II.

Remark 2.1. Under the assumption that the QRCP is computed via the algorithm
by Businger and Golub [6], in exact arithmetic the permutation matrices II computed
for factorizations of P and ¥* will be identical. However, there exist other algo-
rithms for computing so-called rank-revealing QR factorizations [8, 18]. Therefore,
the more relevant aspect of SCDM is that if a good rank-revealing QR factorization
Ul = Q [R1  Ry| is computed—in that R; is well conditioned—we have a good
rank-revealing QR factorization of P as PII = (VQ) [R1 Rs]. This justifies our use
of U* independent of the actual algorithm used for the rank-revealing QR factoriza-
tion.

1We are implicitly assuming Ng > N, and since we have discretized r, the set C will correspond
to picking NN of the Ny points to define the columns.
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Having chosen C, we must now orthonormalize the localized column vectors
{P(r,r;)} Y, without destroying their locality. Note that

r r’L Z,(/)’L _‘Z Z)

i'=1
where = € CN*N has matrix elements Eii = ¥f(ry). One way to enforce the
orthogonality is to define
N
N |
(4) wi(r) =Y Yy (@)U, U=E(E"E)">.
ir=1

Here U € CVN*VN is a unitary matrix and is referred to as a gauge in the physics
literature. The matrix square root transformation in (4) is called the Lowdin trans-
formation [29] and may be equivalently computed using the orthogonal factors from
the reduced SVD of =.

Considering

(5) E E ii = Z 1/)1// I‘Z // I‘Z ) = P(ri,ri/),

=1

the decay properties of P imply that [P(r;,r;)] may be viewed as a localized N x N

N

matrix. If the eigenvalues of (Z*Z)” 2 are bounded from below by a positive value,

then (E*Z)~ 2 will itself be localized [2], and consequently {w;}¥ ; will be localized,
orthonormal Wannier functions.

Remark 2.2. Numerical observations indicate that for many real materials, the
eigenvalues of (2*Z)~ ? are indeed bounded from below by a positive value. Further-
more, the condition number of this matrix can be very close to 1 in practice. However,
it is known that topological insulators (see, e.g., [9, 20]) have isolated band structure
but do not admit exponentially localized Wannier functions. Hence, there must nec-
essarily be a failure mode of our algorithm. In fact, for the topologically nontrivial
Kane-Mele model [23], numerical experiments have shown that, when restricted to
the occupied bands, irrespective of the column set used, Z*(k)=(k) in (19) will be-
come singular for some k in the Brillouin zone [40]. Therefore, the SCDM method,
predicated on being able to choose columns good for all k, necessarily fails. Such a
statement holds generally for topological insulators, such as Chern insulators and Zo
insulators [5, 11].

For the entangled case, we extend the SCDM method by “entangling” the eigen-
functions of interest with additional eigenfunctions through the use of a quasi-density
matrix

(6) P= lez () (W] = f(H),

where f(-) is a smooth function, Z is a subset of the support set of f, and the sum-
mation is formally over all eigenfunctions of . From this perspective, the case of
isolated band is associated with the choice f(e) = 1z(e), the indicator function on
the interval 7.
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We now assume there is a number g, such that inf;|e; — p.| is very small or even
zero. The following two scenarios of entangled eigenvalues appear most frequently
in quantum physics, corresponding to the Wannier localization problem below and
around a certain energy level (usually the Fermi energy), respectively [43]. In both
cases, f(e) is large on the region of interest and smoothly decays to zero outside Z in
a manner controlled by a parameter o (see Figure 1).

Isolated Entangled case 1 Entangled case 2
€ € €
En+1|
He T HUe T
ev T

Fi1c. 1. f(g) for the isolated and two entangled cases.

Entangled case 1: T = (—o0, pi.). In this case, we can choose a value o > 0 and
let

1) o) = %erfe <5_U“C> . M%/Eooexp <—(t_a’;)2) dt.

The function f(e) satisfies lim., o f(¢) =1 and lim._, f(g) = 0, and the transition
occurs smoothly around p..

Entangled case 2: T = (p.— 0, e+ o). In this case, we choose f to be a Gaussian
function

(®) f(e) = exp (—(‘“)) |

o2

In both cases, f(e) exhibits the smoothness and decay properties that we need,
but the choice of f(e) is certainly not unique. For instance, in entangled case 1 we
may use the Fermi—Dirac function instead. Nevertheless, numerical results indicate
that the present choices perform well in practice.

