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ARTICLE INFO ABSTRACT

Keywords: The equilibrium configuration of an engineering structure, able to withstand a certain loading condition, is usu-
Potential energy ally associated with a local minimum of the underlying potential energy. However, in the nonlinear context,
Transients

there may be other equilibria present, and this brings with it the possibility of a transition to an alternative
(remote) minimum. That is, given a sufficient disturbance, the structure might buckle, perhaps suddenly, to an-
other shape. This paper considers the dynamic mechanisms under which such transitions (typically via saddle
points) occur. A two-mode Hamiltonian is developed for a shallow arch/buckled beam. The resulting form of
the potential energy—two stable wells connected by rank-1 saddle points—shows an analogy with resonance
transitions in celestial mechanics or molecular reconfigurations in chemistry, whereas here the transition corre-
sponds to switching between two stable structural configurations. Then, from Hamilton’s equations, the equilibria
are determined and linearization of the equations of motion about the saddle is obtained. After computing the
eigenvalues and eigenvectors of the coefficient matrix associated with the linearization, a symplectic transfor-
mation is given which puts the Hamiltonian into normal form and simplifies the equations, allowing us to use
the conceptual framework known as tube dynamics. The flow in the equilibrium region of phase space as well
as the invariant manifold tubes in position space are discussed. Also, we account for the addition of damping in
the tube dynamics framework, which leads to a richer set of behaviors in transition dynamics than previously
explored.
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1. Introduction

The nonlinear behavior of slender structures under loading is often
dominated by a potential energy function that possesses a number of
stationary points corresponding to various equilibrium configurations
[1,2]. Some are stable (local minima, or ‘well’), some are unstable (lo-
cal maxima or ‘hilltop’), and some correspond to saddle points, i.e., a
shape with opposite curvature in different directions, but still unstable,
having both stable and unstable directions. Interestingly, although dif-
ficult to observe experimentally, it is these saddle points that can have
a profound organizing effect on global trajectories in a dynamics con-
text. Thus, under a nominally fixed set of loads or a given configuration
we may have the situation in which a system is at rest in a position
of stable equilibrium, but, given sufficiently large perturbation (input
of energy) may transition to a remote stable equilibrium [3], or even
collapse completely [4,5]. The path taken during this transition is asso-
ciated with the least energetic route, and this will typically correspond
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to a passage close to a saddle point: it is easier to take a path around a
mountain than going directly over its peak.

For a single mechanical degree of freedom the transition from one
potential energy minimum to another is relatively unambiguous [6,7].
We can think of a twin-well oscillator and how it has no choice but to
pass over an intermediate hilltop in transitioning to an adjacent min-
imum. For high-order systems trajectories have many more possible
paths. But a system with two mechanical degrees of freedom (configura-
tion space), and thus a 4 dimensional phase space, offers an intermediate
situation: compelling conceptual clarity (i.e., the potential energy can
be thought of as a surface or landscape), but still retaining a wider range
of potential behavior over and above the aforementioned single oscil-
lator (i.e., multiple ways of traversing and perhaps escaping from one
potential well to another).

For the two degree of freedom system, the analog of the hilltop is the
saddle point of the potential energy surface. The linearized dynamics
near such a point yields an oscillatory mode and an exponential mode,
with both asymptotically stable and unstable directions. For energies
slightly above the saddle point, there is a bottleneck to the energy sur-
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Fig. 1. (a) A schematic load-deflection characteristic, (b) the two dominant degrees of freedom.

face [8,9]. Transitions from one side of the bottleneck can be understood
in terms of sets of trajectories which are bounded by topological cylin-
ders. The transition dynamics, which has in some contexts been known
as tube dynamics [9-19], has been developed for studying transitions
between stable states (the potential wells) in a number of disparate con-
texts, and here it is applied to a structural mechanics situation in which
snap-through buckling [2] is the key phenomenological transition. Con-
ditions are determined whereby the initial energy imparted to the sys-
tem is characterized in terms of subsequent escape from the initial po-
tential well.

2. The paradigm: snap-through of an arch/buckled beam

A classic example of a saddle-node bifurcation in structural mechan-
ics is the symmetric snap-through buckling of a shallow arch, in an es-
sentially co-dimension 1 bifurcation [7]. However, if the arch (or equiv-
alently a buckled beam) is not shallow then the typical mechanism of in-
stability is an asymmetric snap-through, requiring two modes (symmet-
ric and asymmetric) for characterization, and the instability corresponds
to a subcritical pitchfork bifurcation. In both of these cases the transi-
tion is sudden and associated with a fast dynamic jump, since there is no
longer any locally available stable equilibrium. This behavior is generic
regardless of boundary conditions and is also exhibited by the laterally-
loaded buckled beam [20,21]. We shall focus on this latter example, for
relative simplicity of introduction. The essential focus here is that the
underlying potential energy of this system consists of two potential en-
ergy wells (the original unloaded equilibrium and the snapped-through
equilibrium), an unstable hilltop (the intermediate, straight, unstable
equilibrium) and two saddle-points. The symmetry of this system is bro-
ken by small geometric imperfections. The question is: how does the sys-
tem escape its local potential energy well in a dynamical systems sense?

Suppose we have a moderately buckled beam. If a central point load
is applied then the beam deflects initially in a purely symmetric mode, as
shown by the red line in Fig. 1(a), following the a loading path. Upon
a quasi-static increase in the load P, point C is reached (a subcritical
pitchfork bifurcation) and the arch quickly snaps-through (a thoroughly
dynamic event) with a significant asymmetric component in the deflec-
tion and the system settles into its inverted position D [3]. This behavior
is captured by considering a two-mode analysis: sag S (symmetric) and
angle A (asymmetric), or alternatively we can use the harmonic coordi-
nates X and Y, respectively, corresponding to the modes in Fig. 1(b). In
an approximate analysis they might be the lowest two buckling modes
or free vibration modes from a standard eigen-analysis. Suppose we load
the beam to a value slightly below the snap value at P, and fix it at that
value. In this case there will be the five equilibria mentioned earlier:
three equilibria purely in sag (two stable and an unstable one between
them), and two saddles, with significant angular components but geo-
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metrically opposed [1]. Small geometric imperfections (in A and/or S)
will break the symmetry and influence which path is more likely to be
followed. In this fixed configuration we can then think of the system in
dynamic terms, and consider the range of initial conditions (including
velocity, perhaps caused by an impact force) that might push the system
from a point on path « to a point on path ¢.

Governing equations. In this analysis a slender buckled beam with
thickness d, width b and length L is considered. A Cartesian coordinate
system o — xyz is established on the mid-plane of the beam in which
o is the origin, x, y the directions along the length and width direc-
tions and z the downward direction normal to the mid-plane. Based on
Euler-Bernoulli beam theory [1,22], the displacement field (u;, u3) of
the beam along the (x, z) directions can be written as

uy(x, z,t) = u(x,t) — ZM,
ox

uz(x, z,1) = w(x, 1),

(C))

where u(x, t) and w(x, t) are the axial and transverse displacements of

an arbitrary point on the mid-plane of the beam. Considering the von

Karméan-type geometrical nonlinearity, the total axial strain can be ob-
0w

tained as
1/0w\?
235

For a moderately buckled-beam, we need to consider the initial strain
€o produced by initial deflection w, which is

owy 2
ox )’

3)
Then the change in strain ¢, can be expressed as

1 2 0wy \ 2
< )*z[( )‘(?) - @
Here we just consider homogeneous isotropic materials with Young’s
modulus E, and allow for the possibility of thermal loading. The axial

stress o, can be obtained according to the one dimensional constitutive
equation, as

«_ Ou

e =
X ox

@

0w,
o, 1
ox2 2

g9 =2

*w

0x?

Jw

ax

Pw,
0x?

o, =Ee, — Ea, AT, ©)

where a, is the thermal expansion coefficient and AT is the tempera-
ture increment from the reference temperature at which the beam is in
a stress free state. Thermal loading is introduced as a convenient way
of controlling the initial equilibrium shapes (and hence the potential
energy landscape) via axial loading.
The strain energy V(x, z,1) is
d
2

L £
b
V(x,z,t) = =
(20 2/0 /_g

o.€£,dzdx.

©6)
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Ignoring the axial inertia term, the kinetic energy 7 (x, z, r) of the buckled
beam is

L d
b 2 9
T(x,z,1) = = / / pui*dzdx,
2 0 _%

where p is the mass density. In addition, the dot over the quantity is the
derivative with respective to time.

