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a  b  s  t  r  a  c  t

This paper  describes  a tunable  MEMS  electrostatic  accelerometer  that  uses  a  repulsive  electrode  con-
figuration  so that  the  design  is  not  hampered  by capacitive  pull-in  instability.  The  repulsive  force
configuration  enables  the  increase  of DC  bias  voltage  without  suffering  from  the pull-in  failure  mode.  This
flexibility  in  increasing  voltage  can  be  employed  as  a tuning  parameter  to widen  the working  frequency
range  and  to improve  the robustness  of the  accelerometer.  A  lumped  parameter  model  is developed  to
simulate  the  response  of  the  microstructure  under  a combination  of  electrostatic  and  dynamic  mechani-
cal  loading.  The  electrostatic  force  is  estimated  using  a finite  element  simulation.  The  nonlinear  equations
of  motion  are  solved  for harmonic  base  excitations  and half-sine  shock  loads  using  the  shooting  and  the
rce
bility
ynamics

long-time  integration  methods,  respectively.  To validate  the model,  a sensor  is fabricated  and  charac-
terized  under  harmonic  base  excitation  and  mechanical  shocks.  A  mechanical  sensitivity  of 0.1  �m/g  is
achieved  when  the  bias  voltage  is  40 V.  The  experimental  data  are  in  good  agreement  with  the simula-
tion  results.  The  comprehensive  dynamical  characterization  presented  in  this  study  contributes  to the
development  of  functional  accelerometers  with  tunable  capabilities  to harmonic  and shock  accelerations.
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 sensors and actuators have replaced their macro coun-
in many applications including, for example, pressure
inertial navigation systems, and adaptive optic systems
ey have enabled consumer electronic products like smart-
aptops, virtual reality headsets, and health monitoring

 devices to deliver more enriched functionality. Their reli-
ormance, low cost, low power consumption, and more
tly, their compatibility with semiconductor fabrication
y have made MEMS  technology popular.

ostatic actuation and detection is the most common
ion method in MEMS  [4], and almost all the current
ially available electrostatic MEMS  devices are based on
late [5] or interdigitated comb drive configurations [6].

llel-plate configuration, the electrostatic force attracts a
electrode to the substrate or bottom electrode. One can
pecific voltage to move an electrode to a desired position
e of an actuator (like micromirrors), or exert an excitation

T
ity. P
is no
as a
tive 

regio
limi
cons
ture
elec
initi
mag
effec

A
confi
figur
elec
mov
inate
 change in the capacitance between two  electrodes in the
sensor (like accelerometers).
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ain drawback of this electrostatic force is pull-in instabil-
n happens when the restoring force of the microstructure
er able to overcome the attractive electrostatic force and
lt, the microstructure collapses to its substrate. Capaci-
S  transducers are designed to operate far from the pull-in
d this limits the device operation range; for example, it

 travel range in micro-mirrors [7]. This issue is a significant
t that needs to be considered in designing the microstruc-
etry. Particularly, the initial gap between the movable

 and the substrate is affected by this design limitation. This
p plays a crucial role in squeeze film damping [4] and the
e of the electrostatic force. As a result, it has a significant

 the device sensitivity and performance in general.
new design paradigm, the repulsive capacitive sensing
tion is an alternative to parallel-plate or comb-drive con-
s [8–10]. This approach takes advantage of the fringe

atic field to generate a repulsive force that pushes the
structure away from the substrate, which essentially elim-

 possibility of pull-in (Fig. 1). This design approach opens a
 to build MEMS  sensors and actuators without the limita-
rformance imposed by dynamical instability from pull-in.
ore, because the movable electrode has the same volt-
 substrate (grounded), the possibility of micro-welding is
d. This failure mode happens when two  microstructures
rent voltages contact each other [11].
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Fig. 1. (a) The general schematic of the accelerometer. Base excitation (shown by yellow bi-directional arrows) will be transferred to the microstructure through its supports
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 plate to rotate. (b) A closer view of the electrodes configuration. (c) Voltage distrib
ing electrode (e) Side view of accelerometer and substrate when Vdc = 0 (f) when Vd

ied.