For a smooth function f, the kernel of the quasi-density matrix P(r,r’) also
decays rapidly.?2 Given a desired number of Wannier functions N,,,> we would once
again like to select NV, “most representative” and well-conditioned column vectors of
P to construct them. Let & = diag[{e;}] € RV*Y be a diagonal matrix containing
all eigenvalues such that f(e) is above some threshold, and let ¥ € CMs*Y be the
matrix containing the corresponding discretized eigenvectors. We can now compute

2Here we deliberately omit the discussion on the decay rate in order to unify the discussion for
molecular and crystal systems. For the molecular case here, we may apply the theoretical statements
in, e.g., [2, 28].

3For metallic systems, this is often set to be equal to the number of bands plus a small integer,
a heuristic recently justified mathematically [10].
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a QRCP for the weighted eigenvectors
(9) (W)= QR

and select the IV, columns corresponding to the leftmost N,, columns of the permuta-
tion II. As before, we let C = {ri}fi * denote the real space points corresponding to the
selected columns and define the auxiliary matrix £ € CN*Ne with Z; ; = f(&;)¢ (rs).
If the eigenvalues of Z*= are bounded away from 0, the choice of gauge U = Z(E*Z)~ 2
once again gives rise to the Wannier functions. Now U € CVN*Nwv is a rectangular
matrix with orthonormal columns. Figure 2 compares the delocalized eigenfunctions
and the localized Wannier functions corresponding to isolated and entangled cases
using a simple one-dimensional model problem, the details of which may be found in

Appendix B.

(a) jLNW
(b) (c) (d)

Fi1G. 2. Figenfunctions and computed Wannier functions for a simple one-dimensional model
problem. (a) An example eigenfunction plotted on the whole domain, (b) the isolated case, (c)
entangled case 1, and (d) entangled case 2. For the three examples of functions computed by the
SCDM method, we have zoomed in on the region where the bulk of the function is supported.

3. Bloch—Floquet theory. To facilitate further discussion, we briefly review
the Bloch—Floquet theory for crystal structures. Without loss of generality, we con-
sider a three-dimensional crystal. The Bravais lattice with lattice vectors a;, as, a3 €
R3 is defined as
(10) L= {RlR = nia; + nqgaz + nsas, ni,No, N3 € Z} .

The the potential V is real-valued and LL-periodic, i.e.,
V(r+mna;) =V(r) VreR3n,; cZ.
The unit cell is defined as

(11) I'= {I‘ = c1a; + c2a2 +03a3| — 1/2 <c1,C2,c3 < 1/2}
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The Bravais lattice induces a reciprocal lattice IL*, and the unit cell of the reciprocal
lattice is called the (first) Brillouin zone and is denoted by I'*. The problem formu-
lation in the previous section can be formally identified as a special case of this setup
with an infinitely large unit cell.

According to the Bloch—Floquet theory, the spectrum of ‘H can be relabeled using
two indices (b, k), where b € N is called the band index and k € T'"* is the Brillouin
zone index. Each generalized eigenfunction ¢, k(r) is known as a Bloch orbital and
satisfies Hip k(r) = epx¥pk(r) with periodic boundary conditions. Furthermore,
¥k can be decomposed as 1 k() = e Tuy i (r), where up, i (r) is a periodic function
with respect to L. An eigenpair (g5 k, up k) can be obtained by solving the eigenvalue
problem

(12) H(k)ub,k = €b,kub7k(l‘), r c F, k e F*,

where H(k) = —1(V + k)2 + V(r). For each k, the eigenvalues &, x are ordered
nondecreasingly. For a fixed b, {ep k} as a function of k is called a Bloch band. The
collection of all eigenvalues is called the band structure of the crystal, which charac-
terizes the spectrum of the operator H. In this framework, the isolation condition (2)
becomes

(13) inflep e —eprpe| >0, kK €T ey €T epp ¢ 1.