The governing equations can be obtained by the Lagrange-
d’Alembert principle [23] which requires that

O]

t t
) / [T (x,z.0) = V(x, z,1)]dt + / SW,.dt =0, ®)
fo

Ty
where é denotes the variational operator, t, and t the initial and current
time. §W,, is the variation of the virtual work done by non-conservative
force (damping) which is expressed as

W, ©)

where ¢, is the coefficient of (linear viscous) damping. In subsequent
analysis, and related to typical practical situations, the damping will be
small.

After some manipulation, the governing equations in terms of axial
force N, and bending moment M, can be obtained as [22]

= —cy Wwow,

ON,
ox

BZM azw

— = pAW + ¢, W, 10

0x? o2 ¢ 1o

where N, and M, are defined as

d

(N, M,) = b/ o.(1, z)dz. (11)

2

By using (1), (4) and (5), the force N, and moment M, in (11) can be

rewritten as
owp \ 2

N, =E [ ((_W) _< 0) )]—NT,
[Z}

M EI P

*x =T 0x2 ’

where A and I denote the cross-sectional area and moment of inertia;

Ny = EAa, AT, the axial thermal loads. Thus, EA and EI are the axial

stiffness and bending stiffness, respectively.

Here we just consider a clamped-clamped beam with in-plane im-
movable ends. The boundary conditions are

02

0x2

12)

0o 2

ox
Note that from the first equation in (10), it is clear that the axial force
N, is constant along the axial direction. In this case, integrating the
axial force along the x axis and using the boundary conditions u(0,7) =

u(L,t) = 0, one can obtain
L 2 0w\ 2
(20 - (29) ac- .
ox

Using M, in (12) and N, in (14), the second equation in (10) can be
described in terms of the transverse displacement w as [1]
04w0

A+ cqw+ EI| — —
ey £1( 54 - 250 )

sl (-

L ((a
Given the immovable ends it is natural to consider the effective exter-
nally applied axial force to be replaced by a thermal loading term: this
is the primary destabilizing nonlinearity in the system.

x=0,L:u= = 13)

Jw

N - EA ow
ox

=57 (14)

0w

EA >2> ]a2w
x| 2w
2L

ow,

=0,
ox

0x2 13
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As mentioned earlier, clamped-clamped boundary conditions are
considered. Thus we make use of the mode shapes

sin

L KpX K, X K, X
¢, =y, |sinh T - 7 + 5n<cosh T - co

_ sinhk, —sink,

e
cosk, —coshk,

cosk, coshk, =1,

y; =—0.6186, yw,=-0.6631, (16)

and describe the deflected shape in terms of a two-degree-of-freedom
approximation

w(x, 1) = X(0)¢1(x) + Y () (x),

wo(x) = y1$1(x) + 2P (x), 17

To obtain the ordinary differential equations, we multiply the equation
of motion in (15) by ¢; and integrate over the length of the beam. Con-
sidering the clamped-clamped boundary conditions, applying integra-
tion by parts yields

A/L¢ odx + /Lqﬁ od +EI/ P P ) g

U0 [ — -

’ 0o YT 0o x 0 ax2 0x2 0x2 x
N EA/L (‘)_W)Z_ LAY / Wiowy —o. s
LY3 ox ox o Ox Ox

Substituting the approximations for w and w,, in (17) with specific mode
shapes ¢; in (16) and noticing the mode shapes are mutually orthogonal,
the nonlinear equations can be obtained as

M X+CX+K(X-7)-NrGX- —G2( ZX - X3)

LGGZ(}/ZX XY?) =0,

2
MY + C,Y + Ky (Y —7,) — NpG,Y — 2LGZ( 7Y - Y3)
_EA 2 By
5T -GGy (7Y - X?Y) =0, (19)
where
L 62¢
2
(M,.,c,.)=(pA,cd)/O $7dx, K,:EI/O <ax2l> X,
L o 2
c,.=/ <ﬁ> dx. 20)
0 ox

The kinetic energy and potential energy, respectively, can be repre-
sented as

T(X,Y) = —M1X2+;M2Y2
__ _ 1 2,12 1 2 2
V(X,Y) = -KinX KonY + 5K X"+ S KoY 2NT(G1X +G,Y?)
EAGz(l 2X2_1X4> EAG2<1 2Y2_1Y4)
2L \2n 4 2L 2\2"2 4
_EAGIG,

(BX*+ 772 - XY @1

2L 2
For physically reasonable coefficients we have a number of equilibrium
possibilities. For small values of N we have an essentially linear sys-
tem, dominated by the trivial (straight) equilibrium configuration, and
thus an isolated center (minimum of the potential energy). This relates
back to the situation in Fig. 1 for a small value of P. But for larger val-
ues of P, for example a little below P, the system typically possesses a
number of equilibria, some of which are stable and some of which are
not. Some typical forms are shown in Fig. 2(a) in which the five points
are the equilibrium points where W; and W, are within the two sta-
ble wells; S; and S, two unstable saddle points; H the unstable hilltop.
Thus, we might have the system sitting (in equilibrium) at point W;. If
it is then subject to a disturbance with the right size and direction (in the
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Fig. 2. Contours of potential energy: (a) the symmetric system, y, =y, = 0, (b) with small initial imperfections in both modes, i.e., y; and y, are nonzero.

dynamical context), we might expect the system to transition to the re-
mote equilibrium at W,. This might occur when the system is subject to
a large impact force, for example [21]. It is anticipated (and will later
be shown) that the typically easiest transition will be associated with
(an asymmetric) passage close to S; or S,, and generally avoiding H.
In Fig. 2(b) is shown the same system but now with a small geometric
imperfection in both modes (i.e., y; # 0 and y, # 0). In this case the sym-
metry of the system is broken, and given the relative energy associated
with the saddle points it is anticipated (and will also be shown later)
that optimal escape will tend to occur via S;.

Note that Eq. (19) can also be obtained from Lagrange’s equations,

d (oL oL

L=V ¢y i=1,2 2
p < 3, > idi (22)
when ¢, = X and ¢, =Y, and the Lagrangian is
LX,Y,X,Y)=TX,Y)-V(X,Y). (23)

To transform this to a Hamiltonian system, one defines the general-
ized momenta,

pi = 5_4, = Mg, (24)

so py = M, X and py = M,Y, in which case, the kinetic energy is

1 -, 1 5

T(X,Y,py, = — —D5 25
( Px>Py) 2M1px+2M2pY (25)

and the Hamiltonian is

HX,Y,px,py) =T +V, (26)

and Hamilton’s equations (with damping) [24] are

x =9 _Px

dpy M,
. p
y = IH =2,

opy M,

_9H _ Y
Px = X HPXx X HPX>

oH oV

by =5y~ Cupy = v Cupy, 27
where
vV _ EA o » 3
o KI(X—yl)—NTGIX—EG]( X - X)
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EA

—EGIGZ(@X—XYZ),
oY EA
S K, (Y —7,) = NpG,Y — EGg(yzzy -Y?)
EA
-Eclcz(yfy-xzy), (28)

and Cy = C, /M, = C,/M, is the damping coefficient in the Hamilto-
nian system which can be easily found by comparing (19) and (27), and
using the relations of M; and C; in (20).

We assume the lower saddle point S; has the smaller potential energy
compared to S,, thus the energy of S; is the critical energy for snap-
though, and we initially focus attention on the dynamic behavior around
the region of S;. The linearized equations of (27) about S; with position
(X,, Y,) can be written as

. px
x = —,
M,
L _ Py
y= Mz’
Dy = A31x+ A3y —Cyp,.
by = Apx+ Apy—Cyp,, (29)

where (x, y, p,,p,) = (X,Y, py,py) — (X,,Y,,0,0) and

EAG%(yf -3X2) . EAGIGZ(;/ZZ -Y?)

