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The equilibrium configuration of an engineering structure, able to withstand a certain loading condition, is usu- 

ally associated with a local minimum of the underlying potential energy. However, in the nonlinear context, 

there may be other equilibria present, and this brings with it the possibility of a transition to an alternative 

(remote) minimum. That is, given a sufficient disturbance, the structure might buckle, perhaps suddenly, to an- 

other shape. This paper considers the dynamic mechanisms under which such transitions (typically via saddle 

points) occur. A two-mode Hamiltonian is developed for a shallow arch/buckled beam. The resulting form of 

the potential energy —two stable wells connected by rank-1 saddle points —shows an analogy with resonance 

transitions in celestial mechanics or molecular reconfigurations in chemistry, whereas here the transition corre- 

sponds to switching between two stable structural configurations. Then, from Hamilton ’s equations, the equilibria 

are determined and linearization of the equations of motion about the saddle is obtained. After computing the 

eigenvalues and eigenvectors of the coefficient matrix associated with the linearization, a symplectic transfor- 

mation is given which puts the Hamiltonian into normal form and simplifies the equations, allowing us to use 

the conceptual framework known as tube dynamics. The flow in the equilibrium region of phase space as well 

as the invariant manifold tubes in position space are discussed. Also, we account for the addition of damping in 

the tube dynamics framework, which leads to a richer set of behaviors in transition dynamics than previously 

explored. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The nonlinear behavior of slender structures under loading is often

ominated by a potential energy function that possesses a number of

tationary points corresponding to various equilibrium configurations

1,2] . Some are stable (local minima, or ‘well ’), some are unstable (lo-

al maxima or ‘hilltop ’), and some correspond to saddle points, i.e., a

hape with opposite curvature in different directions, but still unstable,

aving both stable and unstable directions. Interestingly, although dif-

cult to observe experimentally, it is these saddle points that can have

 profound organizing effect on global trajectories in a dynamics con-

ext. Thus, under a nominally fixed set of loads or a given configuration

e may have the situation in which a system is at rest in a position

f stable equilibrium, but, given sufficiently large perturbation (input

f energy) may transition to a remote stable equilibrium [3] , or even

ollapse completely [4,5] . The path taken during this transition is asso-

iated with the least energetic route, and this will typically correspond
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o a passage close to a saddle point: it is easier to take a path around a

ountain than going directly over its peak. 

For a single mechanical degree of freedom the transition from one

otential energy minimum to another is relatively unambiguous [6,7] .

e can think of a twin-well oscillator and how it has no choice but to

ass over an intermediate hilltop in transitioning to an adjacent min-

mum. For high-order systems trajectories have many more possible

aths. But a system with two mechanical degrees of freedom (configura-

ion space), and thus a 4 dimensional phase space, offers an intermediate

ituation: compelling conceptual clarity (i.e., the potential energy can

e thought of as a surface or landscape), but still retaining a wider range

f potential behavior over and above the aforementioned single oscil-

ator (i.e., multiple ways of traversing and perhaps escaping from one

otential well to another). 

For the two degree of freedom system, the analog of the hilltop is the

addle point of the potential energy surface. The linearized dynamics

ear such a point yields an oscillatory mode and an exponential mode,

ith both asymptotically stable and unstable directions. For energies

lightly above the saddle point, there is a bottleneck to the energy sur-
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Fig. 1. (a) A schematic load-deflection characteristic, (b) the two dominant degrees of freedom. 

f  

i  

d  

a  

b  

t  

s  

d  

t  

t

2

 

i  

s  

a  

s  

r  

t  

t  

l  

r  

l  

r  

u  

e  

e  

e  

k  

t

 

i  

s  

a  

p  

d  

t  

i  

a  

n  

a  

o  

t  

v  

t  

t  

m  

w  

f  

d  

v  

f

 

t  

s  

o  

t  

E  

t

𝑢

𝑢

w  

a  

K  

t

𝜀  

F  

𝜀

𝜀  

T

𝜀  

 

m  

s  

e

𝜎  

w  

t  

a  

o  

e

  
ace [8,9] . Transitions from one side of the bottleneck can be understood

n terms of sets of trajectories which are bounded by topological cylin-

ers. The transition dynamics, which has in some contexts been known

s tube dynamics [9–19] , has been developed for studying transitions

etween stable states (the potential wells) in a number of disparate con-

exts, and here it is applied to a structural mechanics situation in which

nap-through buckling [2] is the key phenomenological transition. Con-

itions are determined whereby the initial energy imparted to the sys-

em is characterized in terms of subsequent escape from the initial po-

ential well. 

. The paradigm: snap-through of an arch/buckled beam 

A classic example of a saddle-node bifurcation in structural mechan-

cs is the symmetric snap-through buckling of a shallow arch, in an es-

entially co-dimension 1 bifurcation [7] . However, if the arch (or equiv-

lently a buckled beam) is not shallow then the typical mechanism of in-

tability is an asymmetric snap-through, requiring two modes (symmet-

ic and asymmetric) for characterization, and the instability corresponds

o a subcritical pitchfork bifurcation. In both of these cases the transi-

ion is sudden and associated with a fast dynamic jump, since there is no

onger any locally available stable equilibrium. This behavior is generic

egardless of boundary conditions and is also exhibited by the laterally-

oaded buckled beam [20,21] . We shall focus on this latter example, for

elative simplicity of introduction. The essential focus here is that the

nderlying potential energy of this system consists of two potential en-

rgy wells (the original unloaded equilibrium and the snapped-through

quilibrium), an unstable hilltop (the intermediate, straight, unstable

quilibrium) and two saddle-points. The symmetry of this system is bro-

en by small geometric imperfections. The question is: how does the sys-

em escape its local potential energy well in a dynamical systems sense? 

Suppose we have a moderately buckled beam. If a central point load

s applied then the beam deflects initially in a purely symmetric mode, as

hown by the red line in Fig. 1 (a), following the 𝛼 loading path. Upon

 quasi-static increase in the load P , point C is reached (a subcritical

itchfork bifurcation) and the arch quickly snaps-through (a thoroughly

ynamic event) with a significant asymmetric component in the deflec-

ion and the system settles into its inverted position D [3] . This behavior

s captured by considering a two-mode analysis: sag S (symmetric) and

ngle A (asymmetric), or alternatively we can use the harmonic coordi-

ates X and Y , respectively, corresponding to the modes in Fig. 1 (b). In

n approximate analysis they might be the lowest two buckling modes

r free vibration modes from a standard eigen-analysis. Suppose we load

he beam to a value slightly below the snap value at P C , and fix it at that

alue. In this case there will be the five equilibria mentioned earlier:

hree equilibria purely in sag (two stable and an unstable one between

hem), and two saddles, with significant angular components but geo-
414 
etrically opposed [1] . Small geometric imperfections (in A and/or S )

ill break the symmetry and influence which path is more likely to be

ollowed. In this fixed configuration we can then think of the system in

ynamic terms, and consider the range of initial conditions (including

elocity, perhaps caused by an impact force) that might push the system

rom a point on path 𝛼 to a point on path 𝜙. 

Governing equations. In this analysis a slender buckled beam with

hickness d , width b and length L is considered. A Cartesian coordinate

ystem 𝑜 − xyz is established on the mid-plane of the beam in which

 is the origin, x, y the directions along the length and width direc-

ions and z the downward direction normal to the mid-plane. Based on

uler-Bernoulli beam theory [1,22] , the displacement field ( u 1 , u 3 ) of

he beam along the ( x, z ) directions can be written as 

 1 ( 𝑥, 𝑧, 𝑡 ) = 𝑢 ( 𝑥, 𝑡 ) − 𝑧 
𝜕𝑤 ( 𝑥, 𝑡 ) 

𝜕𝑥 
, 

 3 ( 𝑥, 𝑧, 𝑡 ) = 𝑤 ( 𝑥, 𝑡 ) , (1) 

here u ( x, t ) and w ( x, t ) are the axial and transverse displacements of

n arbitrary point on the mid-plane of the beam. Considering the von

ármán-type geometrical nonlinearity, the total axial strain can be ob-

ained as 

 

∗ 
𝑥 
= 

𝜕𝑢 

𝜕𝑥 
− 𝑧 

𝜕 2 𝑤 

𝜕𝑥 2 
+ 

1 
2 

(
𝜕𝑤 

𝜕𝑥 

)2 
. (2)

or a moderately buckled-beam, we need to consider the initial strain

 0 produced by initial deflection w 0 which is 

 0 = − 𝑧 
𝜕 2 𝑤 0 

𝜕𝑥 2 
+ 

1 
2 

( 
𝜕𝑤 0 
𝜕𝑥 

) 2 
. (3)

hen the change in strain 𝜀 x can be expressed as 

 𝑥 = 𝜀 ∗ 
𝑥 
− 𝜀 0 = 

𝜕𝑢 

𝜕𝑥 
− 𝑧 

( 
𝜕 2 𝑤 

𝜕𝑥 2 
− 

𝜕 2 𝑤 0 

𝜕𝑥 2 

) 
+ 

1 
2 

[ (
𝜕𝑤 

𝜕𝑥 

)2 
− 

( 
𝜕𝑤 0 
𝜕𝑥 

) 2 ] 
. (4)

Here we just consider homogeneous isotropic materials with Young ’s

odulus E , and allow for the possibility of thermal loading. The axial

tress 𝜎x can be obtained according to the one dimensional constitutive

quation, as 

𝑥 = 𝐸 𝜀 𝑥 − 𝐸 𝛼𝑥 Δ𝑇 , (5)

here 𝛼x is the thermal expansion coefficient and ΔT is the tempera-

ure increment from the reference temperature at which the beam is in

 stress free state. Thermal loading is introduced as a convenient way

f controlling the initial equilibrium shapes (and hence the potential

nergy landscape) via axial loading. 

The strain energy ( 𝑥, 𝑧, 𝑡 ) is 

( 𝑥, 𝑧, 𝑡 ) = 

𝑏 

2 ∫
𝐿 

0 ∫
𝑑 

2 

− 𝑑 2 

𝜎𝑥 𝜀 𝑥 d 𝑧 d 𝑥. (6)
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gnoring the axial inertia term, the kinetic energy  ( 𝑥, 𝑧, 𝑡 ) of the buckled

eam is 

 ( 𝑥, 𝑧, 𝑡 ) = 

𝑏 

2 ∫
𝐿 

0 ∫
𝑑 

2 

− 𝑑 2 

𝜌𝑤̇ 

2 d 𝑧 d 𝑥, (7)

here 𝜌 is the mass density. In addition, the dot over the quantity is the

erivative with respective to time. 

The governing equations can be obtained by the Lagrange-

 ’Alembert principle [23] which requires that 

∫
𝑡 

𝑡 0 

[ ( 𝑥, 𝑧, 𝑡 ) − ( 𝑥, 𝑧, 𝑡 ) ]d 𝑡 + ∫
𝑡 

𝑡 0 

𝛿𝑊 𝑛𝑐 d 𝑡 = 0 , (8)

here 𝛿 denotes the variational operator, t 0 and t the initial and current

ime. 𝛿W nc is the variation of the virtual work done by non-conservative

orce (damping) which is expressed as 

𝑊 𝑛𝑐 = − 𝑐 𝑑 𝑤̇ 𝛿𝑤, (9)

here c d is the coefficient of (linear viscous) damping. In subsequent

nalysis, and related to typical practical situations, the damping will be

mall. 

After some manipulation, the governing equations in terms of axial

orce N x and bending moment M x can be obtained as [22] 

𝜕𝑁 𝑥 

𝜕𝑥 
= 0 , 

𝜕 2 𝑀 𝑥 

𝜕𝑥 2 
+ 𝑁 𝑥 

𝜕 2 𝑤 

𝜕𝑥 2 
= 𝜌𝐴 ̈𝑤 + 𝑐 𝑑 𝑤̇ , (10) 

here N x and M x are defined as 

𝑁 𝑥 , 𝑀 𝑥 

)
= 𝑏 ∫

𝑑 

2 

− 𝑑 2 

𝜎𝑥 ( 1 , 𝑧 ) d 𝑧. (11)

y using (1), (4) and (5) , the force N x and moment M x in (11) can be

ewritten as 

𝑁 𝑥 = 𝐸𝐴 

[ 
𝜕𝑢 

𝜕𝑥 
+ 

1 
2 

( (
𝜕𝑤 

𝜕𝑥 

)2 
− 

( 
𝜕𝑤 0 
𝜕𝑥 

) 2 ) ] 
− 𝑁 𝑇 , 

 𝑥 = − 𝐸𝐼 

( 
𝜕 2 𝑤 

𝜕𝑥 2 
− 

𝜕 2 𝑤 0 

𝜕𝑥 2 

) 
, (12) 

here A and I denote the cross-sectional area and moment of inertia;

 𝑇 = 𝐸𝐴𝛼𝑥 Δ𝑇 , the axial thermal loads. Thus, EA and EI are the axial

tiffness and bending stiffness, respectively. 

