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Light bosons, proposed as a possible solution to various 
problems in fundamental physics and cosmology1–3, include 
a broad class of candidates for physics beyond the standard 
model, such as dilatons and moduli4, wave dark matter5 and 
axion-like particles6. If light bosons exist in nature, they will 
spontaneously form ‘clouds’ by extracting rotational energy 
from rotating massive black holes through superradiance, a 
classical wave amplification process that has been studied 
for decades7,8. The superradiant growth of the cloud sets the 
geometry of the final black hole, and the black hole geom-
etry determines the shape of the cloud9–11. Hence, both the 
black hole geometry and the cloud encode information about 
the light boson. For this reason, measurements of the gravi-
tational field of the black hole/cloud system (as encoded in 
gravitational waves) are over-determined. We show that 
a single gravitational-wave measurement can be used to 
verify the existence of light bosons by model selection, rule 
out alternative explanations for the signal, and measure the 
boson mass. Such measurements can be done generically for 
bosons in the mass range [10−16.5, 10−14] eV using observations 
of extreme mass-ratio inspirals (EMRIs) by the forthcoming 
Laser Interferometer Space Antenna (LISA).

Gravitational waves allow us to measure to exquisite accuracy the 
mass and spin (M, a) of the host black hole, which gives us a model 
prediction for the boson cloud profile. We match this prediction 
with a direct measurement of the properties of the boson cloud pro-
file (as encoded in two ‘shape parameters’ A and B, defined below) 
to confirm the model with no tunable parameters. Such confirma-
tion is possible when superradiant instability has occurred, and the 
black hole/cloud system is in equilibrium during the measurement.

Superradiance occurs when the boson Compton wavelength 
λ = ħ/(msc), where ms is the boson mass, is comparable with the black 
hole’s Schwarzschild radius R = 2GM/c2, or R/λ = 0.15(M/(106M⊙))
(msc2/(10−17 eV)) ~ 1. Then the instability quickly extracts rotational 
energy from the black hole, leading the black hole/cloud system to 
equilibrium on a ‘Regge trajectory’10, where the rotational frequency 
of the boson (which from now on, for simplicity, we assume to be a 
scalar field) is comparable to the black hole rotational frequency10,11:

μ ≃
+

a
Mr2 (1)s

(1)

where μs ≡ ms/ħ, = − ++r M a M2 2  is the outer horizon of the 
rotating black hole, and from now on we will use geometrical units 
(G = c = 1). The superscript (1) labels one of three possible experi-
mental ways to measure the mass (equations (1)–(3)). To a good 

approximation, the scalar field profile in the equilibrium configu-
ration is well described by11,12 Φb(t, r, θ, ϕ) = ABre−Br/2 cos(ϕ − ωRt) 
sinθ. Here A is the scalar field amplitude, μ=B M s

2 is a ‘scale’ param-
eter (note that the radial profile of the cloud has a maximum at 
rmax = 2/B), and ωR ≃ μs. Both A and B are determined through inde-
pendent physical processes: A is set by the evolution of the black 
hole/cloud system, whereas B is set by the black hole geometry 
when the black hole/cloud system is in equilibrium.

For typical black hole/cloud systems of interest, Mμs ~ 1, so 
that the field oscillation timescale ~1/ωR is of the order of seconds 
(hence much shorter than the LISA observation time Tobs) when 
M ~ 106M⊙. Therefore we can time-average the gravitational poten-
tial generated by the cloud. In the equatorial plane, the result has 
the form Φb(r) = Φb(A, B, M, r) (see equation (11) in the Methods). 
By imposing that Φb(r) ~ −Ms/r at large r, where Ms is the total mass 
in the boson cloud, we can relate the scalar field amplitude to its 
mass: μ π μ= ∕ −∕ ∕ ∕A M M M( ) [8 (4 )]s

2 3 2
s
1 2

s
2 2 1 2. Therefore, if we can 

measure the amplitude A and scale B of the scalar cloud we get two 
more estimates of the boson mass:

μ = ∕ − ∕M B( ) (2)s
(2) 1 2

and
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To infer μs
(3), we need an estimate for the mass of the boson cloud Ms. 