2L 2L ’

Ay = —K, + NyG +
_ EAG|G,X,Y,

32 — L s
2(.,2 2 2 2
15A<;2(y2 -3Y2) EAGle(yl - X2)

Ay =-K NG
42 2+ NpGy + oL + oL

(30)

If we replace the position of S; by the position of W;, we can still
use the linearized equations in (29) to obtain the natural frequencies of
the shallow arch near W, as

o) =w\/1-¢,. 3D

where w(l"; are the first two natural frequencies for the conservative sys-

tem and él, , are the viscous damping factors with the forms

o boF /B~ 4c) Cy

o) = ————. = —2, (32)
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and

_As
Ml

Ay Ap - A7

) 2
M\ M,

b, = ,
M,

@® @ —

Non-dimensional equations of motion. In order to reduce the parame-
ters, some non-dimensional quantities are introduced,

_A32 T=qwnt (q q ):(i l)
’ 0F> \41> 492 Lx’ Ly ’

M1> B
M, )T T T
? (M M;)*

1 Py Py 1
= \T T M ’(Cx’cy)=_2
wo \ L M," L,M, ?
Using the non-dimensional parameters in (33), the non-dimensional
linearized equations are written as

(Lx,Ly)=L<1,

Ay Ay

)=t
s ],€C1
M, M,

@

(B1-52) 33)

4y = br»

& = b

b1 = ¢y Gy — @ — ¢1 by

Py = =Gy + cydy — ¢1 5y (34)

Written in matrix form, with column vector z = (g;, 4,, p;, p,), we have

z= Az + Dz,
where
0 0 1 0 0 0 O 0
0 0 0 1 0 0 O
A= R D= (35)
cy -1 0 O 0 0 —¢
-1 ¢ 0 0 0 0 O -

are the Hamiltonian part and damping part of the linear equations, re-
spectively.

3. Linearized conservative Hamiltonian system
3.1. Solutions near the equilibria

Eigenvalues and eigenvectors. In this section, we will discuss the lin-
ear dynamical behaviors of a buckled beam in the Hamiltonian system
without taking account of any energy dissipation which makes ¢, =0

(i.e., Cy = 0). Thus, the equations of motion are given as
3= Az (36)

The system (36) can be viewed as resulting from a quadratic Hamilto-
nian,

1o 12 1. 2 1. 2, -_
Hy =3P+ 5P, — 364y = 56,45 + 4132, (37

which can be written in matrix form

H, = %ZTBZ,
where
—cy 1 0 0
1 —c 0 0
B=JTA= v
I 0 0 1 of
0 0 0 1

and J is the 4 x 4 canonical symplectic matrix

0 I
J=
<—Iz 0 >
where I, is the 2 x 2 identity matrix.

The characteristic polynomial of (36) is

p(B) = F* — (e, +e ) + e, — 1.
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Let « = f2, then the roots of p(a) = 0 are as follows

cetey+ (cx—cy)2+4
a = 2 R
c,t+ec —\/(c —c)2+4
= —" ZX Y . (38)

For equilibrium point S; and the parameters used in this paper (see
Section 5.2 for details), we have ¢, >0 and ¢, <0. In this case, a; >0
and a, <0. It follows that this equilibrium point is of the type saddle x
center. Here we define 4 = y/a; and w, = /~a,. Thus, the eigenvectors

are given by
(Lex =B B f— ),

where # denotes one of the eigenvalues.
After substituting § = i, into (39) and separating real and imagi-
nary parts as U, + iva, we obtain two corresponding eigenvectors

(39

uwp = <1,cx+w§,0,0),

Vo, = <0,0,a) c

3
s Cx®, + a)p). (40)

Moreover, the other two eigenvectors associated with the pair of real
eigenvalues + 1 can be taken as
= (Ley — A% Aced = 2%),
—(Liey = A%, =4, 2% = ¢, 2).

Uypp

u_, (41)

Symplectic change of variables. We consider the linear symplectic
change of variables from (q;, ¢, p;, p») to (41, 92, P1> P2)»

q q
28 I L i
D 141
)2 123

42)
where the columns of the matrix C are given by the eigenvectors,
Cc= (u+,1,uwp,u_,l, uwﬂ), 43)
and where the vectors are written as column vectors.
Then we find
0 D _ d 0

T ro _ (4%
clic= (—D 0), D_<O dw,,>’ (44)
where

d; = Al4 =2, — ¢, )(A* =),

a)p 5

dy, = 7[4 +2(e, — ¢p) (@, + ¢ )] (45)

In order to obtain a symplectic form which satisfies CTJC = J, we
need to rescale the columns of C. The scaling is given by factors s; = 1/d;

and s, = d,,- In this case, the final form of the symplectic matrix C is
given by
1 1 1
S1 52 51 0
cxfllz w§+cx /1270,( 0
— S1 52 S1
C= A A @, (46)
S 0 Ea Zp
S S 5o
cod=i 0 =i qopta)

S S
The Hamiltonian (37) can be rewritten in the simplified, normal

form,

Hy = Aqip; + 30,(d3 + p3) 7

with corresponding linearized equations,

4 = Aq,
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Py = —Apy,
Gy = @,py,
Py = —wpq;. (48)

Written in matrix form, with column vector z = (q,, ¢, p;, p,), We have

z=Az,
where
A 0 0 0
0 0 0 w
= _1 = p
A=ClAC 0 0 —a ol (49)
0 -w 0 0

The solution of (48) can be written as

0 At 0 —At
9 =49,¢, Pp=pPe€
—iwpt’

@ +ipy = () +ip))e (50)

Note that the three functions
fi=ap, fr=d+p5 f3=H,

are constants of motion under the Hamiltonian system (48).
3.2. Boundary of transit and non-transit orbits

The linearized phase space. For positive h and c, the equilibrium or
bottleneck region R (sometimes just called the neck region), which is
determined by

H,=h, and |p;—qi|<c,

is homeomorphic to the product of a 2-sphere and an interval I, S2 xI;
namely, for each fixed value of p, — ¢, in the interval I = [—c, c], we see
that the equation H, = h determines a 2-sphere

i 1 A
2@+ p) + 30,003 +p3) = h+ 50 — 0. (51)
Suppose a €1, then (51) can be re-written as

2 +qg+p=r (52)

where x, %wi(ql +p)) and 2 = wi(h+ iaz), which defines a 2-
P P

sphere of radius r in the three variables x;, g, and p,.

The bounding 2-sphere of R for which p; — ¢, = ¢ will be called
n; (the “left” bounding 2-sphere), and that where p;, — g, = —c, n, (the
“right” bounding 2-sphere). See Fig. 3.

We call the set of points on each bounding 2-sphere where ¢, + p; =0
the equator, and the sets where ¢, + p; > 0 or ¢; + p; < 0 will be called
the northern and southern hemispheres, respectively.

The linear flow in R. To analyze the flow in R, consider the projec-
tions on the (q;, p;)-plane and the (g, py)-plane, respectively. In the
first case we see the standard picture of a saddle point in two dimen-
sions, and in the second, of a center consisting of harmonic oscillator
motion. Fig. 3 schematically illustrates the flow. With regard to the first
projection we see that R itself projects to a set bounded on two sides by
the hyperbola g,p, = h/A (corresponding to q% + p% =0, see (47)) and
on two other sides by the line segments p; — g; = +c, which correspond
to the bounding 2-spheres, n; and n,, respectively.

Since q;p; is an integral of the equations in R, the projections of
orbits in the (q;, p;)-plane move on the branches of the corresponding
hyperbolas ¢, p; = constant, except in the case ¢, p, = 0, where ¢, =0 or
p; = 0.If g;p; >0, the branches connect the bounding line segments p, —
q, = +c and if q;p; <0, they have both end points on the same segment.
A check of Eq. (48) shows that the orbits move as indicated by the arrows
in Fig. 3.

To interpret Fig. 3 as a flow in R, notice that each point in the (g,
p1)-plane projection corresponds to a 1-sphere S! in R given by

2
@ +pi= o (h=2a1p).
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Of course, for points on the bounding hyperbolic segments (¢, p; = h/4),
the 1-sphere collapses to a point. Thus, the segments of the lines p, —
q, = *c in the projection correspond to the 2-spheres bounding R. This
is because each corresponds to a 1-sphere crossed with an interval where
the two end 1-spheres are pinched to a point.

We distinguish nine classes of orbits grouped into the following four
categories:

1. The point ¢; = p; = 0 corresponds to an invariant 1-sphere S!, an
unstable periodic orbit in R. This 1-sphere is given by

Grr=oh a=p=0. ©3)
It is an example of a normally hyperbolic invariant manifold (NHIM)
(see [25]). Roughly, this means that the stretching and contraction
rates under the linearized dynamics transverse to the 1-sphere dom-
inate those tangent to the 1-sphere. This is clear for this example
since the dynamics normal to the 1-sphere are described by the ex-
ponential contraction and expansion of the saddle point dynamics.
Here the 1-sphere acts as a “big saddle point”. See the black dot at
the center of the (q;, p;)-plane on the left side of Fig. 3.