 al. first introduced the repulsive approach [12]. A new
n of repulsive actuators was developed by He and Ben
,14,8,9]. The nonlinear dynamics of microstructures under
ve force has been investigated in the previous work of
rs [15–17]. In our previous work [15], we presented a

ensive dynamical analysis of microbeams with clamped-
and cantilever boundary conditions under repulsive force.
crobeams are building blocks of this transduction scheme.

 investigated the nonlinear dynamic performance of a
 micro-mirror that showed significant travel ranges under
ic excitation [16]. However, to the best of our knowledge,
o comprehensive study of the nonlinear dynamics of a

lement in a repulsive electrode configuration.
s study, we examine the repulsive approach to build
ive accelerometer. There are numerous applications for

eters. They are main components of inertial navigation
used in cars, airplanes, smartphones, etc. For example,
used to deploy airbags in automobiles in an accident [18]
art of wearable health monitoring technologies, to detect
en fall of elderly people [19] to provide them with nec-
edical attention as soon as possible. For a comprehensive
ccelerometer sensors based on the parallel-plate scheme,

ectrostatic force on the moving element in the system
 here differs considerably from that found in conventional
late electrode designs and cannot be estimated using sim-
tical expressions. This, along with the large amplitude

 of the proof-mass, makes the dynamics of the system
linear and complicated. Therefore, our present focus is
ring the dynamics of the sensing element as it vibrates

 field. This should be accomplished prior to the develop-
 read-out circuit, which will be addressed in a subsequent

ructure of this paper is organized as follows. In Section 2,
ng principle of the sensor design is explained. In Section 3,
atical model of the structure is developed, and a lumped
r model is extracted. Section 4 presents the fabrication
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 a conclusion.
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This colli
Our main
on beams. (d) Asymmetric fringing electric field exerts an upward force
but there is no mechanical load and (g) When Vdc /=  0 and a mechanical

ure design and working principle

neral schematic of the structure under base excitation is
 Fig. 1. There are four elements that comprise this design.
element is the square plate that is attached to its anchors
two  torsional beams. The two  beams undergo torsional

 as the proof mass rotates because of applied acceler-
 electrostatic forces. The second part is the 200 �m long
ams that are attached to three sides of the proof mass. The
ss and fingers attached to it are all electrically grounded.
ese fingers, there are sets of grounded fingers fixed on
rate as the third element of the sensor. The fourth part
s of electrodes adjacent to the grounded fingers. These

arry electrical voltage, the electric field of which exerts
tic forces on the beams connected to the proof mass.

imensions of all these beams and their electrostatic field
rated in Fig. 1. The fringe electrostatic field exerts differ-
s on the top and bottom surfaces of the moving fingers.
tant force is an upward force that pushes the fingers and

 mass away from the substrate. Beyond a certain distance,
rostatic force becomes attractive and tends to bring the
cture back into the repulsive region. Therefore, there is
rium point where the electrostatic force on the structure

 zero. Once a voltage is applied on the side electrodes, the
eter plate rotates away from the substrate to an equilib-

ition where the electrostatic force is equal to the restoring
he torsional springs. This equilibrium point can be tuned
ing the voltage on the side electrodes. As will be discussed
is is advantageous when we want to set the threshold

ion that the sensor can detect.
 the base of the plate accelerates, the plate tends to stay
cause of its inertia and this leads to a relative displace-

ween the base and the plate. Because of this displacement,
itance between the electrodes will change as well. This

 capacitance can be measured and related to the relative
f the plate. If the load is large enough, the fingers can hit
m electrodes. However, because of the repulsive nature

ce, they will bounce back and will remain free to move.
sion can be detected with the aid of an electrical circuit.

 focus here is to investigate the motion of the microstruc-
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Table 1
Dimensions for the MEMS accelerometer in Fig. 1.