Here we just consider a clamped-clamped beam with in-plane im-

ovable ends. The boundary conditions are 

 = 0 , 𝐿 ∶ 𝑢 = 𝑤 = 

𝜕𝑤 

𝜕𝑥 
= 0 . (13)

ote that from the first equation in (10) , it is clear that the axial force

 x is constant along the axial direction. In this case, integrating the

xial force along the x axis and using the boundary conditions 𝑢 (0 , 𝑡 ) =
 ( 𝐿, 𝑡 ) = 0 , one can obtain 

 𝑥 = 

𝐸𝐴 

2 𝐿 

∫
𝐿 

0 

[ (
𝜕𝑤 

𝜕𝑥 

)2 
− 

( 
𝜕𝑤 0 
𝜕𝑥 

) 2 ] 
d 𝑥 − 𝑁 𝑇 . (14)

Using M x in (12) and N x in (14) , the second equation in (10) can be

escribed in terms of the transverse displacement w as [1] 

𝐴 ̈𝑤 + 𝑐 𝑑 𝑤̇ + 𝐸𝐼 

( 
𝜕 4 𝑤 

𝜕𝑥 4 
− 

𝜕 4 𝑤 0 

𝜕𝑥 4 

) 
+ 

[ 
𝑁 𝑇 − 

𝐸𝐴 

2 𝐿 

∫
𝐿 

0 

( (
𝜕𝑤 

𝜕𝑥 

)2 
− 

( 
𝜕𝑤 0 
𝜕𝑥 

) 2 ) 

d 𝑥 

] 
𝜕 2 𝑤 

𝜕𝑥 2 
= 0 , (15) 

iven the immovable ends it is natural to consider the effective exter-

ally applied axial force to be replaced by a thermal loading term: this

s the primary destabilizing nonlinearity in the system. 

i  

415 
As mentioned earlier, clamped-clamped boundary conditions are

onsidered. Thus we make use of the mode shapes 

𝑛 = 𝜓 𝑛 

[
sinh 

𝜅𝑛 𝑥 

𝐿 

− sin 
𝜅𝑛 𝑥 

𝐿 

+ 𝛿𝑛 

(
cosh 

𝜅𝑛 𝑥 

𝐿 

− cos 
𝜅𝑛 𝑥 

𝐿 

)]
, 

𝑛 = 

sinh 𝜅𝑛 − sin 𝜅𝑛 
cos 𝜅𝑛 − cosh 𝜅𝑛 

, 

os 𝜅𝑛 cosh 𝜅𝑛 = 1 , 

 1 = −0 . 6186 , 𝜓 2 = −0 . 6631 , (16) 

nd describe the deflected shape in terms of a two-degree-of-freedom

pproximation 

 ( 𝑥, 𝑡 ) = 𝑋( 𝑡 ) 𝜙1 ( 𝑥 ) + 𝑌 ( 𝑡 ) 𝜙2 ( 𝑥 ) , 

𝑤 0 ( 𝑥 ) = 𝛾1 𝜙1 ( 𝑥 ) + 𝛾2 𝜙2 ( 𝑥 ) , (17) 

o obtain the ordinary differential equations, we multiply the equation

f motion in (15) by 𝜙i and integrate over the length of the beam. Con-

idering the clamped-clamped boundary conditions, applying integra-

ion by parts yields 

𝐴 ∫
𝐿 

0 
𝜙𝑖 𝑤̈ d 𝑥 + 𝑐 𝑑 ∫

𝐿 

0 
𝜙𝑖 𝑤̇ d 𝑥 + 𝐸𝐼 ∫

𝐿 

0 

𝜕 2 𝜙𝑖 

𝜕𝑥 2 

( 
𝜕 2 𝑤 

𝜕𝑥 2 
− 

𝜕 2 𝑤 0 

𝜕𝑥 2 

) 
d 𝑥 

− 

[ 
𝑁 𝑇 − 

𝐸𝐴 

2 𝐿 

∫
𝐿 

0 

( (
𝜕𝑤 

𝜕𝑥 

)2 
− 

( 
𝜕𝑤 0 
𝜕𝑥 

) 2 ) 

d 𝑥 

] 
∫

𝐿 

0 

𝜕𝜙𝑖 

𝜕𝑥 

𝜕𝑤 

𝜕𝑥 
d 𝑥 = 0 . (18) 

ubstituting the approximations for w and w 0 in (17) with specific mode

hapes 𝜙i in (16) and noticing the mode shapes are mutually orthogonal,

he nonlinear equations can be obtained as 

 1 𝑋̈ + 𝐶 1 𝑋̇ + 𝐾 1 
(
𝑋 − 𝛾1 

)
− 𝑁 𝑇 𝐺 1 𝑋 − 

𝐸𝐴 

2 𝐿 

𝐺 

2 
1 
(
𝛾2 1 𝑋 − 𝑋 

3 )
− 

𝐸𝐴 

2 𝐿 

𝐺 1 𝐺 2 
(
𝛾2 2 𝑋 − 𝑋𝑌 2 

)
= 0 , 

 2 𝑌 + 𝐶 2 𝑌̇ + 𝐾 2 
(
𝑌 − 𝛾2 

)
− 𝑁 𝑇 𝐺 2 𝑌 − 

𝐸𝐴 

2 𝐿 

𝐺 

2 
2 
(
𝛾2 2 𝑌 − 𝑌 3 

)
− 

𝐸𝐴 

2 𝐿 

𝐺 1 𝐺 2 
(
𝛾2 1 𝑌 − 𝑋 

2 𝑌 
)
= 0 , (19) 

here 

𝑀 𝑖 , 𝐶 𝑖 

)
= 

(
𝜌𝐴, 𝑐 𝑑 

)
∫

𝐿 

0 
𝜙2 
𝑖 
d 𝑥, 𝐾 𝑖 = 𝐸𝐼 ∫

𝐿 

0 

( 
𝜕 2 𝜙𝑖 

𝜕𝑥 2 

) 2 
d 𝑥, 

 𝑖 = ∫
𝐿 

0 

( 
𝜕𝜙𝑖 

𝜕𝑥 

) 2 
d 𝑥. (20) 

he kinetic energy and potential energy, respectively, can be repre-

ented as 

 ( 𝑋̇ , 𝑌̇ ) = 

1 
2 
𝑀 1 𝑋̇ 

2 + 

1 
2 
𝑀 2 𝑌̇ 

2 , 

( 𝑋, 𝑌 ) = − 𝐾 1 𝛾1 𝑋 − 𝐾 2 𝛾2 𝑌 + 

1 
2 
𝐾 1 𝑋 

2 + 

1 
2 
𝐾 2 𝑌 

2 − 

1 
2 
𝑁 𝑇 

(
𝐺 1 𝑋 

2 + 𝐺 2 𝑌 
2 )

− 

𝐸𝐴 

2 𝐿 

𝐺 

2 
1 

( 1 
2 
𝛾2 1 𝑋 

2 − 

1 
4 
𝑋 

4 
)
− 

𝐸𝐴 

2 𝐿 

𝐺 

2 
2 

(1 
2 
𝛾2 2 𝑌 

2 − 

1 
4 
𝑌 4 
)

− 

𝐸𝐴 

2 𝐿 

𝐺 1 𝐺 2 
2 
(
𝛾2 2 𝑋 

2 + 𝛾2 1 𝑌 
2 − 𝑋 

2 𝑌 2 
)
. (21) 

or physically reasonable coefficients we have a number of equilibrium

ossibilities. For small values of N T we have an essentially linear sys-

em, dominated by the trivial (straight) equilibrium configuration, and

hus an isolated center (minimum of the potential energy). This relates

ack to the situation in Fig. 1 for a small value of P . But for larger val-

es of P , for example a little below P c , the system typically possesses a

umber of equilibria, some of which are stable and some of which are

ot. Some typical forms are shown in Fig. 2 (a) in which the five points

re the equilibrium points where W 1 and W 2 are within the two sta-

le wells; S 1 and S 2 two unstable saddle points; H the unstable hilltop.

hus, we might have the system sitting (in equilibrium) at point W 1 . If

t is then subject to a disturbance with the right size and direction (in the
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Fig. 2. Contours of potential energy: (a) the symmetric system, 𝛾1 = 𝛾2 = 0 , (b) with small initial imperfections in both modes, i.e., 𝛾1 and 𝛾2 are nonzero. 
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ynamical context), we might expect the system to transition to the re-

ote equilibrium at W 2 . This might occur when the system is subject to

 large impact force, for example [21] . It is anticipated (and will later

e shown) that the typically easiest transition will be associated with

an asymmetric) passage close to S 1 or S 2 , and generally avoiding H.

n Fig. 2 (b) is shown the same system but now with a small geometric

mperfection in both modes (i.e., 𝛾1 ≠0 and 𝛾2 ≠0). In this case the sym-

etry of the system is broken, and given the relative energy associated

ith the saddle points it is anticipated (and will also be shown later)

hat optimal escape will tend to occur via S 1 . 

Note that Eq. (19) can also be obtained from Lagrange ’s equations,

𝑑 

𝑑𝑡 

( 
𝜕 

𝜕 ̇𝑞 𝑖 

) 
− 

𝜕 

𝜕𝑞 𝑖 
= − 𝐶 𝑖 ̇𝑞 𝑖 𝑖 = 1 , 2 , (22)

hen 𝑞 1 = 𝑋 and 𝑞 2 = 𝑌 , and the Lagrangian is 

 ( 𝑋, 𝑌 , 𝑋̇ , 𝑌̇ ) =  ( 𝑋̇ , 𝑌̇ ) − ( 𝑋, 𝑌 ) . (23)

To transform this to a Hamiltonian system, one defines the general-

zed momenta, 

 𝑖 = 

𝜕 

𝜕 ̇𝑞 𝑖 
= 𝑀 𝑖 ̇𝑞 𝑖 , (24)

o 𝑝 𝑋 = 𝑀 1 𝑋̇ and 𝑝 𝑌 = 𝑀 2 𝑌̇ , in which case, the kinetic energy is 

 ( 𝑋, 𝑌 , 𝑝 𝑋 , 𝑝 𝑌 ) = 

1 
2 𝑀 1 

𝑝 2 
𝑋 
+ 

1 
2 𝑀 2 

𝑝 2 
𝑌 
, (25)

nd the Hamiltonian is 

( 𝑋, 𝑌 , 𝑝 𝑋 , 𝑝 𝑌 ) =  +  , (26)

nd Hamilton ’s equations (with damping) [24] are 

𝑋̇ = 

𝜕 

𝜕𝑝 𝑋 
= 

𝑝 𝑋 

𝑀 1 
, 

𝑌̇ = 

𝜕 

𝜕𝑝 𝑌 
= 

𝑝 𝑦 

𝑀 2 
, 

̇ 𝑋 = − 

𝜕 

𝜕𝑋 

− 𝐶 𝐻 

𝑝 𝑋 = − 

𝜕 
𝜕𝑋 

− 𝐶 𝐻 

𝑝 𝑋 , 

𝑝̇ 𝑌 = − 

𝜕 

𝜕𝑌 
− 𝐶 𝐻 

𝑝 𝑌 = − 

𝜕 
𝜕𝑌 

− 𝐶 𝐻 

𝑝 𝑌 , (27)

here 

𝜕 
𝜕𝑋 

= 𝐾 1 
(
𝑋 − 𝛾1 

)
− 𝑁 𝑇 𝐺 1 𝑋 − 

𝐸𝐴 

2 𝐿 

𝐺 

2 
1 
(
𝛾2 1 𝑋 − 𝑋 

3 )

416 
− 

𝐸𝐴 

2 𝐿 

𝐺 1 𝐺 2 
(
𝛾2 2 𝑋 − 𝑋𝑌 2 

)
, 

𝜕 
𝜕𝑌 

= 𝐾 2 
(
𝑌 − 𝛾2 

)
− 𝑁 𝑇 𝐺 2 𝑌 − 

𝐸𝐴 

2 𝐿 

𝐺 

2 
2 
(
𝛾2 2 𝑌 − 𝑌 3 

)
− 

𝐸𝐴 

2 𝐿 

𝐺 1 𝐺 2 
(
𝛾2 1 𝑌 − 𝑋 

2 𝑌 
)
, (28) 

nd 𝐶 𝐻 

= 𝐶 1 ∕ 𝑀 1 = 𝐶 2 ∕ 𝑀 2 is the damping coefficient in the Hamilto-

ian system which can be easily found by comparing (19) and (27) , and

sing the relations of M i and C i in (20) . 