4. Wannier functions for crystals and disentanglement. Mirroring our
prior discussion, we first consider the isolated case. Without loss of generality, we
assume the eigenvalues in Z are labeled as {epx}pt,. If we rotate {41} by an
arbitrary unitary matrix, now indexed by k, U (k) € CVo*Ne_ we can define a new set
of functions

(14) lffb k(r Z Yy x(r)Up p(k), kel™.

b'=1

A given set of matrices {U(k)} is called a Bloch gauge. For any choice of Bloch gauge,
the Wannier functions for crystals are [42]

1

T o, Ve R dk, reRLREL,

(15) wp,Rr(r) =
where || is the volume of the Brillouin zone. For a class of H, there exists a
gauge such that 1;1,71( is analytic in k, implying that each Wannier function decays
exponentially as |r| — oo [3, 37]. Furthermore, the set of Wannier functions {wp, r(r)}
forms an orthonormal basis of the subspace in L?(R3) spanned by the Bloch orbitals
associated with eigenvalues in Z. For crystals, the Wannier localization problem is
thus partly reduced to the problem of finding a gauge such that 1 x is smooth with
respect to k. This can be done by minimizing the “spread functional” [31]

(16) lfun o)) = bﬁ_v: Jrnate2iear— ([ wb,o<r>2|rdr)2

Only R = 0 is considered because Wannier functions associated with different R’s
only differ by translation.

In the entangled case, the disentanglement method constructs the gauge via a two-
step procedure. It first finds a gauge U%S(k) € CNoXNw in order to disentangle the
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given set of IV}, functions into N,, functions for each k. This is obtained by minimizing
a “smoothness functional” (the gauge invariant part of the spread functional of Q;
see [30, 41] for details) with respect to k for the following auxiliary functions:

(17) e ( §:¢y (r) U5 (k), b=1,...,N, kel
b'=1

After obtaining U%#(k), a second gauge U'°¢(k) € CNv*Nw for each k is computed
by minimizing the spread functional (16). Finally, the overall gauge in the disentan-
glement method is the composition U(k) = U%s(k)U"¢ (k).

This two-step procedure can be viewed as a heuristic means to solve a nonlinear,
nonconvex multiobjective optimization problem aiming to simultaneously maximize
the smoothness functional with respect to k and minimize the spread functional. Our
numerical results indicate that, at least in some cases, this two-step procedure may
not be an effective surrogate for the desired optimization problem.

5. SCDM for crystals. We now proceed to discuss the relatively minor modi-
fications needed to generalize the SCDM method to crystals.

In the isolated case, for each k-point in the Brillouin zone the k-dependent density
matrix is gauge invariant,

(18) Pk)= > [voa)toal = > ) (e,

€p, k€L €p,kEL

and is already an analytic function of k [35, 37]. The SCDM method uses the density
matrix to construct a gauge so that Jb’k is smooth with respect to k. However, for
crystals, we need to select a common set of columns for all the k-dependent density
matrices. Our previous work [13] suggests that it is often sufficient to select the
columns using an “anchor” point kg, such as the so-called Gamma-point (0,0,0)7
to identify these columns. A generalization of this procedure is also outlined in [13],
though in our numerical experiments we have found that using the Gamma-point as
the anchor point suffices.

Let Wy, € CNo*Ne he the unitary matrix representing {1, x(r)} on a discrete grid
in the unit cell. At the anchor point kg, we compute the QRCP

Ui I = QR.

As before, let C = {rb}N ®. denote the grid points corresponding to the N} selected
columns where r, € T For each k point, define the auxiliary matrix = € CNoxNo
with matrix elements =y (k) = 1, (rpy). Then the smoothness of the density matrix
P(k) implies that each function

Py (r Z%/ r)Zy (k)

b'=1
is smooth with respect to k. As before, the SCDM gauge can be constructed via the
Lowdin transformation as

(19) Uk) = E(k) [E"(k)E(k)]
Similar to (5),

N|=

Ny,
(20) ERZEE)or = > o ac(0s) i sc(rer) = Plry, Ty K).

b=1
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Since the kernel P(ry, 1y ; k) is smooth with respect to k, a sufficient condition for the
matrix (2* (k)E(k))_% to be smooth with respect to k is that ||=*(k)=(k)—I||» < 1 for
all k in the Brillouin zone. As discussed before, numerical observations for many real
materials indicate that this condition holds but would fail in the context of topological
insulators.

Remark 5.1. Although the SCDM algorithm for the isolated case would fail for
topological insulators, when the Hamiltonian satisfies the time-reversal symmetry, it
is still of interest to modify the SCDM method to select “generalized columns” to
construct well-localized Wannier functions that do not obey the time-reversal symme-
try [11]. Another interesting possibility for treating general topological insulators is
to increase the number of Wannier functions and use the algorithm for the entangled
case. This will be investigated in the future.