Parameter Symbol Value Unit

Density � 2330 kg/m3

Proof mass length Ls 990 �m
Proof  mass width Lw 1000 �m
Finger  length Lb 200 �m
Number  tip fingers Nt 31 �m
Number  side fingers Ns 25 �m
Voltage  fixed finger width d1 8 �m
Gap  between fixed fingers d1 8 �m
Moving  finger width d2 4 �m
Ground  fixed finger width d1 8 �m
Electrodes  and proof mass thickness t1 2 �m
Initial  gap h1 2 �m
Natural  frequency ωn 2 × � × 1740 rad/s
Damping  ratio (Vdc = 40) �0 0.016

ping ratio (Vdc = 40) �1 0.033
ping ratio (Vdc = 50) �0 0.016
ping ratio (Vdc = 50) �1 0.038
ping ratio (Vdc = 60) �0 0.017
ping ratio (Vdc = 60) �1 0.055

ce constant A0 3.4079 × 10−7 N/m
ce  constant A1 −6.7113 × 10−2 N/m2

ce constant A2 7.5644 × 103 N/m3

ce constant A3 −8.8555 × 108 N/m4

ce constant A4 8.1341 × 1013 N/m5

ce constant A5 −4.6766 × 1018 N/m6

ce constant A6 1.6139 × 1023 N/m7

ce constant A7 −3.2602 × 1027 N/m8

ce constant A8 3.5560 × 1031 N/m9
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trostatic force profile obtained from COMSOL for the two-dimensional
the sensor.

r the combined nonlinear electrical and mechanical loads
standing this behavior is an essential part of the sensor
ization for making functional MEMS  accelerometers. In
section, the mathematical model of the structure will be

 to explore the dynamical characteristics of the system.

matical modeling

athematical model presented in this section can be used
to refine the sensor design before going through the fab-
rocess. As shown in our previous work [16], this simple

gree of freedom model is a very powerful tool to predict
nse of the system and capture the inherent nonlinearity

 the electrostatic force. We  consider a lumped parameter
 as the following:

 k�̂ = Mes(�̂) + Msh
(1)

�̂  is the rotation of the proof-mass plate about its anchors’
 and k are the moment of inertia, torsional damping,

nal stiffness coefficients, respectively. On the right-hand
and Msh represent the electrostatic moment and inertial
because of the base excitation, respectively.
lectrostatic force has a nonlinear dependence on the
of the moving fingers in the electric field. To obtain an
n for the electrostatic moment, first we calculate the force
r a unit-cell using a 2D finite element analysis in COMSOL.
it cell consists of the moving electrode, bottom electrode
ide electrodes as shown in Fig. 1. The force profile is shown

 a curve fitting technique, the force profile (Fig. 2) can be
ated as a 9th-degree polynomial, in terms of the deflec-

9
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ion of �, we use the following trigonometric equation.
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stant A9 −1.6175 × 1035 N/m10

of inertia I 1.7954 × 10−15 kg m2

ating Eq. (4) over the finger length results in the total
atic force on each beam.

=
∫ Ls+Lb

Ls

Fes−mov−fing (x, �)dx

(

9∑
i=0

Ai(x · sin �)i)dx

=  V2
dc

9∑
i=0

Ai(sin �)i

i + 1
· ((Ls + Lb)i+1 − Li+1

s )

(5)

e parameters are given in Table 1. To calculate the corre-
 moment caused by this force, the distance between the
int of the resultant force and the axis of rotation (xc) is
hich can be calculated as follows:

Lb x · Fes−mov−fingdx

s+Lb Fes−mov−fingdx
(6)

,  the moment of electrostatic force on the tip fingers about
f rotation can be written as

 Nt · Fes−tip(�) · xc

9

=0

Ai(sin �)i

i + 2
· ((Ls + Lb)i+2 − Li+2

s )
(7)

is the number of fingers on the tip side of the proof mass.
g a similar approach and assuming that the electrostatic
he fingers on the sides of the proof-mass does not change
nger length, we  can calculate the moment of the electro-

ce on these fingers as follows.
 V2
dc ·

Ns∑
j=0

9∑
i=0

(Ai(uj · sin �)i · Lb) · uj (8)
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is the distance of the jth side finger from the axis of rota-
Ns is the number of fingers on each side. So, the total
tic moment in Eq. (1) can be written as:

Mes−tip + 2 · Mes−side (9)

ctor 2 in Eq. (9) accounts for the fact that there are two
e fingers, one on each side of the proof-mass. The moment
leration (Msh) also can be written as:

mp · a(t) · Ls

2
]  + [Nt · mb · a(t) · (Ls + Lb

2
)]

[2 · (
Ns∑
j=1

mb · a(t) · uj)]
(10)

e first bracket is the moment caused by proof mass accel-
he second shows the moment caused by the tip fingers
ion, and the third is for the side fingers. In Eq. (10), mp,
(t) are the mass of the rotational plate, mass of the mov-
rode, and the acceleration load that is exerted on the
cture through base excitation. This mechanical load can
ed as a harmonic base excitation or as a shock load. There
ent shock profiles commonly used for modeling shock
h as square, saw-tooth, half-sine or full-sine shock pro-
most commonly used shock load is the half-sine with the
ven in Eq. (11), which will be used in the following in our
n of the experiment on the fabricated device,

in(ωt) · u(
�

ω
−  t) (11)

�
ω − t) is the step function. Dividing Eq. (1) by I and using
nd (10) and following non-dimensional parameters (Eq.

 can rewrite the governing equation of motion in non-
nal format (Eq. (13)).

t = t̂

T
, T = 1

ωn
, ωn =

√
k

I
(12)

˙
 + ω2

n� = T2

I�0
· (Mes(�) + Msh) (13)

sed in Section 2, by applying a DC voltage on the side
s, the proof-mass rotates around its anchors’ axis and goes
ilibrium point away from the substrate. To obtain this
tion, all the time derivative terms in Eq. (13) are set to zero

 the equation is solved for static rotation (�st). The static
an be used to solve for the dynamic solution (�dyn) of Eq.
e presence of any time-varying load using the following

f variable.

�dyn (14)

oment of inertia, I, in Eq. (13) can be calculated as

pL2
s + Nt · (

1
12

mbL2
b + mb(

Lb

2
+ Ls)

2
)

s

1

(
1

12
mbb2 + mbu2

j )
(15)

ral frequency of the first mode, ωn is obtained from the
ite element package. The first mode is a rotational mode

ed. The corresponding natural frequency for this mode is
 to be 1320 Hz. After examining our subsequent experi-

ata, we can modify this value for the natural frequency to
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linear damping does not capture the physics of energy
n in this problem. In general, modeling energy dissipa-
e repulsive scheme is more challenging compared to the

 scheme because of two  reasons. First, the amplitude of
 can get very large compared to the initial fabrication
use the initial static deflection of the structure (from Vdc)
e structure away from the substrate, providing more space
ion. Therefore, those damping models available in the lit-
1–23] that are based on Reynolds’ equation are not valid

the underlying assumptions such as negligible pressure
cross the fluid film or small gap to lateral dimension ratio
lid here. Second, because there is no limitation from pull-

vice can get very close to the substrate while having a large
e vibration. So, in each cycle of vibration, when the moving

 away from the substrate the dominant damping mecha-
e drag force in free air. However, when the structure gets

he substrate, the squeeze film damping mechanism starts
significant role in energy dissipation. Thus, the damping
kely to be quite nonlinear.
er challenge in modeling damping in this problem is
ontinuity assumption for the air breaks down when the
cture gets very close to the substrate, especially at low
. In this situation, the characteristic length of the problem
aller than the initial fabrication gap, and the character-

th of the problem becomes comparable with the mean
 of air molecules. The Knudson number is the parame-
ck to see if the continuity assumption is valid (Eq. (16)).
ber is defined as the ratio of the mean free path of air
ecules to the characteristic length of the problem, which

 the gap between moving and stationary parts of the
cture. The mean free path of air molecules depends on

mperature and pressure. Assuming the room temperature
 (25 ◦C), the dependence of the molecules’ mean free path
re can be written as in Eq. (16).

