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ABSTRACT.

We report ionic strength-dependent phase shifts in second harmonic generation (SHG) signals 

from charged interfaces that verify a recent model in which dispersion between the fundamental 

and second harmonic beams modulates observed signal intensities. We show how phase 

information can be used to unambiguously separate the  and interfacial potential-dependent 𝜒(2)

 terms that contribute to the total signal and provide a path to test primitive ion models and 𝜒(3)

mean field theories for the electrical double layer with experiments to which theory must 

conform. Finally, we demonstrate the new method on supported lipid bilayers and comment on 

the ability of our new instrument to identify hyper-Rayleigh scattering contributions to common 

homodyne SHG measurements in reflection geometries.

TOC GRAPHIC.

KEYWORDS. nonlinear spectroscopy, surface, interface, silica, water
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The application of second harmonic generation (SHG) and sum frequency generation (SFG) to 

charged aqueous interfaces has been an area of substantial interest for several decades.1-9 The 

field has been greatly influenced by the foundational work of Eisenthal and co-workers,1 who 

interpreted the SHG signal generated from the fused silica/water interface, , as consisting of 𝐸𝑆𝐻𝐺

a second-order component, , and an interfacial-potential dependent third-order component,𝜒(2)  

, using the following model (1):𝜒(3)

Here,  is the interfacial                        𝐸𝑆𝐻𝐺 ∝ 𝜒(2) +  𝜒(3)𝛷(0)                                             (1) 𝛷(0)

potential present at the zero plane of the interface, referenced to zero potential in the bulk 

solution. The term in eq. 1 originates from molecules that are net oriented at the interface. 𝜒(2) 

The interfacial potential-dependent  term is present at charged interfaces due to the presence 𝜒(3)

of a static (DC) E-field generated by the surface charge and primarily results from the 

reorientation and polarization of water molecules in response to the static E-field.10 Because the 

penetration of the static E-field from the surface into the aqueous solution depends on the 

electrostatic screening within the electrical double layer (EDL), the Eisenthal-  effect makes 𝜒(3)

SHG and, analogously, SFG, a sensitive probe of interfacial potential and EDL structure.

Many attempts have been made to disentangle the  and  contributions.11-18 A 𝜒(2) 𝜒(3)

recent study of ours identified the  contribution to be of bulk origin.19 Around the same time, 𝜒(3)

Tian and co-workers6 and Roke and co-workers7 updated the purely additive model (1)1,20-23 to 

account for the optical dispersion between the fundamental and second-harmonic/sum-frequency 

wavelengths within the interfacial region. For an electrostatic potential exponentially decaying 

with distance, z, from the interface with a Debye screening length, , , the 𝜆𝐷 𝛷(𝑧) ∝ 𝑒―𝑧𝜆
―1
𝐷

interference between signal generated at different depths away from the interface results in the 

now firmly established model (2):6-7,10,19,24-28 
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4

with the phase angle, , of the  term 𝐸𝑆𝐻𝐺 ∝ 𝜒(2) + 𝜒(3)𝛷(0)cos (𝜑)𝑒𝑖𝜑                     (2) 𝜑 𝜒(3)

taking the exact solution (derivation of this form can be found in the SI, Section 1):19,24-26,28

                    𝜑 = arctan(𝛥𝑘𝑧 𝜆𝐷)                                     (3)

where  is the wavevector mismatch of the optical process (calculation of  can be found in 𝛥𝑘𝑧 𝛥𝑘𝑧

the SI, Section 2). We now report phase measurements obtained using a new instrument that we 

analyze using model (2) so as to unambiguously separate the  and interfacial potential-𝜒(2)

dependent  terms. The results provide a path to test primitive ion models and mean field 𝜒(3)

theories for the electrical double layer with experiments to which theory must conform. 

Moreover, the approach advances the utility of SHG from charged interfaces as an "optical 

voltmeter".29 Finally, we demonstrate the new method on supported lipid bilayers and comment 

on the ability of our new instrument to identify hyper-Rayleigh scattering contributions to 

common homodyne SHG measurements in reflection geometries.

