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We investigate the dynamics of a swimming microorganism inside a surfactant laden
drop for axisymmetric configurations under the assumptions of small Reynolds number
and small surface Péclet number (Pe). Expanding the variables in Peg, we solve the
Stokes equations for the concentric configuration using the Lamb’s general solution while
the dynamic equation for the stream function is solved in the bipolar coordinates for
the eccentric configurations. For a two-mode squirmer inside a drop, the surfactant
redistribution can either increase or decrease the magnitude of swimmer and drop
velocities, depending on the value of the eccentricity. This was explained by analyzing
the influence of surfactant redistribution on the thrust and drag forces acting on the
swimmer and the drop. The far-field representation of a surfactant covered drop enclosing
a pusher swimmer at its center is a puller; the strength of this far-field is reduced due to
the surfactant redistribution. The advection of surfactant on the drop surface leads to
a time-averaged propulsion of the drop and the time-reversible swimmer that it engulfs,
thereby causing them to escape from the constraints of the scallop theorem. We quantified
the range of parameters for which an eccentrically stable configuration can be achieved
for a two-mode squirmer inside a clean drop. The surfactant redistribution shifts this
eccentrically stable position towards the top surface of the drop, although this shift is
small.
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1. Introduction

Locomotion of motile microorganisms near a wall /interface is ubiquitous in nature, due
to which there has been a large body of literature to explain the available experimental
observations (see sections on swimming near surfaces in Lauga & Powers (2009); Elgeti
et al. (2015)). The presence of a non-deforming wall/interface can influence the dynamics
of a swimming microorganism near it in a few ways. First, it can modify the speed of
a microorganism. For instance, a Taylor’s swimming sheet, with a fixed waveform, is
found to swim faster near a wall than that in bulk (Reynolds 1965; Katz 1974). Second,
it can modify the trajectory of a microorganism. For instance, microorganisms such as
Escherichia coli (E. coli), which swim in straight lines in the bulk, are found to swim in
circles near a plane interface (Lauga et al. 2006; Di Leonardo et al. 2011). The direction of
rotation (clockwise or anticlockwise) depends on any slip on the plane wall, viscosity ratio
of the plane interface and the advection of the impurities (if any) on the plane interface
(Lopez & Lauga 2014). Third, the wall/interface causes the reorientation and attraction of
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microorganisms towards it. For instance, pusher swimmers (e.g., E. coli) reorient parallel
to a plane wall and move towards the wall. On the other hand, puller swimmers (e.g.,
Chlamydomonas) reorient normal to a plane wall and collide with it. One can explain the
reorientation and attraction to the wall using either (a) the hydrodynamic interactions
between the swimmer and the wall (Berke et al. 2008; Spagnolie & Lauga 2012; Lopez &
Lauga 2014) or (b) the self-propulsion and Brownian motion of the swimmer (Li & Tang
2009; Elgeti & Gompper 2009).

Among the works on the motion of a motile microorganism near an interface, some
have focused on the influence of (a) interface deformation (Trouilloud et al. 2008; Lee
et al. 2008; Crowdy et al. 2011; Shaik & Ardekani 2017a), (b) non-Newtonian fluid
behavior (Yazdi et al. 2015; Li et al. 2014) and (c¢) the surfactant advection (Lopez
& Lauga 2014; Shaik & Ardekani 2017b; Desai et al. 2018) on the dynamics of the
swimmer. It was found that the attraction and reorientation behavior of a pusher
swimmer near a plane surfactant laden interface is similar to that near a plane wall,
but the surfactant redistribution can cause the microorganism to circle the interface
in an opposite direction as compared to its circling near a clean interface (Lopez &
Lauga 2014). Later, it was observed that the swimming microorganism gets trapped
onto a spherical surfactant laden drop similar to its trapping onto a rigid sphere, but
the trapping due to a surfactant laden drop is stronger than that due to a rigid sphere
(Shaik & Ardekani 2017b; Desai et al. 2018). These works on the locomotion of swimming
microorganisms near a plane/spherical surfactant laden interface modeled the surfactant
as incompressible (Sickert & Rondelez 2003; Fischer 2004; Sickert et al. 2007; Samaniuk
& Vermant 2014) with zero surface diffusivity (surface Péclet number, Peg, ratio of the
surface advection to the surface diffusion of the surfactant, tends to infinity) accounting
for the interfacial viscosity. We analyze the locomotion of swimming microorganism near
a surfactant covered interface in the other limit of surface Péclet number i.e., low surface
Péclet number at which the surface diffusion of the surfactant dominates its surface
advection.

An artificial /biological micro-swimmer must break the time-reversal symmetry (getting
around the constraints of the scallop theorem) in order to swim at low Reynolds number
(Purcell 1977). Tt can escape from the constraints of the scallop theorem through one
of the following ways (Lauga 2011) (a) by passing waves along its flagella or the whole
body, (b) by rotating the flexible flagella, (c¢) through the finite inertia of the fluid or the
swimmer, (d) through the hydrodynamic interactions with a flexible membrane/interface,
(e) due to the non-Newtonian behavior of the suspending fluid. In other words, the scallop
theorem is not valid if there are any time-derivative terms or nonlinear terms in the
governing equations and the boundary conditions.

Particles and drops, on the other hand, exhibit several interesting phenomena due
to such nonlinearities (Leal 1980). For instance, either due to inertia, non-Newtonian
suspending fluid or the deformation of the particle/drop, (a) a spherical particle placed
in a unidirectional shear/Poiseuille flow field migrates in a transverse direction to a
fixed position that is independent of its initial position, (b) a sedimenting axisymmetric
particle in an unbounded quiescent fluid achieves an orientation that is independent of
its initial orientation and (c) a freely rotating axisymmetric particle placed in a simple
shear flow achieves a final orbit that is independent of its initial orientation. Recent
works (Hanna & Vlahovska 2010; Schwalbe et al. 2011; Pak et al. 2014)showed that the
transverse migration of the drop, in an unbounded Poiseuille flow, to a fixed position is
also possible due to the nonlinearities in the advection of the surfactant on the surface
of the drop.

In summary, nonlinearities in the flow can enable a particle to achieve a fixed po-
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sition/orientation independent of its initial configuration while they can also make a
swimming microorganism to display a net motion. Since such breakdown of kinematic
reversibility is recently shown in the context of surfactant laden drop achieving a fixed
position (nonlinearities due to the surfactant redistribution), we would like to know if a
time-reversible swimmer near a surfactant laden interface can have a net motion.

In this work, we study the locomotion of a spherical microswimmer inside a surfactant
laden drop for axisymmetric configurations by taking a perturbation in Peg. A similar
work, but on the locomotion inside a clean drop, was carried out by Reigh et al. (2017).
One of the applications of our work is to understand the physics underlying the recent
experiments on using the artificial bacterial flagella (ABF) to transport a surfactant-
laden-drop (Ding et al. 2016). According to Ding et al. (2016), ABFs placed inside a
stationary drop (since the size of the drop is larger than the microfluidic channel in
which it resides, the drop is stationary) can transport the contents within the drop
through the application of magnetic field. As mentioned by Reigh et al. (2017), if the
radius of the drop is smaller than the characteristic size of the microfluidic channel and
the drops affinity to the wall is negligible, an ABF placed inside a drop can propel the
drop, similar to the system studied in this paper.

The governing equations (Stokes) and boundary conditions concerning the locomotion
of a spherical swimmer inside a surfactant covered drop are provided in §2. For the
concentric configuration, the procedure for solving the Stokes equations using the Lamb’s
general solution is given in §3.1. For the eccentric configurations, the methodology for
solving the dynamic equation for the stream function in the bipolar coordinates is given in
§3.2. We present the results of the concentric and the eccentric configurations in §4.1 and
§4.2, providing reasons for the results in §4.2 using the drag and thrust analogy in §4.3.
We then discuss how a time-reversible swimmer inside a surfactant laden drop escapes
from the constraints of the scallop theorem in §4.4 and provide the main conclusions in
85. The technical details of several derivations, expressions for the flow field, conversion
between different coordinate systems and the validation of bipolar coordinate system
results are given in the Appendices.

2. Mathematical Model

Consider the motion of a swimming microorganism inside a surfactant laden drop, with
the orientation of the swimmer along the line joining the centers of the swimmer and the
drop. Assuming the Capillary number (ratio of the bulk viscous stress to the capillary
stresses), Ca < 1, we neglect the deformation of the drop and regard the shape of the
drop and the swimmer as sphere. The swimmer propels and through the hydrodynamic
interactions, it causes the drop to move. We hereby formulate this problem in the frame of
reference of the drop. The flow fields inside (phase 1) and outside the drop (phase 2) are
governed by the creeping motion equations and an incompressibility condition since the
inertia of the fluid can be neglected. Using the characteristic scales for the length, velocity
and the stresses as the radius of the drop ‘a’, characteristic velocity of the swimmer in
an unbounded fluid Uy, and u(’“)USq /a, where u(k) is the dynamic viscosity of the k-th
phase, the dimensionless governing equations are given by

VptR) = v2vB), v . v(®) = 0, where k = 1, 2. (2.1)

Here, p*) and v(¥) denote the pressure and the velocity of the k-th phase. The fluid
inside the drop should satisfy the no-slip and no-penetration boundary conditions on the
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surface of the swimmer
On the swimmer : v(Y = Ug — Up + u®, (2.2)

where Ug = Ugi, and Up = Upi, are the velocities of the swimmer and the drop,
respectively, u® denotes the slip velocity on the surface of the swimmer and i, is the
unit vector along the z-axis. The swimmer and the drop are assumed to be neutrally
buoyant. Since the external force acting on the drop and the swimmer is zero, the
hydrodynamic force acting on each of them ( Fg: hydrodynamic force on the swimmer,
and Fp: hydrodynamic force on the drop ) should be zero

Fg = /n~ TWds = o, (2.3)
S

Fp = /n~ T?ds = o, (2.4)
D

where n is the normal vector on the surface of the swimmer (drop) pointing into the
suspending fluid, T™) is the stress tensor for the k-th phase, dS is an infinitesimal surface
area on the surface of the swimmer (drop) and the integration is performed on the surface
of the swimmer (drop). Using the Newtonian constitutive equation, the stress tensor for

the k-th phase can be expressed as T*) = —p*) | 4 [Vv(k) + (Vv(k))T} where [ is the
identity tensor and the superscript 1" stands for the transpose. In the frame of reference

of the drop, the flow field far away from the drop should approach the negative of the
drop velocity

Far away from the drop : v(®® = —Up. (2.5)

At the surface of the drop, the flow field in both the phases should satisfy the
kinematic, dynamic and the stress balance conditions. Since the drop is non-deforming
and stationary, the kinematic and dynamic conditions are given as

On the drop : v(¥ .n=v® .n =0, (2.6)

On the drop : v(D - A =v(® . A where A =/ — nn. (2.7)

Similarly, the dimensional tangential stress balance condition is given as
On the drop : n - (T(Q) — T(l)) - A =—-Vy,

where v is the interfacial tension and the surface gradient operator is Vo, = A - V. In
general, the interfacial tension depends on the surfactant concentration (I"). Assuming
the local surfactant cocentration (I") is much smaller than the maximum possible sur-
factant concentration on the interface (I's), i.e., I'/I'» < 1, we use a linear constitutive
relationship between the interfacial tension and the surfactant concentration, which, in
its dimensional form is given as v = s — I'RT. Here 7, is the interfacial tension of the
clean interface, R is the ideal gas constant and T is the absolute temperature. Enforcing
this relation in the stress balance equation and non-dimensionalizing it using Icr = I¢q
(equilibrium concentration of surfactant), we derive the dimensionless tangential stress
balance condition as

On the drop : n - (T(2) - )\T(l)) A =MaV,I. (2.8)
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Here, A = p(M/u(® is the viscosity ratio and Ma = RT I,/ (1?Usq) is the Marangoni
number which is the ratio of the Marangoni forces to the viscous forces.

Finally, the surfactant transport equation (Leal 2007; Stone 1990) governs the distri-
bution of surfactant on the drop surface. We simplify the surfactant transport equation
in the limits of insoluble surfactant and quasi-steady state conditions (Pak et al. 2014;
Hanna & Vlahovska 2010; Mandal et al. 2016). In the insoluble limit, bulk surfactant
does not influence the surfactant distribution on the interface. This limit is valid when
coott/ (FegPeW) < O(1) and cooa/ (IgPel?) < O(1) or Bi = a®Pa/Uy, < O(1).
Here ¢ is a reference bulk concentration of the surfactant, Pe(*) is the Péclet number
defined as the ratio of the bulk advection of the surfactant to its bulk diffusion in the k-th
fluid, Bi is the Biot number characterizing the strength of kinetic desorption relative to
the interfacial convection and a(?) is the desoprtion rate constant. In these limits, the
dimensionless surfactant transport equation is given as

Pe,V, - (I'vy) = V2I. (2.9)

Here, Pe;, = Usqa/D; is the surface or interface Péclet number, D, is the surface or
interface diffusivity and v, is the tangential velocity of the fluid on the surface of the
drop, i.e., ve = A - V(1)|Dmp = A- V(Q)IDTOP.