We assume the lower saddle point S 1 has the smaller potential energy

ompared to S 2 , thus the energy of S 1 is the critical energy for snap-

hough, and we initially focus attention on the dynamic behavior around

he region of S 1 . The linearized equations of (27) about S 1 with position

 X e , Y e ) can be written as 

𝑥̇ = 

𝑝 𝑥 

𝑀 1 
, 

𝑦̇ = 

𝑝 𝑦 

𝑀 2 
, 

̇ 𝑥 = 𝐴 31 𝑥 + 𝐴 32 𝑦 − 𝐶 𝐻 

𝑝 𝑥 , 

𝑝̇ 𝑦 = 𝐴 32 𝑥 + 𝐴 42 𝑦 − 𝐶 𝐻 

𝑝 𝑦 , (29) 

here ( 𝑥, 𝑦, 𝑝 𝑥 , 𝑝 𝑦 ) = ( 𝑋, 𝑌 , 𝑝 𝑋 , 𝑝 𝑌 ) − ( 𝑋 𝑒 , 𝑌 𝑒 , 0 , 0) and 

 31 = − 𝐾 1 + 𝑁 𝑇 𝐺 1 + 

𝐸 𝐴𝐺 

2 
1 
(
𝛾2 1 − 3 𝑋 

2 
𝑒 

)
2 𝐿 

+ 

𝐸𝐴𝐺 1 𝐺 2 
(
𝛾2 2 − 𝑌 2 

𝑒 

)
2 𝐿 

, 

 32 = − 

𝐸𝐴𝐺 1 𝐺 2 𝑋 𝑒 𝑌 𝑒 

𝐿 

, 

 42 = − 𝐾 2 + 𝑁 𝑇 𝐺 2 + 

𝐸𝐴𝐺 

2 
2 
(
𝛾2 2 − 3 𝑌 2 

𝑒 

)
2 𝐿 

+ 

𝐸𝐴𝐺 1 𝐺 2 
(
𝛾2 1 − 𝑋 

2 
𝑒 

)
2 𝐿 

. (30) 

If we replace the position of S 1 by the position of W 1 , we can still

se the linearized equations in (29) to obtain the natural frequencies of

he shallow arch near W 1 as 

 

( 𝑑) 
1 , 2 = 𝑤 

( 𝑐) 
1 , 2 

√ 

1 − 𝜉2 1 , 2 , (31)

here 𝜔 

( 𝑐) 
1 , 2 are the first two natural frequencies for the conservative sys-

em and 𝜉1, 2 are the viscous damping factors with the forms 

 

( 𝑐) 
1 , 2 = 

( 𝑏 𝜔 ∓ 

√ 

𝑏 2 
𝜔 
− 4 𝑐 𝜔 ) 

2 
, 𝜉1 , 2 = 

𝐶 𝐻 

2 𝜔 

( 𝑐) 
1 , 2 

, (32)
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nd 

 𝜔 = − 

𝐴 31 
𝑀 1 

− 

𝐴 42 
𝑀 2 

, 𝑐 𝜔 = 

𝐴 31 𝐴 42 − 𝐴 

2 
32 

𝑀 1 𝑀 2 
. 

Non-dimensional equations of motion. In order to reduce the parame-

ers, some non-dimensional quantities are introduced, 

𝐿 𝑥 , 𝐿 𝑦 

)
=𝐿 

( 

1 , 

√ 

𝑀 1 
𝑀 2 

) 

, 𝜔 0 = 

√
− 𝐴 32 (

𝑀 1 𝑀 2 
) 1 
4 

, 𝜏=𝜔 0 𝑡, 
(
𝑞 1 , ̄𝑞 2 

)
= 

( 
𝑥 

𝐿 𝑥 

, 
𝑦 

𝐿 𝑦 

) 
, 

𝑝̄ 1 , ̄𝑝 2 
)
= 

1 
𝜔 0 

( 
𝑝 𝑥 

𝐿 𝑥 𝑀 1 
, 

𝑝 𝑦 

𝐿 𝑦 𝑀 2 

) 
, 
(
𝑐 𝑥 , 𝑐 𝑦 

)
= 

1 
𝜔 

2 
0 

( 
𝐴 31 
𝑀 1 

, 
𝐴 42 
𝑀 2 

) 
, 𝑐 1 = 

𝐶 𝐻 

𝜔 0 
. (33) 

Using the non-dimensional parameters in (33) , the non-dimensional

inearized equations are written as 

̇̄𝑞 1 = 𝑝̄ 1 , 

̇̄𝑞 2 = 𝑝̄ 2 , 

̇̄
 1 = 𝑐 𝑥 ̄𝑞 1 − 𝑞 2 − 𝑐 1 ̄𝑝 1 , 

̇̄
 2 = − ̄𝑞 1 + 𝑐 𝑦 ̄𝑞 2 − 𝑐 1 ̄𝑝 2 . (34) 

ritten in matrix form, with column vector 𝑧̄ = ( ̄𝑞 1 , ̄𝑞 2 , ̄𝑝 1 , ̄𝑝 2 ) , we have 

̇̄
 = 𝐴 ̄𝑧 + 𝐷 ̄𝑧 , 

here 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 1 0 

0 0 0 1 

𝑐 𝑥 −1 0 0 

−1 𝑐 𝑦 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 𝐷 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 

0 0 0 0 

0 0 − 𝑐 1 0 

0 0 0 − 𝑐 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(35) 

re the Hamiltonian part and damping part of the linear equations, re-

pectively. 

. Linearized conservative Hamiltonian system 

.1. Solutions near the equilibria 

Eigenvalues and eigenvectors. In this section, we will discuss the lin-

ar dynamical behaviors of a buckled beam in the Hamiltonian system

ithout taking account of any energy dissipation which makes 𝑐 1 = 0
i.e., 𝐶 𝐻 

= 0 ). Thus, the equations of motion are given as 

̇̄
 = 𝐴 ̄𝑧 . (36)

he system (36) can be viewed as resulting from a quadratic Hamilto-

ian, 

 2 = 

1 
2 𝑝̄ 

2 
1 + 

1 
2 𝑝̄ 

2 
2 − 

1 
2 𝑐 𝑥 ̄𝑞 

2 
1 − 

1 
2 𝑐 𝑦 ̄𝑞 

2 
2 + 𝑞 1 ̄𝑞 2 , (37)

hich can be written in matrix form 

 2 = 

1 
2 
𝑧̄ 𝑇 𝐵 ̄𝑧 , 

here 

 = 𝐽 𝑇 𝐴 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
− 𝑐 𝑥 1 0 0 
1 − 𝑐 𝑦 0 0 
0 0 1 0 
0 0 0 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

nd J is the 4 ×4 canonical symplectic matrix 

 = 

( 
0 𝐼 2 

− 𝐼 2 0 

) 
here I 2 is the 2 ×2 identity matrix. 

The characteristic polynomial of (36) is 

 ( 𝛽) = 𝛽4 − ( 𝑐 𝑥 + 𝑐 𝑦 ) 𝛽2 + 𝑐 𝑥 𝑐 𝑦 − 1 . 
417 
et 𝛼 = 𝛽2 , then the roots of 𝑝 ( 𝛼) = 0 are as follows 

1 = 

𝑐 𝑥 + 𝑐 𝑦 + 

√ (
𝑐 𝑥 − 𝑐 𝑦 

)2 + 4 
2 

, 

2 = 

𝑐 𝑥 + 𝑐 𝑦 − 

√ (
𝑐 𝑥 − 𝑐 𝑦 

)2 + 4 
2 

. (38) 

For equilibrium point S 1 and the parameters used in this paper (see

ection 5.2 for details), we have c x > 0 and c y < 0. In this case, 𝛼1 > 0

nd 𝛼2 < 0. It follows that this equilibrium point is of the type saddle ×
enter. Here we define 𝜆 = 

√
𝛼1 and 𝜔 𝑝 = 

√
− 𝛼2 . Thus, the eigenvectors

re given by 

1 , 𝑐 𝑥 − 𝛽2 , 𝛽, 𝑐 𝑥 𝛽 − 𝛽3 
)
, (39) 

here 𝛽 denotes one of the eigenvalues. 

After substituting 𝛽 = 𝑖𝜔 𝑝 into (39) and separating real and imagi-

ary parts as 𝑢 𝜔 𝑝 + 𝑖𝑣 𝜔 𝑝 , we obtain two corresponding eigenvectors 

𝑢 𝜔 𝑝 = 

(
1 , 𝑐 𝑥 + 𝜔 

2 
𝑝 
, 0 , 0 
)
, 

 𝜔 𝑝 
= 

(
0 , 0 , 𝜔 𝑝 , 𝑐 𝑥 𝜔 𝑝 + 𝜔 

3 
𝑝 

)
. (40) 

Moreover, the other two eigenvectors associated with the pair of real

igenvalues ± 𝜆 can be taken as 

 + 𝜆 = 

(
1 , 𝑐 𝑥 − 𝜆2 , 𝜆, 𝑐 𝑥 𝜆 − 𝜆3 

)
, 

 − 𝜆 = − 

(
1 , 𝑐 𝑥 − 𝜆2 , − 𝜆, 𝜆3 − 𝑐 𝑥 𝜆

)
. (41) 

Symplectic change of variables. We consider the linear symplectic

hange of variables from ( ̄𝑞 1 , ̄𝑞 2 , ̄𝑝 1 , ̄𝑝 2 ) to ( q 1 , q 2 , p 1 , p 2 ), 
 

 

 

 

 

 

𝑞 1 
𝑞 2 
𝑝̄ 1 
𝑝̄ 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 𝐶 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑞 1 
𝑞 2 
𝑝 1 
𝑝 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (42)

here the columns of the matrix C are given by the eigenvectors, 

 = 

(
𝑢 + 𝜆, 𝑢 𝜔 𝑝 , 𝑢 − 𝜆, 𝑣 𝜔 𝑝 

)
, (43)

nd where the vectors are written as column vectors. 

Then we find 

 

𝑇 𝐽𝐶 = 

( 
0 𝐷̄ 

− ̄𝐷 0 

) 
, 𝐷̄ = 

( 

𝑑 𝜆 0 
0 𝑑 𝜔 𝑝 

) 

, (44)

here 

𝑑 𝜆 = 𝜆[4 − 2( 𝑐 𝑥 − 𝑐 𝑦 )( 𝜆2 − 𝑐 𝑥 )] , 

 𝜔 𝑝 
= 

𝜔 𝑝 

2 
[4 + 2( 𝑐 𝑥 − 𝑐 𝑦 )( 𝜔 

2 
𝑝 
+ 𝑐 𝑥 )] . (45) 

In order to obtain a symplectic form which satisfies 𝐶 

𝑇 𝐽 𝐶 = 𝐽 , we

eed to rescale the columns of C . The scaling is given by factors 𝑠 1 = 

√
𝑑 𝜆

nd 𝑠 2 = 

√ 

𝑑 𝜔 𝑝 . In this case, the final form of the symplectic matrix C is

iven by 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
𝑠 1 

1 
𝑠 2 

− 

1 
𝑠 1 

0 

𝑐 𝑥 − 𝜆2 

𝑠 1 

𝜔 2 𝑝 + 𝑐 𝑥 
𝑠 2 

𝜆2 − 𝑐 𝑥 
𝑠 1 

0 
𝜆

𝑠 1 
0 𝜆

𝑠 1 

𝜔 𝑝 

𝑠 2 

𝑐 𝑥 𝜆− 𝜆3 

𝑠 1 
0 𝑐 𝑥 𝜆− 𝜆3 

𝑠 1 

𝑐 𝑥 𝜔 𝑝 + 𝜔 3 𝑝 
𝑠 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (46)

The Hamiltonian (37) can be rewritten in the simplified, normal

orm, 

 2 = 𝜆𝑞 1 𝑝 1 + 

1 
2 𝜔 𝑝 ( 𝑞 2 2 + 𝑝 2 2 ) (47)

ith corresponding linearized equations, 

𝑞̇ = 𝜆𝑞 , 
1 1 
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b  
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a  

(

𝑞

 

𝑧 1 2 1 2  
̇ 1 = − 𝜆𝑝 1 , 

𝑞̇ 2 = 𝜔 𝑝 𝑝 2 , 

̇ 2 = − 𝜔 𝑝 𝑞 2 . (48)

ritten in matrix form, with column vector 𝑧 = ( 𝑞 1 , 𝑞 2 , 𝑝 1 , 𝑝 2 ) , we have 

̇  = Λ𝑧, 

here 

= 𝐶 

−1 𝐴𝐶 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝜆 0 0 0 
0 0 0 𝜔 𝑝 

0 0 − 𝜆 0 
0 − 𝜔 𝑝 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (49)

The solution of (48) can be written as 

 1 = 𝑞 0 1 𝑒 
𝜆𝑡 , 𝑝 1 = 𝑝 0 1 𝑒 

− 𝜆𝑡 , 

 2 + 𝑖𝑝 2 = 

(
𝑞 0 2 + 𝑖𝑝 0 2 

)
𝑒 − 𝑖𝜔 𝑝 𝑡 . (50)

ote that the three functions 

 1 = 𝑞 1 𝑝 1 , 𝑓 2 = 𝑞 2 2 + 𝑝 2 2 , 𝑓 3 =  2 

re constants of motion under the Hamiltonian system (48) . 

.2. Boundary of transit and non-transit orbits 

The linearized phase space. For positive h and c , the equilibrium or

ottleneck region  (sometimes just called the neck region), which is

etermined by 

 2 = ℎ, and |𝑝 1 − 𝑞 1 | ≤ 𝑐, 

s homeomorphic to the product of a 2-sphere and an interval I, S 2 × I ;

amely, for each fixed value of 𝑝 1 − 𝑞 1 in the interval 𝐼 = [− 𝑐 , 𝑐 ] , we see

hat the equation  2 = ℎ determines a 2-sphere 

𝜆

4 ( 𝑞 1 + 𝑝 1 ) 2 + 

1 
2 𝜔 𝑝 ( 𝑞 2 2 + 𝑝 2 2 ) = ℎ + 

𝜆

4 ( 𝑝 1 − 𝑞 1 ) 2 . (51)

uppose a ∈ I , then (51) can be re-written as 

 

2 
1 + 𝑞 2 2 + 𝑝 2 2 = 𝑟 2 , (52)

here 𝑥 1 = 

√ 

1 
2 

𝜆

𝜔 𝑝 
( 𝑞 1 + 𝑝 1 ) and 𝑟 2 = 

2 
𝜔 𝑝 

( ℎ + 

𝜆

4 𝑎 
2 ) , which defines a 2-

phere of radius r in the three variables x 1 , q 2 , and p 2 . 