The phase angle  in model (2) is not the phase inherent to , which varies when  𝜑 𝜒(3) 𝜒(3)

is on or near resonance. Rather,  results from the fact that the DC-field induced  signal is 𝜑 𝜒(3)

generated throughout a range of depths away from the interface. For clarity, we will 

subsequently label this phase angle the DC phase angle, , in order to distinguish it from the 𝜑𝐷𝐶

phase of the overall signal, , measured in the subsequently described experiment using α-𝜑sig

quartz against 100 mM NaCl as a reference state. We see from eq. 3 that  is a function of the 𝜑𝐷𝐶

ionic strength of the bulk solution (which determines the Debye screening length) and the 

wavelengths and angles of the input and output beams. The result of the interference is both a 

modulation of the amplitude of the  term and a shift in its phase as ionic strength is varied. 𝜒(3)

Simply put, when detecting intensities, eqs. 2 and 3 show that the coefficient "+1" in model (1) 
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instead varies between -1 and 1, depending on the ionic strength of the aqueous solution or the 

sign and magnitude of the surface charge density, as is taken into account in model (2). 

In the case of non-resonant SHG measurements, the inherent phases of  and  are 𝜒(2) 𝜒(3)

expected to be purely real, i.e. precisely in phase (0) or out of phase (180) with respect to the 

excitation field. However, eq. 2 makes it clear that the overall DC-field induced  term can 𝜒(3)

still be phase-shifted relative to the  contribution. Our earlier study19 showed constructive 𝜒(2)

and destructive interference between the surface and bulk terms from the α-quartz/water 

interface, which, due to the inherent 90 phase shift between surface and bulk terms derived from 

Maxwell’s equations,30-31 would not be expected according to eq. 1 when and  are purely 𝜒(2) 𝜒(3)

real. This interference was explained by the phase factor included in eq. 2, and the measurements 

provided experimental evidence for the validity and importance of eqs. 2 and 3. However, at that 

time, we made no attempt to quantify the phase shift nor deduce what additional information its 

measurement can provide, which we report here now.

Standard (homodyne) SHG experiments measure only the intensity of the SHG signal, 

not its phase. Heterodyne-detected SHG (HD-SHG), capable of resolving phase, requires 

interference between the SHG signal and SHG generated from a reference, called the local 

oscillator (LO).32 The phase information encoded is then recovered in the time domain by 

varying the phase between the signal and LO through the use of a phase shifting unit (PSU).33 

Prior reports of HD-SHG have been largely limited to condensed matter bound by non-dispersive 

media.31,34-38 In contrast, determining the phase of the signal generated at a buried interface such 

as fused silica/water is challenging due to the spatial and temporal dispersion between the 

fundamental beam and SHG signal as they both propagate away from the interface. This 

dispersion complicates the generation of a LO that must be collinear and co-temporal with the 
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signal in order for the signal and LO to propagate together and interfere at the detector. The 

correction of spatial dispersion has been demonstrated through the use of compensating prisms,39 

though this correction does not address temporal dispersion, which represents a significant 

challenge as even a few mm of glass can be enough to reduce or completely eliminate the 

temporal overlap.

We earlier demonstrated40 an SHG phase measurement from the fused silica/water 

interface by using a hemisphere to avoid refraction of the beams exiting the sample, 

recollimating the fundamental and SHG beams close to the hemisphere to minimize spatial 

dispersion, and detecting the signal through a monochromator, which stretches the pulses in time 

and can make up for some loss of temporal overlap. However, likely because the poor temporal 

overlap caused by dispersion in the hemisphere was not directly addressed in that study, the 

efficiency of the interference was low, resulting in a low signal-to-noise ratio and rendering the 

detection of the small phase shifts expected from changes in  difficult or impossible.𝜑𝐷𝐶