The problem governed by equations (2.1)-(2.9) is essentially nonlinear, so we need to
make an assumption to analytically solve these equations. We assume Pe; < 1 and
expand all the variables as a regular perturbation in Pe;.

{ ORNOR (O FUS,UD} Zpef{ ()l ),7']€’f>,rj,Uj7S,Uj,D}. (2.10)

Substituting this expansion in equations (2.1)-(2.9) and collecting terms at various orders
of Peg, we derive the governing equations and boundary conditions at several orders of
Peg which are summarized in the following subsection.

2.1. Governing equations and boundary conditions at various orders of Pes

The flow field at each order of Pe, satisfies the creeping flow equations and an
incompressibility condition

vp = v v vl = 0, where k = 1,2. (2.11)

Assuming the slip velocity u® is O (1 ( ), the flow field should satisfy the following boundary
condition on the swimmer

On the swimmer : v§.1) =U;s—Ujp+d;0u’, (2.12)

where §; ¢ is the Kronecker delta. The force-free conditions on the swimmer and the drop
are given as

S
Fip=[n-T?iS=0 2.14
3D n-I; . (2.14)
D

Far away from the drop, the flow field should approach the negative of the drop velocity
at various orders of Pe,

Far away from the drop : V§_2) =-U;p. (2.15)
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On the surface of the drop, the kinematic, dynamic and the shear-stress balance condi-
tions are given as

On the drop : v§-1) ‘n= v§2) -n=0, (2.16)

On the drop : v§1) CA = V§-2) -A, (2.17)

On the drop: n- (T;z) 7}\-’}(1)) A =MaV,I;. (2.18)

The perturbed surfactant transport equations at different orders of Peg are given as

AtO(1): ViIh=0= Iy =1, (2.19)

At O (Pey): V- (Lyvos) = VaIT, (2-20)

At O (Pe2) : V- (Iovis + I1vo,s) = V21, (2.21)

where v ; is the tangential velocity of the fluid at O (Peg) evaluated on the surface of
the drop, i.e., v;s = A- v =A- v§-2)‘ .
Drop Drop

3. Solution Methodology

In this section, we describe the techniques used to solve the above mentioned perturbed
equations for axisymmetric configurations. For all non-zero values of eccentricities, we
use the bipolar coordinates approach to solve for the stream function. For the concentric
configuration, since the bipolar coordinate solution is singular, we use the Lamb’s general
solution to solve for the flow field. Solving for the concentric configuration is especially
important, as the expressions for the flow field are simple and hence they can be used to
describe the underlying physics.

When the perturbation is taken in Pey (Pak et al. 2014), the key idea is to first find the
surfactant concentration at O (Peg) (I';) by solving the surfactant transport equation at
the same order in Pe,. This equation can be solved to determine I'; because it contains
only the flow field and surfactant concentrations at lower orders of Peg, which are known
quantities (see equations (2.19)-(2.21) for instance). Once I is found, one can use it
to solve the Stokes equations at O (Peg) so as to find the swimmer and drop velocities
at O (Peg). Instead, one can avoid the process of solving for O (Peg) flow field and
use an integral theorem to directly find the O (Peg) swimmer and drop velocities from
the knowledge of O (Peg) surfactant concentration and the solution of two auxiliary
problems. We direct the reader to Appendix C for a detailed derivation of this integral
theorem, equations (C17)-(C 18) and a demonstration of the use of this integral theorem
in calculating the swimmer and drop velocities. We, however, do not use this integral
theorem and use the former approach of solving the Stokes equations at any order of Peg
to find the swimmer and drop velocities at that order in Pe;.

We further note that the surfactant concentration at O (1) is uniform (I'y = 1) and
hence the Marangoni term, proportional to the gradient of the surfactant concentration,
is zero. Therefore, the flow field and the dynamics of the swimmer and the drop at O (1)
are the same as those for the motion of a swimmer inside a clean drop. Reigh et al.
(2017), studied the motion of a swimmer inside a clean drop for concentric and eccentric
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Figure 1: (Colour online) A schematic showing the geometric configuration of a swimmer
located at the center of the drop. A vector from the swimmer’s center to the red circle
gives the orientation of the swimmer. The origin O is coincident with the center of the
swimmer and the drop. (z,y, z) and (r, 8, ¢) denote the cartesian and spherical coordinate
variables, respectively. r = 1 and r = x denote the surface of the drop and the swimmer,
respectively. We denote the fluid inside and outside the drop as phase 1 and phase 2,
respectively. In the drop frame of reference, the drop is stationary and it is placed in a
uniform streaming flow, —Up i,.

configurations using the Lamb’s general solution and the boundary element method,
respectively. Analytical results given in the present study recovers their results in the
limit of zero Pegs or Ma, corresponding to a clean drop.

3.1. Concentric configuration

In this section, we provide the methodology to derive the surfactant concentration,
flow field, swimmer and drop velocities at O (Peg) when the swimmer is located at the
center of the drop. We hereby place the origin at the center of the drop and choose a
spherical coordinate system (see figure 1 for the schematic), the most suitable coordinate
system for the concentric configuration. In this coordinate system, the surface of the drop
is located at r = 1, while the surface of the swimmer is at r = .

The most general form for the surfactant transport equation at O (Peg), where j > 1,
is given as

Vifj = f (Fo, Fl, '~~Fj—17V0,savl,sa "'vj—l,s) . (31)

We expand the surfactant concentration I in terms of the Legendre polynomials (Haber
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& Hetsroni 1972; Pak et al. 2014; Mandal et al. 2016)

o0
I; = Z I n Py, (cosb),

n=1
where I, is a constant and 6 is the polar angle. We then substitute this expansion
in the left hand side of the surfactant transport equation (equation (3.1)) and use the
orthogonality of the Legendre polynomials to determine I ,,.

Using the Lamb’s general solution (Happel & Brenner 1981) for the axisymmetric

configuration, we write the flow field in the k-th phase as

B _ N [gu® nt3 g ) n () 49
vi'= 2 { Yt St VP T ey et s e G2

n—=—oo

where gbgkz and pgkz are the solid spherical harmonics, r = r i, and i, is the unit vector

in the radial direction. For axisymmetric flows, we can write these harmonics in terms of
the Legendre polynomials as
k k
pg ) = pgrz r" P, (cosf), ¢ qb( )P, (cosd),

n

where ]35’2 and 45572 are arbitrary constants. Following Reigh et al. (2017), we modify
these constants as follows

(k) _ n ~(k) 2(k) _ 7(k)

Pin = 3an 5 3y Pant Cin =m0
where p;k,z and ¢3§’2 are again arbitrary constants. Hence, the radial and tangential

components of flow field at O (Peg) and in the kth phase are given as

vj(kr) => {p% n ¢§kn nt +p§kzn T+ qggkln,l 7"7”72} P, (cos),  (3.3)
n=0
o . (n + 3)p(k) n+1l _ (n + l)d)(k) n—1
n
=21 wly. Vi(cost),  (34)
el I Ekln 1 ¢( "
where dP"S;OS 9 — _nt )y (cosf) = —P} (cos 0) and P! is the associated Legendre

polynomial of the first order. Substituting these expressions for the velocity components

into the expression for the stress tensor on the surface of a sphere, given in Happel &

Brenner (1981), we derive an expression for the tangential stress, T(r)0 as

00 2 n—1 7(k) n+1 (k)
1| (n°— gb +n(n+2 Din
13(7’3_39 — Z _= ( b Y ( )Ry ® V, (cosB). (3.5)
=1 +n(n+2)r "7+ (1) T,

We substitute the expressions for the flow field, shear stress and the surfactant concen-
tration in the boundary conditions (equations (2.12)-(2.18)) and use the orthogonality
of the Legendre polynomlals to derlve a system of linear equations in the unknowns

165171’ pglln 1 155273,’ ﬁ; —n—1 ¢_§17)L’ ]—n 1 (b;i)n (155217: 1> Y35,8 and UJD We then
solve this system of linear algebraic equations to determine the ﬂow field, swimmer and
drop velocities at this order in Pes. We summarize the algebraic equations obtained
in satisfying the boundary conditions (equations (2.12)-(2.18)) in Appendix A. For a

squirmer with both radial and tangential modes located at the center of the drop, we
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provide the expressions for the surfactant concentration, flow field, swimmer and drop
velocities at O (1), O (Pe,) and O (Pe?) in Appendix B.

3.2. Eccentric configurations

In this section, we provide a method to evaluate the swimmer and drop velocities for
an eccentrically located swimmer inside a drop. To simplify the calculation, we derive
these velocities accurate to O (Peg). For this purpose, we solve the dynamic equation
for stream function in the bipolar coordinates. A useful relation between the cylindrical
coordinate variables (p, z, ¢) and the bipolar coordinate variables (&, 7, ¢) is given as

csinh & csinn
z = y P = ’ (36)
cosh & — cosn cosh & — cosn

where ¢ is a constant that depends on the specific geometric configuration (the radii of the
swimmer and the drop and the separation between them). In the bipolar coordinates, the
surfaces generated by & = constant are eccentric non-intersecting spheres. We therefore
denote the surface of the swimmer as £ = £g and that of drop as £ = {p. There are two
possibilities for eccentric configurations namely swimmer lying above or below the drop.
For swimmer above (below) the drop, we place the origin of the coordinate system above
(below) the drop, corresponding to s and {p < 0 (£s and &p > 0) (see figure 2 for the
schematic of the problem). Explicit expressions for g, {p and ¢ are given as

1 (1=x?=d? (1 —=x?+d? .
€5 = Tcosh™ (iix) ; €p = Fcosh™! <X2d> ; c=lsinhép|  (3.7)

where d = |e| and e = zg — zp. Here zg and zp denote the z-coordinate of the center of
the swimmer and the drop, respectively. Also the minus (plus) sign should be used for a
swimmer located above (below) the drop.

In the bipolar coordinates, the velocity components are related to the stream function
via

k k
o _hoY"  w_ noul
V, f = ——F—, V: ) = ———(F=—,
PEp oo I p O
where h = (cosh & — cosn) /c is one of the metrical coefficient of the bipolar coordinates .

We enforce these relations in the creeping flow equations to derive the dynamic equation
for the stream function, given as E4w§k) = 0, where

0 (190 0 (10
ORI .
P loe \ b oe on \ pOn (3.9)
Similarly, one can express the boundary conditions given by equations (2.12) and (2.16)-

(2.18) in terms of velocity components in bipolar coordinates which can be eventually
written in terms of stream function using equation (3.8).

(3.8)

On the swimmer:

1) _ . . s

V¢ = (Uj,s — ULD) i, g+ 0j0ug (3.10)
1 . . s ’

Vi = (Uss = Uy p) is -y + 81005
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Figure 2: (Colour online) A schematic showing the geometric configuration and its
associated coordinate system for (a) swimmer located below the drop and (b) swimmer
located above the drop. Here (z,p) and (£,7) denote the coordinate variables of the
cylindrical and the bipolar coordinate systems, respectively. O is the origin of the
coordinate systems and it is located below (above) the drop for a swimmer located below
(above) the drop. £ = g and p denote the surface of the swimmer and the drop. £ =0
denote the plane z = 0. n = 0 and 1 = 7 denote the lines |z| > ¢ and |z| < ¢, respectively.
In the frame of reference of the drop, it is stationary and is placed in a uniform streaming
flow, —Upi,.

On the drop:
W _. @ _
Vjg =Vje =0
(ORI )
Yim = Yim (3.11)
dr;
—sgn (¢p) (Tig, — AT\g,) = Mah o
where

O M) o /1 o (1
(k) _ J:€ Jim 2 [ (k) (k)
T = s 4 2l _h v — | = S — | = 12
7,€m < on + ¢ (Ujf on <h> +Uj7n o€ <h>) (3 )

Here, i¢ and i, are the unit vectors in the increasing direction of £ and 7, respectively. Also
ug and u; are the components of the swimmer’s surface velocity in the bipolar coordinates
while 9,0 is the Kronecker delta. We outline the steps used for converting the swimmer’s
surface velocity from the spherical coordinate system to the bipolar coordinate system in
Appendix D. The far-field condition (equation (2.15)) gives the following condition for

the stream function (Happel & Brenner 1981)
1
2
As€n—0, P - §p2Uj,D (3.13)

Stimson & Jeffery (1926) derived a general solution of E41/)](-k) = 0, when E? is
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expressed in bipolar coordinates and it is given as

’(/J](-k) (cosh & — cosn) —3/2 Z w; k) &) C;i{Q (cosn) (3.14)
n=0

where

wk) = A(k) cosh ( ) §+B](-’kn) sinh (n — %) {—i—C;’Q cosh (n + ) §+D( ) sinh (n + ) £

J,n

Here C;i{Q (cosm) is a Gegenbauer polynomial (Whittaker & Watson 1996) of order
n+ 1 and degree —1/2 while A(k) B™ ™ and D(yz are the unknown constants. We

7,m? am
substitute equation (3.14) in the boundary condltlons and the far-field condition, written

in terms of the stream function, to derlve 8 linear algebraic equations in the unknowns —
AE T)L, Bj(lrz, C'J(ln, Dj(lz, Aﬁ)” Bﬁ?, C’ n ) and Dﬁz — at each order in Peg and for each n.
These equations are summarized in Appendix E. We then solve these equations to derive
the explicit expressions for the unknowns.