As a result,

) )= 3 a0 = 3 Prae) 0950}

b=1 b=1

is smooth with respect to k. Therefore, the Fourier transform of Jb,k with respect to
k as in (15) gives rise to the Wannier functions for crystals constructed by the SCDM
method.

In the entangled case (when (13) is not satisfied), the SCDM method makes use
of a k-dependent quasi-density matrix for each k point:

(22) = [¥a) () (ol

€b,k

Here the choice of f(¢) matches what we previously discussed and depends on the
desired Z. In particular, the reduction to the isolated case is again the choice f(g) =
17(g), which reduces the k-dependent quasi-density matrix to a k-dependent den-
sity matrix. Numerical results indicate that these quasi-density matrices for the two
entangled cases are smooth with respect to k.

Let £(k) = diag[ {es .k}, | be a diagonal matrix for each k containing eigenvalues
such that f(e) is larger than some threshold. Computing a QRCP at the anchor point
in the Brillouin zone kg, we obtain

(23) f(€(ko)) Wy, IT = QR.

Analogously to before, the set of real space points C = {rb}év;”l is given by the leftmost
N,, columns of the permutation matrix II. Defining the auxiliary matrix Z(k) €
CNoXNw with matrix elements

Epp (k) = flevi)Vpx(re)
implies that

Py x( Z Yo k(1) Zp b (k)

is smooth with respect to k. If the eigenvalues of [Z2*(k)Z(k)] are uniformly bounded
away from 0 in the Brillouin zone, the gauge U (k) € CNe*Nw given by (19) is unitary
and via (21) defines {{p} that are smooth with respect to k. Equation (15) once
again yields the desired Wannier functions.
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6. Wannier interpolation for band structure. In practical electronic struc-
ture calculations, the Brillouin zone needs to be discretized using a finite number
of points denoted by the set K. The most widely used discretization scheme is the
Monkhorst—Pack grid [32], which corresponds to a uniform discretization of I'*. How-
ever, the band structure €, x as a function of k often needs to be computed on finely
discretized paths (not necessarily grid aligned) through the Brillouin zone. Because
the eigenvalues & x are in general only Lipschitz continuous with respect to k [39],
interpolating €, k for k ¢ K directly from the eigenvalues computed on the grid K can
result in large interpolation errors. The Wannier interpolation method (see, e.g., [30])
makes use of the locality of Wannier functions and can yield both higher quality
interpolation for a fixed K and improved convergence with respect to the number
of discretization points in K. We simply pair our localized functions computed via
the SCDM method with standard Wannier interpolation techniques to compute band
structure.

Observe that the computed gauge (in this case from the SCDM method) rotates
the periodic part of the Bloch orbitals as well according to

Upxe(r) =Yy 1 (0)Up 1 (K),
m

and let H(k) denote the matrix representation of # (k) in the basis {upx}. We may
then construct the reduced matrix

(24) [H ()] = (el H () [ 1) = [T (R)ER)U (k)] pr-

In particular, if the gauge were the identity matrix, then H (k) would be a diagonal
matrix with the eigenvalues at k on the diagonal. However, as noted earlier, inter-
polation via this representation may be very inaccurate. Rather, we would like to
interpolate using matrices whose entries are smoother with respect to k than are the
eigenvalues themselves.

This leads to the use of the Wannier functions in (24). The smoothness of u x
with respect to k implies that each entry of the matrix H is also smooth with respect
to k. Now Wannier interpolation is precisely given by Fourier interpolation of H (k)

onto the desired points in I'*. More specifically, the Fourier transform of H k),
1 ~
(25) HR) = ] / e R H (k) dk,

decays rapidly as |R| — co. When the Monkhorst—Pack grid is used, $(R) can be
efficiently approximated as

(26) A(R) ~ Nlr S R (k).
ke

Here Np- = NiNyNj is the total number of k-points. From $(R), H (k) for any
k € I'* can be reconstructed as

(27) Hk) =Y e*RH(R).

Rel

This matrix is small with size N,, x N,,, and computing its eigenvalues yields the
interpolated band structure e; 1 for k € I'*. The summation over the Bravais lattice
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in (27) needs to be truncated. The most natural truncation of the Bravais lattice is
the parallelepiped dual to the Monkhorst—Pack grid. However, it has been numerically
observed that the truncation with a Wigner—Seitz cell leads to smaller numerical error,
especially when Np« is relatively small [43].