The bounding 2-sphere of  for which 𝑝 1 − 𝑞 1 = 𝑐 will be called

 1 (the “left ” bounding 2-sphere), and that where 𝑝 1 − 𝑞 1 = − 𝑐, n 2 (the

right ” bounding 2-sphere). See Fig. 3 . 

We call the set of points on each bounding 2-sphere where 𝑞 1 + 𝑝 1 = 0
he equator, and the sets where 𝑞 1 + 𝑝 1 > 0 or 𝑞 1 + 𝑝 1 < 0 will be called

he northern and southern hemispheres, respectively. 

The linear flow in  . To analyze the flow in  , consider the projec-

ions on the ( q 1 , p 1 )-plane and the ( q 2 , p 2 )-plane, respectively. In the

rst case we see the standard picture of a saddle point in two dimen-

ions, and in the second, of a center consisting of harmonic oscillator

otion. Fig. 3 schematically illustrates the flow. With regard to the first

rojection we see that  itself projects to a set bounded on two sides by

he hyperbola 𝑞 1 𝑝 1 = ℎ ∕ 𝜆 (corresponding to 𝑞 2 2 + 𝑝 2 2 = 0 , see (47) ) and

n two other sides by the line segments 𝑝 1 − 𝑞 1 = ± 𝑐, which correspond

o the bounding 2-spheres, n 1 and n 2 , respectively. 

Since q 1 p 1 is an integral of the equations in  , the projections of

rbits in the ( q 1 , p 1 )-plane move on the branches of the corresponding

yperbolas 𝑞 1 𝑝 1 = constant, except in the case 𝑞 1 𝑝 1 = 0 , where 𝑞 1 = 0 or

 1 = 0 . If q 1 p 1 > 0, the branches connect the bounding line segments 𝑝 1 −
 1 = ± 𝑐 and if q 1 p 1 < 0, they have both end points on the same segment.

 check of Eq. (48) shows that the orbits move as indicated by the arrows

n Fig. 3 . 

To interpret Fig. 3 as a flow in  , notice that each point in the ( q 1 ,

 1 )-plane projection corresponds to a 1-sphere S 1 in  given by 

 

2 
2 + 𝑝 2 2 = 

2 
𝜔 𝑝 

( ℎ − 𝜆𝑞 1 𝑝 1 ) . 
418 
f course, for points on the bounding hyperbolic segments ( 𝑞 1 𝑝 1 = ℎ ∕ 𝜆),

he 1-sphere collapses to a point. Thus, the segments of the lines 𝑝 1 −
 1 = ± 𝑐 in the projection correspond to the 2-spheres bounding  . This

s because each corresponds to a 1-sphere crossed with an interval where

he two end 1-spheres are pinched to a point. 

We distinguish nine classes of orbits grouped into the following four

ategories: 

1. The point 𝑞 1 = 𝑝 1 = 0 corresponds to an invariant 1-sphere 𝑆 1 
ℎ 
, an

unstable periodic orbit in  . This 1-sphere is given by 

𝑞 2 2 + 𝑝 2 2 = 

2 
𝜔 𝑝 
ℎ, 𝑞 1 = 𝑝 1 = 0 . (53)

It is an example of a normally hyperbolic invariant manifold (NHIM)

(see [25] ). Roughly, this means that the stretching and contraction

rates under the linearized dynamics transverse to the 1-sphere dom-

inate those tangent to the 1-sphere. This is clear for this example

since the dynamics normal to the 1-sphere are described by the ex-

ponential contraction and expansion of the saddle point dynamics.

Here the 1-sphere acts as a “big saddle point ”. See the black dot at

the center of the ( q 1 , p 1 )-plane on the left side of Fig. 3 . 

2. The four half open segments on the axes, 𝑞 1 𝑝 1 = 0 , correspond to four

cylinders of orbits asymptotic to this invariant 1-sphere 𝑆 1 
ℎ 

either

as time increases ( 𝑝 1 = 0 ) or as time decreases ( 𝑞 1 = 0 ). These are

called asymptotic orbits and they form the stable and the unstable

manifolds of 𝑆 1 
ℎ 
. The stable manifolds, 𝑊 

𝑠 
± ( 𝑆 

1 
ℎ 
) , are given by 

𝑞 2 2 + 𝑝 2 2 = 

2 
𝜔 𝑝 
ℎ, 𝑞 1 = 0 , 𝑝 1 ar bit rary . (54)

𝑊 

𝑠 
+ ( 𝑆 

1 
ℎ 
) (with p 1 > 0) is the branch going entering from n 1 and

𝑊 

𝑠 
− ( 𝑆 

1 
ℎ 
) (with p 1 < 0) is the branch going entering from n 2 . The un-

stable manifolds, 𝑊 

𝑢 
± ( 𝑆 

1 
ℎ 
) , are given by 

𝑞 2 2 + 𝑝 2 2 = 

2 
𝜔 𝑝 
ℎ, 𝑝 1 = 0 , 𝑞 1 ar bit rary . (55)

𝑊 

𝑢 
+ ( 𝑆 

1 
ℎ 
) (with q 1 > 0) is the branch exiting from n 2 and 𝑊 

𝑢 
− ( 𝑆 

1 
ℎ 
) (with

q 1 < 0) is the branch exiting from n 1 . See the four orbits labeled A in

Fig. 3 . 

3. The hyperbolic segments determined by 𝑞 1 𝑝 1 = constant > 0 corre-

spond to two cylinders of orbits which cross  from one bounding

2-sphere to the other, meeting both in the same hemisphere; the

northern hemisphere if they go from 𝑝 1 − 𝑞 1 = + 𝑐 to 𝑝 1 − 𝑞 1 = − 𝑐,

and the southern hemisphere in the other case. Since these orbits

transit from one realm to another, we call them transit orbits. See

the two orbits labeled T in Fig. 3 . 

4. Finally the hyperbolic segments determined by 𝑞 1 𝑝 1 = constant < 0
correspond to two cylinders of orbits in  each of which runs from

one hemisphere to the other hemisphere on the same bounding 2-

sphere. Thus if q 1 > 0, the 2-sphere is n 1 ( 𝑝 1 − 𝑞 1 = − 𝑐) and orbits run

from the southern hemisphere ( 𝑞 1 + 𝑝 1 < 0 ) to the northern hemi-

sphere ( 𝑞 1 + 𝑝 1 > 0 ) while the converse holds if q 1 < 0, where the

2-sphere is n 2 . Since these orbits return to the same realm, we call

them non-transit orbits. See the two orbits labeled NT in Fig. 3 . 

.3. Trajectories in the neck region 

We now examine the appearance of the orbits in configuration space,

hat is, in the ( ̄𝑞 1 , ̄𝑞 2 ) -plane. In configuration space,  appears as the neck

egion connecting two realms, so trajectories in  will be transformed

ack to the neck region. It should pointed out that at each moment in

ime, all trajectories must evolve within the energy boundaries which

re zero velocity curves (corresponding to 𝑝̄ 1 = 𝑝̄ 2 = 0 ) given by solving

37) for 𝑞 2 as a function of 𝑞 1 , 

̄ 2 ( ̄𝑞 1 ) = 

𝑞 1 ± 

√ 

𝑞 2 1 − 2 𝑐 𝑦 ( ℎ + 

𝑐 𝑥 

2 𝑞 
2 
1 ) 

𝑐 𝑦 
. 

Recall that in order to obtain the analytical solutions for

̄ = ( ̄𝑞 , ̄𝑞 , ̄𝑝 , ̄𝑝 ) , system 𝑧̄ has been transformed into system 𝑧 =
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Fig. 3. The flow in the equilibrium region has the form saddle × center. On the left is shown the projection onto the ( p 1 , q 1 ) plane, the saddle projection. For the conservative dynamics, 

the Hamiltonian function  2 remains constant at h > 0. Shown are the periodic orbit (black dot at the center), the asymptotic orbits (labeled A), two transit orbits (T) and two non-transit 

orbits (NT). 
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Fig. 4. The flow of the conservative system in  , the equilibrium region projected onto 

the xy configuration space, for a fixed value of energy,  2 = ℎ > 0 . For any point on the 

bounding vertical lines n 1 or n 2 (dashed), there is a wedge of velocity directions inside of 

which the trajectories are transit orbits, and outside of which are non-transit orbits. The 

boundary of the wedge gives the orbits asymptotic to the single unstable periodic orbit in 

the neck for this energy. Shown are a typical asymptotic orbit; two transit orbits (dashed); 

and two non-transit orbits (dotted). 

 

 

 

 𝑞 1 , 𝑞 2 , 𝑝 1 , 𝑝 2 ) by using the symplectic matrix C consisting of generalized

re-scaled) eigenvectors 𝑢 + 𝜆, 𝑢 − 𝜆, 𝑢 𝜔 𝑝 , 𝑣 𝜔 𝑝 with corresponding eigenval-

es ± 𝜆 and ± i 𝜔 p . Thus, the system z should be transformed back to

ystem 𝑧̄ which generates the following general (real) solution with the

orm 

 ( 𝑡 ) = 

(
𝑞 1 , 𝑞 2 , 𝑝 1 , 𝑝 2 

)
= 𝑞 0 1 𝑒 

𝜆𝑡 𝑢 + 𝜆 + 𝑝 0 1 𝑒 
− 𝜆𝑡 𝑢 − 𝜆 + Re 

[
𝛽0 𝑒 

− 𝑖𝜔 𝑝 𝑡 
(
𝑢 𝜔 𝑝 − 𝑖𝑣 𝜔 𝑝 

)]
, 

(56)

here 𝑞 0 1 , 𝑝 
0 
1 are real and 𝛽0 = 𝑞 0 2 + 𝑖𝑝 0 2 is complex. 

Upon inspecting this general solution, we see that the solutions on

he energy surface fall into different classes depending upon the limiting

ehaviors of 𝑞 1 , ̄𝑞 2 as t tends to plus or minus infinity. Notice that 

̄ 1 ( 𝑡 ) = 

𝑞 0 1 
𝑠 1 
𝑒 𝜆𝑡 − 

𝑝 0 1 
𝑠 1 
𝑒 − 𝜆𝑡 + 

1 
𝑠 2 

(
𝑞 0 2 cos 𝜔 𝑝 𝑡 + 𝑝 0 2 sin 𝜔 𝑝 𝑡 

)
, 

̄ 2 ( 𝑡 ) = 

𝑐 𝑥 − 𝜆2 

𝑠 1 
𝑞 0 1 𝑒 

𝜆𝑡 + 

𝜆2 − 𝑐 𝑥 

𝑠 1 
𝑝 0 1 𝑒 

− 𝜆𝑡 

+ 

𝜔 

2 
𝑝 
+ 𝑐 𝑥 

𝑠 2 

(
𝑞 0 2 cos 𝜔 𝑝 𝑡 + 𝑝 0 2 sin 𝜔 𝑝 𝑡 

)
. (57) 

hus, if 𝑡 → +∞, then 𝑞 1 ( 𝑡 ) is dominated by its 𝑞 0 1 term. Hence, 𝑞 1 ( 𝑡 ) tends

o minus infinity (staying on the left-hand side), is bounded (staying

round the equilibrium point), or tends to plus infinity (staying on the

ight-hand side) according to 𝑞 0 1 < 0 , 𝑞 0 1 = 0 and 𝑞 0 1 > 0 . See Fig. 4 . The

ame statement holds if 𝑡 → −∞ and − 𝑝 0 1 replaces 𝑞 0 1 . Different combi-

ations of the signs of 𝑞 0 1 and 𝑝 0 1 will give us again the same nine classes

f orbits which can be grouped into the same four categories. 

1. If 𝑞 0 1 = 𝑝 0 1 = 0 , we obtain a periodic solution. The periodic orbit

projects onto the ( ̄𝑞 1 , ̄𝑞 2 ) plane as a line with the following expres-

sion 

𝑞 1 = 

1 
𝑠 2 

(
𝑞 0 2 cos 𝜔 𝑝 𝑡 + 𝑝 0 2 sin 𝜔 𝑝 𝑡 

)
, 

𝑞 2 = 

𝜔 

2 
𝑝 
+ 𝑐 𝑥 

𝑠 2 

(
𝑞 0 2 cos 𝜔 𝑝 𝑡 + 𝑝 0 2 sin 𝜔 𝑝 𝑡 

)

419 
= 

(
𝜔 

2 
𝑝 
+ 𝑐 𝑥 

)
𝑞 1 . (58) 

Notice (47) and  2 now can be rewritten as  2 = 𝜔 𝑝 |𝛽0 |2 ∕2 .
Thus, since  2 = ℎ, the length of the periodic orbit is√ 

2 ℎ 
[
( 𝜔 

2 
𝑝 
+ 𝑐 𝑥 ) 2 + 1 

]
∕ 
(
𝜔 𝑝 𝑠 

2 
2 
)
. Note that the length of the line

goes to zero with h . 
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2. Orbits with 𝑞 0 1 𝑝 
0 
1 = 0 are asymptotic orbits. They are asymptotic to

the periodic orbit. 