As outlined in the solution methodology for concentric configuration, we first need to
solve for the surfactant concentration before solving for the flow field at any order in Peg.
The surfactant concentration at O (1) is uniform and hence it is a known quantity. Since,
we are solving the flow field up to O (Pey), we need to find the surfactant concentration
at O (Peg) by solving the corresponding surfactant transport equation, equation (2. 2())
Using the definition of surface gradient operator in bipolar coordinates, V¢ = i, h2 oy T

i¢,%%, we simplify the surfactant transport equation at O (Pey) as follows

A (A0 _ dugy (E=6p) ol (€=¢p) (3.15)
an \"an dn N dn '
This equation can be easily integrated with respect to n to obtain hdp L = 0 n (f &p) =

062% (& = &p). Since, only the gradient of the surfactant concentration affects the flow field,

through the shear-stress boundary condition, equation (2.18), we use the above equation
to rewrite the shear-stress boundary condition at O (Pe;) as follows.

—sgn (ép) (112, = NT{2, ) = Mafl) (€ = €p) = Mavl)) (€ = £p) (3.16)

Therefore, once the flow field at O (1) is known, we can directly evaluate the flow field at
O (Peg) without finding the surfactant concentration at O (Peg). Mandal et al. (2016),
provided a similar procedure for finding the flow field due to weakly deforming, surfactant
laden compound drops. We used this method to derive the linear algebraic equations in
the unknown coefficients provided in Appendix E.

The solution of the linear algebraic equations provided in the Appendix E furnishes
the explicit expressions for the unknown coefficients in W](IZ) These coefficients are linear

in the swimmer and drop velocities at any order in Pe,. For instance, the coefficient A§ 72
is given as

AW = Q) (A, x, Ma) Uy s + R (\, x, Ma) Ujp + S (A, x, Ma) (3.17)

n j,m

where Q(k) R(k) and S( ) are the functions of X, A and Ma. We then impose the force-

J,mn?

free condltlons for the sw1mmer and the drop given as (Stimson & Jeffery 1926; Happel
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& Brenner 1981; Brenner 1961; Rushton & Davies 1973)

i (48 + ) + s (¢s) (BY + DI | =0 (3.18)
n=1
> [A2 + ¢+ semeo) (B2 + D2)] =0 (3.19)
n=1

We solve these two equations to find the swimmer and drop velocities at any order in
Peg. Since, these two equations contain an infinite number of coefficients, we truncate
this sum to a finite number N such that the error in the evaluation of the swimmer and
drop velocities is less than 1076.

4. Results and Discussion

We note that the formulation provided in the previous two sections is entirely general as
long as the swimmer’s surface velocity u® is axisymmetric. To perform further analysis,
we need to choose a specific functional form for u®. For this purpose, we model the
swimmer as ‘squirmer’ having both radial and tangential modes. Such model is used to
describe the ciliated microorganisms which propel through the metachronal beating of
flexible cilia on their surface. According to this model (Lighthill 1952; Blake 1971), one
does not worry about the individual cilia but instead apply a boundary condition for the
velocity on a spherical surface that encompasses the cilia. Hence, the slip velocity on the
squirmer’s surface, u® is given as

u’ = Z Ay, P, (cosb) i, + Z B, V,, (cos0) ig (4.1)

n=0 n=1

where i, and ig are the unit vectors in the radial and the polar directions with the origin
located at the center of the squirmer while A,, and B,, are known constants, the so called
modes of a squirmer. We, however, do not consider the Ay mode since there is no solution
of the governing equations satisfying all the boundary conditions when such a swimmer
(squirmer having only Ay mode) is located inside a drop. A squirmer, possessing only
the tangential squirming modes, moves with a speed of Uy, = 2 B;/3 in an unbounded
quiescent fluid and we can represent the flow field far away from it by placing a force
dipole at its center, the strength of which depends on Bs mode. Since the swimming
velocity and the far-field hydrodynamics are dictated by only B; and B modes, we can
discard all other modes and study the hydrodynamics of this two-mode squirmer whose
flow field is characterized by a single parameter, 8 = Bs/B;. The swimmers possessing
B < 0 are called the pushers and they swim by repelling fluid along their axis while
drawing the fluid along the sides. The swimmers having § > 0 are called the pullers
and they swim by repelling fluid along their sides while drawing the fluid along their
axis. The swimmers having f = 0 are called neutral swimmers and their flow field is
represented by a degenerate quadrupole placed at the center of the squirmer. Due to its
mathematical simplicity, the two-mode squirmer model was used vastly in the literature
to study several physical processes involving microswimmers (Ishikawa et al. 2006; Short
et al. 2006; Doostmohammadi et al. 2012; Shaik & Ardekani 2017a). Due to this reason,
we present most of our results for this two-mode squirmer. The analyses in §4.1.1, §4.1.2,
§4.1.3, §4.2, §4.3 and §4.4 are carried out for a two-mode squirmer while the analysis in
84.1.4 is valid for a three-mode squirmer possessing A1, By, and Bs modes. For a swimmer
at the center of the drop, since the velocity of the swimmer and the drop depend only
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on A; and By modes, we note that the results and discussion provided in §4.1.1 (§4.1.4)
are valid for a swimmer with more general boundary conditions - a swimmer with ‘n’
tangential squirming modes (a swimmer with both tangential and radial squirming modes
as long as A; mode is chosen according to equation (4.15)).

Recall the perturbation scheme, v = vy + Pegvy + O (Pez). Since vy o« Ma, we can

write vi = Ma vy, hence v = vg + Pe; Mavy. In our case, vy is at most O (0.1) (for
instance, see figure 5b for the O (Pe,) flow field due to a pusher swimmer at the center
of drop at Ma = 1). So, for small Pe, analysis to be valid, Ma can be at most O (10).

We give a justification for the range of parameter values used in this paper. We assume
that water droplets are immersed in oil and take the viscosity of oil to lie in the range
0.1ptwater t0 10fwaters Where fiwater is the dynamic viscosity of the water. So, A lies
in between 0.1 to 10. This assumption of water in oil drops is in accordance with the
experiments of Ding et al. (2016), where o) = 4.6water (for FC-40) also lies in the range
of oil viscosities used in this manuscript. We take the size ratio, x, to lie in the range 0 to
1, where x < 1 means the size of the swimmer is much smaller than the drop size (this
is similar to the experiments (Ding et al. 2016)). On the other hand, x — 1 means that
the swimmer and the drop are approximately of the same size. We note that the speed
of an E. coli or an ABF in an unbounded fluid is Uyy =~ 10 pm/s (Lauga & Powers 2009;
Ding et al. 2016). Since the size of an E. coli or an ABF is (Lauga & Powers 2009; Ding
et al. 2016) 1 — 10 um, we take the size of the drop to lie in the range, a = 1 — 100 pm.
Also, we choose the equilibrium surfactant concentration and the surface diffusivity of
the surfactant to lie in the range (Ramirez & Davis 1999), I, ~ 107!3 — 107!% mol/cm?
and D, ~ 1076 — 107% cm?/s. Using these parameter values, we determine the surface
Péclet number and the Marangoni number to lie in the range, Pes ~ O (10_2 - 10) and
Ma ~ O (10 — 106). Noting that I.q = 0 or Ma = 0 for a clean drop, we extend the
range of Marangoni number to Ma =~ 0 — O (106) so as to include the scenarios of a
clean drop or very small surfactant concentrations. As a small surface Péclet calculation
is done in this paper, we choose Peg = O (10’2 — 1071) and Ma ~ 0 — O (10).

4.1. Concentric configuration
4.1.1. Swimmer and drop velocities
The swimmer and drop velocities accurate to O (Pe;) are given as (noting that Ug =
Usiz; Ujs = Ujsi; Up = Upiz; Ujp =Ujpi.)
US:UO,S—f—PeSULS; UD:UO,D+P65U1,D~ (42)

When the drop and the swimmer are in a concentric configuration, the expressions for
Uo,s, U1,s, Up,p, and Uy p for a general n-mode squirmer inside a drop are given as (see
equations (B1)-(B4))

—12(A— 1) (A1 + B1/2)x° + 103 (A1 + By) (A — 1) — 3 (A, — 2B1) (A + 2/3)

Uos = (6A—6) X5+ 9\ +6 ’
(4.3)
3
X°A (Ar + By)
=1 44
oo =10 ey 6 e or 16’ (4.4)
25 Max3A (1 — 1)(A1+ B
UIS:_ 5 aXA( X)(X+ )( 1+ 1)7 (45)

’ 12((A = 1) x5 +3/2A +1)°
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_§Ma)\ (A1 + By) X3 (1—X5)
6 (A—1)x>+3/2x+1)>

1,D

(4.6)

Our expressions for Uy g and Uy p match with the corresponding expressions derived
for the motion of a swimmer inside a clean drop (Reigh et al. 2017). We note that the
swimmer and drop velocities at O (1) and at O (Pey) depend only on A; and By modes.
Also since 0 < x < 1, it can be clearly seen that for positive values of A; and By,
Ui,s < 0and Uy p < 0. We plot in figure 3, the swimmer and drop velocities accurate to
O (Pes) for various values of size ratio x, viscosity ratio A and Marangoni number Ma.
Even though the expressions for the swimmer and drop velocities accurate to O (Pes)
are valid for n-mode squirmer, we plot these velocities for a two mode squirmer inside
a drop in figure 3. In this case, the swimmer and drop velocities are always positive if
the drop is clean. Since Ui g, Ur,p < 0 while Uy g, Up,p = 0 for a two mode squirmer
inside a drop, the leading order effect of the surfactant is to reduce the swimmer and
drop velocities. This can be seen from figure 3 where the swimmer and drop velocities for
a surfactant-laden-drop (symbols) are less than the corresponding velocities for a clean
drop (lines).

We hereby compare the swimmer and drop velocities for a surfactant covered drop with
those of a clean drop. But first, we make the following observations that hold irrespective
of the presence of the surfactant on the drop surface. The swimmer and drop velocities
decrease with the decreasing viscosity ratio, A. Also, the drop velocity decreases with
the decreasing size ratio, xy. When the size of the swimmer is much less than the size
of the drop (x < 1) or if it is approximately the same as the drop size (x ~ 1), the
swimmer velocity is equal to its velocity in an unbounded medium. Similarly, the drop
velocity is zero when y < 1 and it is equal to the velocity of the swimmer in unbounded
medium when x &~ 1. The surfactant does not affect the swimmer and drop velocities in
the limits of x << 1 or x =~ 1 because U;,s = U;,p = 0 in these limits. The swimmer
velocity exhibits a maximum (minimum) for those viscosity ratios at which it moves
faster (slower) than that in an unbounded fluid.

One feature that distinguishes the swimmer velocity in a clean drop with that inside
a surfactant laden drop is the viscosity ratio at which the swimmer velocity equals to its
velocity in an unbounded medium for all size ratios. For instance, consider the swimmer
inside a clean drop. It moves with its velocity in an unbounded medium when \ =
1(viscosity of the drop is the same as that of the suspended fluid), whereas it propels
with a speed smaller (larger) than its unbounded swimming speed, when A < 1 (A >
1). Notably, A = 1 demarcates the Us > 1 region (faster swimming region) from the
Us < 1 region (slower swimming region). Now consider the swimmer inside a surfactant
laden drop. Here A = A,p,, > 1 demarcates the faster swimming region from the slower
swimming region. This is because even for A = 1, the swimmer moves with a velocity
smaller than its velocity in an unbounded medium, so there exists a viscosity of the
drop, A = Agqpp > 1 at which the swimmer moves with a velocity equal to its unbounded
swimming velocity. Also, for the viscosities of the drop larger than this apparent viscosity
(for instance A = 10), the swimmer moves with a velocity larger than its unbounded
swimming velocity.

In figure 3c, we plot the variation of the ratio Up/Ug with the size ratio and the
Marangoni number. We see that the reduction in the drop velocity is more than the
reduction in the swimmer velocity due to the surfactant redistribution. Also, this ratio
is always less than 1 irrespective of the presence of the surfactant. This means that a
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Figure 3: (Colour online) Velocity of (a) a two mode squirmer, Ug and (b) drop, Up
as a function of the size ratio x for various values of viscosity ratio A\ and Ma. The
variation of Up /Ug with size ratio, y and Marangoni number is plotted in figure (c) for
A = 1. Lines denote these velocities evaluated for a clean drop while the open and filled
symbols denote the velocities evaluated for a surfactant laden drop with Ma = 0.1 and
10, respectively. The surface Péclet number, Pe, is chosen as 0.1 in all these calculations.
All the velocities are non-dimensionalized using Usq = 2B1/3.

two-mode squirmer located at the center of a drop is faster than the drop and hence the
concentric configuration is not a steady state configuration.