7. Interface with Wannier90. The solution of the Wannier localization prob-
lem is entirely encapsulated in the Bloch gauge {U(k)}. This allows us to easily
integrate our SCDM method with the widely used Wannier90 [33] software package
(available online from www.wannier.org) in a nonintrusive way. Wannier90 requires
an initial guess for the gauge, and we may simply provide ours as input using the
proper file format. Similarly, we may use existing interfaces between electronic struc-
ture software packages and Wannier90 to get the requisite input for our code. To facil-
itate our forthcoming numerical experiments, we built an interface for our method to
Wannier90, and the code is available online from https://github.com/asdamle/SCDM.

This procedure allows us to leverage all the functionalities of Wannier90 directly.
For example, we can then either set the number of iterations to zero, which allows
us to both compute the spread of our SCDM-based Wannier functions and perform
Wannier interpolation using our computed gauge, or use our gauge as an initial guess
and see whether the optimization procedure is able to improve it. In addition, our
strategy makes comparisons with Wannier functions computed by the optimization
methodology in Wannier90 simple.

8. Numerical results. We now demonstrate the effectiveness of the SCDM
method qualitatively and quantitatively using real materials. The electronic struc-
ture calculations are performed using the QUANTUM ESPRESSO (QE) [15] software
package with the PBE exchange-correlation functionals [38].

Qualitatively, we examine the shape of the Wannier functions obtained from
SCDM and compare against the minimizer of the spread functional (16) in Wannier90.
Quantitatively, we measure the value of the spread functional for Wannier functions
obtained from SCDM, as well as the accuracy of band structure interpolation from the
Wannier functions for isolated and entangled cases. For these examples, we consider
the choice of Ny, Ny, and N, as fixed aspects of the problem instance, and therefore
the SCDM methodology relies on at most two parameters—u and o.%

Our first example is a CroOg3 crystal with collinear spin polarization. Each unit
cell has 92 occupied bands, and we are interested in the top six valence bands, cor-
responding to three spin-up and three spin-down d orbitals for the Cr atoms. This is
a challenging system for Wannier90 due to the existence of multiple local minima in
the spread functional and since the convergence of existing methods can depend sen-
sitively on the choice of the initial guess. For example, in Figure 3(a), when the initial
guess is given by projections corresponding to d,, d ., and d, orbitals, respectively,
the spread functional decreases from 70.56A% to 16.99A° within 30 steps. In contrast,
when the initial guess is given by sp? hybridized orbitals, the spread functional starts
at 193.94A2 and stops decreasing around 47.13A2, indicating that the optimization
procedure is trapped at a stationary point. On the other hand, starting from the
SCDM initial guess, the spread starts at 17.22A% and quickly converges to 16.98A%.
Figure 3(b) plots the atomic configuration and isosurface of a localized spin-up orbital
obtained from the SCDM gauge without further Wannier optimization. The SCDM

4While formally one could consider the anchor point kg as a tunable parameter, we have observed
that the default choice of using the Gamma-point as the anchor point performs robustly in practice.
Similarly, the choice of f(¢) is dictated by the type of problem that one wishes to solve.
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Fic. 3. (a) Convergence of the spread for CroOs starting from the initial guess of the gauge
matriz from SCDM (blue solid line), the initial guess from d orbitals (black dashed line), and the
initial guess from sp® orbitals (red dotted line). (b) One unit cell of CraOs and the shape of a
localized function obtained from SCDM (plot generated using Visual Molecular Dynamics [22]). The
localized function has been plotted with and without the molecular structure to better illustrate its
character and physical location.

localized orbitals clearly demonstrate d orbital character without relying on a user
specified initial guess.

Next, we consider two examples with entangled eigenvalues. Figure 4(a) shows
band structure interpolation for an Si crystal with eight localized functions computed
from SCDM. This corresponds to entangled case 1, covering both valence bands and
low-lying conduction bands. We set p = 10.0 eV, 0 = 2.0 eV and use a 10 x 10 x 10
k-point grid for constructing the Wannier functions. Figure 4(b) shows the accu-
racy of band structure interpolation for a Cu crystal with seven localized functions.
This corresponds to entangled case 2, covering valence bands near the Fermi energy
contributed mainly from the d orbitals. We use p = 15.5 eV, 0 = 4.0 eV, and a
10 x 10 x 10 k-point grid. In both cases, the SCDM method accurately reproduces
the band structure within the energy window of interest.