. The four half open segments on the axes, ¢, p, = 0, correspond to four
cylinders of orbits asymptotic to this invariant 1-sphere S;], either
as time increases (p; =0) or as time decreases (¢, = 0). These are
called asymptotic orbits and they form the stable and the unstable
manifolds of Sii. The stable manifolds, W (S}l), are given by
Z+pi="2n

= q, =0, p, arbitrary. (54)
@p

Wj(S}l) (with p; >0) is the branch going entering from n; and
w3 (Sli) (with p; <0) is the branch going entering from n,. The un-

stable manifolds, Wi“(S}l), are given by

Ga+p= wlph, p =0, q; arbitrary. (55)
NS }1) (with g, > 0) is the branch exiting from n, and W*(S }i) (with
g, <0) is the branch exiting from n;. See the four orbits labeled A in
Fig. 3.

. The hyperbolic segments determined by g,p, = constant > 0 corre-
spond to two cylinders of orbits which cross R from one bounding
2-sphere to the other, meeting both in the same hemisphere; the
northern hemisphere if they go from p; —¢; = +c to p; —q; = —c,
and the southern hemisphere in the other case. Since these orbits
transit from one realm to another, we call them transit orbits. See
the two orbits labeled T in Fig. 3.

. Finally the hyperbolic segments determined by ¢, p, = constant < 0
correspond to two cylinders of orbits in R each of which runs from
one hemisphere to the other hemisphere on the same bounding 2-
sphere. Thus if ¢; > 0, the 2-sphere isn; (p; — ¢; = —c) and orbits run
from the southern hemisphere (g, + p; < 0) to the northern hemi-
sphere (g, + p; > 0) while the converse holds if q; <0, where the
2-sphere is n,. Since these orbits return to the same realm, we call
them non-transit orbits. See the two orbits labeled NT in Fig. 3.

3.3. Trajectories in the neck region

We now examine the appearance of the orbits in configuration space,
that is, in the (¢,, 4,)-plane. In configuration space, R appears as the neck
region connecting two realms, so trajectories in R will be transformed
back to the neck region. It should pointed out that at each moment in
time, all trajectories must evolve within the energy boundaries which
are zero velocity curves (corresponding to p;, = p, = 0) given by solving
(37) for g, as a function of g,

@ £4)3) -2, (h+ 34

l?z(lﬂ) = .
Cy

Recall that in order to obtain the analytical solutions for
Z =(q, 4. P1.P2), System Z has been transformed into system z =
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Py

q,

Saddle Projection

Center Projection

Fig. 3. The flow in the equilibrium region has the form saddle x center. On the left is shown the projection onto the (p;, q;) plane, the saddle projection. For the conservative dynamics,
the Hamiltonian function M, remains constant at h> 0. Shown are the periodic orbit (black dot at the center), the asymptotic orbits (labeled A), two transit orbits (T) and two non-transit

orbits (NT).

(41, 42, Py pp) by using the symplectic matrix C consisting of generalized
(re-scaled) eigenvectorsu, ;, u_;, u, , v, with corresponding eigenval-
ues + 4 and *iw,. Thus, the system z should be transformed back to
system z which generates the following general (real) solution with the
form

Z(t) = (41,92, P1-D2) = 4™ uy, + ple  u_; +Re [ﬁoe_im”t(”mp - "Ump)]’
(56)

where ¢, p¥ are real and f, = ¢) + ip{ is complex.

Upon inspecting this general solution, we see that the solutions on
the energy surface fall into different classes depending upon the limiting
behaviors of g, g, as t tends to plus or minus infinity. Notice that

q° P 1
q(t) = ZLpht _ 2L =it —(qg cos w,t +p(2) sinwpt),
s s s
1 1 2
2 2
¢, — A e —c
lb(f) — X q(l)e/lz+ xp(l)e—m
colzJ +cy 0 0.
+T(q2 cosw,t + p) sinw,f). (57)

Thus, if t - +o0, then g, () is dominated by its q‘l) term. Hence, g,(7) tends
to minus infinity (staying on the left-hand side), is bounded (staying
around the equilibrium point), or tends to plus infinity (staying on the
right-hand side) according to ¢ <0, ¢ =0 and ¢ > 0. See Fig. 4. The
same statement holds if # > —oco and —p(l) replaces q‘l). Different combi-
nations of the signs of q(l) and p(l) will give us again the same nine classes
of orbits which can be grouped into the same four categories.

1. If q(l) = p(l) =0, we obtain a periodic solution. The periodic orbit
projects onto the (g;,4,) plane as a line with the following expres-
sion

1 .
- (qg cos w,t + p(z) sinw, 1),
2

q

2
)+ cy
ps (qg cosw,t + P(z) sin wpt)
2

419

0.2
\Periodic orbit |
A
?é\ orr \\ Wedge of : ny
1S NT \ velocities
-2 |
2 Y N
0 i
g \\ \ 7/ S
= edge of *| \ t
S velocities || \ T/ £
= 01 Ny ENT]
~ /\\ h
~ SN= 7 S - |". J
a -
-0.2 | "-_

0
x (nondimensional)

Fig. 4. The flow of the conservative system in R, the equilibrium region projected onto
the xy configuration space, for a fixed value of energy, X, = h > 0. For any point on the
bounding vertical lines n; or n, (dashed), there is a wedge of velocity directions inside of
which the trajectories are transit orbits, and outside of which are non-transit orbits. The
boundary of the wedge gives the orbits asymptotic to the single unstable periodic orbit in
the neck for this energy. Shown are a typical asymptotic orbit; two transit orbits (dashed);
and two non-transit orbits (dotted).

(coi + cx>q1.

Notice (47) and H, now can be rewritten as H, =a)p|ﬂ0|2/2.
Thus, since H, =h, the length of the periodic orbit

\/2 n|@2 + 02 +1)/ (@53

goes to zero with h.

(58)

is

). Note that the length of the line
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2. Orbits with ¢%p) = 0 are asymptotic orbits. They are asymptotic to
the periodic orbit.
(a) When q‘l) =0, the general solutions for §;, g, are

_ P D
qi=-—=+—
S1 5
2
B 2—c, @+ Cy
G = pt+ 753
S1
21 2
_ P .
= (e, — 4%)q, + (qg cos w1 + pg sinw,t). (59)

S
Thus, the orbits with q? = 0 project into a strip S in the (g;, ¢,)-
plane bounded by

}Lz + (1)2 2h
7= (e, —42)q) = 2= 60
G = (cx — )4y 5 o, (60)
(b) For p? =0, following the same procedure as q? =0, we have

q 9
q=—+—

S1 5

2 P+ 0 0

G = (c,—A)q + (45 cosw,t + py sinw,t). 61)

Notice that these two asymptotic orbits with ¢ =0 and p) =0
share the same strip S and the same boundaries governed by (60).
Also, since the slopes of the periodic orbit and the strip satisfies
(ex = 22) (Cx + wi) = —1, the periodic orbit is perpendicular to
the strip. In other words, the length of the periodic orbit is exactly
the same as the width of the strip.
. Orbits with q‘l) p(l) > ( are transit orbits because they cross the equilib-
rium region R from —oo (the left-hand side) to +oo (the right-hand
side) or vice versa.

Orbits with ¢"p? < 0 are non-transit orbits

4.
To study the flow in position space, Fig. 4 gives the four categories of or-
bits. From (57), we can see that for transit orbits and non-transit orbits,
the signs of ¢%p) must satisfy ¢7p° > 0 and ¢%p) < 0, respectively.

In Fig. 4, S is the strip mentioned above. Outside of the strip, the signs
of q? and p(l) are independent of the direction of the velocity. These signs
can be determined in each of the components of the equilibrium region
R complementary to the strip. For example, in the left two components,
¢% <0 and p? > 0, while in the right two components ¢0 > 0 and p° < 0.
Therefore, q‘l’ p‘l’ < 0in all components and only non-transit orbits project
on to these four components.