(a) When 𝑞 0 1 = 0 , the general solutions for 𝑞 1 , ̄𝑞 2 are 

𝑞 1 = − 

𝑝 1 
𝑠 1 

+ 

𝑞 2 
𝑠 2 
, 

𝑞 2 = 

𝜆2 − 𝑐 𝑥 

𝑠 1 
𝑝 1 + 

𝜔 

2 
𝑝 
+ 𝑐 𝑥 

𝑠 2 
𝑞 2 

= 

(
𝑐 𝑥 − 𝜆2 

)
𝑞 1 + 

𝜆2 + 𝜔 

2 
𝑝 

𝑠 2 

(
𝑞 0 2 cos 𝜔 𝑝 𝑡 + 𝑝 0 2 sin 𝜔 𝑝 𝑡 

)
. (59)

Thus, the orbits with 𝑞 0 1 = 0 project into a strip S in the ( ̄𝑞 1 , ̄𝑞 2 ) -
plane bounded by 

𝑞 2 = 

(
𝑐 𝑥 − 𝜆2 

)
𝑞 1 ± 

𝜆2 + 𝜔 

2 
𝑝 

𝑠 2 

√ 

2 ℎ 
𝜔 𝑝 

. (60)

(b) For 𝑝 0 1 = 0 , following the same procedure as 𝑞 0 1 = 0 , we have 

𝑞 1 = 

𝑞 1 
𝑠 1 

+ 

𝑞 2 
𝑠 2 
, 

𝑞 2 = 

(
𝑐 𝑥 − 𝜆2 

)
𝑞 1 + 

𝜆2 + 𝜔 

2 
𝑝 

𝑠 2 

(
𝑞 0 2 cos 𝜔 𝑝 𝑡 + 𝑝 0 2 sin 𝜔 𝑝 𝑡 

)
. (61)

Notice that these two asymptotic orbits with 𝑞 0 1 = 0 and 𝑝 0 1 = 0
share the same strip S and the same boundaries governed by (60) .

Also, since the slopes of the periodic orbit and the strip satisfies(
𝑐 𝑥 − 𝜆2 

)(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)
= −1 , the periodic orbit is perpendicular to

the strip. In other words, the length of the periodic orbit is exactly

the same as the width of the strip. 

3. Orbits with 𝑞 0 1 𝑝 
0 
1 > 0 are transit orbits because they cross the equilib-

rium region  from −∞ (the left-hand side) to +∞ (the right-hand

side) or vice versa. 

4. Orbits with 𝑞 0 1 𝑝 
0 
1 < 0 are non-transit orbits 

o study the flow in position space, Fig. 4 gives the four categories of or-

its. From (57) , we can see that for transit orbits and non-transit orbits,

he signs of 𝑞 0 1 𝑝 
0 
1 must satisfy 𝑞 0 1 𝑝 

0 
1 > 0 and 𝑞 0 1 𝑝 

0 
1 < 0 , respectively. 

In Fig. 4 , S is the strip mentioned above. Outside of the strip, the signs

f 𝑞 0 1 and 𝑝 0 1 are independent of the direction of the velocity. These signs

an be determined in each of the components of the equilibrium region

 complementary to the strip. For example, in the left two components,

 

0 
1 < 0 and 𝑝 0 1 > 0 , while in the right two components 𝑞 0 1 > 0 and 𝑝 0 1 < 0 .
herefore, 𝑞 0 1 𝑝 

0 
1 < 0 in all components and only non-transit orbits project

n to these four components. 

Inside the strip the situation is more complicated since in S the signs

f 𝑞 0 1 and 𝑝 0 1 depend on the direction of the velocity. At each position

 ̄𝑞 1 , ̄𝑞 2 ) inside the strip there exists a so-called ‘wedge ’ of velocities in

hich 𝑞 0 1 𝑝 
0 
1 > 0 which was first found by Conley (1968) [10] in the re-

tricted three-body problem. See the shaded wedges in Fig. 4 . The exis-

ence and the angle of the wedge of velocity will be given in the next

art. For simplicity we have indicated this dependence only on the two

ertical bounding line segments in Fig. 4 . For example, consider the in-

ersection of strip S with left-most vertical line. On the subsegment so

btained there is at each point a wedge of velocity in which both 𝑞 0 1 
nd 𝑝 0 1 are positive, so that orbits with velocity interior to the wedge are

ransit orbits ( 𝑞 0 1 𝑝 
0 
1 > 0) . Of course, orbits with velocity on the boundary

f the wedge are asymptotic ( 𝑞 0 1 𝑝 
0 
1 = 0) , while orbits with velocity out-

ide of the wedge are non-transit. The situation on the other subsegment

s similar. 

The wedge of velocities. To establish the wedge of velocity and obtain

ts angle, we need to use the following fact that all the inner products

f one generalized eigenvector and another generalized eigenvector as-

ociated with the matrix B are zero except for 

 

𝑇 
+ 𝜆𝐵𝑢 − 𝜆 = 𝑢 𝑇 − 𝜆𝐵𝑢 + 𝜆 = 𝜆, 

𝑢 𝑇 
𝜔 𝑝 
𝐵𝑢 𝜔 𝑝 = 𝑣 𝑇 

𝜔 𝑝 
𝐵𝑣 𝜔 𝑝 = 𝜔 𝑝 . (62)

Using this condition, we have the following relations, as 

𝜆 = 𝑢 𝑇 + 𝜆𝐵𝑢 − 𝜆
420 
𝜆𝑞 0 1 = 𝑞 0 1 𝑢 
𝑇 
+ 𝜆𝐵𝑢 − 𝜆

𝜆𝑞 0 1 = 𝑒 − 𝜆𝑡 
(
𝑞 0 1 𝑒 

𝜆𝑡 𝑢 + 𝜆
)𝑇 
𝐵𝑢 − 𝜆

𝜆𝑞 0 1 = 𝑒 − 𝜆𝑡 𝑧̄ 𝑇 𝐵𝑢 − 𝜆

𝜆𝑞 0 1 = 𝑒 − 𝜆𝑡 

( 

𝜆2 

𝑠 1 
𝑞 1 − 

1 − 𝑐 𝑥 𝑐 𝑦 + 𝑐 𝑦 𝜆
2 

𝑠 1 
𝑞 2 + 

𝜆

𝑠 1 
𝑝̄ 1 + 

𝑐 𝑥 𝜆 − 𝜆3 

𝑠 1 
𝑝̄ 2 

) 

. (63) 

sing similar arguments, we can also obtain 

𝑝 0 1 = 𝑒 𝜆𝑡 

( 

− 

𝜆2 

𝑠 1 
𝑞 1 + 

1 − 𝑐 𝑥 𝑐 𝑦 + 𝑐 𝑦 𝜆
2 

𝑠 1 
𝑞 2 + 

𝜆

𝑠 1 
𝑝̄ 1 + 

𝑐 𝑥 𝜆 − 𝜆3 

𝑠 1 
𝑝̄ 2 

) 

. (64)

hus, we obtain the following relations 

𝜆𝑞 0 1 𝑒 
𝜆𝑡 = 

𝜆2 

𝑠 1 
𝑞 1 − 

1 − 𝑐 𝑥 𝑐 𝑦 + 𝑐 𝑦 𝜆
2 

𝑠 1 
𝑞 2 + 

𝜆

𝑠 1 
𝑝̄ 1 + 

𝑐 𝑥 𝜆 − 𝜆3 

𝑠 1 
𝑝̄ 2 , 

𝑝 0 1 𝑒 
− 𝜆𝑡 = − 

𝜆2 

𝑠 1 
𝑞 1 + 

1 − 𝑐 𝑥 𝑐 𝑦 + 𝑐 𝑦 𝜆
2 

𝑠 1 
𝑞 2 + 

𝜆

𝑠 1 
𝑝̄ 1 + 

𝑐 𝑥 𝜆 − 𝜆3 

𝑠 1 
𝑝̄ 2 . (65) 

Let 𝜒 be the angles determined by 

os 𝜒 = 

1 √ (
𝜆2 − 𝑐 𝑥 

)2 + 1 
, sin 𝜒 = 

𝜆2 − 𝑐 𝑥 √ (
𝜆2 − 𝑐 𝑥 

)2 + 1 
. (66)

urthermore, let 

̄ 1 = 𝜌 cos 𝜃, 𝑝̄ 2 = 𝜌 sin 𝜃, (67)

nd 

= 

( 

𝜆2 

𝑠 1 
𝑞 1 − 

1 − 𝑐 𝑥 𝑐 𝑦 + 𝑐 𝑦 𝜆
2 

𝑠 1 
𝑞 2 

) [ 
𝜆2 

𝑠 2 1 

(
𝑝̄ 2 1 + 𝑝̄ 2 2 

)((
𝜆2 − 𝑐 𝑥 

)2 + 1 
)] − 1 2 

. 

(68) 

sing (68), (65) can be rewritten as 

𝜆𝑞 0 1 𝑒 
𝜆𝑡 

[ 
𝜆2 

𝑠 2 1 

(
𝑝̄ 2 1 + 𝑝̄ 2 2 

)((
𝜆2 − 𝑐 𝑥 

)2 + 1 
)] − 1 2 

= 𝛾 + cos ( 𝜃 − 𝜒) , 

𝜆𝑝 0 1 𝑒 
− 𝜆𝑡 

[ 
𝜆2 

𝑠 2 1 

(
𝑝̄ 2 1 + 𝑝̄ 2 2 

)((
𝜆2 − 𝑐 𝑥 

)2 + 1 
)] − 1 2 

= − 𝛾 + cos ( 𝜃 − 𝜒) . (69) 

So far, the signs of 𝑞 0 1 and 𝑝 0 1 can be determined using (69) . From (69) ,

t can be concluded that 𝛾 is only dependent on the position ( ̄𝑞 1 , ̄𝑞 2 ) ,
ecause 𝑝̄ 2 1 + 𝑝̄ 2 2 can be obtained from (37) once the position is given.

utside the strip, we have ∣𝛾 ∣> 1. In this case, the signs of 𝑞 0 1 and 𝑝 0 1 are

ndependent of the direction of velocity and are always opposite, which

akes 𝑞 0 1 𝑝 
0 
1 < 0 . Thus, only non-transit orbits exist in these regions. In-

ide the strip, we have ∣𝛾 ∣< 1. This situation is quite different since the

igns of 𝑞 0 1 and 𝑝 0 1 are dependent on the angle of velocity. For transit or-

its, the sign of 𝑞 0 1 𝑝 
0 
1 must be positive. Thus, we can vary 𝜃 (the direction

f velocity) to satisfy this condition, and the wedge of velocity can be

etermined. It should be noted that the wedge of velocity can only exist

nside the strip S : outside of S , no transit orbit exists. 

. Linearized dissipative Hamiltonian system 

.1. Solutions near the equilibria 

For the dissipative system, we still use the symplectic matrix C as in

46) to transform to the eigenbasis, i.e., transform 𝑧̄ = ( ̄𝑞 1 , ̄𝑞 2 , ̄𝑝 1 , ̄𝑝 2 ) to
 = ( 𝑞 1 , 𝑞 2 , 𝑝 1 , 𝑝 2 ) . The equations of motion now become 

̇  = Λ𝑧 + Δ𝑧, (70)

here Λ = 𝐶 

−1 𝐴𝐶 from before and the transformed damping matrix is,

= 𝐶 

−1 𝐷𝐶 = − 𝑐 1 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 
2 0 1 

2 0 
0 0 0 0 
1 
2 0 1 

2 0 
0 0 0 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (71) 
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𝑞̇ 1 = 

(
𝜆 − 

𝑐 1 
2 

)
𝑞 1 − 

𝑐 1 
2 𝑝 1 , 

𝑝̇ 1 = − 

𝑐 1 
2 𝑞 1 + 

(
− 𝜆 − 

𝑐 1 
2 

)
𝑝 1 
, (72a) 

 

𝑞̇ 2 = 𝜔 𝑝 𝑝 2 , 

𝑝̇ 2 = − 𝜔 𝑝 𝑞 2 − 𝑐 1 𝑝 2 . 
(72b) 

Notice that the dynamics on the ( q 1 , p 1 ) plane and ( q 2 , p 2 ) plane are

ncoupled. 

The fourth-order characteristic polynomial is thus decomposable

nto 𝑝 ( 𝛽) = 𝑝 1 ( 𝛽) 𝑝 2 ( 𝛽) , where the second-order characteristic polynomi-

ls for (72a) and (72b) are 
 

𝑝 1 ( 𝛽) = 𝛽2 + 𝑐 1 𝛽 − 𝜆2 , 

𝑝 2 ( 𝛽) = 𝛽2 + 𝑐 1 𝛽 + 𝜔 

2 
𝑝 
. 

(73) 

Considering c 1 is positive and 𝑐 2 1 is smaller than 4 𝜔 

2 
𝑝 
, the determi-

ants for (73) are 
 

Δ1 = 𝑐 2 1 + 4 𝜆2 > 0 , 

Δ2 = 𝑐 2 1 − 4 𝜔 

2 
𝑝 
< 0 . 