We now turn to graphene, a metallic system that is particularly challenging for
band structure interpolation due to the linear band structure near the Dirac point.
Figure 5 demonstrates that SCDM can accurately interpolate the band structure of
graphene even when zooming in on the region near the Dirac point. We set y = —2.5
eV, 0 =4.0eV and use a 12 x 12 x 1 k-grid for constructing the Wannier functions.

Finally, we measure the convergence rate of the band structure interpolation with
respect to an increasing number of k-points using Wannier functions obtained from
SCDM and those from a (local) minimum corresponding to the optimization objective
in Wannier90. Figure 6(a) reports the absolute value of the error of the eigenvalues for
the occupied bands of Si. The chosen path through the Brillouin zone is discretized
with 408 points. A cubic k& X k X k grid is used, and k ranges from 4 to 14. Both the
average and the maximum value of the error converge exponentially with respect to
k. For the isolated case, the error with the optimized gauge matrix is slightly smaller
than that with the SCDM gauge matrix. However, we find that visually the Wannier
functions from SCDM with a 6 x 6 x 6 k-grid already result in excellent band structure.

Figure 6(b) reports the absolute value of the error of the eigenvalues below the
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Fic. 4. Wannier interpolation with SCDM for the band structure for (a) valance and conduction
bands for Si and (b) bands near the Fermi energy for Cu. Direct calculation (red line) and SCDM-
based Wannier interpolation (blue circles).
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Fic. 5. Wannier interpolation with SCDM for the band structure for graphene (a) below the
Fermi energy and (b) near the Dirac point. Direct calculation (red lines) and SCDM-based Wannier
interpolation (blue circles).

Fermi energy for Al, which is a metallic system with entangled band structure. The
chosen path in the Brillouin zone is discretized into 510 points. A cubic k X k X k
grid is used, and k ranges from 6 to 16. We use the erfc smearing with p being
the chemical potential at 8.4 eV, and o = 4.0 eV. We compute six bands for each k
point, and SCDM picks the leading four bands. Even for metallic systems, numerical
results show exponential convergence of the band structure interpolation. Figure 7(a)
shows that Wannier interpolation using the SCDM gauge matrix with a 10 x 10 x 10
k-grid already yields excellent band structure. In particular, using the SCDM gauge
correctly reproduces band crossings even though a relatively coarse k-grid is used.
For this metallic system, the error of the eigenvalues interpolated using the SCDM
gauge matrix is systematically smaller than that of the optimized gauge matrix from
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Fi1c. 6. Convergence of the average and mazximum errors of Wannier interpolation below the
Fermi energy using the SCDM gauge matrixz and the converged Wannier gauge matrix starting from
the SCDM initial guess for (a) silicon and (b) aluminum.

Fic. 7. (a) Band structure for Al around and below the Fermi energy (black dashed line).
Direct calculation from QE (red line) and Wannier interpolation using the SCDM gauge matriz
with a 10 X 10 x 10 k-grid (blue circle). (b) Same calculation but using the Wannier gauge matric
starting from an sp® initial guess with Ny = 6, Ny = 4.

Wannier90. Therefore, optimization of the spread functional alone does not nec-
essarily improve the interpolation quality. This assessment is further justified by
performing Wannier interpolation with a gauge matrix obtained by minimizing the
Wannier spread functional directly using six bands and using four orbitals that have
sp> character for the initial guess. In this case, the optimized spread is 12.42A27 while
the SCDM gauge gives a larger spread of 18.384° However, Figure 7(b) shows that
the band structure obtained using the optimized gauge with the sp® initial guess is
significantly less accurate when compared to that in Figure 7(a) even though the same
k-grid is used. In particular, the spread functional alone is not necessarily a proxy
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for interpolation quality. On the other hand, the SCDM method obtains a smooth
density matrix for the range of the required band energies by construction.