� = P0

P
�0 (16)

 the Knudsen number, the flow is divided into four
 continuum flow, slip flow, transitional flow and free
r flow. Assuming the characteristic length to be equal to
l gap and using Eqs. (16) we can categorize the flow accord-
ssure (Table 2). As we  will be performing the experiment
vice at very low pressure (P < 350 mTorr), the flow regime

 in the free molecular regime. Also, as the microstruc-
very close to the substrate, the characteristic length of the
becomes even smaller than 2 �m,  which leads to higher

 pressure for the molecular region. In our previous work,
sed a modular damping that captured the complicated
f this energy dissipation mechanism. The proposed mod-
ping depends on the ratio of vibration amplitude to the
p (initial fabrication gap + static deflection caused by DC
When the vibration amplitude is small compared to the
p, the damping is dominated by linear viscous damping.

, as the vibration amplitude becomes comparable with the
, the squeeze film damping increases as the air molecules

ed between the proof mass and substrate. The equation
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Fig. 3. Fabrication process (a) 4-inch, 525 �m thick bare Si wafer. (b and c) Insulation layers growth and deposition. (d) First polysilicon deposition. (e RIE etch of polysilicon.
(f) Sacrificial layer deposition and CMP  processing. (g) Anchor etch on a sacrificial layer. (h) Second polysilicon deposition. (i) Polysilicon etch and gold deposition on the
pads.  (j) Release in HF:HCl solution and CPD.

Table 3
Information related to the thin film depositions.

Film Temp. (◦C) Thickness (�m) Dep. rate (Å/min)

SiO2 1100 1 74
Si3N4 800 0.2 25
HTO 800 4 12.7
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 description of damping above, all the parameters in Eq.
 been defined. Next, the fabrication process is explained
by experimental results.

ation process

ocess flow of the device fabrication is depicted in Fig. 3.
ith 4-inch standard silicon wafers which are dipped into

acid baths (RCA Cleaning). This process removes residues
rganic particles and the native oxide on the wafer sur-
r the cleaning, we  grew 1 �m thick oxide as an insulation
g a low-pressure chemical vapor deposition (LPCVD) fur-
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he oxide and nitride layers isolate the device from the sub-

 top of the nitride layer, a 2 �m thick phosphorus-doped
us silicon (N+ a-Si) was deposited in a LPCVD furnace. The
n rates and the deposition temperatures of the LPCVD

 presented in Table 3. This amorphous layer was then
 polycrystalline silicon (poly-Si) by an annealing process
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ist and exposed it with an i-line stepper. Exposed wafers
ed at 115 ◦C for 90 s and developed with 726 MIF  devel-
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imental setup and results

nducted experiments on the fabricated sensor to inves-
e accelerometer dynamical performance and verify the
tical model that was developed in Section 3. The sensor
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Table  4
Chamber conditions for dry etching. Etch rates for silicon and oxide are measured around 2 �m/min  and 150 nm/min, respectively.

Bosch process for silicon etching

Process Pressure (mTorr) C4F8 (sccm) SF6 (sccm) Ar (sccm) RIE ICP Duration (s)

Light 13 35 2 40 40 850 8
Passivation  24 60 2 40 0.1 850 4
Etch  1 23 2 70 40 8 850 2
Etch  2 23 2 100 40 8 850 6