(74) 

The corresponding eigenvalues are 

 

 

 

 

 

𝛽1 = 

− 𝑐 1 + 
√

𝑐 2 1 +4 𝜆
2 

2 , 

𝛽2 = 

− 𝑐 1 − 
√

𝑐 2 1 +4 𝜆
2 

2 , 

(75a) 

 

𝛽3 = − 𝛿 + 𝑖𝜔 𝑑 , 

𝛽4 = − 𝛿 − 𝑖𝜔 𝑑 , 
(75b) 

here 𝛿 = 

𝑐 1 
2 , 𝜔 𝑑 = 𝜔 𝑝 

√ 

1 − 𝜉2 
𝑑 

and 𝜉𝑑 = 

𝛿

𝜔 𝑝 
, with the corresponding

igenvectors 

 𝛽1 
= 

( 
𝑐 1 
2 
, 𝜆 − 

1 
2 

√ 

𝑐 2 1 + 4 𝜆2 
) 
, 

 𝛽2 
= 

( 
𝑐 1 
2 
, 𝜆 + 

1 
2 

√ 

𝑐 2 1 + 4 𝜆2 
) 
, 

 𝛽3 
= 

(
𝜔 𝑝 , − 𝛿 + 𝑖𝜔 𝑑 

)
, 

 𝛽4 
= 

(
𝜔 𝑝 , − 𝛿 − 𝑖𝜔 𝑑 

)
. (76) 

Thus, the general solutions for the ( q 1 , p 1 ) and ( q 2 , p 2 ) systems are

 

𝑞 1 = 𝑘 1 𝑒 
𝛽1 𝑡 + 𝑘 2 𝑒 

𝛽2 𝑡 , 

𝑝 1 = 𝑘 3 𝑒 
𝛽1 𝑡 + 𝑘 4 𝑒 

𝛽2 𝑡 , 
(77a) 

 

𝑞 2 = 𝑘 5 𝑒 
− 𝛿𝑡 cos 𝜔 𝑑 𝑡 + 𝑘 6 𝑒 

− 𝛿𝑡 sin 𝜔 𝑑 𝑡 , 

𝑝 2 = 

𝑘 5 
𝜔 𝑝 
𝑒 − 𝛿𝑡 
(
− 𝛿 cos 𝜔 𝑑 𝑡 − 𝜔 𝑑 sin 𝜔 𝑑 𝑡 

)
+ 

𝑘 6 
𝜔 𝑝 
𝑒 − 𝛿𝑡 
(
𝜔 𝑑 cos 𝜔 𝑑 𝑡 − 𝛿 sin 𝜔 𝑑 𝑡 

)
, 

(77b) 

here 

 1 = 

𝑞 0 1 

( 
2 𝜆 + 

√ 

𝑐 2 1 + 4 𝜆2 
) 
− 𝑐 1 𝑝 

0 
1 

2 
√ 

𝑐 2 1 + 4 𝜆2 
, 

 2 = 

𝑞 0 1 

( 
−2 𝜆 + 

√ 

𝑐 2 1 + 4 𝜆2 
) 
+ 𝑐 1 𝑝 

0 
1 

2 
√ 

𝑐 2 1 + 4 𝜆2 
, 

 3 = 

𝑝 0 1 

( 
−2 𝜆 + 

√ 

𝑐 2 1 + 4 𝜆2 
) 
− 𝑐 1 𝑞 

0 
1 

2 
√ 

𝑐 2 1 + 4 𝜆2 
, 

 4 = 

𝑝 0 1 

( 
2 𝜆 + 

√ 

𝑐 2 1 + 4 𝜆2 
) 
+ 𝑐 1 𝑞 

0 
1 

2 
√ 

𝑐 2 1 + 4 𝜆2 
, 
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 5 = 𝑞 0 2 , 𝑘 6 = 

𝑝 0 2 𝜔 𝑝 + 𝑞 0 2 𝛿

𝜔 𝑑 

. 

ote that 𝑘 1 = 𝑞 0 1 , 𝑘 4 = 𝑝 0 1 , 𝑘 2 = 𝑘 3 = 0 , 𝑘 5 = 𝑞 0 2 and 𝑘 6 = 𝑝 0 2 if 𝑐 1 = 0 . 
Taking the total derivative with respect to t of the Hamiltonian along

rajectories gives us 

𝑑 2 
𝑑𝑡 

= − 

1 
2 𝑐 1 𝜆
(
𝑞 1 + 𝑝 1 

)2 − 𝑐 1 𝜔 𝑝 𝑝 
2 
2 ≤ 0 , (78) 

hich means the Hamiltonian is non-increasing, and will generally de-

rease due to damping. 

.2. Boundary of transit and non-transit orbits 

The Linear Flow in  . Similar to the discussions for the conservative

ystem, we still choose an equilibrium region  bounded by regions

hich project to the lines n 1 and n 2 in the ( q 1 , p 1 )-plane (see Fig. 5 ). To

nalyze the flow in  , we consider the projections on the ( q 1 , p 1 )-plane

nd the ( q 2 , p 2 )-plane, respectively. In the first case we see the standard

icture of a saddle point, now rotated compared to the conservative

ase, and in the second, of a stable focus which is a damped oscillator

ith frequency 𝜔 𝑑 = 𝜔 𝑝 

√ 

1 − 𝜉2 
𝑑 
, where 𝜉𝑑 = 

𝑐 1 
2 𝜔 𝑝 

- the viscous damping

actor (damping ralative to critical damping). Notice that the frequency

 d for the damped system decreases with increased damping, but only

ery slightly for lightly damped systems. 

We distinguish nine classes of orbits grouped into the following four

ategories: 

1. The point 𝑞 1 = 𝑝 1 = 0 corresponds to a focus-type asymptotic orbit

with motion purely in the ( q 2 , p 2 )-plane (see black dot at the origin

of the ( q 1 , p 1 )-plane in Fig. 5 ). Such orbits are asymptotic to the

equilibrium point S 1 itself. Due to the effect of damping, the periodic

orbit in the conservative system, which is an invariant 1-sphere 𝑆 1 
ℎ 

mentioned in (53) , does not exist. 

2. The four half open segments on the lines governed by 𝑞 1 = 𝑐 1 𝑝 1 ∕(2 𝜆 ±√ 

𝑐 2 1 + 4 𝜆2 ) correspond to saddle-type asymptotic orbits. See the

four orbits labeled A in Fig. 5 . These orbits have motion in both the

( q 1 , p 1 )- and ( q 2 , p 2 )-planes. 

3. The segments which cross  from one boundary to the other, i.e.,

from 𝑝 1 − 𝑞 1 = + 𝑐 to 𝑝 1 − 𝑞 1 = − 𝑐 in the northern hemisphere, and

vice versa in the southern hemisphere, correspond to transit orbits.

See the two orbits labeled T in Fig. 5 . 

4. Finally the segments which run from one hemisphere to the other

hemisphere on the same boundary, namely which start from 𝑝 1 −
𝑞 1 = ± 𝑐 and return to the same boundary, correspond to non-transit

orbits. See the two orbits labeled NT in Fig. 5 . 

.3. Trajectories in the neck region 

Following the same procedure of analysis as for the conservative sys-

em, the general solution to the dissipative system can be obtained by

̄ = 𝐶𝑧 which gives 

̄ 1 = 

𝑘 1 − 𝑘 3 
𝑠 1 

𝑒 𝛽1 𝑡 − 

𝑘 4 − 𝑘 2 
𝑠 1 

𝑒 𝛽2 𝑡 + 

𝑞 2 
𝑠 2 
, 

̄ 2 = 

𝑘 1 − 𝑘 3 
𝑠 1 

( 𝑐 𝑥 − 𝜆2 ) 𝑒 𝛽1 𝑡 − 

𝑘 4 − 𝑘 2 
𝑠 1 

( 𝑐 𝑥 − 𝜆2 ) 𝑒 𝛽2 𝑡 + 

𝜔 

2 
𝑝 
+ 𝑐 𝑥 

𝑠 2 
𝑞 2 . (79) 

Similar to the situation in the conservative system, the solutions for

he dissipative system on the energy surface fall into different classes

epending upon the limiting behaviors. See Fig. 6 . From (79) we know

hat the conditions 𝑘 1 − 𝑘 3 > 0 , 𝑘 1 − 𝑘 3 = 0 and 𝑘 1 − 𝑘 3 < 0 make 𝑞 1 tend

o minus infinity, are bounded or tend to plus infinity if t →∞, respec-

ively. See Fig. 5 . The same statement holds if 𝑡 → −∞ and 𝑘 2 − 𝑘 4 re-

laces 𝑘 1 − 𝑘 3 . Nine classes of orbits can be given according to different

ombinations of the sign of 𝑘 1 − 𝑘 3 and 𝑘 2 − 𝑘 4 which can be classified

nto the following four categories: 
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Fig. 5. The flow in the equilibrium region around S 1 for the dissipative system has the form saddle × focus. On the left is shown the projection onto the ( p 1 , q 1 ) plane, the saddle 

projection. The asymptotic orbits (labeled A) on this projection are the saddle-type asymptotic orbits, and are rotated clockwise compared to the conservative system. They still form the 

separatrix between transit orbits (T) and two non-transit orbits (NT). The black dot at the center represents trajectories with only a focus projection, thus oscillatory dynamics decaying 

onto the point S 1 . As the energy, the Hamiltonian function  2 , is decreasing, the boundary is no longer equal to 𝑞 1 𝑝 1 = ℎ ∕ 𝜆, as it is for the conservative case, where  2 = ℎ is the initial 

value of the energy for those trajectories entering through the left or right side bounding sphere (i.e., n 1 or n 2 , respectively). These boundaries (the boundary of the shaded region) still 

correspond to the fastest trajectories through the neck region for a given h . 

Fig. 6. The flow of the dissipative system in  , the equilibrium region projected onto the xy configuration space, for trajectories starting at a fixed value of energy,  2 = ℎ, on either the 

right or left side vertical boundaries. As before, for any point on a bounding vertical line (dashed), there is a wedge of velocities inside of which the trajectories are transit orbits, and 

outside of which are non-transit orbits. For a given fixed energy, the wedge for the dissipative system is a subset of the wedge for the conservative system. The boundary of the wedge 

gives the orbits asymptotic (saddle-type) to the equilibrium point S 1 . 

 

 

 

 

 

 

 

4. Orbits with 𝑘 − 𝑘 𝑘 − 𝑘 < 0 are non-transit orbits 
1. Orbits with 𝑘 1 − 𝑘 3 = 𝑘 4 − 𝑘 2 = 0 are focus-type asymptotic orbits

𝑞 1 = 𝑞 2 ∕ 𝑠 2 , 𝑞 2 = 

(
𝜔 

2 
𝑝 
+ 𝑐 𝑥 

)
𝑞 1 . (80)

The presence of q 2 in (77) reveals that the amplitude of the periodic

orbit will gradually decease at the rate of 𝑒 − 𝛿𝑡 with time. The larger

the damping, the faster the rate will be. 
422 
2. Orbits with 
(
𝑘 1 − 𝑘 3 

)(
𝑘 4 − 𝑘 2 

)
= 0 are saddle-type asymptotic or-

bits 

𝑞 2 = 

(
𝑐 𝑥 − 𝜆2 

)
𝑞 1 + 

𝜆2 + 𝜔 

2 
𝑝 

𝑠 2 
𝑞 2 . (81)

In similarity with the shrinking of the size of the periodic orbit, the

amplitude of asymptotic orbits are also shrinking. 

3. Orbits with 
(
𝑘 1 − 𝑘 3 

)(
𝑘 4 − 𝑘 2 

)
> 0 are transit orbits ( )( )
1 3 4 2 



J. Zhong et al. International Journal of Mechanical Sciences 149 (2018) 413–428 

Fig. 7. For a representative energy above the saddle point S 1 , we show the unstable 

periodic orbit in the neck region around S 1 . It projects to a single line going between 

the upper and lower energy boundary curves, and arrows are shown for convenience. We 

show the Poincaré sections Σ1 and Σ2 which are defined by X values equal to that of the 

two stable equilibria in the center of the left and right side wells, W 1 and W 2 , respectively. 

The arrows on the vertical lines indicate that these Poincaré sections are also defined by 

positive X momentum. 
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Wedge of velocities. We previously obtained the wedge of velocities

or the conservative system. However, this method is no longer effective

or the dissipative system. Thus, another approach will be pursued here.