In this Letter, we report SHG phase measurements from the fused silica/water interface 

with a significantly improved signal to noise in order to directly measure phase shifts that occur 

due to changing EDL thickness. We correct for the temporal dispersion caused by the fused silica 

hemisphere with a calcite time delay compensator (TDC) and minimize spatial dispersion and 

chromatic aberration by recollimating with an achromatic off-axis parabolic (OAP) mirror (see 

SI, Section 3, for calculations of the spatial and temporal dispersion in our setup). We utilize a 

"sample-first" geometry and generate the LO in a 50 μm z-cut α-quartz plate. With this HD-SHG 

instrument, we directly measure phase shifts in the SHG signal from the fused silica/water 

interface at different ionic strengths, as predicted by eq. 2. 
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7

The instrument is designed such that homodyne SHG is readily measured in the same 

setup as HD-SHG through removal of the reference α-quartz crystal (see schematic in Fig. 1). 

Homodyne SHG control studies measured in this way show the expected quadratic dependence 

of detected signal intensity on input power as well as the expected narrow bandwidth of the 

detected signal centered around the second harmonic wavelength of our fundamental beam (SI, 

Section 4).

Figure 1. Schematic of PR-SHG instrument. λ/2 = half-waveplate, Pol = polarizer, LP = long pass 
filter, FL = focusing lens, OAP = off-axis parabolic mirror, TDC = time delay compensator, SP = short 
pass filter, BP = bandpass filter, PMT = photomultiplier tube. The reference α-quartz crystal is 
mounted on a 100 mm translational stage. Part numbers and specifics are provided in SI section 6.

PMT

Pol

λ/2

LP

FL

OAP

Yb:KGW
1030 nm
200 kHz 
200 fs

calcite 
TDC

reference α-Quartz

BP/SP

Pol

Sample

We next show that the HD-SHG instrument yields the expected interference between signal and 

LO. Fig. 2A shows the homodyne  from the fused silica/water interface is low. Addition of 𝐼𝑆𝐻𝐺

the α-quartz crystal amplifies the  considerably due to the generation of the LO, while 𝐼𝑆𝐻𝐺

translation of the crystal along the beam path generates an interference pattern. Rotating the 

reference crystal azimuthally by 60, which changes the phase of the LO by 180, inverts the 

interference pattern. Without the calcite TDC plate present and aligned such that it re-overlaps 
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the fundamental and SHG pulses in time prior to their incidence upon the α-quartz crystal, no 

interference is seen as the crystal is translated, demonstrating the importance of the TDC in the 

experimental setup. 

Figure 2. HD-SHG Measurements. A. Homodyne SHG measurement (+) and interference patterns (● 
and ▲) with fits from the fused silica/100 mM NaCl interface. The phase of the LO for the blue trace 
has been shifted by 180. Without the TDC, no interference is seen (□). Fits can be found in Table S2. 
B. Stability of the measurement over time. The phase is shown in red and , proportional to , is 𝐴 𝛦𝑠𝑖𝑔
shown in blue. C. Interference patterns and fits from cycling between 100 mM NaCl (□) and 2 μM air-
equilibrated water, pH 5.8 (●). D.  extracted from the fits in (C) shows a reversible phase shift of 𝜑sig

19.1  0.4 at pH 5.8.
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The phase extracted from the HD-SHG measurements remains stable over the course of 

hours, as demonstrated in Fig. 2B, most likely due to our chosen collinear geometry as changes 
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9

in shared optics affect both beam paths equally. However, small shifts in beam pointing or 

sample position will lead to differing path lengths through the dispersive fused silica hemisphere, 

causing phase drift. Indeed, we noted a consistent phase drift of ~10 over 2 hours immediately 

following the hemisphere being clamped to the stage, attributed here to structural relaxation of 

the flow/optical cell assembly that results in small (μm-scale) changes in the position of the 

clamped hemisphere with respect to the beam path. However, after this initial relaxation period, 

Fig. 2B shows <2 phase drifts over 6 hours, with amplitude measurements that fluctuate by 

~2%. As individual scans take only 5 minutes, phase measurements taken in succession can be 

made with a precision of better than 1.