Although Ms can be obtained from the evolution of the black hole/
cloud system11 given μs

(1) measured from equation (1), the host’s 
initial spin and accretion rate are unknown, and therefore Ms can 
have any value in a range ∈M M[0, ]s s

max . We fix Ms
max by assuming 

that the initial black hole spin (pre-superradiant amplification) is 
maximal. Even under this conservative estimate, we find that the 
ultralight boson hypothesis can be either confirmed or ruled out.

The superradiant instability occurs on a timescale 
τinst ~ ∕ ∕−

⊙
−j M M m c10 yr (10 ) (10 eV )5

in
1 6 8 17

s
2 9, where jin denotes 

the dimensionless spin of the black hole before the occurrence of the 
superradiant instability9,13. Once the non-axisymmetric boson cloud 
has grown, it dissipates through gravitational waves on a much longer 
timescale τGW ~ × ∕ ∕−

⊙
−j M M m c5 10 yr (10 ) (10 eV )11

in
1 6 14 17

s
2 15.  

Therefore we can assume that the superradiant instability occurs 
quickly τ τ≪( )inst GW  and that the black hole/cloud system is in equi-
librium over a typical LISA observation time τ τ~ ≪ ≪T 1 yrobs inst GW.  
The black hole/cloud system will remain in equilibrium even 
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if there is accretion, because the (Salpeter) accretion timescale 
τ ≫ Tacc obs (ref. 11).

From an observational standpoint, there is no reason that three 
independent measurements of the boson mass using equations (1)–
(3) should yield the same result, unless the superradiant instability 
hypothesis is correct. The gravitational waveform emitted by the 
EMRI of a small compact object orbiting the black hole/cloud sys-
tem encodes both the host geometry and the gravitational potential 
of the cloud, making it possible either to confirm this hypothesis 
if the measurements are self-consistent or to rule it out if they are 
not. In other words, a measurement of one μ i

s
( ) (i = 1, 2, 3) gives the 

boson mass only if the boson cloud exists. However, a self-consis-
tent measurement of more than one μ i

s
( ) confirms the existence of 

the cloud.
EMRI observations by LISA can measure both the mass and 

spin of the host black hole to better than 1% accuracy14. Matter 
effects may be resolved when the density of the surrounding mate-
rial is sufficiently high: in fact, such matter effects are resolvable 
even when the density is much smaller than expected from boson 
clouds15. Therefore, as we show below, the tests that we just outlined 
can be performed with LISA EMRI observations. For illustration: 
if the mass M = 105M⊙ and spin a = 0.6M can be measured to an 
accuracy ~1%, and A and B (with degeneracies) may be measured 
to an accuracy ~10%, taking the 95% confidence interval of Ms ∈ [0, 
0.1M], then the three estimates of the ultralight boson particle μs

(1),  
μs

(2) and μs
(3) would have errors ~12%, 8% and 69%, respectively.

As a proof of principle, let us first consider a case study of a sys-
tem in which it is indeed possible to confirm the existence of ultra-
light bosons with LISA. We construct an EMRI gravitational-wave 
template in the black hole/cloud potential of equation (11), where 
A and B are free parameters. Following previous work15, to compute 
the evolution we include the lowest post-Newtonian (PN) order in 
the phasing as well as the leading-order contribution from matter 
effects. We also add spin-dependent PN corrections to the inspi-
ral waveform (as implemented in the LIGO Algorithm Library16), 
which allows us to estimate the black hole spin17,18. Because the 
waveform includes matter effects, an EMRI observation allows us to 
infer both the boson cloud and host black hole properties: in partic-
ular, by matched filtering we can recover the masses and (aligned) 
spin of the central black hole, as well as the boson cloud amplitude 
and steepness parameters (A and B).

