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ABSTRACT

Cunha, Silva & Lima recently reexamined the possibility of detecting gravitational waves from
exoplanets, claiming that three ultrashort period systems would be observable by LISA. We
revisit their analysis and conclude that the currently known exoplanetary systems are unlikely
to be detectable, even assuming a LISA observation time T,s = 4 yr. Conclusive statements
on the detectability of one of these systems, GP Com b, will require better knowledge of the
system’s properties, as well as more careful modelling of both LISA’s response and theG
alactic confusion noise. Still, the possibility of exoplanet detection with LISA is interesting
enough to warrant further study, as gravitational waves could yield dynamical properties that
are difficult to constrain with electromagnetic observations.
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The idea of using space-based gravitational-wave (GW) obser-
vations with LISA to detect exoplanets was proposed almost 20 yr
ago. At the time only about 20 such systems were known. Even
taking into account that eccentric systems could produce significant
GW power at higher harmonics, and that some of these exoplanets
could resonantly excite the oscillation modes of the star they are
orbiting, none of them was found to be detectable (Ferrari et al.
2000; Berti & Ferrari 2001a,b).

However, the number of known exoplanets is now in the thou-
sands and exoplanet surveys point to a very large population of
planetary systems in our Galaxy, with more than one planet per
star on average (Cassan et al. 2012) and free-floating planets out-
numbering the stars (Mrdz et al. 2017). Many of these planetary
systems are dramatically different than our own, with hot Jupiters,
highly eccentric and inclined orbits, as well as entire systems of
tightly packed inner planets. Such a rich and varied population of
exoplanetary systems strains our current understanding of planetary
system formation and evolution. A few years ago Ain, Kastha &
Mitra (2015) showed that the stochastic GW background produced
by these systems would peak at ~10~> Hz, with characteristic am-
plitude about two orders of magnitude below LISA’s sensitivity,
though as the exoplanet discovery space expands, our estimates of
this background will evolve.

Cunha et al. (2018) recently revisited the possibility of detecting
exoplanets with LISA. They computed the characteristic strain for
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some ultrashort period exoplanets from an online catalogue,' and
claimed that three systems (GP Com b, V396 Hya b, and J1433
b) have characteristic GW strains large enough to be observable
using the original LISA design (henceforth ‘Classic LISA’; Larson,
Hiscock & Hellings 2000) in one year of integration, ignoring the
galactic confusion noise: cf. fig. 2 of Cunha et al. (2018).

In Table 1 we collected all relevant known properties (to the best
of our knowledge) for these three systems. Note that the companions
of GP Com b and V396 Hya b have masses in the exoplanet range,
but they are donors of AM CVn-type interacting binaries (Kupfer
et al. 2016), while J1433 b consists of an irradiated brown-dwarf
companion to an accreting white dwarf (Herndndez Santisteban
et al. 2016). Therefore the classification of these three binaries as
exoplanetary systems is, at best, debatable.

Given the GW strain amplitude A(f), the characteristic strain A,
for a monochromatic circular binaries with orbital frequency fo, =
27/P emitting GWs at frequency f = 2f, over an observation

) T, L1172
time T, can be defined as h, = [2 f fo“ > dr h(t) ] (Moore,

Cole & Berry 2015). In Fig. 1 we follow the conventions estab-
lished in Robson, Cornish & Liu (2018) — cf. e.g. their fig. 6 — to
plot the characteristic strain along with the effective non-sky aver-
aged noise power spectral density of various LISA designs for two
readout channels, related to the sky-averaged noise power spectral
density by S,(f) = =S5(f) (Robson et al. 2018).> Brown tri-

10™~n

Thttp://exoplanet.eu/catalog/
2We remark that this convention differs from the conventions used in Cutler
(1998) and Berti, Buonanno & Will (2005), where the SNRs coming from the

Published by Oxford University Press on behalf of the Royal Astronomical Society

610z 1Mdy 'z uo Jasn Anstaaiun suydoy suyol Aq 61 L€/ LS/SET/L/E8FNOBASR-3D1LE/|SBIUW/WO02 dNO dIWapeae//:sdy Wol) PapEojUMO(]



L34 K. W.K. Wong et al.