Inside the strip the situation is more complicated since in S the signs
of q(l) and p(l) depend on the direction of the velocity. At each position
(g, q,) inside the strip there exists a so-called ‘wedge’ of velocities in
which q(l)p(l) > 0 which was first found by Conley (1968) [10] in the re-
stricted three-body problem. See the shaded wedges in Fig. 4. The exis-
tence and the angle of the wedge of velocity will be given in the next
part. For simplicity we have indicated this dependence only on the two
vertical bounding line segments in Fig. 4. For example, consider the in-
tersection of strip S with left-most vertical line. On the subsegment so
obtained there is at each point a wedge of velocity in which both q?
and p(l) are positive, so that orbits with velocity interior to the wedge are
transit orbits (q? p? > 0). Of course, orbits with velocity on the boundary
of the wedge are asymptotic (¢°pJ = 0), while orbits with velocity out-
side of the wedge are non-transit. The situation on the other subsegment
is similar.

The wedge of velocities. To establish the wedge of velocity and obtain
its angle, we need to use the following fact that all the inner products
of one generalized eigenvector and another generalized eigenvector as-
sociated with the matrix B are zero except for

T — T —
uy,Bu_y =u_;Bu,; =4,

T — 7 —

uwauwp = U%BU% =, (62)

Using this condition, we have the following relations, as

_ T
A=u,,Bu_,

420

International Journal of Mechanical Sciences 149 (2018) 413-428

0

> iql

= gy, Bu_,
T
N Aq(l) = e_’”(q(l)e’”uﬂ) Bu_,

= Ag) = e 2" Bu_,

2 l—c.c,+c,42 A= A3
= g} = M(ﬁ_ql A T e G
S1 51 51 S1
Using similar arguments, we can also obtain
_ 2 3
22 l—=ce, e d” A A=A
Ap?:e”“ g+ —r 2 s+ +2—"5) (64)
S1 S1 S1 51
Thus, we obtain the following relations
o A2 1—cxcy+cy12_ A A=A
Agjet = —§) — ————G@ + —p + —— Py,
51 S1 S1 1
— 2 3
_ 2 l—ce,+e, A7 A A=A
Ap(l)e I Y G+ Eh+ "5, (65)
51 S1 S1 S1
Let y be the angles determined by
1 . - cy
cos y = —————, sin y = ——————. (66)
(Az—cx)2+1 (Az—cx)2+1
Furthermore, let
Py =pcosb, p,=psiné, 67)
and
) _1
22 l—cee,+c,A” 2., 2 2
r=(=a-———a —z(pf+p§)((/12—cx) +1)
S S Sl
(68)
Using (68), (65) can be rewritten as
-1
10 Poia o 2 2 P )
q,¢ S_z(p1+p2) (A2 =c) + =y +cos(d - ),
1
_1
e ’12(-2+-2 (P -c)’ +1 e -2 69)
ne 5 (7 7) ¢ = —y +cos(6 — ). (
1

So far, the signs of q? and p(l) can be determined using (69). From (69),
it can be concluded that y is only dependent on the position (g, ),
because p"{ + ﬁ% can be obtained from (37) once the position is given.
Outside the strip, we have |y| > 1. In this case, the signs of q? and p? are
independent of the direction of velocity and are always opposite, which
makes q(l’ p(l’ < 0. Thus, only non-transit orbits exist in these regions. In-
side the strip, we have |y| < 1. This situation is quite different since the
signs of q‘l) and p(l) are dependent on the angle of velocity. For transit or-
bits, the sign of q? p‘l) must be positive. Thus, we can vary 6 (the direction
of velocity) to satisfy this condition, and the wedge of velocity can be
determined. It should be noted that the wedge of velocity can only exist
inside the strip S: outside of S, no transit orbit exists.

4. Linearized dissipative Hamiltonian system
4.1. Solutions near the equilibria

For the dissipative system, we still use the symplectic matrix C as in
(46) to transform to the eigenbasis, i.e., transform z = (g, §,, p;, p,) to

z=(q;, ¢, p;» P2)- The equations of motion now become
z=Az+ Az, (70)

where A = C~! AC from before and the transformed damping matrix is,

A=C7IDC = —¢, ) 1)

ONI= ONI—
S O o O
oOwI= owI—
— o O O
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which results in

g = (1— %)41 - %plv

: . 0y (722)
h=-5aqa+ (—/1 - 7)1’1

{q'z = w,ps, (72b)
Py = —w,qy — C1Ps-

Notice that the dynamics on the (q;, p;) plane and (g5, p,) plane are
uncoupled.

The fourth-order characteristic polynomial is thus decomposable
into p(B) = p,;(B)p,(B), where the second-order characteristic polynomi-
als for (72a) and (72b) are

{P1(ﬂ) =p+cf— 1%

P2 = % + 1 + 2. 73

Considering c; is positive and cl2 is smaller than 4coi, the determi-
nants for (73) are

{Al =c?+44% >0, o
-2 2
Ay = ¢ — 4w, <0.
The corresponding eigenvalues are
ﬂ —cl+\/c12+4/12
1=
(75a)
_ —cl—\/clz+4}»2
bh=—"
{ﬂ} = —0 +iwy, (75b)
Py =—6—liw,,
where § = %,a)d =w,/1- §§ and &, = a% with the corresponding
eigenvectors
_(&a 1 2 2
uﬂl <7,/‘|,—§ Cl+4l s
(& L /2 2
ug, <7,/1+§ C1+4}» >,
ug, (cop, -6 +ia)d),
p, = (@p =6 —iwy) (76)

Thus, the general solutions for the (g, p;) and (g, p,) systems are

{q] =k P! + kyel2!, (772)

p1 = kP! + kel

¢, = kse™% cosw,t + kge™ sinwgt,
Py =

ks _s . ke s .
= ée (=8 coswyt — wy sinwgyt) + ﬁe (g cos wyt — §sinwyt),
(77b)
where
q?<21 + ‘/012 +412> - c]p?
ki = s
24/c2 +422
q?<—2/1+ \/cl2 +4/12> +c1p?
ky = s
24/c2 +42
p?(—ZA+ \/c% +412> - clq(l)
k3 = s
24/c +442
p(l)<21+ \/Cf +412) +c1q?
ky = .

24 /2 +422

:
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0 0
ks = ¢° K, = P20 T %0
5 20 6 w,
Note that k; = ¥, ky = p), ky = k3 = 0, ks = ¢J and kg = p) if ¢; = 0.
Taking the total derivative with respect to t of the Hamiltonian along
trajectories gives us

dH,
dt

1 2
—5e1A(ar +p1)” = w,p; <0, (78)

which means the Hamiltonian is non-increasing, and will generally de-
crease due to damping.

4.2. Boundary of transit and non-transit orbits

The Linear Flow in R. Similar to the discussions for the conservative
system, we still choose an equilibrium region R bounded by regions
which project to the lines n; and n, in the (q;, p;)-plane (see Fig. 5). To
analyze the flow in R, we consider the projections on the (q;, p;)-plane
and the (g4, py)-plane, respectively. In the first case we see the standard
picture of a saddle point, now rotated compared to the conservative
case, and in the second, of a stable focus which is a damped oscillator
with frequency o, = w,1/1 - &7, where &, = ;- - the viscous damping
factor (damping ralative to critical damping). N’())tice that the frequency
g for the damped system decreases with increased damping, but only
very slightly for lightly damped systems.

We distinguish nine classes of orbits grouped into the following four
categories:

1. The point ¢, = p; = 0 corresponds to a focus-type asymptotic orbit
with motion purely in the (g, p,)-plane (see black dot at the origin
of the (q;, p;)-plane in Fig. 5). Such orbits are asymptotic to the
equilibrium point S, itself. Due to the effect of damping, the periodic
orbit in the conservative system, which is an invariant 1-sphere S}l
mentioned in (53), does not exist.

. The four half open segments on the lines governed by ¢, = ¢;p, /(24 +

1 /cf +422) correspond to saddle-type asymptotic orbits. See the
four orbits labeled A in Fig. 5. These orbits have motion in both the
(g1, p1)- and (g3, py)-planes.

. The segments which cross R from one boundary to the other, i.e.,
from p, — q; = +c to p; — g = —c in the northern hemisphere, and
vice versa in the southern hemisphere, correspond to transit orbits.
See the two orbits labeled T in Fig. 5.

. Finally the segments which run from one hemisphere to the other
hemisphere on the same boundary, namely which start from p, —
¢, = +c and return to the same boundary, correspond to non-transit
orbits. See the two orbits labeled NT in Fig. 5.