To be specific, we consider gravitational waves from a stellar-
mass black hole (m = 60 M⊙, a′ = 0) inspiralling into a supermas-
sive black hole (M = 105 M⊙, a = 0.6M) surrounded by a cloud 
generated by bosons of mass μs = 2.26 × 10−16 eV, with total cloud 
mass Ms = 0.05M, one year observation time and a LISA signal-to-
noise ratio (SNR) (h, h)1/2 = 97, which corresponds to redshift z ~ 1 
(refs. 14,19). We use a nested sampling Markov chain Monte Carlo 
algorithm to recover three independent posteriors μ i

s
( ) (i = 1, 2, 3) 

from measurements of M, a, A and B. Figure 1a shows that in this 
case we confirm the ultralight boson hypothesis because all three 
measurements overlap. In Fig. 1b we consider instead the gravita-
tional-wave signal produced by a small compact object falling into a 
black hole surrounded by a dark-matter mini-spike with ρsp = 3 × 105 
M⊙/AU3, α = 1 and rsp = 6M (see Methods for the motivation for the 
parameters)15,20. In this case, we can rule out ultralight bosons as a 
source of the matter distribution, because the recovered ultralight 
boson masses do not overlap.

It is natural to ask whether the case study shown above is generic: 
can similar measurements be done across a range of binary param-
eters and boson masses? To answer this question, we simulated 
one year of LISA EMRI observations for different boson masses by 
varying the host spin j ∈ [0.4, 0.98], mass M and SNR. To sample 
this large parameter space, we used a (much faster) Fisher informa-
tion matrix calculation to recover parameters. As shown in Fig. 2, 
we found that it is possible to carry out consistency checks for two 

or more of the μ i
s
( ) for a broad range of binary parameters and for 

boson masses μs ∈ [10−17, 10−14] eV. Extending the observation time 
improves the lower bound, but masses μs ≲ 10−20 eV result in unmea-
surable effects (the waveform phase correction due to the cloud 
contributes less than one gravitational-wave cycle). At the opposite 
end of the mass range, black hole/cloud systems with μs ≳ 10−14 eV 
would produce EMRI signals outside of the LISA sensitivity band.

Our work is meant to be a proof-of-principle demonstration that 
binary pulsar-like tests of ultralight bosons are possible through 
EMRI observations with LISA, but future efforts to model the sys-
tem more precisely will be required for the practical implementa-
tion of this programme in the LISA data analysis. Gravitational 
waves from EMRIs can be computed to high accuracy for astro-
physical massive black holes in isolation, which are characterized 
only by their mass and spin, but surrounding matter can back-react 
on the binary. Back-reaction effects are small for the high mass 
ratios considered here, but they can be relevant for comparable-
mass binaries.

Furthermore, it will be interesting to take into account the pos-
sibility of ‘mode mixing’: perturbations due to the small orbiting 
companion can mix superradiating modes with ‘dumping’ (infall-
ing) levels of the cloud, causing the cloud to collapse before the 
binary can trace its properties21. If this occurs, our test will yield a 
null result with non-overlapping distributions for the μ(i) values, as 
we would not measure the effects of the cloud. The disturbance on 
the cloud due to a companion is an active area of research: recent 
work suggests that the boson cloud would, in fact, survive mode 
mixing in the high-mass-ratio scenario studied in this paper when 
the small object is in a co-rotating orbit22, and then a measurement 
would be possible. Counter-rotating EMRIs are less likely to be 
detectable by LISA23. Numerical estimates of the cloud mass after 
depletion can be approximated by the phenomenological fits ~Ms 
(1 − exp(−10q1.2(Mμs)0.18)) and ~Ms(1 − exp(−2.3q0.9 − 10(Mμs)3/2))  
for co-rotating and counter-rotating orbits, respectively, as long 
as the mass ratio q ≲ 0.1 and Mμs ≲ 0.2 (ref. 22). Cloud depletion 
can therefore be neglected for most EMRIs, except for a narrow 
region of parameter space involving astrophysically rare counter-
rotating orbits.
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Fig. 1 | Three independent posterior distribution measurements of 
ultralight boson particle masses 