9. Discussion and conclusion. We developed a unified method to compute
Wannier functions for systems with both isolated and entangled bands. Its simplic-
ity—in both implementation and reliance on few parameters®—makes it easy to use.
Of particular importance, our method removes the potentially sensitive dependence of
the construction of Wannier functions on an initial guess to a nonconvex optimization
(two-stage in the entangled case) procedure. This potentially makes it easier to treat
complicated materials where the choice of a good guess may be difficult and conver-
gence to local minima may hamper the construction of localized Wannier functions.
Interestingly, even though we do not seed our method with a physically informed ini-
tial guess, we are able to recover physically interpretable Wannier functions. Further-
more, as we have shown, the objective function of the existing optimization procedure
is not necessarily a proxy for good band interpolation. Collectively, these qualities
and observations make our new SCDM methodology attractive for the construction
of Wannier functions.

Appendix A. Rank-revealing QR factorizations. Our algorithm relies heav-
ily on a QRCP factorization, and therefore we briefly outline standard methodologies
for computing these factorizations and briefly discuss the more general class of rank-
revealing QR factorizations. Notably, we restrict our discussion to factorizations of
matrices that are short, wide, and full row-rank, as this is the setting most relevant
to this paper.

As outlined in section 2, given an m X n matrix with m < n and full row-rank, we
seek to compute a permutation matrix I, an m X m orthogonal matrix @, an m x m
upper triangular matrix R;, and an m X (n —m) matrix Ry such that

(28) VII=Q[R: Ry,

where the singular values of R; track those of V as closely as possible. More specifi-
cally, we would like a factorization such that

for some function g of n and k. The specific form of g(n, k) depends on the algorithm
used, and there has been significant work on developing algorithms to achieve g(n, k)
growing as slowly as possible in n and k. We direct the reader to [8, 18] for further
details.

While more recent rank-revealing algorithms may be necessary for certain prob-
lems, often viewed as pathological worst-case examples, the most widely used rank-
revealing QR factorization is a QR factorization with column pivoting due to Businger
and Golub [6]. While formally this algorithm exhibits a rather weak form of g(n, k),
its implementation in LAPACK [1] and strong practical performance have driven its
use. This practical performance holds true remarkably robustly in our setting and for
all the problems we have considered.

The underlying algorithm® is encapsulated by a simple heuristic strategy for pick-
ing II. This is outlined in Algorithm A.1 and can be colloquially summarized as greed-
ily picking columns at each step that look the least like those already selected. At the

5Essentially no parameters in the isolated case and two parameters ¢ and p in the entangled
case.
6 A textbook presentation may be found in Golub and Van Loan [17].
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conclusion of Algorithm A.1, the first m entries of 7 yield the information we require
about which m columns were selected as pivots during the course of the algorithm,
and we have omitted any reference to @ or [R1 Rg] for simplicity. Importantly,
we emphasize that Algorithm A.1 is a conceptual presentation of the algorithm. In
practice, an implementation would differ significantly from this description.

Algorithm A.1 A conceptual description of the Businger and Golub QR factorization
with column pivoting specialized to the SCDM setting.

Input: V € C™*" with m < n and full row-rank

1: Initialize w(i) =i fori=1,2,...,n
2: for k=1,2,...,m do
3: Set

j=argmax ||V(k:m,i)|2
i=k,...,n
Swap m(k) and 7(j), and V(:,k) and V (3, §)
Construct a unitary matrix H*), a so-called Householder reflector such that

A

H®BV(k:m, k) = £|[V(k : m, k)|]2e1

6: Set V(k:m,k:n)=H®V(k:m,k:n)
7: end for
8: Return: =

Appendix B. One-dimensional model problem. The one-dimensional
model problem consists of a Hamiltonian operator based on the one-dimensional peri-
odic potential plotted in Figure 8 and discretized on 1280 points. Figure 9 illustrates
additional localized functions for each of the three cases. Here we observe that their
behavior matches that of the examples shown in the main text. Here the size of the
problem allowed us to computed all 1280 eigenfunctions and only consider the ones of
interest. In the first isolated case we set p. = 0.2 and ¢ = 0.5, and in the second case
we set p, = 0.15 and o = 2. These plots may be reproduced using the included data
and files in the code repository available from https://github.com/asdamle/SCDM.

Fic. 8. The potential function for our one-dimensional model problem.
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(a) (b)

T/

(c) (d)

F1G. 9. For a simple one-dimensional model problem, we plot the eigenfunctions (a) and Wan-

nier functions for (b) the isolated case, (c) entangled case 1, and (d) entangled case 2. Here only
a portion of the computational domain (horizontal azxis) is shown to more clearly illustrate the local
structure of the Wannier functions.
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