Based on the eigenvectors in (76) , we can conclude that the direc-

ions of stable asymptotic orbits are along 𝑢 𝛽2 = 

( 
𝑐 1 
2 , 𝜆 + 

1 
2 

√ 

𝑐 2 1 + 4 𝜆2 
) 

.

n this case, all asymptotic orbits in the transformed system must start

n the line 

 1 = 𝑘 𝑝 𝑝 1 , (82)

here 𝑘 𝑝 = 𝑐 1 ∕(2 𝜆 + 

√ 

𝑐 2 1 + 4 𝜆2 ) . 
For a specific point 

(
𝑞 10 , ̄𝑞 20 

)
, the initial conditions in position space

nd transformed space are defined as 
(
𝑞 10 , ̄𝑞 20 , ̄𝑝 10 , ̄𝑝 20 

)
and ( q 10 , q 20 ,

 10 , p 20 ), respectively. Using (82) and the change of variables in (46) ,

e can obtain p 10 , q 20 , p 20 and 𝑝̄ 20 in terms of 𝑞 10 , 𝑞 20 and 𝑝̄ 10 . With

 10 , q 20 , p 20 and 𝑝̄ 20 in hand, the normal form of the Hamiltonian can

e rewritten as 

 𝑝 ̄𝑝 
2 
10 + 𝑏 𝑝 ̄𝑝 10 + 𝑐 𝑝 = 0 , (83)

here 

𝑎 𝑝 = 

𝑠 2 2 
2 𝜔 𝑝 

, 𝑏 𝑝 = 

𝜆𝑠 2 2 (1 + 𝑘 𝑝 ) 
[
𝑞 20 − 𝑞 10 

(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)]
𝜔 𝑝 

(
𝑘 𝑝 − 1 

)(
𝜆2 + 𝜔 

2 
𝑝 

) , 

𝑐 𝑝 = 

( 4 ∑
𝑖 =1 

𝑐 ( 𝑖 ) 
𝑝 

) 

∕ 
[ 
2 𝜔 𝑝 

(
𝑘 𝑝 − 1 

)2 (
𝜆2 + 𝜔 

2 
𝑝 

)2 ] 
− ℎ, 

 

(1) 
𝑝 

= 2 𝑘 𝑝 𝑠 2 1 𝜆𝜔 𝑝 

[
𝑞 20 − 𝑞 10 

(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)]2 
, 

 

(2) 
𝑝 

= 8 𝑘 𝑝 𝑠 2 2 𝜆
2 𝜔 

2 
𝑝 ̄
𝑞 10 
(
𝑐 𝑥 ̄𝑞 10 − 𝑞 20 

)
, 

 

(3) 
𝑝 

= 𝑠 2 2 𝜆
2 (1 + 𝑘 𝑝 

)2 [(
𝑐 𝑥 ̄𝑞 10 − 𝑞 20 

)2 + 𝑞 2 10 𝜔 

4 
𝑝 

]
, 

 

(4) 
𝑝 

= 𝑠 2 2 𝜔 

2 
𝑝 

(
𝑘 𝑝 − 1 

)2 [(
𝑐 𝑥 ̄𝑞 10 − 𝑞 20 ) 

)2 + 𝑞 2 10 𝜆
4 
]
. 

For the existence of real solutions, the determinant of quadratic

quation (83) should satisfy the condition ▵= 𝑏 2 
𝑝 
− 4 𝑎 𝑝 𝑐 𝑝 ≥ 0 : ▵= 0

s the critical condition for p 10 to have real solutions. Noticing

𝑐 𝑥 − 𝜆2 
)(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)
= −1 , the critical condition gives an ellipse of the
423 
orm (
𝑞 10 cos 𝜗 + 𝑞 20 sin 𝜗 

)2 
𝑎 2 
𝑒 

+ 

(
− ̄𝑞 10 sin 𝜗 + 𝑞 20 cos 𝜗 

)2 
𝑏 2 
𝑒 

= 1 , (84)

here 

𝑎 𝑒 = 

√ √ √ √ √ √ √ √ 

2 ℎ 
(
𝜆2 + 𝜔 

2 
𝑝 

)2 (
𝑐 𝑥 + 𝜔 

2 
𝑝 

)2 
𝜔 𝑝 𝑠 

2 
2 

[ (
𝑐 𝑥 + 𝜔 

2 
𝑝 

)2 
+ 1 
] , 𝑏 𝑒 = 

√ √ √ √ √ √ √ √ 

ℎ 
(
𝑘 𝑝 − 1 

)2 (
𝜆2 + 𝜔 

2 
𝑝 

)2 
𝜆𝑘 𝑝 𝑠 

2 
1 

[ (
𝑐 𝑥 + 𝜔 

2 
𝑝 

)2 
+ 1 
] , 

os 𝜗 = 

1 √ (
𝑐 𝑥 + 𝜔 

2 
𝑝 

)2 
+ 1 

, sin 𝜗 = 

(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)
√ (

𝑐 𝑥 + 𝜔 

2 
𝑝 

)2 
+ 1 

. 

he ellipse is clockwise tilted by ϑ from a standard ellipse 𝑞 2 10 ∕ 𝑎 
2 
𝑒 
+

̄ 2 20 ∕ 𝑏 
2 
𝑒 
= 1 . The ellipse governed by (84) is the critical condition that

̄ 10 exists, so it is the boundary for asymptotic orbits. In other words,

nside the ellipse, transit orbits exist, while outside the ellipse, transit

rbits do not exist. As a result, we refer to the ellipse as the ellipse of

ransition (see Fig. 6 (b)). Note that on the boundary of the ellipse, there

s only one asymptotic orbit (i.e., the wedge has collapsed into a single

irection). 

The solutions to (83) are given by 

̄ 10 = 

− 𝑏 𝑝 ± 

√ 

𝑏 2 
𝑝 
− 4 𝑎 𝑝 𝑐 𝑝 

2 𝑎 𝑝 
, (85) 

nd the expression for 𝑝̄ 20 is 

̄ 20 = 𝑝̄ 10 

(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)
+ 

𝜆
(
1 + 𝑘 𝑝 

)[
𝑞 20 − 𝑞 10 

(
𝑐 𝑥 + 𝜔 

2 
𝑝 

)]
𝑘 𝑝 − 1 

. (86) 

p to now, the initial conditions ( ̄𝑞 10 , ̄𝑞 20 , ̄𝑝 10 , ̄𝑝 20 ) for the asymptotic or-

its at a specific position have been obtained. The interior angle de-

ermined by these two initial velocities defines the wedge of velocites:

= arctan 
(
𝑝̄ 20 ∕ ̄𝑝 10 

)
. The boundary of this wedge correspond to the

symptotic orbits. In fact, the wedge for the conservative system can

e obtained by this method by taking c 1 as zero. 

Fig. 6 illustrates the projection on the configuration space in the

quilibrium region. In the dissipative system, one important finding is

he existence of the ellipse of transition given by (84) . The length of the

ajor and minor axes of the ellipse are a e and b e , respectively. For small

amping, the major axis is much larger than the minor axis so that it

eaches far beyond the neck region. Thus, here we give the local flow

ear the neck region as shown in Fig. 6 (a). We show a zoomed-out view

evealing the entire ellipse in Fig. 6 (b). The asymptotic orbits in the

issipative system are bounded by the ellipse (which is different from

he asymptotic orbits in the conservative system, which are bounded by

he strip). Moreover, in the conservative system, all asymptotic orbits

an reach the boundary of the strip with the period of 2 𝜋/ 𝜔 p , while the

symptotic orbits in the dissipative system can never reach the boundary

f the ellipse after they start due to damping. Notice that a e goes to zero

hen c 1 is large enough. 

Outside the ellipse, ▵= 𝑏 2 
𝑝 
− 4 𝑎 𝑝 𝑐 𝑝 < 0 , only non-transit orbits project

nto this region. Thus we can conclude that the signs of 𝑘 1 − 𝑘 3 and

 4 − 𝑘 2 are independent of the direction of the velocity and can be de-

ermined in each of the components of the equilibrium region  comple-

entary to the ellipse. For example, in the left-most component, 𝑘 1 − 𝑘 3 
s negative and 𝑘 4 − 𝑘 2 is positive, while in the right-most components,

 1 − 𝑘 3 is positive and 𝑘 4 − 𝑘 2 is negative. 

Inside the ellipse the situation is more complex due to the existence

f the wedge of velocity. For simplicity we still just show the wedges

n the two vertical bounding line segments in Fig. 6 (a). For example,

onsider the intersection of the ellipse with the left-most vertical line.

t each position on the subsegment, one wedge of velocity exists in

hich 𝑘 − 𝑘 is positive. The orbits with velocity interior to the wedge
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Fig. 8. A transition tube from the left well to the right well, obtained using the method described in the text. The upper figure shows the configuration space projection. The lower left 

shows the tube boundary (closed curve) on Poincaré section Σ1 , which separates transit and non-transit trajectories. The lower right shows the corresponding tube boundary (closed 

curve) on Poincaré section Σ2 . 
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re transit orbits, and 𝑘 4 − 𝑘 2 is always positive. Orbits with velocity

n the boundary of the wedge are asymptotic ( ( 𝑘 1 − 𝑘 3 )( 𝑘 4 − 𝑘 2 ) = 0 ),
hile orbits with velocity outside of the wedge are non-transit ( ( 𝑘 1 −
 3 )( 𝑘 4 − 𝑘 2 ) < 0 ). Notice that in Fig. 6 (a), the grey shaded wedges are

he wedges for the dissipative system, while the larger blacked shaded

edges partially covered by the grey ones are for conservative system

hardly visible for the parameters shown in the figure). The shrinking

f the wedges from the conservative system to the dissipative system is

aused by damping. This confirms the expectation that an increase in

amping decreases the proportion of the transit orbits. 

. Transition tubes 

In this section, we go step by step through the numerical construc-

ion of the boundary between transit and non-transit orbits in the non-

inear system (27) . We combine the geometric insight of the previous

ections with numerical methods to demonstrate the existence of ‘tran-

ition tubes ’ for both the conservative and damped systems. Particular

ttention is paid to the modification of phase space transport as damping

s increased, as this has not been considered previously. 

Tube dynamics. The dynamic snap-through of the shallow arch can

e understood as trajectories escaping from a potential well with energy

bove a critical level: the energy of the saddle point S 1 . However, even

f the energy of the system is higher than critical, the snap-through may

ot occur. The dynamical boundary between snap-through and non-

nap-through behavior can be systematically understood by tube dy-

amics . Tube dynamics [9–19] supplies a large-scale picture of trans-
424 
ort; transport between the largest features of the phase space —the po-

ential wells. In the conservative system, the stable and unstable mani-

olds with a 𝑆 1 ×ℝ geometry act as tubes emanating from the periodic

rbits. While found above for the linearized system near S 1 , these struc-

ures persist in the full nonlinear system. The manifold tubes (usually

alled transition tubes in tube dynamics), formed by pieces of asymp-

otic orbits, separate two distinct types of orbits: transit orbits and non-

ransit orbits, corresponding to snap-through and non-snap-through in

he present problem. The transit orbits, passing from one region to an-

ther through the bottleneck, are those inside the transition tubes. The

on-transit orbits, bouncing back to their region of origin, are those

utside the transition tubes. Thus, the transition tubes can mediate the

lobal transport of states between snap-through and non-snap-through.

n the dissipative system, similar transition tubes also exist. Even in sys-

ems where stochastic effects are present, the influence of these struc-

ures remains [8] . 

.1. Algorithm for computing transition tubes 

For the conservative system, Ref. [19] gives a general numerical

ethod to obtain the transition tubes. The key steps are (1) to find the

eriodic orbits restricted to a specified energy using differential correc-

ion and numerical continuation based on the initial conditions obtained

rom the linearized system at first, then (2) to compute the manifold

ubes of the periodic orbits in the nonlinear system (i.e., ‘globalizing ’

he manifolds), and finally (3) to obtain the intersection of the Poincaré

urface of section and global manifolds. See details in Ref. [19] . The
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Fig. 9. A transition tube from the left well to the right well, obtained using the method described in the text, for the case of damping. The upper figure shows the configuration space 

projection. The lower left shows the tube boundary (closed curve) on Poincaré section Σ1 which separates transit and non-transit trajectories for initial conditions all with a given fixed 

initial energy. The lower right shows the corresponding image under the flow on Poincaré section Σ2 . Due to the damping, and a range of times spent in the neck region, spiraling is 

visible in this 2D projection since trajectories which spend longer in the neck will be at lower total energies. Compare with Fig. 8 . 

Fig. 10. A transition tube from the left side boundary ( n 1 ) to the right side boundary ( n 2 ) 

of the equilibrium region around saddle point S 1 , obtained for the linear damped system. 

Notice that the shrinking of the tube is observed as in the nonlinear system, Fig. 9 , here 

seen in terms of the width of the projected strip onto configuration space. 
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425 
ethod is effective in the conservative system, but not applicable to

he dissipative system, since due to loss of conservation of energy, no

eriodic orbit exists. Thus, we provide another method as follows. 

Step 1: Select an appropriate energy. We first need to set the en-

rgy to an appropriate value such that the snap-though behavior exists.

nce the energy is given, it remains constant in the conservative system.

n our example, the critical energy for snap-through is the energy of S 1 .

hus, we can choose an energy which is between that of S 1 and S 2 . In

his case, all transit orbits can just escape from W 1 to W 2 through S 1 .

otice that the potential energy determines the width of the bottleneck

nd the size of the transition tubes which hence determines the relative

raction of transit orbits in the phase space. A representative energy case

s shown in Fig. 7 , which also establishes our location for Poincaré sec-

ions Σ1 and Σ2 which are at 𝑋 = constant lines passing through W 1 and

 2 respectively, and with p X > 0. 