Equation 2 predicts a difference in the phase of  from a fused silica substrate in 𝐸𝑠𝑖𝑔

contact with 2 μM air-equilibrated water vs. 100 mM NaCl, with the exact magnitude of this 

phase shift determined by the relative amplitudes of the  and  terms. Though our previous 𝜒(3) 𝜒(2)

study19 showed evidence for the existence of this phase shift, we were not able to directly 

measure its magnitude at that time. With our new HD-SHG setup, we detect a clear phase shift 

between 2 μM air-equilibrated water relative to 100 mM NaCl, shown in Figs. 2C and 2D 

(triplicate measurement in three successions). The measurements give  𝜑𝑠𝑖𝑔, 2𝜇𝑀 = 19.1 ±  0.4

degrees and serve as direct evidence that the phase shift expressed in eq. 2 must be taken into 

account when SHG and SFG are generated from interfaces at low ionic strengths.

Separation of  and  contributions from the detected signal intensity in order to use 𝜒(2) 𝜒(3)

SHG as an optical voltmeter has been a longstanding goal. Previously, without phase 

information, it was impossible to determine if the observed changes in  resulted from 𝐸𝑠𝑖𝑔

changes in the  term, the  potential-dependent term, or both. We now demonstrate how 𝜒(2) 𝜒(3)

this goal is experimentally attainable using HD-SHG. Figure 3A shows  and  extracted 𝜑𝑠𝑖𝑔 𝐸𝑠𝑖𝑔
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10

from phase measurements like the ones shown in Fig. 2 carried out as a function of ionic 

strength.  initially increases upon addition of salt before decreasing at high ionic strength, 𝐸𝑠𝑖𝑔

consistent with SHG intensity ( ) measurements reported previously.28,41 Yet, here we report 𝐼𝑆𝐻𝐺

the amplitude of this response ( ) from the HD-SHG measurement, not merely by square 𝐸𝑠𝑖𝑔

rooting . 𝐼𝑆𝐻𝐺

The optical process is illustrated in a vector diagram of the signal field in the complex 

plane, shown in Fig. 3B. The phase, , and amplitude of the sample SHG, , are the 𝜑𝑠𝑖𝑔 𝐸𝑠𝑖𝑔

experimental observables extracted from the measured interference patterns and are shown in 

grey and purple, respectively, corresponding to the symbol colors used in Fig. 3A. Following eq. 

2,  is modeled to be the sum of a  term (shown in red and purely real in our non-resonant 𝐸𝑠𝑖𝑔 𝜒(2)

experiments), and a  term, shown in blue, whose phase and amplitude are modulated by 𝜒(3)𝛷(0)

. From trigonometry, we find that 𝜑𝐷𝐶

𝜒(3)𝛷(0) =
sin (𝜑𝑠𝑖𝑔)𝐸𝑠𝑖𝑔

cos (𝜑𝐷𝐶)sin (𝜑𝐷𝐶)                                                    (4A)

𝜒(2) = cos (𝜑𝑠𝑖𝑔)𝐸𝑠𝑖𝑔 ― cos2 (𝜑𝐷𝐶)𝜒(3)𝛷0                           (4B)

Here, every factor on the right side of eq. 4A is measured ( , ) or can be calculated ( ), 𝐸𝑠𝑖𝑔 𝜑𝑠𝑖𝑔  𝜑𝐷𝐶

and, once this is determined, the same holds true for eq. 4B. Thus, with the additional phase 

information from HD-SHG measurements, we disentangle the  and  terms from 𝜒(3)𝛷(0) 𝜒(2)