ICP  process for oxide etching

Process Pressure (mTorr) CHF3 (sccm) O2 (sccm) Ar (

Etch 5 52 2 – 

Fig. 5. Experimental setup. (a) NI-USB 6366 Data Acquisition Box. (b) Krohn-Hite
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mical performance and verify the mathematical model

developed in Section 3.
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shows the device response for different voltages on the
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rent amplitudes are applied. These figures show that the
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lectrode. Furthermore, for DC voltages of 50 and 60 V, as
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t nonlinear terms in the electrostatic force. According to
1 (coefficient of x in electrostatic force) is negative, when
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 and 60 V can be explained by the even-order terms in
tic force (A2, A4, A6, A8). Simulation results are presented
These results are obtained when the linear natural fre-
f the structure is set to be the measured value of 1740 Hz
erning equation of motion (Eq. (13)). This value is 30% dif-
m what we obtained from finite element analysis (FEA).
epancy can be explained by the imperfections in the fab-
rocess that are not considered in the FEA. These include a
ding of the plate that happens because of thermal stresses.
ual stress on the supports plays a significant role on the
l stiffness of the sensor. This residual in-plane stress was

 to be approximately 50 MPa  in the fabrication process,
uses a slight curvature in the proof mass plate. The deflec-
o residual stress was measured to be approximately 6 �m

 length of the plate. Because a static FEA predicted approx-
he same deflection as the measured result, we  conclude

Fig. 7
on sid

imen
the 

freq
fecti
a con
ratio
each
dam
deflection is due to in-plane stress only and the variation
l stress along the thickness may  considered to be negligi-

 the estimated linear frequency for the fabricated device
red in the lumped model, the model captures the exper-

frequenc
Therefore
voltage. F
the dyna
ulation results for linearized natural frequency for different DC voltages
trodes.

esults with good accuracy. The slight difference between
lation results and experimental data, especially at low
ies, is also attributed to these inevitable fabrication imper-
nd residual stresses as well as limitation of approximating
ous system with a discrete (lumped) model. The damping

 adjusted slightly to match the experimental results for
age scenario. It is worth mentioning that the squeeze film

 is dependent on the resonance frequency. The resonance
y changes by varying the DC voltage as shown in Fig. 7.

, the damping coefficients will slightly vary with the DC
or the frequency sweep, the lumped model is solved for

mic solution (�dyn) using the shooting method [26]. The



M.  Daeichin, M. Ozdogan, S. Towfighian, et al. / Sensors and Actuators A 289 (2019) 34–43 41

Fig. 8. Simu
for differen

static rot
Fig. 8 as a

The n
age is 40 

softening
experime
ear term 

a nonline
which do
vibration
ical loads
amplitud
this diffe
ties in th
film regim
ther inves
behavior 

ages, it m
good accu
frequency
could be 

. Mechanical sensitivity of the sensor for different DC voltages on the side
odes  obtained from experimental results.

0. Th
e  in th
e corr

he se

Fig. 11. Sim
TSh
Tn

= 0.61.
lation results for static displacement at the edge of the proof-mass plate
t DC voltages.

ation caused by DC voltage is calculated and shown in
 function of DC voltage.
onlinearity in the device response when the bias volt-
V is slightly hardening while the lumped model predicts
. This discrepancy between the simulation results and
ntal data can be reconciled by introducing a cubic nonlin-
for mechanical stiffness for this specific voltage but such
arity makes the response hardening for higher voltages
es not match the experimental data. Also, because the

 amplitudes with different voltages for the same mechan-
 are very close to each other (for example, the resonance
es for 40 and 50 V when the acceleration amplitude is 3g),
rence in behavior cannot be attributed to the nonlineari-
e electrostatic force or stiffness caused by air in squeeze

e. This hardening behavior at low voltages needs fur-
tigation. Although the model does not catch the nonlinear

of the microstructure in the resonance region for low volt-

Fig. 9
electr

Fig. 1
profil
for th

T

atches the experimental data away from this region with
racy. Because inertial sensors are generally operated in

 ranges away from their natural frequency the model still
used to simulate the device response at low frequencies.