To understand the variation of the swimmer and drop velocities accurate to O (Pey)
with A\, x and Ma, we need to understand the dependence of swimmer and drop velocities
at various orders of Peg on the aforementioned parameters. For instance, we would like to
understand — why does the swimmer and drop velocities for a surfactant laden drop show
large deviations as compared to those of clean interface velocities when x =~ 0.8 —0.9.We
already plotted in figure 3 the swimmer and the drop velocities for a clean drop which
are the same as the O (1) velocities for a surfactant laden drop. Hence, we plot in figure
4, the variation of swimmer velocity at O (Pes) with x, A and Ma. From equation (4.5),
we see that U; s depends linearly on the Marangoni number, Ma. A similar trend can
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Figure 4: (Colour online) The variation of a two-mode squirmer velocity at O (Pes), Uy g,
with the size ratio x for several values of (a) Ma with A = 1 and (b) A with Ma = 1.
Inset in the subfigure (b) shows the non-monotonic variation of Uy ¢ with the viscosity
ratio A for x = 0.5. All the velocities are non-dimensionalized using Usq = 2B /3.

also be observed from figure 4a where we plotted U; g for various x and Ma. It can be
seen from equation (4.5) that U; g vanishes for either x ~ 1 or x — 0, for all values
of A and Ma. But since Uy s is non-zero for intermediate values of x and it cannot be
positive, it should exhibit a local minimum at some intermediate value of . This trend
is readily observed from figure 4b. Similarly, we see that U; s becomes zero when A — 0
or A — oo for all values of x and Ma. Since U; s is non-zero for any finite value of A and
it cannot be positive, it should display a local minimum at some intermediate value of .
We again see such trend in figure 4b or in its inset. Such non-monotonic variation of U g
with A and y explains the non-monotonic variation of the deviation between the swimmer
velocity accurate to O (Pes) and the swimmer velocity at O (1) as seen in figure 3. The
dependence of the drop velocity at O (Pes), Uy, p, on the aforementioned parameters is
qualitatively the same as the dependence of the swimmer velocity at O (Pey), Uy g, so
we do not report the variation of Uy p.

4.1.2. Far-field representation

In this section, we analyze how the advection of the surfactant modifies the far-field
representation of the flow field due to drop enclosing a swimmer at its center. Far-
field representation is useful in understanding the interaction of a particle (or a drop
or a swimming microorganism) with an interface or other particles. Even though the
concentric configuration is unstable, simple expressions of flow field associated with this
configuration enable us to evaluate several quantities of interest.

In the lab frame, the radial component of the velocity far away from a two-mode
swimmer in an unbounded fluid is given as (Blake 1971)

2
_ X
Ur|\cading = —B2P2 (cosb) 2 (4.7)
where variables with overbar indicate that they are written in the lab frame of reference.
The radius of the drop is still used for non-dimensionalizing the length in the problem of
swimmer in an unbounded fluid and this justifies the appearance of x in equation (4.7).

Similarly, the radial component of velocity outside a drop enclosing a swimmer and far
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Figure 5: (Colour online) (a) O (1) and (b) O (Pey) flow fields outside a surfactant
laden drop containing a pusher swimmer at its center in the lab frame of reference.
The background color and the unit vectors denote the magnitude and the direction of
the velocity. The red dashed lines denote the surfaces of the swimmer and the drop. Here,
8 =DBy/By =—-5,Ma=1, x=0.5and A = 1. All the velocities are non-dimensionalized
using U, = 2B1/3.

away from the drop is given as

5(2) ) Po. 5 oo )
v leading UOJ‘ Jeading + Feg Ul,r Jeading + O ( es) , ( 8)
where
o2 — 6?4+ 5? 1
Y3 |eading [¢j,—1 + p; 23 (cos 9)} =

Using the expressions provided in the Appendix B, we derive the following two ratios

_(2
o leading _ _ 64 (x* +3x% +11/3x* + 3x + 1) <0, (49)
Ur|\oading ( 44 (84 —4) X7 + (244 — 12) x5 + (484 — 24) x° ) ’ ’
+ (454 — 15) x* + (154 + 15) x3 + 24x% + 12
@ < (24 —24x) (1 — A) AMa (x* +3x3 + 11/3x? + 3x + 1) x )
UL tading \ (X% +4X° + 10x* +55/4x% + 10x2 + 4y + 1) 0
Ur |ieading 5( 8AXT + 244x° — 4X7T + 484X — 12x5 + 4544 )2 ’
—24x5 +15Ax3 — 15x* + 15x3 + 24x% + 12 + 4
(4.10)

where A = A/ (A + 1). From equation (4.9), we deduce that the far-field representation
of an O (1) flow field due to a pusher (puller) inside a drop is that of a puller (pusher) for
all values of viscosity ratio and size ratio. Reigh et al. (2017) derived a similar far-field
representation of the flow field due to a clean drop encompassing a swimmer. On the
other hand, the far-field representation of the O (Pe,) flow field due to a pusher (puller)
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inside a drop is that of a pusher (puller), see equation (4.10). This far-field behavior
of a surfactant covered drop containing a swimmer at its center can be understood by
plotting the O (1) and O (Pe,) flow fields in the lab frame of reference. We plot these flow
fields for a pusher swimmer at the center of the surfactant laden drop for the viscosity
ratio and the size ratio of 1 and 0.5, respectively, in figure 5. A pusher swimmer in an
unbounded fluid sucks fluid normal to its axis and ejects the fluid along its axis while a
puller swimmer draws fluid along its axis and ejects the fluid normal to its axis. As per
the O (1) flow field outside a drop, we see that a drop containing a pusher sucks fluid
along its axis while ejecting normal to its axis; this flow field being the characteristic of
a puller swimmer. Hence, the far-field representation of a clean drop containing a pusher
swimmer at its center is that of a puller swimmer. Similarly based on the O (Pe;) flow
field outside a drop, we see that a drop containing a pusher draws fluid normal to its
axis while ejecting along its axis. As this flow is the characteristic of a pusher swimmer,
it can be said that the far-field representation of O (Pes) flow field due to a surfactant
laden drop containing a pusher swimmer at its center is that of a pusher swimmer.Any
deviation in the flow field outside the drop from this far-field behavior is due to the
contribution of the near-field flow. Since the O (Pe;) flow field is an order of magnitude
smaller than the O (1) flow field and it is opposite to the O (1) flow in the far-field, we
conclude that the surfactant covered drop containing a pusher swimmer at its center
behaves as a puller, the strength of the far-field flow is reduced due to the surfactant
redistribution.

4.1.3. Surfactant concentration

In this section, we will provide physical reasons for the decrease in the drop and
swimmer velocities due to the surfactant redistribution when the swimmer is at the
center of the drop. For this purpose, we will utilize the justification provided to explain
a similar decrease in the rise velocity of a drop (without any swimmer inside) due to the
surfactant advection on its surface (Leal 2007). The key idea is to analyze the surfactant
concentration and the surface velocity of a drop containing a two-mode squirmer at its
center. Analytical expression for the surfactant concentration accurate to O (Pey) is given
as

I'=Ty+ Pe, I + O (Pel), (4.11)

where Iy =1 and It = I 1 P1 (cos0) + Iy 2 Py (cosf). Here, I 1 and I 2 are given as

3 5x3A
C2(2A—2) 5 +30+2
6 (x*+3x>+11/3x% +3x + 1) Bx%A . (4.12)
( (122 — 12) X7 + (36X — 36) X5 + (72X — 72) x° + (90X — 45) x* )
+ (90X +45) x4+ (72X + 72) X2 + (36 + 36) x + 12X + 12

I, =

3
F12:§

Similarly, the expression for the surface velocity of the drop accurate to O (Pey) is given
as

vol,—y = vo0l,_1 + Pesvigl,_ + O (Pel), (4.13)
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Figure 6: (Colour online) Surface velocity of a clean drop containing (a) pusher (8 = —5),

(b) puller (8 =5) and (c) a neutral swimmer (8 = 0) at its center, plotted as a function
of the polar angle for various viscosity ratios. Here, the size ratio x is taken as 0.5. All
the velocities are non-dimensionalized using U, = 2B, /3.

where
vool._ = 5x>B1 A sin (0)
0-0lr=1" 93BN =25 + 3\ + 2
6 cos (6) BaAsin (0) x* (x* +3x* +11/3x? +3x + 1)
(4N — 4) X7+ (12X — 12) x® + (24X — 24) x° + (30X — 15) x* \’
+ (30X 4 15) x> 4 (24X +24) x> + (12X +12) x + 4\ + 4
5Max*AB; (x° — 1) sin (0) (4.14)

Ul,@ r=1 =

(2X5A — 2x° + 31 + 2)°
(x — 1) cos () x2A (x* +3x® +11/3x? + 3x + 1) sin (0)
3
3 \ xMa By (x6+4x5+10x4+ Bx +10x2+4x+1)

S0 - DX+ BA=3)X" + (6A - 6) X7 + (15/20 - )}t )
+(15/20 4+ ) x>+ (6A+6) x> + (BA+3) x + A+ 1

For a clean interface, the swimmer velocity, the drop velocity and the drop surface velocity
decrease as the viscosity ratio A decreases (see figures 3a, 3b and 6). A similar decrease
in the velocity of a swimming microorganism, modeled as a Stokes dipole, near a plane
clean interface was already reported (Lopez & Lauga 2014); the reason is the decrease
in the strength of the image flow field with a decrease in A. Now, for a swimmer inside
a clean drop, we attribute the decrease in the swimmer velocity, drop velocity and the
drop surface velocity to a corresponding decrease in the strength of the image flow field
with a decrease in A

We plot in figure 7, variation of the surface velocity of the drop and the surfactant
concentration with the polar angle (6) for various values of Marangoni number, Ma and
3. We note that vg should be zero at the front and at the back of the drop due to the
axisymmetric condition. Analyzing the results for a neutral swimmer (5 = 0), we see that
the surface velocity at O (1) is always positive which leads to a monotonically increasing
surfactant concentration as shown in figure 7d. This give rise to a maximum (minimum)
interfacial tension at the front (back) of the drop. This inhomogeneous interfacial tension
generates a tensile stress imbalance which pulls the drop surface elements from the back
to the front, thereby reducing the drop surface velocity. The fluid in the vicinity of the
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Figure 7: (Colour online) Variation of the surface velocity of the drop with the polar angle
for (a) a pusher (8 = —5), (b) a puller (8 = 5) and (c¢) a neutral swimmer (8 = 0) at the
center of a drop. Solid lines indicate the results obtained for a clean drop while the dashed
lines denote the results of a surfactant laden drop with Ma = 10 and Pes; = 0.1. (d)
Variation of the surfactant concentration with the polar angle. Here the solid, dashed and
dash-dotted lines denote the results obtained for a pusher, a puller and a neutral swimmer
inside the drop, respectively. The size ratio, x, and the viscosity ratio, A, are taken as
0.5 and 1, respectively. All the velocities are non-dimensionalized using Us, = 2B4/3.

drop also gets pulled from the back to the front of the drop and since this direction of pull
is opposite to the free-stream velocity, the drop velocity reduces due to the surfactant
redistribution. Similarly, for a pusher inside a drop, since the drop surface velocity (at
O (1)) is positive near the front and negative near the back, it brings the surfactant
from both the front and back to the center of the drop as shown in figure 7d. This
gives rise to a minimum (maximum) interfacial tension at the center (the front and the
back) of the drop. Again, such inhomogeneous interfacial tension pulls the drop surface
elements from the center towards the front (the back) in the upper (lower) half of the
drop thereby reducing the drop surface velocity. This Marangoni induced drop surface
flow pulls the fluid nearby in the same direction. Since this induced flow near the upper
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(lower) half of the drop is opposite to (along) the free-stream flow and the flow near
the upper half is dominant due to V[;,, = Vlcenter > Vlbottom — Vlcenters W€ €xpect the
drop velocity to be reduced due to the surfactant redistribution. One can use a similar
reasoning to understand the Marangoni induced decrease in the drop velocity and the
drop surface velocity for a puller swimmer at the center of a drop. In conclusion, for
any two-mode swimmer at the center of the drop, the surfactant redistribution on the
drop surface reduces the drop velocity and the drop surface velocity. We recall that the
drop surface velocity also decreases due to a decrease in \ for a clean drop containing a
swimmer at its center. So, for a swimmer at the center of the drop, one can understand the
influence of surfactant redistribution on the swimmer or the drop velocity by assuming
that the surfactant advection solely decreases the apparent viscosity ratio (apparent
because the actual viscosity ratio is not affected by the surfactant redistribution). Since
the swimmer and the drop velocities reduce due to a decrease in A for a clean drop
containing a swimmer at its center, we expect a similar decrease in the swimmer and the
drop velocities due to the advection of the surfactant on the drop surface.