, provided we know the Debye screening length. 𝐸𝑠𝑖𝑔
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Figure 3. Separation of  and  terms. A.  (grey) and  (purple) extracted from fits as 𝝌(𝟐) 𝝌(𝟑) 𝜑𝑠𝑖𝑔 𝐸𝑠𝑖𝑔
a function of ionic strength (pH=5.8). Error bars represent the standard deviation from three 
consecutive measurements. B. Graphic representation of real and imaginary components of the 
signal field at low ionic strength. Because  and  are themselves purely real, any phase shift 𝜒(2) 𝜒(3)

can be attributed to  according to Eq. 2. C. Graphic representation of the signal field at high ionic 𝜑𝐷𝐶
strength, where the phase shift is minimal and the overall signal remains nearly entirely real. D.   𝜒(2)

and  calculated from the data in (A) according to Eqs. 4A and 4B, pH=5.8.𝜒(3)𝛷0

Given the experimental6 and computational27 evidence that, at constant temperature,  𝜒(3)

is invariant with the exact nature of the interface and constant across a wide range of aqueous 
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12

phase conditions up to 100 mM ionic strength, we can interpret the  term as being 𝜒(3)𝛷(0) 

directly proportional to interfacial potential without having to rely on a model such as Gouy-

Chapman or assuming a priori that  remains constant, as previous studies have posited. Yet, 𝜒(2)

our analysis relies on  being large enough such that the overall phase shift, , can be 𝜑𝐷𝐶 𝜑𝑠𝑖𝑔

reliably detected. Fig. 3C illustrates the case of moderate to high ionic strengths (>~10 mM in 

our reflection geometry), where the overall signal is nearly entirely real. Considering the noise 

performance of our instrument illustrated in Fig. 2B, it is not feasible to measure phase shifts of 

<~1 at this time and to separate the  and  components at high ionic strength. However, 𝜒(2) 𝜒(3)

for <~1 mM ionic strength, the phase shift is large enough to measure and separate the terms 

according to eqs. 4A and 4B. The results of this separation are shown in Fig. 3D, which shows 

that  decreases significantly with increasing ionic strength, attributable to increased 𝜒(3)𝛷(0) 

screening within the EDL as the concentration of ions increases. In contrast,  remains 𝜒(2)

comparatively constant across 3 orders of magnitude of ionic strength, though changes on the 

order of ~30% are seen. Note that the magnitude of the uncertainties on the point estimates is 

largely due to error propagation according to eqs. 4A and 4B. The best fit of  with the 𝜒(3)𝛷(0) 

Gouy-Chapman model yields a surface charge density of -0.0024(18) C/m2 and is represented by 

the blue line in Fig. 3D, which agrees well with the measured data. As expected, the charge 

density, for pH 5.8, is smaller than what has been published for pH 7,14,22 given the point of zero 

charge for fused silica is ~2.5.42 

Our findings support the conclusion that we have successfully separated out the 𝜒(3)𝛷(0)

 term without relying on the Gouy-Chapman model. Measurements of  referenced to the  𝐸𝑠𝑖𝑔 𝐸𝑠𝑖𝑔

generated from an interface with known  value, such as α-quartz, are now needed to obtain 𝜒(2)

(0) absolutely, without the use of Gouy-Chapman theory or any other model for the interfacial 
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potential. The method therefore opens the possibility to test primitive ion models or mean field 

theories for aqueous interfaces directly, and without externally applied labels. 

On a slightly different albeit highly relevant note, we mention at this point a recent 

investigation by Dreier et al.43 into the surface potential of charged lipid monolayer-water 

interfaces in which seemingly different results were obtained between homodyne non-resonant 

SHG measurements and chemically-specific SFG measurements of the OH stretching region. 

Part of this difference was attributed to hyper-Raleigh scattering (HRS) contributions to the 

detected SHG intensity. As HRS is produced incoherently, any HRS emitted from the sample – 

while it may be present in the homodyne measurements – would not contribute to the 

interference from which the amplitude and phase of the signal SHG are extracted in HD-SHG. 