4.3. Trajectories in the neck region

Following the same procedure of analysis as for the conservative sys-
tem, the general solution to the dissipative system can be obtained by
z = Cz which gives

a kl_k3eﬂ|’_ k4—k26ﬁ27+q_2’
S1 S1 $2
2
ky—k ky—k w,t+c
S — e - 2 — el + >
S1 S2

)

- 79

Similar to the situation in the conservative system, the solutions for
the dissipative system on the energy surface fall into different classes
depending upon the limiting behaviors. See Fig. 6. From (79) we know
that the conditions k| — k3 > 0, k; — k3 = 0 and k| — k3 < 0 make g, tend
to minus infinity, are bounded or tend to plus infinity if t - oo, respec-
tively. See Fig. 5. The same statement holds if 1 > —c0 and k, — k, re-
places k; — k5. Nine classes of orbits can be given according to different
combinations of the sign of k; — k5 and k, — k, which can be classified
into the following four categories:
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Focus Projection

Saddle Projection

Fig. 5. The flow in the equilibrium region around S; for the dissipative system has the form saddle x focus. On the left is shown the projection onto the (p;, q;) plane, the saddle
projection. The asymptotic orbits (labeled A) on this projection are the saddle-type asymptotic orbits, and are rotated clockwise compared to the conservative system. They still form the
separatrix between transit orbits (T) and two non-transit orbits (NT). The black dot at the center represents trajectories with only a focus projection, thus oscillatory dynamics decaying
onto the point S;. As the energy, the Hamiltonian function H,, is decreasing, the boundary is no longer equal to ¢, p, = h/4, as it is for the conservative case, where H, = h is the initial
value of the energy for those trajectories entering through the left or right side bounding sphere (i.e., n; or n,, respectively). These boundaries (the boundary of the shaded region) still
correspond to the fastest trajectories through the neck region for a given h.

T 7 " mma T
| L ISR \\

0.2f

T
;
|
|
|
I
=) Wedge of !, 1 o ) |
g \ N velocities r Ellipse of : 1
@ \ AN transition |
g \ |
£ \ :
E Wedge of | \ |
2 velocities \\ 1
~ |
> N
A So-7 : |
| \
I
|
| .
0 0 0.5 1 1.5 2

x (nondimensional)

(a) (b)

Fig. 6. The flow of the dissipative system in R, the equilibrium region projected onto the xy configuration space, for trajectories starting at a fixed value of energy, H, = h, on either the
right or left side vertical boundaries. As before, for any point on a bounding vertical line (dashed), there is a wedge of velocities inside of which the trajectories are transit orbits, and
outside of which are non-transit orbits. For a given fixed energy, the wedge for the dissipative system is a subset of the wedge for the conservative system. The boundary of the wedge
gives the orbits asymptotic (saddle-type) to the equilibrium point S;.

1. Orbits with k, — k3 = k, — k, = 0 are focus-type asymptotic orbits 2. Orbits with (k; — k3) (k4 — k;) = 0 are saddle-type asymptotic or-
bits
5 ) 2+ a)lz)
a4 = ay/5y = (2 +e)ar (80) B= (e R+ — @1)

In similarity with the shrinking of the size of the periodic orbit, the

The presence of g, in (77) reveals that the amplitude of the periodic amplitude of asymptotic orbits are also shrinking.
orbit will gradually decease at the rate of e~% with time. The larger 3. Orbits with (k; — k3)(ky — k) > 0 are transit orbits
the damping, the faster the rate will be. 4. Orbits with (k; — k3) (k4 — k;) < 0 are non-transit orbits

422
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Fig. 7. For a representative energy above the saddle point S;, we show the unstable
periodic orbit in the neck region around S;. It projects to a single line going between
the upper and lower energy boundary curves, and arrows are shown for convenience. We
show the Poincaré sections X; and %, which are defined by X values equal to that of the
two stable equilibria in the center of the left and right side wells, W; and W,, respectively.
The arrows on the vertical lines indicate that these Poincaré sections are also defined by
positive X momentum.

Wedge of velocities. We previously obtained the wedge of velocities
for the conservative system. However, this method is no longer effective
for the dissipative system. Thus, another approach will be pursued here.

Based on the eigenvectors in (76), we can conclude that the direc-

tions of stable asymptotic orbits are along uj, = (%‘ A+ %\ /6‘12 + 4/12>.

In this case, all asymptotic orbits in the transformed system must start
on the line

q = kpl’p (82)

where k, = ¢; /(24 + y/cZ +44?).

For a specific point (g9, dy). the initial conditions in position space
and transformed space are defined as (g9, @0, P19 P29) and (i, oo,
D10> P2o), respectively. Using (82) and the change of variables in (46),
we can obtain pyg, gz, Pao and py in terms of gy, g»9 and py,. With
D10> 920> P20 and p,, in hand, the normal form of the Hamiltonian can
be rewritten as

app%o +by,pig+¢, =0, o
where
S% As%(l +k1,)[1720 —ql()(cx +w121>]
a, = E’ 2 ’

” ap(ky = 1)(#+03)
) <i clgi)>/[2wp(kp -2 +a)§)2] —h,

i=1

o
Il

2
1 2 - ~ 2
cl()) = 2k,s7Aw, [5120 - qlo(cx + a)p)] ,
2 2,2 2~ _ _
C,(,) = 8kps54 wl,tho(cx‘ho = )
3 2,2 2 _ _ N2 2 4
c;) =551 (1 +kp) [(qulo —‘120) +qma)p],

61(74) = s%wﬁ(kp - 1)2 [(qum - 1220))2 + 4120/14].

For the existence of real solutions, the determinant of quadratic
equation (83) should satisfy the condition a= bi da,c,>20: a=0
is the critical condition for p;y to have real solutions. Noticing

(cx - /12)(cx + wi) = -1, the critical condition gives an ellipse of the
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form
(q10c058+q2051n8)2 (—qlosin&+q20cosl9)2
. d =1, (84)
aE be
where
2
2h(ﬂ2+a}§) (c +w2 h(k, - 1) ,12+w§)
a, = ,
a)psg (cx+a)§> +l c, +a)2> + l]
I Cx +a)
cosd = ————  sind =

(cx+coz)2+l (cx+w§> +1

The ellipse is clockwise tilted by 9 from a standard ellipse qlo/a +
q20 /b2 = 1. The ellipse governed by (84) is the critical condition that
P1o exists, so it is the boundary for asymptotic orbits. In other words,
inside the ellipse, transit orbits exist, while outside the ellipse, transit
orbits do not exist. As a result, we refer to the ellipse as the ellipse of
transition (see Fig. 6(b)). Note that on the boundary of the ellipse, there
is only one asymptotic orbit (i.e., the wedge has collapsed into a single
direction).

The solutions to (83) are given by

b2 —
P
Po=—"H7—""T-7 (85)

and the expression for p, is

M(1+k,) [cizo - ‘710(Cx + “’2)]

(86)
k,—1

Do = ﬁlo(cx + 50,2]) +

Up to now, the initial conditions (g, 49, 519, P2g) for the asymptotic or-
bits at a specific position have been obtained. The interior angle de-
termined by these two initial velocities defines the wedge of velocites:
6 = arctan (pyy/Pyo). The boundary of this wedge correspond to the
asymptotic orbits. In fact, the wedge for the conservative system can
be obtained by this method by taking c; as zero.

Fig. 6 illustrates the projection on the configuration space in the
equilibrium region. In the dissipative system, one important finding is
the existence of the ellipse of transition given by (84). The length of the
major and minor axes of the ellipse are a, and b,, respectively. For small
damping, the major axis is much larger than the minor axis so that it
reaches far beyond the neck region. Thus, here we give the local flow
near the neck region as shown in Fig. 6(a). We show a zoomed-out view
revealing the entire ellipse in Fig. 6(b). The asymptotic orbits in the
dissipative system are bounded by the ellipse (which is different from
the asymptotic orbits in the conservative system, which are bounded by
the strip). Moreover, in the conservative system, all asymptotic orbits
can reach the boundary of the strip with the period of 27/, while the
asymptotic orbits in the dissipative system can never reach the boundary
of the ellipse after they start due to damping. Notice that a, goes to zero
when ¢, is large enough.

Outside the ellipse, A= bﬁ —4a,c, <0, only non-transit orbits project
onto this region. Thus we can conclude that the signs of k; — k3 and
k4 — k, are independent of the direction of the velocity and can be de-
termined in each of the components of the equilibrium region R comple-
mentary to the ellipse. For example, in the left-most component, k| — k;
is negative and k, — k, is positive, while in the right-most components,
ky — ks is positive and k, — k, is negative.