4.1.4. Co-swimming

As mentioned earlier, a two-mode swimmer located at the center of the drop always
has a velocity larger than that of the drop, thereby making the concentric configuration
unsteady. Due to the recent advancement in the artificial micro-swimmers, one can make
a swimmer such that it transports the drop by lying at the center of the drop for all times.
Since the swimmer and drop velocities accurate to O (Pe) depend only on A; and B,
modes, we can choose A; mode such that Us = Up. Using the equations (4.3)-(4.6), we
derive the dimensionless A; mode as

“2-D (A -DxX* A =D+ A+ )+ (A ) x + A+ 3)
A X ((A—l)x5+%)\+1) — 5Ma Pey 3\ (2X5—5X2+3)

Geo =B~ (2x°A — 2% + 83X + 2) (12x°A — 12° + 10x° + 3X + 2)
( +5Ma Pes x3X (2x° — 5x% + 3)

(4.15)
We plot the variation of the co-swimming speed, Usp, with the viscosity ratio, size ratio
and Ma in figure 8. We note that the results of this section are valid for any general
squirmer inside a drop except that A; is chosen according to equation (4.15). Analysis
of the two-mode squirmer at the center of the drop revealed that the swimmer and drop
velocities approach unity when the size of the swimmer approaches the size of the drop,
i.e., x — 1. Due to this reason, as x — 1, a., should approach zero while the co-swimming
speed should approach unity for all values of viscosity ratio and Ma as shown in figure
8. Furthermore, for large values of the drop viscosities (for instance, for A = 10), the
co-swimming microswimmer and drop have speeds larger than the speed of the swimmer
in an unbounded fluid. Similar to the results of two-mode swimmer inside a drop, we see

that the advection of surfactant also reduces the co-swimming speed as shown in figure
8.

4.2. Eccentric configurations

In this section, we study the variation of the swimmer and drop velocities with the
eccentricity. Using this analysis, we answer the following questions: Does a two-mode
squirmer inside a clean drop achieve a configuration where it will swim with the drop
(Us =Up)? If such a configuration exists and it is stable, what is the effect of the
advection of the surfactant on this configuration? How does the surfactant redistribution
affect the swimmer and drop velocities for eccentric configurations? Prior to the analysis,
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Figure 8: (Colour online) Variation of the co-swimming speed, Usp, with the size ratio
for various values of the viscosity ratio and the Marangoni number. The lines indicate
the results obtained for a clean drop while the symbols denote the results obtained for
a surfactant laden drop with Ma = 10 and Pes = 0.1. Here Uy, = 2B;/3 is used to
non-dimensionalize the co-swimming speed.

we validate the velocities of the swimmer and drop for small eccentricities (obtained using
bipolar coordinate method) with the velocities for a concentric configuration (obtained
using Lamb’s general solution) and these results are plotted in figures 14 and 15 in
appendix F.

In the top row of figure 9, we plot the swimmer and drop velocities at O (1) (this
corresponds to the swimmer inside a clean drop) as a function of the eccentricity. Since
the dependence of these velocities on the eccentricity is qualitatively the same for various
values of the size ratio (x) and the viscosity ratio (\), we report these plots for a single
representative value of y and A, namely xy = 0.5 and A = 1. In the bottom row of
figure 9, we plot the time evolution of the position of the swimmer for various initial
positions of the swimmer inside a drop. Here the first, second and third columns present
the results for a pusher (8 = —5), a neutral swimmer (5 = 0) and a puller (8 = 5) inside
a drop, respectively. From figure 9b, we observe that a neutral swimmer inside a drop
has a velocity larger than that of a drop for all values of eccentricities. Hence a neutral
swimmer inside a clean drop moves towards the front of the drop as shown by the time
evolution of its position in figure 9e. From figure 9c, we see that a puller inside a clean
drop has a fixed point (at which e < 0), in the sense that the swimmer and drop velocities
are the same at this fixed point. But this fixed point is globally unstable. This is because
a swimmer located above (below) the fixed point has a positive (negative) velocity with
respect to the drop because of which it moves away from the fixed point, towards the
top (bottom) surface of the drop as shown by the time evolution of its position in figure
9f. Finally, from figure 9a, we notice that a pusher inside a clean drop has a globally
stable fixed point (at which e > 0). This is because a swimmer located above (below) the
fixed point has a negative (positive) velocity with respect to the drop, due to which it
moves towards the fixed point as shown by the time evolution of its position in figure 9d.
To generalize these observations, we note that for a two-mode swimmer inside a clean
drop, there exists a value of 8 = (., where 8. < 0 is a function of viscosity ratio and the
size ratio, such that a swimmer with |3| < —f. behaves as a neutral swimmer. Such a
swimmer does not have any fixed points inside the drop and since it is faster than the
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Figure 9: (Colour online) For a two-mode swimmer inside a clean drop, velocity of the
swimmer (U g) (blue lines) and the drop (Up p) (red lines) are plotted as a function
of the eccentricity (e) in (a), (b) and (c¢). Time evolution of the center of the swimmer
when released from different positions inside a clean drop are plotted in (d), (e) and (f).
Subfigures (a), (d) denote the results of a pusher (f = —5) while (b), (e) denote those
of a neutral swimmer (8 = 0) and (c), (f) denote those of a puller (8 = 5). Here e > 0
(e < 0) indicates that the center of the swimmer is above (below) the center of the drop.
The size ratio, x and the viscosity ratio A were taken as 0.5 and 1, respectively. All
the velocities are non-dimensionalized using Us, = 2B;/3. The dashed lines indicate the
positions at which the swimmer touches the drop.

drop, it moves to the top surface of the drop. On the other hand, a two-mode swimmer
with 8 < 8. has a stable fixed point because of which it achieves an eccentrically stable
configuration irrespective of its initial position. Furthermore, a two-mode swimmer with
8 > —f. has an unstable fixed point because of which it moves either to the top or
the bottom of the drop depending on its initial position being above or below the fixed
point. We note that Reigh et al. (2017), carried out a similar analysis for a three mode
(A1, By and Bs) co-swimming squirmer inside a clean drop using the boundary element
method.

Earlier, we showed that the redistribution of the surfactant decreases the velocity
of a swimmer and a drop when the swimmer is located at the center of the drop.
To understand the influence of the surfactant redistribution on the swimmer and drop
velocities for an eccentrically located swimmer inside a drop, we plot in figure 10 the ratios
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Figure 10: (Colour online) Sign of the ratios Uy s/U1,s and Uy p/Us,p plotted as a
function of eccentricity e for (a) a pusher (8 = —5), (b) a neutral swimmer (8 = 0) and
(¢) a puller (8 =05) inside a surfactant laden drop. The size ratio, x and the viscosity
ratio \ were taken as 0.5 and 1, respectively.

sgn (Up,s/Us.s) and sgn (Up, p/Us,p) as a function of the eccentricity. Here sgn( ) denotes
the sign function. Since U;,s and Uy p are proportional to Ma and Ma > 0, these plots
are valid for all finite values of Ma at which the perturbation in Peg is valid. A positive
(negative) value of the ratio Uy g/U; s means that the surfactant redistribution increases
(decreases) the magnitude of swimmer velocity. One can similarly deduce the relation
between the sign of the ratio Uy p/U; p and the effect of the surfactant redistribution
on the magnitude of drop velocity. From figure 10, we see that the advection of the
surfactant reduces the magnitude of swimmer and drop velocities for a swimmer located
at the center of the drop, consistent with the concentric calculations. Even though this
trend of surfactant redistribution decreasing the magnitude of swimmer and the drop
velocities holds for most of the values of eccentricities, we see that there exist some
values of eccentricities at which the surfactant redistribution increases the magnitude of
swimmer or drop velocity. Also, at an eccentrically stable position corresponding to a
clean drop, the surfactant redistribution decreases the magnitude of swimmer and drop
velocities. We note that for eccentric configurations, the drop surface velocity decreases
due to the surfactant redistribution and also the drop surface velocity, swimmer and drop
velocities decrease with a decrease in A for a clean drop containing a swimmer. Due to
this reason, the observations in figure 10 cannot be explained by studying the influence
of the surfactant advection on the drop surface velocity, as was done for the concentric
configuration. Motivated by the physical reasoning provided to explain the change in the
velocity of a swimmer in a shear-thinning fluid (Montenegro-Johnson et al. 2013; Datt
et al. 2015) (as compared to that in a Newtonian fluid), we analyze the drag and thrust
problems separately in the next section to explain the effect of surfactant redistribution
on the swimmer and drop velocities, as shown in figure 10.

At an eccentrically stable position corresponding to a clean drop, since the surfactant
redistribution reduces the magnitude of swimmer and drop velocities by unequal amounts,
this stable position shifts due to the surfactant advection. To understand this shift, we
plot in figure 1la, the relative velocity of a pusher swimmer at O (1) (Up,s — Uy, p)
and that at O (Pes) (U1, — Uy, p) for various eccentricities. The axis for the O (Pe)
relative velocity is on the left while that for an O (1) relative velocity is on the right.
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Figure 11: (Colour online) (a) Velocity of a pusher swimmer with respect to drop at O (1)
(red dash-dotted line) and that at O (Pey) (blue solid line) as a function of eccentricity.
The axis for the O (Pe;) relative velocity is on the left while that for an O (1) relative
velocity is on the right. Here Ma = 1. The dashed lines are just for reference. (b) Time
evolution of the center of a pusher swimmer when released from different positions.
Here red lines denote the results for clean drop while blue lines denote the results for a
surfactant laden drop with Ma = 20 and Pegs = 0.2, respectively. The inset shows the
shift in the location of an eccentrically stable position induced by the advection of the
surfactant. The size ratio, x and the viscosity ratio A are taken as 0.5 and 1, respectively.
All the velocities are non-dimensionalized using Uy, = 2B /3. The dashed lines indicate
the positions at which the swimmer touches the drop.

As seen from this figure, at an eccentrically stable position corresponding to a clean
drop, the O (1) relative velocity is zero while the O (Pe;) relative velocity is positive.
So, the eccentrically stable position shifts towards the top surface of the drop due to the
surfactant redistribution, as shown in figure 11b. This figure shows the time evolution of
the center of a pusher swimmer when released from different positions inside a drop. As
seen from the inset of this figure, the time taken by the swimmer to reach an eccentrically
stable position depends on its initial position and the presence of the surfactant on the
drop. This time scales as t ~ do/ |Us — Up|, where dj is the distance between the initial
swimmers position and its eccentrically stable position. Hence, the swimmer takes a long
(short) time to reach the stable position if it is initially far away from (close enough
to) this position; compare solid and dash-dotted lines of same color in the inset of figure
11b. Also, for most of the swimmer positions inside the drop, the surfactant redistribution
decreases the magnitude of relative velocity of the swimmer |Ug — Up| (see figure 11a).
Hence, for a given initial position, a swimmer inside a surfactant-laden-drop takes a longer
time than that inside a clean drop to reach its eccentrically stable position; compare the
blue and red colored lines which are of the same style.

4.3. Drag and Thrust

In this section, we analyze the thrust and drag forces on the swimmer and the drop
separately to explain the observations in figure 10. As the influence of the surfactant
redistribution on the swimmer and the drop velocities for a pusher inside a drop at some
eccentricity e = e; > 0 is the same as that for a puller inside a drop at the eccentricity
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Figure 12: (Colour online) Variation of the thrust and drag forces acting on the swimmer
at various order of Pe, with the eccentricity for (a) neutral swimmer (8 = 0) and (b)
puller (8 = 5) inside a surfactant covered drop. The blue solid line, blue dotted line and
red dash-dotted line denote the O (Pey) thrust, O (Pes) (negative) drag and O (1) thrust
forces, respectively. The axis for the O (Pes) forces is on the left while that for an O (1)
force is on the right.

e = —ep, we would only analyze the results for a neutral swimmer and a puller i.e., figures
10b and 10c.

We define the thrust and drag problems for the swimmer as follows: the thrust problem
consists of a fixed swimmer, with a slip velocity on its surface, inside a force-free
surfactant-laden-drop whereas the drag problem consists of a translating rigid sphere with
a velocity Uy g inside a force-free surfactant-laden-drop. We call the hydrodynamic force
experienced by the swimmer in the thrust (drag) problem as the thrust force (drag force)
and denote this force at O (Peg) by Fjrsi. (Fj psi.). Similarly, we define the thrust
and the drag problems for the drop as follows: the thrust problem consists of a stationary
surfactant covered drop encapsulating a swimmer whereas the drag problem consists of
surfactant-laden-drop engulfing a force-free rigid sphere, the drop itself is translating with
a velocity Uy p. Again, we denote the thrust force and the drag force acting on the drop
at O (Peg) by Fjrpi. and F}; pp i, respectively. If the drag problem for the swimmer
were to consist of a rigid sphere translating with a velocity Uy g + Pes U; g inside a
force-free surfactant-laden-drop, then the sum of the thrust and drag problems for the
swimmer give the original problem of swimmer inside a force-free surfactant-laden-drop
accurate to O (Peg). One can think along the similar lines regarding the thrust and drag
problems for the drop. Since we would like to estimate the sign of Uy s (U1,p), we did
not include it in the drag problem of the swimmer (drop). As the sum of O (1) thrust
and drag problems for either the swimmer or the drop give the O (1) original problem
(swimmer inside a clean drop where both swimmer and drop are force-free), we expect
Fors + Fo,ps = 0 and Fyrp + Fo,pp = 0. So, only one of the O (1) thrust and drag
forces is an independent quantity.

To understand how the surfactant redistribution affects the swimmer velocity for
eccentric configuration, we plot the O (1) thrust, O (Pe,) thrust and (negative of the)
O (Pes) drag on the swimmer as a function of eccentricity in figure 12. Figure 12a is for
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a neutral swimmer while figure 12b is for a puller inside a surfactant-laden-drop. The
axis for the O (Pes) (O (1)) forces is on the left (right).