Thus, our HD-SHG measurements are free from any potential convolution with HRS. Indeed, 
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Figure 4. Homodyne- and HD- SHG Comparison. Comparison of  derived from 𝐸𝑠𝑖𝑔
homodyne (SHG λ = 400 nm: ●, 515 nm: ●) and HD-SHG (515 nm: ●) measurements from a 
supported lipid bilayer/water interface as a function of ionic strength. The greater amplitude 
detected by the homodyne measurements at high ionic strength is consistent with the presence 
of HRS. Error bars are derived from repeat measurements.
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our HD-SHG apparatus should be ideal for separating out any possible contributions of HRS to 

the SHG signal generated from any interface. To test this idea, we obtained  from supported 𝐸𝑠𝑖𝑔

lipid bilayer/water interfaces as a function of ionic strength measured with different instruments 

(Fig. 4). In addition to the HD-SHG measurements that yield  by phase-referencing, we 𝐸𝑠𝑖𝑔

obtained  by square rooting homodyne-detected  signals with the same laser system as 𝐸𝑠𝑖𝑔 𝐼𝑆𝐻𝐺

well as with an 800 nm Ti:Sapphire oscillator system described previously.19 The three 

measurements track each other closely at low ionic strength (<100 mM), while at high ionic 

strength (approaching 1 M), both homodyne measurements indicate a higher  than 𝐸𝑠𝑖𝑔 = 𝐼𝑆𝐻𝐺

the  obtained from the HD-SHG measurement through model 2 (  from eqs. 5 and 6, 𝐸𝑠𝑖𝑔 𝐸𝑠𝑖𝑔 ∝ 𝐴

vide infra). Additionally, the 400 nm homodyne measurement indicates more signal than the 515 

nm measurement, which would be expected as shorter wavelengths produce a greater HRS 

intensity.44 We caution that our observations are not conclusive evidence for the presence of 

HRS in homodyne SHG in reflection geometries such as the ones employed here and elsewhere, 

yet this result is consistent with its presence and will be the subject of future studies.

In conclusion, we have demonstrated an experimental apparatus capable of measuring the 

phase of SHG signals from buried interfaces. We used this apparatus to measure the phase shift 

in SHG generated at the fused silica/water interface as a function of ionic strength, a direct result 

of charge screening compressing the width of the EDL as ionic strength increases. Furthermore, 

we showed how this additional phase information can be used to unambiguously separate the 

 and  contributions to detected SHG from charged interfaces, a longstanding goal in the 𝜒(2) 𝜒(3)

field. While model (2) was successfully applied to the experimental data, we caution that the 

analysis relies on three assumptions: a) the nonlinear optical signal recorded at the detector 
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consists of only second and third order terms, b) the surface potential decays exponentially with 

distance, and c) Debye-Hückel theory is applicable for the Debye length. 

We envision several avenues of future study in which the instrument described here can 

be impactful. In one avenue, determination of the absolute magnitude of the  and  𝜒(2) 𝜒(3)

components could be made through comparison with a known absolute reference, similar to the 

approach used in heterodyne SFG spectroscopy. This comparison, in combination with the 

isolation of the  contribution described here, would allow for a direct, optical quantification 𝜒(3)

of the surface potential at oxide/water interfaces, without relying on the Gouy-Chapman model 

or the assumption that  remains constant. In another avenue, we foresee coupling the phase 𝜒(2)

measurements described in this study with a system containing an electrode under potential 

control. By controlling the potential and thus the magnitude of the  contribution, the 𝜒(3)

comparison of observed phase shifts with the phase shifts predicted by model (2) would open an 

experimental window into how accurate theoretical (atomistic or coarse grain simulations) and 

model (primitive ions, continuum models or mean field theory) predictions of the EDL are. 

Despite our advance, we caution that physics and chemistry not described in model (2) may 

contribute to the signal generation process in ways that remain to be uncovered. 

Experimental.