Inside the ellipse the situation is more complex due to the existence
of the wedge of velocity. For simplicity we still just show the wedges
on the two vertical bounding line segments in Fig. 6(a). For example,
consider the intersection of the ellipse with the left-most vertical line.
At each position on the subsegment, one wedge of velocity exists in
which k; — k, is positive. The orbits with velocity interior to the wedge
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shows the tube boundary (closed curve) on Poincaré section X, which separates transit and non-transit trajectories. The lower right shows the corresponding tube boundary (closed

curve) on Poincaré section X,.

are transit orbits, and k4 — k, is always positive. Orbits with velocity
on the boundary of the wedge are asymptotic ((k; — k3)(k, — k) = 0),
while orbits with velocity outside of the wedge are non-transit ((k; —
k3)(k, — k,) < 0). Notice that in Fig. 6(a), the grey shaded wedges are
the wedges for the dissipative system, while the larger blacked shaded
wedges partially covered by the grey ones are for conservative system
(hardly visible for the parameters shown in the figure). The shrinking
of the wedges from the conservative system to the dissipative system is
caused by damping. This confirms the expectation that an increase in
damping decreases the proportion of the transit orbits.

5. Transition tubes

In this section, we go step by step through the numerical construc-
tion of the boundary between transit and non-transit orbits in the non-
linear system (27). We combine the geometric insight of the previous
sections with numerical methods to demonstrate the existence of ‘tran-
sition tubes’ for both the conservative and damped systems. Particular
attention is paid to the modification of phase space transport as damping
is increased, as this has not been considered previously.

Tube dynamics. The dynamic snap-through of the shallow arch can
be understood as trajectories escaping from a potential well with energy
above a critical level: the energy of the saddle point S;. However, even
if the energy of the system is higher than critical, the snap-through may
not occur. The dynamical boundary between snap-through and non-
snap-through behavior can be systematically understood by tube dy-
namics. Tube dynamics [9-19] supplies a large-scale picture of trans-
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port; transport between the largest features of the phase space—the po-
tential wells. In the conservative system, the stable and unstable mani-
folds with a S! x R geometry act as tubes emanating from the periodic
orbits. While found above for the linearized system near S;, these struc-
tures persist in the full nonlinear system. The manifold tubes (usually
called transition tubes in tube dynamics), formed by pieces of asymp-
totic orbits, separate two distinct types of orbits: transit orbits and non-
transit orbits, corresponding to snap-through and non-snap-through in
the present problem. The transit orbits, passing from one region to an-
other through the bottleneck, are those inside the transition tubes. The
non-transit orbits, bouncing back to their region of origin, are those
outside the transition tubes. Thus, the transition tubes can mediate the
global transport of states between snap-through and non-snap-through.
In the dissipative system, similar transition tubes also exist. Even in sys-
tems where stochastic effects are present, the influence of these struc-
tures remains [8].

5.1. Algorithm for computing transition tubes

For the conservative system, Ref. [19] gives a general numerical
method to obtain the transition tubes. The key steps are (1) to find the
periodic orbits restricted to a specified energy using differential correc-
tion and numerical continuation based on the initial conditions obtained
from the linearized system at first, then (2) to compute the manifold
tubes of the periodic orbits in the nonlinear system (i.e., ‘globalizing’
the manifolds), and finally (3) to obtain the intersection of the Poincaré
surface of section and global manifolds. See details in Ref. [19]. The
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method is effective in the conservative system, but not applicable to
the dissipative system, since due to loss of conservation of energy, no
periodic orbit exists. Thus, we provide another method as follows.

Step 1: Select an appropriate energy. We first need to set the en-
ergy to an appropriate value such that the snap-though behavior exists.
Once the energy is given, it remains constant in the conservative system.
In our example, the critical energy for snap-through is the energy of S;.
Thus, we can choose an energy which is between that of S; and S,. In
this case, all transit orbits can just escape from W; to W, through S;.
Notice that the potential energy determines the width of the bottleneck
and the size of the transition tubes which hence determines the relative
fraction of transit orbits in the phase space. A representative energy case
is shown in Fig. 7, which also establishes our location for Poincaré sec-
tions ¥; and X, which are at X =constant lines passing through W; and
W, respectively, and with pyx > 0.

Step 2: Compute the approximate transition tube and its inter-
section on a Poincaré section. We have analyzed the flow of the lin-
earized system in both phase space and position space which classifies
orbits into four categories. In the conservative system the stable mani-
folds correspond to the boundary between transit orbits and non-transit
orbits. Thus, we can choose this manifold as the starting point. We start
by considering the approximation of transition tubes for the conserva-
tive system.

Determine the initial condition. The stable manifold divides the transit
orbits and non-transit orbits for all trajectories headed toward a bottle-
neck. Thus, we can use the stable manifold to obtain the initial condi-
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Fig. 11. The effect of the damping coefficient C;; on the area of the transition tube on Poincaré section X, is shown. For a fixed initial energy above the saddle, the projection on the
canonical plane (Y, py) is shown in (a) and the area is plotted in (b). In (b), the shaded region indicates the experimentally observed range of damping coefficients, which correspond to

non-dimensional damping factor &; less than 5%.

tion. Considering the general solutions (56) of the linearized equations
(36), we can let p(l’ =c, q(lJ =0, q(z) = A, and pg = A,. Notice that

2 2 _
A2+ A2 =2h/w), 87

which forms a circle in the center projection, so in the next compu-
tational procedure we pick N points on the circle with a constant arc
length interval. Each A; and A, determined by these sampling points
along with p) = ¢ and ¢? =0 can be used as initial conditions. When
first transformed back to the position space and then transformed to
dimensional quantities, this yields an initial condition

T
Xy X, L, c
YO Ye L 0

|elel B O] (88)
Pxo 0 wyL M, Aq
Pyo 0 oyL,M, A,

Integrate backward and obtain Poincaré section. Using the N initial con-
ditions (88) yielded by varying A; and A, governed by (87) and inte-
grating the nonlinear equations of motions in (27) in the backward di-
rection, we obtain a tube, formed by the N trajectories, which is a linear
approximation for the transition tube. We intersect with the Poincaré
surface-of-section X,, shown in Fig. 7, corresponding to X = Xy, and
Py > 0.

Step 3: Compute the real transition tube by the bisection
method. We have obtained a Poincaré section which is the intersec-
tion of the approximate transition tube and the surface X;. First pick a
point (noted as p;) which is almost the center of the closed curve. The
line from p; to each of the N points on the Poincaré map will form a ray.
The point p; inside the curve in general is a transit orbit. Then choose
another point on each radius which is a non-transit orbit, noted as p,,.
With the approach described above, we can use the bisection method
to obtain the boundary of the transition tube on a specific radius (cf.
[26]). Picking the midpoint (marked by p,,) as the initial condition and
carrying out forward integration for the nonlinear equation of motion in
(27), we can estimate if this trajectory can transit or not. If it is a transit
orbit, note it as p;, otherwise note it as p,. Continuing this procedure
again until the distance between p; and p, reaches a specified toler-
ance, the boundary of the tube on this ray is estimated. Thus, the real
transition tube for the conservative system can be obtained if the same
procedure is carried out for all angles. A related method is described in
[27], adapting an approach of [28].

For the dissipative system, the size of the transition tubes for a given
energy on X; will shrink. Using the bisection method and following the
same procedure as for conservative system, the transition tube for the
dissipative system will be obtained.
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5.2. Numerical results and discussion

To visualize the tube dynamics for the arch, several examples will be
given. According to the steps mentioned above, we can obtain the tran-
sition tubes for both the conservative system and dissipative system. For
all results, the geometries of the arch are selected as b = 12.7 mm d =
0.787 mm, L =228.6 mm. The Young’s modulus and the mass density
are E = 153.4 GPa and p = 7567 kg m~3. The selected thermal load cor-
responds to 184.1 N, while the initial imperfections are y;, = 0.082 mm
and y, = —0.077 mm. These values match the parameters given in the
experimental study [1]. For all the numerical results given in this sec-
tion, the initial energy of the system is set at 3.68x10~* J - above the
energy of saddle point S;, so that the equilibrium point W; is inside the
configuration space projection. This choice of initial energy will make it
possible to compare the numerical results with the experimental results
which are planned for future work.