Analyzing the thrust and drag for a neutral swimmer inside a drop, we see from figure
12a that the O (1) thrust, O (Pes) thrust and (negative of the) O (Pes) drag are all
positive ie., Forg > 0, Fiprg > 0, and —F; ps > 0. Noting that the (negative of
the) O (1) drag is positive i.e., —Fy ps = Fo,rs > 0, we conclude that the surfactant
redistribution increases the magnitude of both the thrust and the drag for a neutral
swimmer inside a drop. But since the increase in the magnitude of the drag is more
than the increase in the thrust i.e., —Fy pg > Fi rs for most of the eccentricities, the
magnitude of the swimmer velocity should decrease due to the surfactant redistribution
for most of the eccentricities i.e., sgn(Up s/U1,s) = —1. However, at e = £0.48, as
the increase in the thrust is more than the increase in the magnitude of the drag i.e.,
Firs > —Fi ps as shown in the inset of figure 12a, the magnitude of the swimmer
velocity should increase due to the surfactant redistribution i.e., sgn (Up s/U1,s) = +1.
This behavior predicted for the sgn (Up s/Us,s) from the drag and thrust analysis matches
exactly with that reported in figure 10b.

Analyzing the thrust and drag for a puller inside a drop, we see from figure 12b that
for eccentricities in regions II and III, the O (1) thrust force, the O (Pey) thrust and
(negative of the) O (Pe,) drag are positive i.e., Fyrs > 0, Fy rg > 0, and —F; ps > 0.
Since —Fy.ps = Fo,rs > 0, (negative of the) O (1) drag is positive for the aforementioned
eccentricities. So, for these values of eccentricities, the surfactant redistribution increases
the magnitude of both the thrust and drag. For eccentricities in region IIT (II), since
—Fi,ps > Firs (—Fi,ps < Firs), the increase in the magnitude of drag is more
(less) than the increase in the thrust, hence the magnitude of the swimmer velocity
should decrease (increase) due to the surfactant redistribution i.e., sgn (Up s/Us,s) = —1
(sgn (Up,s/U1,5) = +1). For eccentricities in region I, the O (1) thrust is negative, so
(negative of the) O (1) drag is negative whereas the O (Pey) thrust is positive and
(negative of the) O (Pes) drag is negative ie., Fyrg < 0, —Fp,ps < 0, Firs > 0,
and —F; ps < 0. Hence, for these eccentricities, the surfactant redistribution increases
the magnitude of drag but decreases the magnitude of thrust. This means that for
eccentricities in region I, the magnitude of the swimmer velocity should decrease due
to the surfactant redistribution i.e., sgn (Uy s/U1,s) = —1. Again, the behavior predicted
for the variation of sgn (Up,s/U1,g) with the eccentricity from the drag and thrust analysis
matches exactly with that reported in figure 10c.

A similar analysis can be carried out to understand the influence of surfactant redis-
tribution on the drop velocity (instead of swimmer velocity) for eccentric configurations.
For this purpose, we plot in figure 13, the O (1) thrust, the O (Pey) thrust, and (negative
of the) O (Pey) drag on the drop for various eccentricities. Again, figure 13a is for a
neutral swimmer and figure 13b is for a puller inside a surfactant-laden-drop.

We analyze the thrust and drag forces acting on a drop containing a neutral swimmer,
as plotted in figure 13a. For |e|] < 0.466, we see from this figure that the O (1) thrust is
positive, so (negative of the) O (1) drag is also positive i.e., —Fy pp = Fo.rp > 0. Also, for
these eccentricities, the O (Pes) thrust is negative and (negative of the) O (Pey) drag is
positive i.e., F1 rp < 0, —F1 pp > 0. Hence, for |e| < 0.466, the surfactant redistribution
decreases the thrust but increases the magnitude of drag, so the drop velocity should
decrease i.e., sgn (Up p/U1,p) = —1 (compare with figure 10b). For |e| € (0.466,0.47),
there exist some eccentricities (see inset of figure 13a) at which the O (1) thrust, (negative
of the) O (1) drag, O (Pes) thrust, and (negative of the) O (Pey) drag are all negative
ie., —Fopp = Foorp < 0, Fi,rp < 0, —F; pp < 0. So, the surfactant redistribution
increases the magnitude of both thrust and drag. But since the increase in the magnitude
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Figure 13: (Colour online) Variation of the thrust and drag forces acting on the drop
at various order of Pe, with the eccentricity for (a) neutral swimmer (8 = 0) and (b)
puller (8 = 5) inside a surfactant covered drop. The blue solid line, blue dotted line and
red dash-dotted line denote the O (Pe,) thrust, O (Pey) (negative) drag and O (1) thrust
forces, respectively. The axis for the O (Peg) forces is on the left while that for an O (1)
force is on the right.

of thrust is more than the increase in the magnitude of drag for some |e| € (0.466,0.47)
i.e., |F1,rp| > |F1,pp|, the drop velocity should increase i.e., sgn (Up,p/U1,p) = +1. This
behavior predicted for the sgn (Up p/Us,p) from the drag and thrust analysis matches
with that reported in figure 10b.

We finally analyze the thrust and drag forces acting on a drop containing a puller
swimmer, as plotted in figure 13b. For e > —0.1, the O (1) thrust, (negative of the) O (1)
drag, and negative of the O (Pey) drag are positive while O (Pey) thrust is negative i.e.,
_FO,DD = FO,TD > 0, _Fl,DD > 0, Fl,TD < 0. Also, for e < —0.12, the 0(1) thrust,
(negative of the) O (1) drag, and (negative of the) O (Pey) drag are negative while the
O (Peg) thrust is positive i.e., —Fy pp = Forp < 0, —F1 pp < 0, F1.rp > 0. Hence,
for e < —0.12 or e > —0.1, the surfactant redistribution decreases the magnitude of the
thrust but increases the magnitude of drag, so the drop velocity should decrease i.e.,
sgn (Up,p/Ur,p) = —1 (compare with figure 10c). For e € (—0.12, —0.1), there exist some
eccentricities at which the O (1) thrust, (negative of the) O (1) drag, O (Pes) thrust,
and (negative of the) O (Pes) drag are all negative. So, the surfactant redistribution
increases the magnitude of both thrust and drag. Also, for some e € (—0.12,—0.1), as
the increase in the magnitude of thrust is more than the increase in the magnitude of drag
i.e., |Fi,rp| > |F1,pp|, the drop velocity increases due to surfactant redistribution i.e.,
sgn (Up,p/Ur,p) = +1. Again, the behavior predicted for the variation of sgn (U, p/Us,p)
with the eccentricity from the drag and thrust analysis matches with that reported in
figure 10c.

4.4. Can a time-reversible swimmer inside a surfactant-laden-drop have a net motion?

We see that the only non-linearity in the governing equations and the boundary
conditions occurs in the surfactant transport equation (2.9). But this non-linearity does
not appear in the perturbed surfactant transport equations until the equation at O (Pe?),
equation (2.21). Hence, the governing equations and the boundary conditions at O (1)



29

and O (Pey) are linear in the squirming modes, but not those at O (Pe?). Due to this
reason, the swimmer and drop velocities at O (1) and O (Pe;) should be linear in the
swimming modes Bj, Bs... but these velocities at O (Pe?) should be non-linear. So,
if these swimming modes are time-periodic with zero time-average (such a swimmer
is called time-reversible swimmer), the leading order contribution to the time-averaged
swimmer and drop velocities should come from the O (Peg) problem. Therefore, it seems
that the swimmer and drop might propel with non-zero time-averaged velocities even
if the swimmer is time-reversible due to the advection of the surfactant on the surface
of the drop. This is a remarkable result since it provides a method to escape from the
constraints of the scallop theorem which can have potential applications in the motion
of synthetic swimmers near interfaces as the interfaces are inevitably covered with some
impurities.

We illustrate the physical reasoning provided earlier by deriving the time-averaged
swimmer and drop velocities of a two-mode time-reversible swimmer, initially located at
the center of the surfactant-laden-drop. Since Ug > Up for the concentric configuration,
the swimmer never stays at the center of the drop. However, if the time period of the
swimming modes is much smaller than the time taken by the swimmer or the drop to
traverse a drop radius ie., T = 27/w < a/Usq (T and w are the time period and the
angular frequency of the swimming modes), then eccentricity changes negligibly during
one time period. In this case, we can calculate the time-averaged swimmer and drop
velocities by fixing the eccentricity at its initial value. Hence, the time-averaged swimmer
and drop velocities

T T
1 1

(Us) == [ Us(e(t);t)dt; (Up)= = [ Up(e(t);t)dt
r r

can be simplified as

T T
Ws) = 7 [ Uste@stydi (Un) = 7 [Un(eO)styar
0 0
Since the swimmer is at the center of the drop at ¢t =0 i.e., e (0) = 0, we have
T T
Ws) = 5 [ Us sty dts W)= 1. [ U 0
0 0

Here, we denoted the swimmer and drop velocities by Ug (e (t);t) and Up (e (t);t),

respectively. This is because as the time progresses, the eccentricity changes which in turn

modifies the swimmer and drop velocities. Also, for a fixed eccentricity Ug and Up can
T

change with time since the swimming modes are time-dependent. Denoting 7. [ U (0;¢) dt
0
by (Ul._,), we have
<US> = <Us|e:0> = <UO,S e:0> + Pes <U1,S|e:O> + Peg <U27*9‘e:O> + O (PBZ))
(Up) =(Upl|.—g) = <U07D|e:0> + Pes <U11D|e:()> +Pe; <U27D|e:0> +0 (Peg’)

Here ()|,_, denotes the quantity when the swimmer is at the center of the drop and
hence the expressions for Uy s|,_,, Uo,pl,_gs Ut,sl._g» U1,Dlo—q¢» U2,5l._g> and Uz p|._,
are given by equations (4.3)-(4.6), (B 5)-(B 6). From the equations (4.3)-(4.6), we see that
Uo,sl.—¢» Uo,D|o—g> Ur,5|,_q» and Ui p|,_, are linear in the swimming modes. Also since

(4.16)
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the swimming modes are time periodic with zero time-average i.e., (4,) = (B,) = 0, we
deduce that

<U07S e=0> = <UO»D|6=O> = <U1)S|e=0> = <U17D|e=0> =0 (417)

Hence the equations for the time-averaged swimmer and drop velocities simplify to
(Us) =Pe2(Uss|,_o) + O (Pe?)
(Up) =Pe; (U,p| o) + O (Pe})

(4.18)

Using the equations (B 5)-(B 6) along with the time-reversibility of the swimming modes,
we derive
(Us) =Pe? Jy (B1Bs) + O (Pe?) (4.19)
(Up) zpei K, (B1Bs)+ O (Pez’) '
where
X+ X3+ X2+ x+1)
(x+1)

2
Kl :g Jl

(15x* 4+ 45x3 + 55X + 45 + 15) x°A*Ma (x* — 1)

Ji =
5 2 A=DX"+BA=3)x"+6A=6)x"+ ($A— ) x*
36(A—1)x>+3/2A+1) ( +(L;AJr%)X3+(6)\+6)X2+(3/\+3)X+>\+1 )
As (B1Bs) is non-zero for non-orthogonal time periodic functions with zero time-average
By (t) and Bs (t), we see from equations (4.19) that the time-averaged swimmer and drop
velocities of a time-reversible swimmer inside a drop are non-zero at O (Pez). Therefore,
the surfactant advection on the drop surface enables a drop containing a time-reversible
swimmer to evade the scallop theorem, thereby leading to a time-averaged proplusion of
the swimmer and the drop.

5. Conclusions

We studied the motion of a spherical swimmer inside a surfactant laden drop for
axisymmetric configurations by expanding the variables in terms of surface Péclet number
(Pes), under the assumption of zero Reynolds number. This small surface Péclet analysis
is valid when small drops (of size 1 — 100 ym), covered with small sized surfactants
(Brenner & Leal 1978, 1982), contain small microswimmers (of size 1 — 10 ym) whose
speed in an unbounded fluid is small (& 1 — 100 pm/s). Thermal noise in experiments may
change the orientation of the swimmer from the axisymmetric configuration. Numerical
studies, not in the scope of this manuscript, are needed to investigate the stability of this
configuration.

For a two-mode squirmer inside a drop, the surfactant redistribution can either increase
or decrease the magnitude of swimmer and drop velocities, depending on the value of
eccentricity. This was explained using the drag and thrust decomposition for the swimmer
and the drop separately. Due to the surfactant redistribution, the magnitude of the
drag on the swimmer or the drop increases at all eccentricities, but the magnitude of
thrust increases for some eccentricities while decreasing at other eccentricities. When the
increase in the magnitude of thrust is more than the increase in the magnitude of drag,
the magnitude of swimmer or drop velocity increases due to the surfactant redistribution.
If the increase in the magnitude of thrust is less than the increase in the magnitude of
drag or if the magnitude of thrust decreases due to the surfactant redistribution, the
magnitude of swimmer or drop velocity decrease.
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The far-field representation of a clean drop engulfing a pusher swimmer at its center is
a puller; the strength of this far-field is reduced if the drop is covered with a surfactant.
Due to the advection of the surfactant on the drop surface, a time-reversible swimmer
and the drop, within which the swimmer is engulfed, propel in a time-averaged sense
by escaping from the constraints of the scallop theorem. Hence, one can use simple
time-reversible swimmers (Gagnon et al. 2014) instead of sophisticated helical swimmers
such as artificial bacterial flagella (Ding et al. 2016) (which are not time-reversible) to
transport either the contents of the drop or the drop itself.