A detailed description of the optical setup, as well as sample and solution preparation can be 

found in the SI, Section 6. HD-SHG requires interference between the sample SHG signal and 

the LO generated in an α-quartz crystal. The detected total signal intensity, , produced by the 𝐼𝑆𝐻𝐺

coherent interference between the signal and LO is governed by the following equation:33

𝐼𝑆𝐻𝐺 ∝ |𝐸𝑠𝑖𝑔 + 𝐸𝐿𝑂|2 = |𝐸𝑠𝑖𝑔|2 + |𝐸𝐿𝑂|2 + 2𝐸𝑠𝑖𝑔𝐸𝐿𝑂𝛼cos (𝜑𝑠𝑖𝑔 ― 𝜑𝐿𝑂 + 𝜑𝑃𝑆𝑈)              (5)
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Where α is the overlap parameter that represents the degree of spatial and temporal overlap 

between the two beams,  and  represent the phases of the signal and LO, respectively, 𝜑𝑠𝑖𝑔 𝜑𝐿𝑂

and  represents the additional phase shift introduced by the PSU. We vary  by 𝜑𝑃𝑆𝑈 𝜑𝑃𝑆𝑈

translating the reference α-quartz crystal along the beam path, taking advantage of the slight 

optical dispersion in air, according to the following equation:40 , where  is the 𝑙0 =  𝜆 2Δ𝑛 𝑙0

translation distance required for one period of oscillation, λ is the fundamental wavelength, and 

 is the difference in refractive index between the fundamental and SHG wavelengths. Using Δ𝑛

data from the literature45 for the refractive index of our 1030 and 515 nm beams in air, we 

calculate  to be ~114 mm. Thus, with a 100 mm translational stage, we are able obtain an 𝑙0

interference pattern of just less than one full period of oscillation with our PSU. The time 

required for each scan depends on the number of points the 100 mm range of the stage is divided 

into as well as the length of acquisition at each point. A typical scan of 20 points at 10 seconds 

per point took ~5 minutes. 

Scanning the position of the α-quartz crystal shifts the phase between the signal and LO 

and results in an interference pattern in  as a function of stage position. We fit the 𝐼𝑆𝐻𝐺

interference pattern to the following equation:

𝐼𝑆𝐻𝐺 = 𝐼0 + 𝐴𝑐𝑜𝑠 (𝑓𝑥 + 𝜑fit)                                         #(6)

where  is the stage position and , , , and  are parameters free to be optimized. The fitting 𝑥 𝐼0 𝐴 𝑓 𝜑fit

is carried out using SciPy in JupyterLab in two sequential steps. First, each individual scan from 

a dataset is fit to eq. 6 with every parameter free to be optimized. As the phase of cosine 

functions can only be rigorously compared within a set of cosines with precisely the same 

frequency, the patterns are then fit a second time with f held at the average of all the f values 

from the data set, and these final parameters are subsequently analyzed. As the signal to noise 
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ratio of the interference patterns is high, the difference in the relevant parameters between these 

two steps is generally < ~0.5%.  

By comparing eqs. 5 and 6, it can be seen that . We do not attempt to deduce the 𝐸𝑠𝑖𝑔 ∝ 𝐴

absolute phase of the SHG signal and only interpret its changes in phase. Because  is 𝜑𝐿𝑂

constant and  is varied in the same manner in each scan, changes in  must originate from 𝜑𝑃𝑆𝑈 𝜑fit

changes in , i.e.  . To move from  to , the phase of the sample under a 𝜑𝑠𝑖𝑔 𝛥𝜑𝑓𝑖𝑡 = 𝛥𝜑𝑠𝑖𝑔 𝛥𝜑𝑠𝑖𝑔 𝜑𝑠𝑖𝑔

specific condition must be known (or assumed). We assume that at 100 mM NaCl  as 𝜑𝑠𝑖𝑔 = 0

 and  are purely real and at 100 mM NaCl the Debye length is sufficiently short such that 𝜒(2) 𝜒(3)

 is near 0. The sign of depends on the sign convention of the z-axis, a point of 𝜑𝐷𝐶 𝜑 

disagreement in the literature.10 We assume  is positive, so we use the absolute value of  𝜑𝐷𝐶 𝜑

extracted from the fits. We additionally place  and   on the positive real axis of the 𝜒(2) 𝜒(3)𝛷(0)

complex plane, which places  in the upper right quadrant in an Argand diagram.𝐸𝑠𝑖𝑔
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