s
(1,2,3)μ  from a single gravitational-wave 

observation with LIsA. See equations (1)–(3). a, The signal is produced by 
an EMRI into a black hole/cloud system with μs = 2.26 × 10−16 eV. All three 
measurements overlap with each other, favouring the presence of the cloud 
over the ‘no cloud’ hypothesis with Bayes factors >Blog 1, 000nocloud

cloud  (top 
right). b, The black hole has the same properties, but the ‘cloud’ is produced 
by a dark-matter mini-spike. Measurements do not overlap, ruling out the 
boson cloud hypothesis with Bayes factors >Blog 30cloud

other .
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We have accounted for possible degeneracies between the binary 
parameters and effects due to the boson cloud by using nested 
sampling to simultaneously infer the binary’s intrinsic parameters 
(masses, spins), the cloud properties and the merger time (maxi-
mizing over the phase of the wave). The effect of the cloud is a 
slow cumulative shift uniquely tied to the cloud’s density profile, 
so (as expected) we found that the degeneracy between the orbital 
parameters of the binary and the cloud parameters is small. Figure 1 
shows that the consistency test can be performed for SNRs that can 
be achieved with LISA14. We have also verified that the consistency 
test is possible when including eccentricity corrections at first order 
in the gravitational-wave phasing24.

Following previous work11,12 we focus on the most unstable mode, 
as it accounts for most of the matter distribution. Higher modes are 
unlikely to be observed because they would only become unstable 
on much longer timescales (τ ~ 10inst

HM 7 years for the illustrative case 
considered here)13. This is appropriate for the present order-of-mag-
nitude estimate of the effect of the matter distribution. However, the 
next-to-leading order mode can be filled through superradiance on 
a timescale one or two orders of magnitude higher than the first 
mode’s dissipation timescale. If the fundamental mode is depleted 
by gravitational radiation, our proposed test can still be performed 
by replacing equations (1)–(3) with the equivalent expression for 
the next-to-leading order mode.

For simplicity, we assumed that the small compact object is in 
an equatorial orbit, and we computed the gravitational potential for 
real scalar fields. However, our results also apply to complex sca-
lar fields where the potential is stationary25. In the same spirit, we 
used PN waveforms with aligned spins, as opposed to more realis-
tic, fully precessing EMRI waveforms with eccentricity14,26,27. These 
corrections will matter in LISA data analysis, but they contribute 
only a fraction of the total phase shift, and so they can be omit-
ted for order-of-magnitude estimates. We have also checked the 
convergence of the PN expansion by comparing the accumulated 
phase shift of the highest term relative to the next-to-highest term,  

finding that the difference is at the per cent level. Another inter-
esting effect is that, because the potential of a boson cloud is not 
spherically symmetric, orbital resonances could result in angu-
lar momentum transfer between the companion and the cloud, 
increasing the orbital eccentricity12. These resonances are an inter-
esting topic for future study, but we verified that they do not occur 
for the orbital parameters considered here.