Inside a clean drop, a two-mode squirmer with 5 < . (8 is the ratio of the squirming
modes) achieves an eccentrically stable configuration (where the velocity of the swimmer
is equal to the velocity of the drop), while squirmers with 8 > . move to the top or
bottom surface of the drop. Here, . is negative and depends on the viscosity ratio and
the size ratio. The effect of surfactant redistribution is to shift the eccentrically stable
position, achieved by swimmers with 8 < f., towards the top surface of the drop, albeit
this shift is very small.

VAS would like to thank Dr. Uddipta Ghosh and Dr. Shubhadeep Mandal for useful
discussions. This research was supported by a grant from National Science Foundation
[CBET-1700961].

Appendix A. Linear equations obtained while satisfying equations
(2.12)-(2.18) for the concentric configuration

Enforcing the boundary condition on the surface of the swimmer, equation (2.12), we
obtain

1) a1, 71 me1 - n T o 2041 [P
B X e ) e = 7/11&2 (r=x)Pu(p) dp,

¥ 5
(A1)
n+3) 1) . n+1) 1) .-
o ( )p(»l,ix +1 ( )¢(‘17)1X 1 1
9 Js 9 Js 2n+1 1) 1
_ = ’Uj,e (T = X) P’n (:u) d,u
(’I’L 2) (1) —n n (1) —n—2 4 -1
t g P X 5 9l X

8 -1
(A2)
For the swimmer and drop to be force-free, we derive respectively,
P, =0. (A4)

For the flow field far away from the drop to approach the negative of the velocity of the
drop, we obtain

g?)ﬁi =0, forn > 2,
135271 =0, forn > -1, (A5)
931 = ~Usp
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In order to satisfy the boundary conditions on the surface of the drop, equations (2.16)-

(2.18), we obtain respectively

P+ 88 +pM 46 =0, where k=1,2, (A 6)

~ (n+3) (pf% 23(2)) (41 (¢ 1) ¢(2))

9 Jmn 9 J.m

AN FR.Y R )

(A7)

(n® 1) (—&ﬁi + /\éﬁ) +n(n+2) ( )+ Apf}l) +n(n+2) (—q_Sfln,l + Aéﬁn,l)
b0 =) (220 ) = —Max PO
(A8)

These equations for n = 0 and 1 are first solved to determine the swimmer and drop
velocities along with some unknown constants in the flow fields. These equations for
n > 2 are then solved to determine the remaining constants and hence the flow fields in

both phases.

Appendix B. Flow field due to a ‘squirmer’ at the center of a drop
at various orders of Peg
In this section, we provide the expressions for the constants encountered in the velocity
components along with the swimmer and drop velocities at O (1), O (Pes) and O (Pe?).
We note that the flow field, swimmer and the drop velocities at O (1) and O (Pe,) are
derived for a general n mode squirmer. At O (Pei), we derived the swimmer and drop
velocities for a squirmer having few modes, namely A, Ay, A3, By, Bs and Bs.

B.1. Flow field at O (1)

For n =0, 1, we have

Doy =Po.la = Pt = Doty = Po.la = Go.l1 = 9511 =0,
— 3\ (A, + B
¢(()2i:_10 X°A (A1 + By) 7
: (6A—6) x> +9A+6
(1) _ xX* (A1 + B1) (A —1)
Po,i 2A—2) > +3A+2
_ 3(A1+ B
¢§)1% — 10 X° (A1 + By)

AT A —6) x>+ 9N+ 6

XB)\ (Al + Bl)
(6A—6) x>+ 9\ +6’

“1) _ (At Bi) (A +2/3)x°
0,-2 6X5\ —6X5 +9N+6

035?12 =10
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For n > 2, we have

_(2) +(n—1/2) (Ayn —2B,) X" 2 — (Apn — 24, — 2B,) X" (n + 3/2)
Po,=n—1= 4(n+1/2)(n—A+1/2)x" " + (—8n® — 8n +6) x**" ,
F AN )X A (1 1/2) (n+ A+ 1/2) X2 —dx (A + 1)

< — (n+3/2) (Apn + Ap +2B,) X*" 1 4 (n = 1/2) (Aun + 34, + 2B,) X3n+1> o

(1)

3n+1
3<(Ann+3An+ZBn)(n>\+1/2)x )
Py pn—1=—

+ (n + 3/2) (A”n + An + QBn) Xgn_l + Xn—2 ()‘ + 1) (Ann - 23n>
( 4(n+1/2) (n—=A+1/2)x* " + (—8n® — 8n +6) X2+2n> ’

+ U= A (n+1/2) (n+ A +1/2) 2" —dx (A + 1)

~(1)

—(Apn—24,, —2B,)x"(n—A+1/2)
Popn = —

A+ 1/2) (- A+ 1/2) 7 (8”80 6) 2
+(4)\—4)X4n+3+4(n+1/2)(n+/\+1/2)x2n_4X()\+1)

@ (()\ —1) (Ann+ A, +2B) x*" 4+ (n — 1/2) (Ann — 2B,,) x"—2>
2

g [ (A=D1 (Ann+ 34, +2B,) x> + (n+ A+ 1/2) (Apn — 2B,) X" 2
O —(Apn —2A4, —2B,)x" (n+3/2)

On = 4(n+1/2)(n—A+1/2)x* 2" + (—8n? — 8n + 6) x> 2" ’
+ AN =D A (n+1/2) (R + A+ 1/2) 2" —dx (A +1)
oy [ n—i—% (n+1) Ay 4+ 2B,) x*" 1+ (n— 3) ((n+3) An + 2B,) x>
X +(n—13) (A —2B,)x" 2= ((n—2) A, —2B,) X" (n+ 3)
4(n+3) (n=A+3) x* + (—8n? — 8n +6) x>T2" ’
AN =X A (n+5) (n+ A+ 3) X" —4x (A +1)

) (m F A+ 1/2) (Ann o Ay +2B,) "1 = (0= 1/2) (Aun o+ 34, + 2Bn>x3n+1>
X

2(2) _
0,—n—1 —

(1) +x"(A+1)(A,n—-2A4A, —2B,)
Ot (4 (n+1/2) (n — A+ 1/2) x* 2" + (=8n% — 8n + 6) x**2" + (4) — 4) x‘“’”)

+4(n+1/2)(n+A+1/2)x*" —4dx (A +1)

B.2. Swimmer and drop velocities at O (1)

U  —12(A—1) (A1 4 B1/2) x® 4+ 10x* (A1 + B1) (A — 1) — 3 (A1 — 2By) (A +2/3)
05~ (6X—6)x° + 9N+ 6 ’
(B1)
3
X)\(A1+Bl)
=1 : B2
Uo.p 0(6)\—6)x5+9>\+6 (B2)

B.3. Surfactant concentration at O (Pey)
Noting that the flow field on the surface of the drop at O (1) can be written

(o]
as v0,0] pyop > U, Vi, (cos), the surfactant concentration at O (Pes), I[1 =

n=1
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E I ,, P, (cosf) is evaluated using

n=1
QUO,H

I,=—-———"-—.
b n(n+1)

B.4. Flow field at O (Pey)

For n = 0,1, we have

2 2 2 1 (1 2 Z(1
P =00 = = Al = ila = 82, =51

P11 =P, 2= 1,-1 =

(5(2) :_E Mah (A; + By) 3 (X5—1)
11 3 4Ax1ON2 — 8y 10N 4 4y 10 4 12Y5A2 — 45\ — 8Y5 +9A\2 + 12\ + 4’
(1) _ 5M(1)\ (A1 + Bl) X3
B2y — 25 4+ 3A +2)7
1y 5(Ai+Bi1)Ma (X° +3/2) Ax®
P60 (A =1) x5 +3/20 +1)°
(;_552) ,— ?Ma/\ (A1 + Bl)X3 (X5 — 1)
T8 (A =1 x> +3/20+1)?
Mah (Al + Bl) Xs
(A=1)x5+3/2x+1)%

bl

Z(1)  _
1,-2 =

5
6
For n > 2, we have

—1/2(n+1/2)2x2"_1+(n2+n—3/4) X2n+1 ( Jrl)F
nn 1,nX
Ma —1/2(n +1/2)*2" 3 172342 1 1/2
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+A=DX*" B L (n+1/2)(n+ A +1/2)x*" —x (A +1)
1) Ma n(n+1) Fl,nXS (2X2n73n72x2n71n+2x4n+X2n7373X2n71)
Pi—n-1= ¢ 4i2n 2
n+1/2)(n—A+1/2)x + (—2n° —2n+3/2) x
(n+1/2)<< /2)( /2 ( /

) 242n
+ A=) X*" 4 (4 1/2) (n + X+ 1/2) %" —X()\+1)>
)

1) Ma n(n+1)I,x (2X2"+1n—2X2"_1n—X2”+1 — X2l 42

i (n+1/2) (n+1/2) (”—A+1/2)x4+2”+ (—2n2—2n+3/2) X2+2n )
g0 _ _Ma_ n(nt D) T (27— 20 4 PR 42 - 3x )
1,n 8 (n+1/2) (n+1/2)(n—X+1/2)x* 2" + (—2n2—2n+3/2) 2
+()\—1)X4n+3+(n+1/2)(n+/\+1/2)x2n_X(/\+1)
—1/2(n+1/2)2x2"_1+(n2—|—n—3/4) y2nHl "
nin 1,7LX
<(2) _ Ma —1/2(n+ 1/2)2X2n+3 + 1/2X4"+2 +1/2
L—n-1= """

442n 2 242n\ ’
(n+1/2)<(n+1/2)( — A+ 1/2)x* 2" + (—2n% — 2n + 3/2) T )

+ A= (n+1/2)(n+A+1/2) 2" —x (A +1)



35
(1) Ma (n=1/2)x*" 4+ (—n = 1/2) x> + ") n(n+ 1) I X3

(4 1/2 (n+1/2) (n— A+ 1/2) x*F2" + (=2n° — 2n 4 3/2) x*2"\
n+1/2) + A= 4 (n4+1/2)(n+ A+ 1/2) 3" —x (A +1)

B.5. Swimmer and drop velocities at O (Pes)
_25Max®A (1 -x) (x +1) (A1 + Bi)
12(A = 1) x5 +3/2A + 1)

_§Ma)\ (A1 + B1) X3 (1 —X5)
6 (A=1)x5+3/2A+1)*

Uis = , (B3)

1,D

B.6. Surfactant concentration at O (Pe?)

Since the O (Peg) problem is nonlinear in the squirming modes, for simplicity, we only
consider few modes, namely Ay, As, Az, B1, By and Bs. Noting that the flow field on

o0

the surface of the drop at O (Pes) can be written as vi,0[p,,,, = 2. u1,n Va (cos6), the
n=1

component of surfactant concentration at O (Peg) useful for evaluating the swimmer and

drop velocities at O (Peg) is given as

I 2 . 1
= —Up iU —UgoUp.3 — UL 1
2,1 = JpU0,1U02 F Z5%0,2U0,3 1,1

B.7. Swimmer and drop velocities at O (Pe?)

5 (1 - Xz)MCLFQJ
UQ,S: 5 )
(6A—6)X® + 9\ +6

2(1—X5)Ma]_‘271
UQ’D: 5 .
(6A—6) X® + 9\ +6

Appendix C. Integral theorem

In this appendix, we derive an integral theorem for the locomotion of a swimmer inside
a surfactant covered drop. A version of this theorem was derived earlier in the context
of the motion of compound drops (Haj-Hariri et al. 1993). Using this theorem, one can
find the swimmer and drop velocities at O (Peg) using only the knowledge of surfactant
concentration at O (Peg) and the solution of two auxiliary problems. Notably, one does
not need to determine the flow field at O (Pel) to find the swimmer and drop velocities
at O (Peg). Also since the auxiliary problems are the same at each order of Peg, they
have to be solved only once and their solution can be used in the integral theorems at
any order of Pes. Even though this theorem is valid for axisymmetric configurations, we
illustrate its use in finding the swimmer and drop velocities for concentric configuration.