Table 1. Parameters of the most promising exoplanetary systems for GW detection (note that, as discussed in the text, the classification of these systems as
exoplanets is questionable). All parameters are taken from the online exoplanet catalogue http://exoplanet.eu/catalog/, with the exception of quantities labelled
with T (from Gaia Collaboration 2018), 1 (from Kupfer et al. 2016), § (from Herndndez Santisteban et al. 2016), and *(from Cunha et al. 2018). Here Dy,
Mswr(M@), and Mpjane(My) denote the luminosity distance, mass of the star in solar masses, and mass of the planet in Jupiter masses, respectively, while
(6s, ¢s), t and P denote the sky location (in ecliptic coordinates), inclination, and orbital period of the binary, respectively.

Name Dy (pc) Myar(M@) Mplanet(My)

Os (deg) b5 (deg) 1(deg) P(d)

GP Com b
V396 Hya b
J1433 b

72.83 £ 0.327 0.435% 26.2 £ 16.6
93.51 + 1.29¢ 0.345% 183 +£12.2
224.52 + 10.221 0.8+ 0.07" 57.1 £0.7

23.001 187.72% 55.5£225 0.032
—14.50% 205.73% 52+£27 0.045x%
23.897 212.37% 84.36 0.054
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Figure 1. Characteristic strain /. of the loudest exoplanetary candidates
plotted along with \/FS,,(f), where S, (f) is the effective non-sky averaged
noise power spectral density for Classic LISA without galactic confusion
noise (dashed red; Larson et al. 2000), as adopted in Cunha et al. (2018);
Classic LISA with galactic confusion noise (solid red); and the current
LISA design with galactic confusion noise (solid black; Robson et al. 2018).
The galactic confusion background and 4. are computed assuming Tops =
2 yr. Cyan dots with error bars correspond to the non-sky averaged SNR,
allowing for uncertainties on the source parameters; brown inverted triangles
correspond to the sky- and orientation-averaged SNR.

angles correspond to the sky-averaged characteristic strain (solid
black Robson et al. 2018), while cyan error bars correspond to the
range of & consistent with uncertainties in the source parameters
(cf. Table 1). The case for detectability of these three systems with
either the current or Classic LISA design based on a characteristic
strain calculation is, at best, inconclusive.

As discussed in Robson et al. (2018), plots of the characteristic
strain A, are useful as rough assessments of detectability, but any
conclusions must ultimately be based on a signal-to-noise ratio
(SNR) calculation. For monochromatic sources, the SNR is defined
as p = (h|h)"?, where

Wiy = —— [ ae nay (1)
= s,,<f)/o '

To claim detectability, the source of interest must have SNR p
larger than a certain threshold, which for monochromatic systems is
usually taken to be pg, = 5 (Kupfer et al. 2018). This is somewhat
optimistic: the Mock LISA Data Challenges suggest that oy, is
likely to be larger than 5 (Btaut, Babak & Krélak 2010). Crowder &

strain amplitudes iy (o = 1, 2) in the two channels are added in quadrature
and S, (f) = 5SS (f).
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Cornish (2007) even report undetected sources with p ~ 10, though
this will likely improve with more research in GW data analysis.

Unfortunately, Cunha et al. (2018) did not quantify the SNR of
these systems. Furthermore, they used the outdated ‘Classic LISA’
noise curve (Larson et al. 2000) and they did not take into account
the fact that galactic binaries produce a significant confusion noise,
which is important at the frequencies of interest for exoplanetary
systems. Here we revisit their analysis for the three planetary sys-
tems that are most promising for GW detection. We use updated
parameters for these systems (including uncertainties, when avail-
able) and we adopt the most recent estimates for the LISA sensitiv-
ity curve, including galactic confusion noise. The parameters of the
three systems under consideration are listed in Table 1.