In conclusion, the possibility of obtaining three independent 
measurements of ultralight boson masses that can be cross-com-
pared for consistency is mostly unaffected by the corrections listed 
above. We have demonstrated that LISA EMRI observations, in 
a realistic SNR range, can be used to confirm (or rule out) the 
formation of ultralight boson condensates around astrophysical 
black holes in the mass range μs ∈ [10−16.5, 10−14] eV, directly prob-
ing the existence of ultralight bosons. More accurate waveform 
models and more accurate treatments of superradiance (including 
higher-order modes and possible transitions among superradiant 
states) will be needed for an implementation of this idea in LISA 
data analysis.

methods
Posterior estimation. We consider a LISA EMRI signal from a black hole/cloud 
system and use nested sampling (as implemented in MultiNest28–30) to evaluate 
the posterior distribution of our measurement, with the likelihood defined for 
coloured Gaussian noise following the LISA power spectral density31

L θ θ θ θ
→

=
→

−
→ →

A B s h A B h A B h A Blog ( , , ) ( , ( , , )) 1
2

( ( , , ), ( , , )) (4)

Here s is the injected signal, which we assume to be noiseless (this is approximately 
true at high SNR, as in our chosen scenario), and θ

→
h A B( , , ) is the gravitational-

wave template at 3.5 PN order17,18,32 for a detector oriented optimally for the plus 
polarized wave, which we use in our parameter estimation to sample over both 
binary parameters θ

→
 and matter parameters A, B.

The gravitational potential due to the cloud is included at lowest PN order15:

= ψ ψ π ϕ+Δ + +h f h f( ) ( )e (5)i f f ft( ( ) ( ) 2 2 )matter c c

where h(f), ψ(f) are the amplitude and phase of the gravitational wave, Δψmatter(f) 
is the phase shift due to matter effects, and (tc, ϕc) are the time and phase of 
coalescence.

The inner product (a, b) is defined as











∫= ℜ

∞
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n0

where Sn(f) is the LISA power spectral density31. We take the absolute value of the 
inner product to maximize over the phase of coalescence33,34. In our parameter 
estimation, we simulate a single gravitational-wave event with given parameters 
and sample over binary masses (m1, m2), aligned spins (s1, s2), time of coalescence tc 
and boson cloud parameters (A, B): see equation (11).

Because the nested sampling approach is computationally expensive, we use  
the Fisher information matrix approach35 to explore the full parameter space  
(Fig. 2). The elements of the Fisher matrix are calculated by taking the inner 
product between derivatives of waveform







θ θ
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∂

∂
∂

h h, (7)ab a b

The measurement uncertainties and correlations are given by

θΔ = Σ

= Σ

Σ Σ
c

(8)

a aa

ab

ab

aa bb

respectively, where Σ = Γ−ab
ab

1. In this approach, we implemented the gravitational-
wave template at 2PN order35. We have verified that the Fisher matrix estimates are 
consistent with the nested sampling results.

Bayes factors. We define three hypotheses: (1) there is a matter cloud produced 
by ultralight bosons H( )cloud ; (2) there is some matter distribution similar to a 
bosonic cloud, but not necessarily produced by ultralight bosons: that is, equations 
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Fig. 2 | median error of the measurements 
s
(1,2,3)μ  as a function of the 

sNR, ultralight boson mass μs and mean host black hole mass Mmean. The 
consistency test is available across a wide range μs ∈ [10−16.5, 10−14] eV 
(that is, above the black contour, B =log 7other

cloud ). The presence of the 
cloud can be inferred over μs ∈ [10−17, 10−14] eV (above the red dashed 
contour, B =log 7nocloud

cloud ). We have simulated a population of binaries 
distributed logarithmically across host mass M ∈ [103, 107] M⊙ and 
mass ratio q ∈ [10−3, 10−2], and linearly in host spin j ∈ [0.4, 0.98]. We 
average all measurements over spin, and use a Gaussian filter on the 
data for visualization purposes. The black solid contour corresponds to 

B =log 7other
cloud ; the dash-dotted, dashed and dotted contours correspond to 

B =log 0nocloud
cloud , 7 and 14, respectively.
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(1)–(3) are not necessarily satisfied H( )other ; and (3) there is no cloud H( )no cloud . 
The corresponding evidences are:

Z L

Z L

Z L
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where α ≡ − ∕a M1 ( ) 2
, θ
→

 are the binary parameters, L θ
→

A B( , , ) is the likelihood, 
and f(M, a, Ms) and g(M, a) can be found by solving equations (1)–(3) for A and 
B. We computed the Bayes factor of two hypotheses Hx and Hy, that is, the ratio 
B Z Z= ∕x

y
y x, using nested sampling. As alternative hypotheses typically cause only 

small corrections to the gravitational waveform, we set conservatively a uniform 
prior on (A, B) so that the effect on the waveform phase is at most of order 1%, 
but still measurable (≳1 rad). We additionally cut off the prior at a maximum 
of (3A, 3B), to be conservative. Setting a completely uniform prior or allowing 
for negligible phase deviations would yield more optimistic results. Ms is set to 
be uniform over Ms ∈ [0, 0.1]M. When using the Fisher information matrix, we 
compute the Bayes factors following standard methods36. We have verified that the 
results are compatible with the nested sampling analysis.

Waveform. We estimate the waveform by perturbing the energy balance equation15. 
The gravitational potential produced by the boson cloud is12

πΦ ≃ − − −
− − + −
− − + −
+ − − − + ∕

−r A e MB r B r M r

B r M r B r r M
B r M r B Mr B r
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b
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4 3 3 2

2 3 2 2 2

4 3

We expand the phase shift to first order in Φb/ΦBH, where ΦBH is the gravitational 
potential in the absence of the cloud. This introduces a correction to Kepler’s  
law and the energy balance and changes the accumulated orbital phase shift.  
The phase shift due to matter can be computed from the orbital energy  
balance equation15
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and Φ(r) = −M/r + Φb(r). Here μ is the small compact object mass, v is the velocity 
of the companion and ω is the orbital angular frequency. This gives the rate of 
change of the orbital radius

μ ω
μ μΦ

′ = −
′ + ′

r t r
vv r r

( ) 32
5[ ( ) ( )]

(14)
2 4 6

which can be translated to the total gravitational-wave phase shift using the 
stationary phase approximation37:

ψ π ϕΔ = −ft f f2 ( ) 2 ( ) (15)matter

where the time and orbital phase are given by

∫
∫ϕ ω

=
′

=
′

t f
r t

r

f
r t

r

( ) 1
( )

d

( )
( )

d
(16)

and we only consider matter contribution. The mapping between the orbital radius 
and the gravitational-wave frequency may be solved by inverting the following 
relation for r

and expanding to first order in ϵ Φ Φ= ∕b BH (ref. 15). We have included first-order 
corrections from matter effects, and verified that second-order corrections cause 
negligible phase corrections in the gravitational waveform at per cent level in the 
case that we consider here.

Dark-matter mini-spike. To illustrate a case in which our black hole/cloud 
test discriminates other effects from boson clouds, we consider a black hole 
surrounded by a dark-matter mini-spike (similar constructions were used in 
previous work15). We assume the mini-spike density to follow a power-law











ρ ρ=

α−

r r
r

( ) (18)sp
sp

where ρsp and rsp are the density and radius normalization constants, and α  
gives the steepness of the profile. We follow ref. 15 to construct the orbital phase 
shift of the gravitational wave due to the mini-spike. To assess whether the dark-
matter mini-spike can mimic a boson cloud, we first construct the orbital phase 
shift due to a dark-matter spike, then fit the results using a boson cloud, but 
treating the A and B parameters as free. We set ρsp = 3 × 105M⊙/AU3, α = 1 and 
rsp = 6M, which causes an orbital shift of similar order as the boson cloud in our 
example scenario.

We chose the dark-matter mini-spike parameters to mimic boson cloud 
effects. If we had chosen the dark-matter mini-spike profile expected to form 
through adiabatic growth from a seed black hole in a typical cuspy dark-matter 
environment with density ~GeV/cm3 at 100 kpc (ref. 38), or if we had chosen 
different values of α, the discriminatory power of our test would have improved 
even further.
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