We consider a uniform flow past a stationary clean drop containing a stationary rigid
sphere as the first auxiliary problem. We denote the variables of this problem with a
caret over them. A translating rigid sphere embedded in a stationary clean drop, the drop
itself suspended in a quiescent fluid is considered as the second auxiliary problem. We
denote the variables of this problem with a tilde over them. We note that the geometric
configuration of the auxiliary problems is the same as that of the original problem i.e., the
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position of a rigid sphere inside a clean drop, in the auxiliary problem, is the same as that
of the swimmer inside a surfactant-laden-drop, in the original problem. Since the flow field
of the auxiliary problem satisfies the Stokes equations along with the incompressibility
condition, we proceed to specify the non-dimensionalized boundary conditions. Here, the
non-dimensionalization is carried out in the same fashion as that of the original problem.
The boundary conditions on the drop surface are the same for both auxiliary problems.
These conditions for the first auxiliary problem are given as

On the drop :
O . n=v®.n=0
+O.A=3@. A
n- (7"<2> - Ai'(l)) "A=0

(C1)

These conditions for the second auxiliary problem can be derived by replacing the
variables of the first auxiliary problem with those of second auxiliary problem in equation
(C1). The remaining boundary conditions for the auxiliary problems are given as

For the first auxiliary problem
On the sphere : ¥V =0 (C2)
Far — away from the drop : ¥ = U

For the second auxiliary problem
On the sphere : v() = U (C3)
Far — away from the drop : v@ 50

where U and U represent the uniform stream far-away from the drop and the transla-
tional velocity of the rigid sphere in the first and second auxiliary problems, respectively.
We also denote the hydrodynamic force experienced by the rigid sphere and the drop in

the first auxiliary problem (second auxiliary problem) by Fsp and Fp (Fsp and F D),

respectively. _
We start with the reciprocal theorem between two flow fields (\7, T) and (v, T) given
as

V(T-v-T-v)=0 (C4)
We apply this relation to the flows <v§2), Tj(z)> and (\7(2), f'(Q)), integrate over the
domain %, and use the Gauss-Divergence theorem to get

(2) &2 (2 (2) _ (2) &2 (2 (2)
/Oon-(rj R (I )dS_/Dn~(Tj 2 T )ds (C5)

Here 25 denotes the volume of fluid contained in the annulus bounded by the drop
surface and a spherical surface far away from the drop (S ). The surface integral over
this spherical surface (S) is denoted as foo and n points out of the spherical surfaces.

We similarly apply the relation (C4) to the flows (Tj(l), V§1)> and ('i'(l), \7(1))7 integrate

over the domain 2; and use the Gauss-Divergence theorem to get
/ n- (rj<1> o) _ F .v§,1>) s = / n- (rj(l) o) _ FO .V;U) s (C6)
s D

Here 2, denotes the volume of fluid bounded by the drop surface and the rigid sphere.
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We then multiply equation (C6) with A, subtract it from equation (C5) and use the
boundary conditions on the drop surface to arrive at

/ n- (Tj(?) 2 FO -v§2)) ds = )\/ n- (Tj(” RO (O -v§1)) dS+Ma/ V-V, I;dS
0o S D
(C7)

As equation (C7) was derived by applying a reciprocal theorem to the original problem
and the first auxiliary problem, we can derive an equation similar to equation (C7)
by applying the reciprocal theorem to the original problem and the second auxiliary
problem. This equation can be written by simply replacing the variables of the first
auxiliary problem in equation (C7) with those of the second auxiliary problem. This is
because of using only the boundary conditions on the drop surface in deriving equation
(C7) and these boundary conditions being the same for both auxiliary problems.

2) - % 2 ) - % 1 -
/Oon'(Tj()'V(Q)—T(2)~V§)>dS:)\/Sn-(Tj()~V(1)—T(1)~V§))dS+Ma/V~V3Fde

D
(C8)
¥ and v appearing in the second integral on the right hand side of equations (C7)
and (C8), respectively, are given by ¥|p,., = \7(1)|Dmp = \7(2)|Dmp and V|p,,, =

{,(1)| = {;(2)| .
Drop Drop

We are now left with simplifying the integrals appearing in equations (C7)-(C8) to
derive the integral theorem required for finding the swimmer and drop velocities at any
order in Peg. As the flow field far-away from the drop approaches U in the first auxiliary

problem and the drop is force-free in the original problem, we can show that

oo o0 P

As r — 0o, we note that ¥(2) goes to 0 at least as fast as 1/r, Tj(2) goes to 0 at least as

fast as 1/72 and dS grows as 72, hence the product n - Tj(2) -¥@dS decays to 0 at least
as fast as 1/r and we arrive at the result

/ n T .5@ds =0 (C10)

Since the flow field far-away from the drop approaches —U; p in the original problem
and the drop experiences a hydrodynamic force Fp (f‘ D) in the first (second) auxiliary

problem, we derive the following results

/ n-T® -v§-2)d5 =-Fp-Ujp (C11)
/ n-T® ~vJ(.2)dS =-Fp -Ujp (C12)
0 A~ 1 _ .
Using () Sphere = 0, we arrive at
/ n TV . 9Wds =0 (C13)
s
Using v(Y) = U and the force-free condition on the swimmer in the original

Sphere
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problem, we arrive at

/n. T . 50gg = (/ n- Tj(l)dS> U=0 (C14)
S S

(1) = Uj;s — U;p + dj0u® and the condition that the rigid sphere

Using v ‘
8 7 |Swimmer
experiences a hydrodynamic force Fgy, (ng) in the first (second) auxiliary problem, we

derive the following results

/ n- T ~Vj(-1)d5 =Fg, (Ujs —Uj;p)+d50 / n-TW . uds (C15)
s s

/ n-TW ~v§1)dS =Fg, (Ujs —Ujp)+d0 / n-TW . wds (C16)
5 s

Enforcing the equations (C9)-(C 16) in the equations (C 7)-(C 8), we arrive at the integral
theorem given by the following two equations

Fp-U;p+AFs,-(Ujs—U;p) = —Aaj,o/ n- TW -ust—f—Ma/ V-V IydS (C17)
S D

Fp-Ujp+AFs,-(Ujs—U;p) = 45]-,0/ n- T .uSds+Ma/ V-V I;dS (C18)
s D
We note that this integral theorem is valid for axisymmetric configurations.
Now, we explain how to use this theorem to derive the swimmer and drop velocities
at O (1) and O (Peg) for the concentric configuration. At O (1), as Iy = 1, the integral
theorem simplifies to

Fp -Upp+ A\Fs, - (Ugs — Ugp) = —)\/ n- T . wds (C19)
S

FD . U07D + )\Fsp . (Uo)s — U07D) = —)\/ n- T(l) . uSdS (C 20)
S

For the concentric scenario, we use the Lamb’s general solution to solve both auxiliary
problems thereby finding Fp, Fgy, (n- 1) Fp, By and (n- TO) ’

Sphere Sphere
p 4 (6x3A —4x3 + 92X = 3x? + IxA +3x + 61 +4) . 1)
P M)+ (6A=-3) X2+ (B+6A) x +4A+4
- 8 (x®+2x% +3x +3/2 .
Fg, = (¢ +2x% +3x +3/2) x7 o c2)
AN —Ax + 23X+ X3 +6x2 —2x A+ x —4A —4
i 3cos (0) U (4x° +8x* + 2x + 1)
(n.rm)‘ _ cos X +8x" +2x .
Sphere X (XA —4x* + 23N+ X3 +6x2 — 2xA +x —4A —4) " (C23)
n 3(x*+3x+1)sin(0)U )
1
(X=X +(6A—3)x*+ B+6A) x>+ (Ar+4) x
- 47 (2x3 +4x2 +6x +3) ) _
Fp— 7T(X X+X—|—) X o (C24)

AN AT 28N+ B 6X2 —2x A+ x — 4N —4
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8mx (2X°A — 3x° +3X +3) .

Fg, = U C25
5P AN =) xS+ (—6A+9)x° — 103 + (6A +9) x — 4X — 4 (C25)

( T<1>)‘ 6 (4X°A —6X° +5x> + A+ 1) cos (0) U

. = 17‘

n Sphere X (4XOA —4x8 — 6xPA +9x® — 10x3 + 6x A+ 9x — 4\ —4)
6((A=3/2)x"+(A=3/2)x>+ A+ 1) x>+ A+ 1) x+A+1)sin(0) U,

(4X3X — 4x3 4+ 6X2X — 3x2 +6X A+ 3x + 4 +4) x(x — 1)
(C 26)

o = TT(,}) i, + TTE;) ip where TT(,}) and TT(;) are of the form
phere

7Y = AU P, (cosf), Tﬁ;) = BU V; (cosf), we can simplify the integral Jgn- T . usds
as follows

Noting that (n- 'i'(l)>

/ n- 7O . wsds =27y / (Tﬁ}h%fﬁhg) sin 6 df
S
0
. ) (C27)
=2my2 | AU / uSPy (¢)d¢ + BU / uf Vi (¢) d¢
—1 —1

where ¢ = cosf. Using the orthogonality of the Legendre polynomials P, (¢) and that of
Vi (€) (see equation (C28)), it can be seen from the above equation that only A; and B,
modes contribute to the non-zero value of the integral |, gn- T . u*dS and hence to the
swimmer and drop velocities at O (1). Enforcing the expressions in the equations (C 19)-
(C20), we solve the linear system of equations to find the swimmer and drop velocities
at O (1)

/ d
_11 (C28)
8
Vi (C) Vin (g) d¢ = Omn
_/1 n(n+1)(2n+1)

At O (Pes), the integral theorem simplifies to

Fp -Uip+ ¥, - (Us—Up) = Ma/ -V IydS (C29)
D

Fp-Uip+AFg, - (Us—Up)= Ma/ V. V,IydS (C 30)
D

The expressions for ¥ and v on the drop surface are given as

(x—1) U (4)(2 +7x+ 4) sin (6)

o i C31
¥Ioron = (83 =87 % + (122 = 6)x* + (12A  6) x + 5A + 8. (©31)
5 (2X3+4X2+6x+3) /\stin(e) .
ViDrop = T4 1 3 3 2 lg (C32)
AN —Axr +2XPA+ P+ 6x% —2x A+ x —4A -4
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Once again, noting that ¥ is of the form v = cUw, (cosf) igand I1 = > I, P, (cosb),

n=1
we can simplify the right hand side of equation (C29) as
1
A n 1
[vvanas——coy "L, [vovn©oa
D n=1

—1

Using the orthogonality of V), (), we see that only I} ; contributes to the above integral
and hence to the swimmer and drop velocities at O (Peg). Substituting the expressions
(C31)-(C32) into the equations (C29)-(C30) and solving the resulting linear system
of equations, we determine the swimmer and drop velocities O (Peg). We note that the
swimmer and drop velocities at O (1) and at O (Pes) derived using the reciprocal theorem
are the same as those obtained by solving the full Stokes equations

Appendix D. Expressing the slip velocity on the surface of the
swimmer in bipolar coordinates

In general, the slip velocity on the swimmer is specified in spherical coordinates,
u’ = u) i, + ug ip. (D1)

For calculations in bipolar coordinates, it is easy to handle the velocity components in
bipolar coordinates, expressed in terms of the corresponding coordinate variables (£, 7).
For this purpose, we first write the slip velocity in cylindrical coordinates, u® = uj i, +
u3 i, where ug, = u; sinf + ug cosf and u; = u; cos — ug sinf. We then express this
velocity in bipolar coordinates u® = ug i¢ + uj i, where

. Op 02N Op 02
= (g g ) e =n (5 +uige )

coshégcosn—1
coshég —cosn /)

sinnsinh &g
cosh &g — cosn

sin 6 = sgn (£s) ( ) ; cosf = sgn (£s) (

For instance, for a swimmer having only three modes (A;, By, Bs), the boundary condi-
tion on its surface is written as

) (Ay + Up,s — Uy, p) sinh®€g

=(A Uyp.s — U hég —
Yo.g ‘fzfs (A1 +Uos 0.0) cosh s cosh &g — cosn
— By cosh B — B inh’¢g si
fuélg _ (—Bacosh&g sgn ({s) + B1 — Up,s + Uy, p) sin7 sinh €5 + 2 sgn (§s) sinh”&g zlnn
Tle=¢s cosh{g — cos (cosh &g — cosn)
(D2)
where, we have used
. . z ., 0z
i, :lnhan —|—15ha—€.

Appendix E. Linear equations obtained while satisfying (3.10)-(3.13)

Using the boundary conditions on the surface of the drop, equation (3.11), we get

Wi (€p) = 0; W) (ép) = 0, (E1)
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Using the far-field condition, equation (3.13), we obtain
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Using the boundary conditions on the surface of the swimmer, equation (3.10), we get

- n
W ( _ 3/2/ c?siny’ (1)‘ /
cosn) = (cosh&g — cos 5V dn’,
Z in 65’ n+1 ( 77) ( 55 77 / COSh£S - COS’I]) 7€ £=ts n
(E6)
<, dw!) 3 / ?sin 7y’
Z O, 112 (cosn) = = (cosh&s — cosn)'/? SinhSS/ Csmn 2”('15)‘ df
g 2 J (coshgs —cosny)” " le=ts

c?sinn (1)

172 Yim e=ts

(cosh &g — cosn)
(ET7)

We then use the following identity, the identities derived from differentiating it with
respect to £ along with the orthogonality of Gegenbauer polynomials to simplify equations
(E6) and (E7)

e—(n—%)\s\ o~ (n3)1el

sin?n > ~1/2
= - C,. 1" (cosn). (E8)
(cosh & — cosn)/? z:: (2n —1) (2n+3) i

Appendix F. Validation of bipolar coordinate results

In this section, we validate the solution for the eccentric configurations by comparing
the swimmer and drop velocities for small eccentricity (e = 0.002) with the corresponding
velocities for the concentric configuration.
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