Step 2: Compute the approximate transition tube and its inter-

ection on a Poincaré section. We have analyzed the flow of the lin-

arized system in both phase space and position space which classifies

rbits into four categories. In the conservative system the stable mani-

olds correspond to the boundary between transit orbits and non-transit

rbits. Thus, we can choose this manifold as the starting point. We start

y considering the approximation of transition tubes for the conserva-

ive system. 

Determine the initial condition. The stable manifold divides the transit

rbits and non-transit orbits for all trajectories headed toward a bottle-

eck. Thus, we can use the stable manifold to obtain the initial condi-
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Fig. 11. The effect of the damping coefficient C H on the area of the transition tube on Poincaré section Σ1 is shown. For a fixed initial energy above the saddle, the projection on the 

canonical plane ( Y, p Y ) is shown in (a) and the area is plotted in (b). In (b), the shaded region indicates the experimentally observed range of damping coefficients, which correspond to 

non-dimensional damping factor 𝜉d less than 5%. 
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ion. Considering the general solutions (56) of the linearized equations

36) , we can let 𝑝 0 1 = 𝑐, 𝑞 0 1 = 0 , 𝑞 0 2 = 𝐴 𝑞 and 𝑝 0 2 = 𝐴 𝑝 . Notice that 

 

2 
𝑞 
+ 𝐴 

2 
𝑝 
= 2 ℎ ∕ 𝜔 𝑝 , (87)

hich forms a circle in the center projection, so in the next compu-

ational procedure we pick N points on the circle with a constant arc

ength interval. Each A q and A p determined by these sampling points

long with 𝑝 0 1 = 𝑐 and 𝑞 0 1 = 0 can be used as initial conditions. When

rst transformed back to the position space and then transformed to

imensional quantities, this yields an initial condition 

 

 

 

 

 

 

𝑋 0 
𝑌 0 
𝑝 𝑋0 
𝑝 𝑌 0 
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⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑇 

𝐶 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑐 
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𝐴 𝑞 

𝐴 𝑝 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (88)

Integrate backward and obtain Poincaré section. Using the N initial con-

itions (88) yielded by varying A q and A p governed by (87) and inte-

rating the nonlinear equations of motions in (27) in the backward di-

ection, we obtain a tube, formed by the N trajectories, which is a linear

pproximation for the transition tube. We intersect with the Poincaré

urface-of-section Σ1 , shown in Fig. 7 , corresponding to 𝑋 = 𝑋 𝑊 1 
and

 𝑋 > 0 . 
Step 3: Compute the real transition tube by the bisection

ethod. We have obtained a Poincaré section which is the intersec-

ion of the approximate transition tube and the surface Σ1 . First pick a

oint (noted as p i ) which is almost the center of the closed curve. The

ine from p i to each of the N points on the Poincaré map will form a ray.

he point p i inside the curve in general is a transit orbit. Then choose

nother point on each radius which is a non-transit orbit, noted as p o .

ith the approach described above, we can use the bisection method

o obtain the boundary of the transition tube on a specific radius (cf.

26] ). Picking the midpoint (marked by p m 

) as the initial condition and

arrying out forward integration for the nonlinear equation of motion in

27) , we can estimate if this trajectory can transit or not. If it is a transit

rbit, note it as p i , otherwise note it as p o . Continuing this procedure

gain until the distance between p i and p o reaches a specified toler-

nce, the boundary of the tube on this ray is estimated. Thus, the real

ransition tube for the conservative system can be obtained if the same

rocedure is carried out for all angles. A related method is described in

27] , adapting an approach of [28] . 

For the dissipative system, the size of the transition tubes for a given

nergy on Σ1 will shrink. Using the bisection method and following the

ame procedure as for conservative system, the transition tube for the

issipative system will be obtained. 
426 
.2. Numerical results and discussion 

To visualize the tube dynamics for the arch, several examples will be

iven. According to the steps mentioned above, we can obtain the tran-

ition tubes for both the conservative system and dissipative system. For

ll results, the geometries of the arch are selected as 𝑏 = 12 . 7 mm 𝑑 =
 . 787 mm, 𝐿 = 228 . 6 mm. The Young ’s modulus and the mass density

re 𝐸 = 153 . 4 GPa and 𝜌 = 7567 kg m 

−3 . The selected thermal load cor-

esponds to 184.1 N, while the initial imperfections are 𝛾1 = 0 . 082 mm

nd 𝛾2 = −0 . 077 mm. These values match the parameters given in the

xperimental study [1] . For all the numerical results given in this sec-

ion, the initial energy of the system is set at 3.68 ×10 −4 J - above the

nergy of saddle point S 1 , so that the equilibrium point W 1 is inside the

onfiguration space projection. This choice of initial energy will make it

ossible to compare the numerical results with the experimental results

hich are planned for future work. 

Transition tubes for conservative system. For the conservative system,

he Hamiltonian is a constant of motion. In Fig. 8 , we show the configu-

ation space projection of the transition tube and the Poincaré sections

n Σ1 and Σ2 which are closed curves. In Fig. 8 are shown all the tra-

ectories which form the transition tube boundary starting from Σ1 and

nding up at Σ2 , flowing from left to right through the neck region. 

Due to the conservation of energy, the size of the transition tube

s constant during evolution, which corresponds to the cross-sectional

rea of the transition tube. It should be noted that the areas of the tube

oincaré sections on Σ1 and Σ2 in Fig. 8 are equal, due to the integral

nvariants of Poincaré for a system obeying Hamilton ’s canonical equa-

ions (with no damping). Moreover, note that the size of the transition

ube, the boundary of the transit orbits, is determined by the energy. For

 lower energy, the size of the transition tube is smaller or vice versa. In

ther words, the area of the Poincaré sections on Σ1 and Σ2 is determined

y the energy. In fact, the cross-sectional area of the transition tube is

roportional to the energy above the saddle point S 1 [29] . As mentioned

efore, the transition tube separates the transit orbits and non-transit

rbits, which correspond to snap-through and non-snap-through. The

rbit inside the transition tube can transit, while the orbit outside the

ransition tube cannot transit. 

Transition tubes for dissipative system. Unlike the conservation of en-

rgy in conservative system, the energy in the dissipative system is de-

reasing with time. Fig. 9 shows the configuration space projection of

he transition tube and the Poincaré sections on Σ1 and Σ2 . In Fig. 9 the

ransition tube starts from Σ1 and ends up at Σ2 flowing from left to right

hrough the neck region, as shown previously for the conservative sys-

em. From the figure, we can observe the distinct reduction in the size
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Fig. 12. Several example trajectories are shown, starting from the stable well point W 1 . The initial conditions from Poincaré section Σ1 are shown in (a) for a fixed initial energy, along 

with the transition tube boundaries for the conservative case and a damped case. In (b), we show the trajectories for points A and B, for the conservative case where A is just outside 

the tube boundary and B is just inside. In (c), we show the trajectories for points B and C, for the damped case where B is just outside the tube boundary and C is just inside. In (d), we 

illustrate the effect of damping by starting the same initial condition, B, but showing the trajectory in the conservative case as trajectory B and the damped case as trajectory B ′ . 
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f the transition tube, especially near the neck region. To show this, the

cale of the Poincaré section projections is the same as in Fig. 8 . During

he evolution, the energy of the system is decreasing due to damping.

he trajectories spend a great amount of time crossing the neck region,

esulting in the total energy decreasing dramatically (and influencing

he size of the transition tubes to the right of the neck region). Thus,

he transition tube is spiraling in the neck region so that its projection

n Poincaré section Σ2 is not a closed curve, nor are the trajectories

t a constant energy. The Σ2 plot is merely a projection onto the ( Y,

 Y )-plane to give an idea of the actual co-dimension 1 tube boundary

n the 4-dimensional phase space. Note the clear differences between

igs. 8 and 9 . The dramatic shrinking of tubes near the neck region is

ue almost entirely to the linearized dynamics near the saddle point.

o confirm this, we present the linear transition tube obtained by the

nalytical solutions (77) for the linearized dissipative system in Fig. 10 .

Effect of damping on the transition tubes. In order to further quantify

ow damping affects the size of transition tubes, we present the tube

oincaré section on Σ1 with different damping in Fig. 11 . In Fig. 11 (a),

e can see the canonical area ( ∫ 

𝑝 𝑌 𝑑𝑌 ) decreases with increasing

amping. Thus, the proportion of transition trajectories will be fewer

f the damping increases. Note that when the damping changes, differ-

nt transition tubes almost share the same center which corresponds to

he fastest trajectories. Fig. 11 (b) shows the relation between the damp-

ng and the projected canonical area ( ∫ 

𝑝 𝑌 𝑑𝑌 ), which is related to the

elative number of transit compared to non-transit orbits. It shows that

n increase in damping decreases the projected area. When the damp-
427 
ng is small, the relation between the damping and the area is linear,

hile when the damping is large, the relation becomes slightly nonlin-

ar. Note that generally in mechanical/structural experiments the non-

imensional damping factor 𝜉d is less than 5% which corresponds to

 damping coefficient C H less than 107 . 3 s −1 (see the shaded region in

ig. 11 (b)). Furthermore, note that for the initial energy depicted in

ig. 11 , there are no transit orbits starting on Σ1 for C H greater than

bout 185 s −1 . 
Demonstration of trajectories inside and outside the transition tube. To il-

ustrate the effectiveness of the transition tubes, we choose three points

n Σ1 (see A, B and C in Fig. 12 (a)) as the initial conditions and integrate

orward to see their evolution. Note that all the trajectories correspond-

ng to these three points have the same initial energy and start from a

onfiguration identical to the equilibrium point W 1 , but with different

nitial velocity directions. Fig. 12 (b) shows the trajectories A and B in

he conservative system where A is outside the tube boundary and B is

nside the tube boundary. In the figure, trajectory B transits through the

eck region and trajectory A bounces back. Fig. 12 (c) shows trajectories

 and C in the dissipative system. Like the situation in the conservative

ystem, trajectory C which is inside the tube transits, while trajectory B

hich is outside the tube does not. Fig. 12 (d) shows the effect of damp-

ng on the transit condition for the trajectories B and B ′ with the same

nitial condition. Trajectory B is simulated using the conservative system

nd trajectory B ′ is simulated using the dissipative system. It shows that

he damping changes the transit condition. Transit orbit B in the con-

ervative system becomes non-transit orbit B ′ in the dissipative system,
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oth starting from the same initial condition. From Fig. 12 , we can con-

lude that the transition tube can effectively estimate the snap-through

ransitions both in conservative systems and dissipative systems. 

Finally, we point out that the transition tubes are the boundary for

ransit orbits that transition the first time . For example, trajectory A in

ig. 12 (b) stays outside of the transition tube so that it returns near

he neck region at first, but, unless it happens to be on a KAM torus or

 stable manifold of such a torus, it will ultimately transit as long as

t does not form a periodic orbit near the potential well W 1 , since the

nergy is above the critical energy for transition and is conservative. 

. Conclusions 

Tube dynamics is a conceptual dynamical systems framework ini-

ially used to study isomerization reactions in chemistry [12–15,30] as

ell as other fields, like resonance transitions in celestial mechanics

9,11,17,18,31] and capsize in ship dynamics [8] . Here we extend the

pplication of tube dynamics to structural mechanics: the snap-through

f a shallow arch, or buckled-beam. In general, slender elastic structures

re capable of exhibiting a variety of (co-existing) equilibrium shapes,

nd thus, given a disturbance, tube dynamics sheds light on how such a

ystem might be perturbed to transition between available, stable equi-

ibrium configurations. Moreover, it is the first time, to the best of our

nowledge, that tube dynamics has been worked out for a dissipative

ystem, which increases the generality of the approach. 

The snap-through transition of an arch was studied via a two-mode

runcation of the governing partial differential equations based on Euler-

ernoulli beam theory. Via analysis of the linearized Hamiltonian equa-

ions around the saddle, the analytical solutions for both the conser-

ative and dissipative systems were determined and the corresponding

ows in the equilibrium region of eigenspace and configuration space

ere discussed. The results show that all transit orbits, corresponding

o snap-through, must evolve from a wedge of velocities which are re-

tricted to a strip in configuration space in the conservative system, and

y an ellipse in the corresponding dissipative system when damping

s included. Using the results from the linearization as an approxima-

ion, the transition tubes based on the full nonlinear equations for both

he conservative and dissipative system were obtained by the bisection

ethod. The orbits inside the transition tubes can transit, while the or-

its outside the tubes cannot. Results also show that damping makes the

ize of the transition tubes smaller, which corresponds to the degree, or

mount, of orbits that transit. When the damping is small, it has a nearly

inear effect on the size of the transition tubes. 

Further study of the dynamic behaviors of the arch can lead to more

mmediate applications to structural mechanics. For example, many

tructural systems possess multiple equilibria, and the manner in which

he governing potential energy changes with a control parameter is, of

ourse, the essence of bifurcation theory. However, under nominally

xed conditions, the present paper directly assesses the energy required

o (dynamically) perturb a structural system beyond the confines of its

mmediate potential energy well. In future work, a three-mode trun-

ation may be introduced to study such systems. High order approxi-

ations will present higher index saddles which will modify the tube

ynamics framework presented here (cf. [32–34] ). Furthermore, exper-

ments will be carried out to show the effectiveness of the present ap-

roach to prescribe initial conditions which lead to dynamic buckling. 
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