‘We model the motion of the LISA detector and compute the
SNR using a non-spinning, quasi-circular time-domain waveform
following Cutler (1998), so that A(f) is given by

V3 2M

MO=5"D,

X COS </ 2 f(1)dr + @p (1) + (pD(t)> , 2
0

(e fyP A

where (1) is given in equation (1.3) of Poisson & Will (1995). Here
AQ®), @p(8), and @p(f) are the amplitude modulation, polarization
phase, and Doppler phase, respectively, due to LISA’s motion (see
Appendix for details). For a binary with component masses and to-
tal mass M = m, + my the waveform depends on nine parameters:
luminosity distance Dy, chirp mass M = 13> M, symmetric mass
ratio n = mym,/M?, time of coalescence t., phase of coalescence
¢, sky location (fs, ¢s), and orbital angular momentum direction
(L, ¢1). The overbar means that the sky location and binary orien-
tation angles are defined in ecliptic coordinates. In order to give an
estimate of the possible range of SNR, for each source we create
Monte Carlo samples based on the parameter uncertainties listed
in Table 1. Our waveforms depend on the sky location in the So-
lar system barycenter frame, while the sky location (65, ¢5') and
inclination ¢ are given in equatorial coordinates (electromagnetic
observations do not give information on the polarization angle V).
In order to translate the waveform from the Solar system barycenter
frame to an Earth-centred frame, we must solve for the geomet-
ric angles in ecliptic coordinates as functions of geometric angles
in equatorial coordinates. Translating the sky location from eclip-
tic coordinates to equatorial coordinates is trivial, but the mapping
from the orbital angular momentum direction to the inclination an-
gle is more complicated. Therefore we draw samples in the LISA
(Solar system barycenter frame) coordinates, compute the SNR,
and display the maximum and minimum SNRs which are consis-
tent with the parameter uncertainties of each source. Our results,
which we have checked to be in agreement with the sky location
and orientation averaged results of Robson et al. (2018), are shown
in Table 2.
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Table 2. SNR for the loudest sources considered in Cunha et al. (2018), using the noise power spectral density for Classic LISA (columns 2, 3, and 4; Larson
et al. 2000) and the current LISA design (columns 5 and 6; Robson et al. 2018). The second row indicates whether we included galactic confusion noise or not.
The third row lists the assumed observation time 7ps (in yr). Numbers in square brackets are the maximum and minimum SNRs consistent with parameter
uncertainties for the given source. In round parentheses we report the sky location and orientation averaged SNR.

Classic LISA LISA
Confusion No No Yes Yes Yes
Tops (yr) 1 2 2 2 4
GP Com b 5.56[0%9'] (6.20) 8.05[1%37] (8.76) 2.29[331] (2.49) 2.03[¢87] (2.21) 331[5%] 3.62)
V396 Hya b L21[5%] .17 1L73[} ‘1’;} (1.65) 0.56[(.5] (0.54) 0.52[p02] (0.50) 0.82[157] (0.76)
J1433 b L12[381] (1.63) 1.52[228] (2.30) 0.54[939] (0.81) 0.50[513] (0.75) 0.73[334] (.1

If we fix the detectability threshold at py, = 5, none of the
currently known systems has p > pu, e€ven assuming coherent
integration over the nominal LISA mission lifetime, i.e. Ty =
4 yr (Amaro-Seoane et al. 2017). GP Com b — whose companion is
a donor in an AM CVn-type interacting binary (Kupfer et al. 2016),
so it can hardly be classified as an exoplanet — would be marginally
detectable with the ‘Classic LISA’ design, and it is marginally de-
tectable by the current LISA design in four years only if we consider
the most optimistic SNR values allowed by parameter uncertainties.
A more reliable assessment of the detectability of this system will
require better knowledge of the system’s properties, as well as more
careful modeling of LISA’s response and of the galactic confusion
noise (see e.g. Timpano, Rubbo & Cornish 2006). For V396 Hya b
and J1433 b, the SNR is always lower than the detection threshold.
Detection thresholds can be lowered if we incorporate informa-
tion from electromagnetic measurements into the GW search, but
a quantitative assessment of this issue is beyond the scope of this
paper (see e.g. Shah & Nelemans 2014).