Transition tubes for conservative system. For the conservative system,
the Hamiltonian is a constant of motion. In Fig. 8, we show the configu-
ration space projection of the transition tube and the Poincaré sections
on X; and X, which are closed curves. In Fig. 8 are shown all the tra-
jectories which form the transition tube boundary starting from %; and
ending up at %,, flowing from left to right through the neck region.

Due to the conservation of energy, the size of the transition tube
is constant during evolution, which corresponds to the cross-sectional
area of the transition tube. It should be noted that the areas of the tube
Poincaré sections on ¥; and X, in Fig. 8 are equal, due to the integral
invariants of Poincaré for a system obeying Hamilton’s canonical equa-
tions (with no damping). Moreover, note that the size of the transition
tube, the boundary of the transit orbits, is determined by the energy. For
a lower energy, the size of the transition tube is smaller or vice versa. In
other words, the area of the Poincaré sections on X; and %, is determined
by the energy. In fact, the cross-sectional area of the transition tube is
proportional to the energy above the saddle point S; [29]. As mentioned
before, the transition tube separates the transit orbits and non-transit
orbits, which correspond to snap-through and non-snap-through. The
orbit inside the transition tube can transit, while the orbit outside the
transition tube cannot transit.

Transition tubes for dissipative system. Unlike the conservation of en-
ergy in conservative system, the energy in the dissipative system is de-
creasing with time. Fig. 9 shows the configuration space projection of
the transition tube and the Poincaré sections on X; and X,. In Fig. 9 the
transition tube starts from X; and ends up at X, flowing from left to right
through the neck region, as shown previously for the conservative sys-
tem. From the figure, we can observe the distinct reduction in the size
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Fig. 12. Several example trajectories are shown, starting from the stable well point W;. The initial conditions from Poincaré section %, are shown in (a) for a fixed initial energy, along
with the transition tube boundaries for the conservative case and a damped case. In (b), we show the trajectories for points A and B, for the conservative case where A is just outside
the tube boundary and B is just inside. In (c), we show the trajectories for points B and C, for the damped case where B is just outside the tube boundary and C is just inside. In (d), we
illustrate the effect of damping by starting the same initial condition, B, but showing the trajectory in the conservative case as trajectory B and the damped case as trajectory B’.

of the transition tube, especially near the neck region. To show this, the
scale of the Poincaré section projections is the same as in Fig. 8. During
the evolution, the energy of the system is decreasing due to damping.
The trajectories spend a great amount of time crossing the neck region,
resulting in the total energy decreasing dramatically (and influencing
the size of the transition tubes to the right of the neck region). Thus,
the transition tube is spiraling in the neck region so that its projection
on Poincaré section X, is not a closed curve, nor are the trajectories
at a constant energy. The %, plot is merely a projection onto the (Y,
Dy)-plane to give an idea of the actual co-dimension 1 tube boundary
in the 4-dimensional phase space. Note the clear differences between
Figs. 8 and 9. The dramatic shrinking of tubes near the neck region is
due almost entirely to the linearized dynamics near the saddle point.
To confirm this, we present the linear transition tube obtained by the
analytical solutions (77) for the linearized dissipative system in Fig. 10.

Effect of damping on the transition tubes. In order to further quantify
how damping affects the size of transition tubes, we present the tube
Poincaré section on X; with different damping in Fig. 11. In Fig. 11(a),
we can see the canonical area ( / 4 pydY) decreases with increasing
damping. Thus, the proportion of transition trajectories will be fewer
if the damping increases. Note that when the damping changes, differ-
ent transition tubes almost share the same center which corresponds to
the fastest trajectories. Fig. 11(b) shows the relation between the damp-
ing and the projected canonical area (/ [ pydY), which is related to the
relative number of transit compared to non-transit orbits. It shows that
an increase in damping decreases the projected area. When the damp-
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ing is small, the relation between the damping and the area is linear,
while when the damping is large, the relation becomes slightly nonlin-
ear. Note that generally in mechanical/structural experiments the non-
dimensional damping factor &; is less than 5% which corresponds to
a damping coefficient Cy less than 107.3s™! (see the shaded region in
Fig. 11(b)). Furthermore, note that for the initial energy depicted in
Fig. 11, there are no transit orbits starting on X; for Cy greater than
about 185s7!.

Demonstration of trajectories inside and outside the transition tube. To il-
lustrate the effectiveness of the transition tubes, we choose three points
on ¥, (see A, Band Cin Fig. 12(a)) as the initial conditions and integrate
forward to see their evolution. Note that all the trajectories correspond-
ing to these three points have the same initial energy and start from a
configuration identical to the equilibrium point W;, but with different
initial velocity directions. Fig. 12(b) shows the trajectories A and B in
the conservative system where A is outside the tube boundary and B is
inside the tube boundary. In the figure, trajectory B transits through the
neck region and trajectory A bounces back. Fig. 12(c) shows trajectories
B and C in the dissipative system. Like the situation in the conservative
system, trajectory C which is inside the tube transits, while trajectory B
which is outside the tube does not. Fig. 12(d) shows the effect of damp-
ing on the transit condition for the trajectories B and B’ with the same
initial condition. Trajectory B is simulated using the conservative system
and trajectory B’ is simulated using the dissipative system. It shows that
the damping changes the transit condition. Transit orbit B in the con-
servative system becomes non-transit orbit B’ in the dissipative system,
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both starting from the same initial condition. From Fig. 12, we can con-
clude that the transition tube can effectively estimate the snap-through
transitions both in conservative systems and dissipative systems.
Finally, we point out that the transition tubes are the boundary for
transit orbits that transition the first time. For example, trajectory A in
Fig. 12(b) stays outside of the transition tube so that it returns near
the neck region at first, but, unless it happens to be on a KAM torus or
a stable manifold of such a torus, it will ultimately transit as long as
it does not form a periodic orbit near the potential well W,, since the
energy is above the critical energy for transition and is conservative.

6. Conclusions

Tube dynamics is a conceptual dynamical systems framework ini-
tially used to study isomerization reactions in chemistry [12-15,30] as
well as other fields, like resonance transitions in celestial mechanics
[9,11,17,18,31] and capsize in ship dynamics [8]. Here we extend the
application of tube dynamics to structural mechanics: the snap-through
of a shallow arch, or buckled-beam. In general, slender elastic structures
are capable of exhibiting a variety of (co-existing) equilibrium shapes,
and thus, given a disturbance, tube dynamics sheds light on how such a
system might be perturbed to transition between available, stable equi-
librium configurations. Moreover, it is the first time, to the best of our
knowledge, that tube dynamics has been worked out for a dissipative
system, which increases the generality of the approach.

The snap-through transition of an arch was studied via a two-mode
truncation of the governing partial differential equations based on Euler-
Bernoulli beam theory. Via analysis of the linearized Hamiltonian equa-
tions around the saddle, the analytical solutions for both the conser-
vative and dissipative systems were determined and the corresponding
flows in the equilibrium region of eigenspace and configuration space
were discussed. The results show that all transit orbits, corresponding
to snap-through, must evolve from a wedge of velocities which are re-
stricted to a strip in configuration space in the conservative system, and
by an ellipse in the corresponding dissipative system when damping
is included. Using the results from the linearization as an approxima-
tion, the transition tubes based on the full nonlinear equations for both
the conservative and dissipative system were obtained by the bisection
method. The orbits inside the transition tubes can transit, while the or-
bits outside the tubes cannot. Results also show that damping makes the
size of the transition tubes smaller, which corresponds to the degree, or
amount, of orbits that transit. When the damping is small, it has a nearly
linear effect on the size of the transition tubes.

Further study of the dynamic behaviors of the arch can lead to more
immediate applications to structural mechanics. For example, many
structural systems possess multiple equilibria, and the manner in which
the governing potential energy changes with a control parameter is, of
course, the essence of bifurcation theory. However, under nominally
fixed conditions, the present paper directly assesses the energy required
to (dynamically) perturb a structural system beyond the confines of its
immediate potential energy well. In future work, a three-mode trun-
cation may be introduced to study such systems. High order approxi-
mations will present higher index saddles which will modify the tube
dynamics framework presented here (cf. [32-34]). Furthermore, exper-
iments will be carried out to show the effectiveness of the present ap-
proach to prescribe initial conditions which lead to dynamic buckling.
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