The search for ultrashort period exoplanets is certainly an exciting
scientific target for LISA. We hope that our considerations will mo-
tivate further work to optimize data analysis methods, to reduce the
noise power spectral density at low frequencies, and to improve our
understanding of the galactic confusion noise. It will be interesting
to model the exoplanet parameter space that would be detectable by
LISA (including galactic exoplanets and brown dwarf populations)
to better understand the potential of GW observations and their
complementarity with respect to traditional detection methods.
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APPENDIX: ANTENNA PATTERN

In this Appendix we write down, for completeness, the antenna pat-
tern expressions used in our non-angle-averaged SNR calculation.
Following Cutler (1998), we denote the LISA-based coordinate sys-
tem by unbarred quantities, while barred quantities refer to the fixed
ecliptic coordinate system. The amplitude modulation in equation 2
is given by

A = \/[1 (i n)2]2F+2 + &L -n)F2, (A1)

where I, and —n are the unit vector along the binary’s orbital angular
momentum and the GW direction of propagation, respectively. The
pattern functions F, and F, are defined as

F(0s, ¢s. ¥s) = 5(1 4 cos?0s) cos 2¢s cos 24
— cos B sin 2¢g sin 2¢g,
F, (05, ¢s. ¥s) = 3(1 + cos?0s) cos 2¢ps sin 2y
+ cos Oy sin 2¢5 cos 2s. (A2)

The angles (05, ¢s) specify the source location, while ¥ g denotes
the the polarization angle:

L-z—(L-n)Xz-n
tan ys(r) = L E @) (A3)
n-(L xz)
where z is the unit normal to the LISA detector plane.
The scalar products can be written as

Z-n = cos by, (Ad)
L.z= %cos 0, — é sin 6z, cos(¢(t) — ¢1), (AS)
L - n = cosfy, cosfs + sindy sinBs cos(¢p, — Ps), (A6)
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and
n-(Lxz)= %sinéL sin g sin(¢, — Ps)
_§ cos (1) (cos B, sin J sin s — cos P sindy sin @)
—? sin (1) (cos s sin By, cos ¢, — cos Gy sinOs cos Ps) . (A7)

The polarization and Doppler phases in equation (2) are given
by

op(t) = tan™ | 2L OO "
(L+(L-n))F.(1)
ep(t) = 2ZL R sin fs cos(p(t) — ds), "

where R = 1AU and ¢(t) = ¢y + 27tt/T. Here T = 1 yr is the
orbital period of LISA, and @, is a constant specifying the detector’s
location at time # = 0.

Assuming no precession of the orbital angular momentum, the
time-dependent LISA related angles (05, ¢s, ¥s) can be expressed
in terms of the time-independent angles defined in the ecliptic co-

MNRASL 483, L33-L36 (2019)

ordinates (Bs, ¢s, O;., ¢r) through the following relations:
cos Os(r) = 5 cosfs — ? sin 85 cos(p(t) — ps), (10a)

27t
¢s(t) = ap + T

) /3 cos s + sinfs cos(P(t) — Ps)

2 sinfg sin(@(t) — Ps)
where o is a constant specifying the orientation of the detector
arms at £ = 0.

+ tan , (10b)

We set ag = 0 and ¢ = 0 in our calculations, but we checked
that varying ag and ¢y has an insignificant effect on the SNR as
long as the observation period Ty, = 1 yr.

This paper has been typeset from a TRX/IATEX file prepared by the author.
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