Fig. 9. Th
base exci
and show
ical sensi

ulation and experimental time responses for half sine shocks with different time duratio
e actual shock in the experiment (25 g and 0.25 ms), simulated shock
e mathematical model and relative displacement at the proof-mass edge
esponding shock (Vdc = 60).

nsitivity of the device for different voltages is shown in

e relative displacement of the proof-mass for harmonic
tations with different amplitudes at 2500 Hz is recorded
n in this figure. The slopes of these lines give the mechan-
tivity for each voltage. The sensitivity for lower voltages

n at 60 V bias voltages. (a) TSh
Tn

= 1.79, (b) TSh
Tn

= 1.18, (c) TSh
Tn

= 0.89, (d)



42 M.  Daeichin, M. Ozdogan, S. Towfighian, et al. / Sensors and 

Fig. 12. Simulation and experimental maximum of the time responses for half
sine  shocks with time duration (Tsh) equal to 25–300% of the natural period of the
microstructure  (Tn) at 50 V bias voltages.

Table 5
Threshold shock amplitude that results in proof-mass hitting the substrate (shock
duration = 90% of natural period of microstructure for each voltage) and comparing
resonance  frequencies obtained from experiments (at low g (1 g)) with linearized
natural  frequencies derived from Jacobian matrix.
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 because the contribution of electrical stiffness in the
ness of the sensor (structural and electrical) is smaller.
ple, the sensitivity of the accelerometer at 40V is about
. This is extremely superior to the numbers found in the
, which are generally in the range of nanometer to fem-
per g [27,28]. In the next step, half-sine shocks will be
d as the mechanical load on the microstructure.

k loading

tness of accelerometers against mechanical shocks is an
t parameter that needs thorough investigation. Under
al shocks, a force is transmitted to the microstructure

its anchors during a short period of time compared to
al period of the microstructure. These loads are usually
ized by the induced acceleration on the affected structure
e parameters: maximum acceleration (amplitude), time

 and pulse shape, also called shock profile. Here, we  use
shock loads with different amplitudes and time durations
gate the response of microstructure to a shock load. The
tput of the shaker is measured with the PCB accelerome-
h is mounted on the shaker. Fig. 10 shows this measured
ion as well as the device response, which is obtained by
g the velocity of the microstructure measured by the laser

er.
me responses of the microstructure for 60 V bias voltage
e electrode to shock loads with different time durations

litudes are given in Fig. 11. Similar experiments were
d for 50 V on the side electrodes to obtain the larger dis-
ts of the proof-mass (Fig. 12). These shock experiments

for shock loads that have time durations close to the natu-
 of the microstructure. The linearized natural frequency of
structure for each voltage (Fig. 7) is obtained from stabil-
gen-value analysis on the Jacobian matrix for Eq. (13). The

emp
vent
be tu
is en
two 

B
be g
mor
pred
shoc
elec
mec
the s
sor c
elec

6. C

In
sive 

first
degr
capt
dyna
and 

acce
incre
bilit
dete
third
volta
cial 

whic
quen
be u
tial 

by in

 natural frequency of the microstructure can be extracted

monic experiments at low g levels (Table 5). Because the
f the microstructure and hence, the natural period of the
cture, would change with the DC voltage, the maximum

the accel
sacrificin
designed
ence betw
Actuators A 289 (2019) 34–43

l  displacement of the accelerometer would be a function
ltage.
mulation results are in good agreement with the shock-
nt outcomes as shown in Figs. 11 and 12 . The small
cies can be attributed to the error in the numerical inte-
f the velocity signal and the fact that the shock that is
pplied on the device is not a perfect half-sine shock con-

n the mathematical model. It should also be mentioned
 damping coefficients that were used for harmonic simu-
50 and 60 V are used for simulating the shock responses.

 agreements of the results show that the damping model
ately capture the energy dissipation.
echanical sensitivity to shock is an important factor in
rmance of shock sensors. According to Fig. 11 at 60 V, the

 displacement at the proof-mass edge is less than 1.2 �m
 shock amplitude is 25 g. If we consider the collision of
structure with its substrate as a failure mode or a limit

 the maximum allowable shock load, this 1.2 �m is 10%
tial gap between the proof-mass edge and the substrate
brication gap + 10 �m static gap caused by 60 V applied
e electrodes). However, as discussed in Sections 1 and 2,
there is no pull-in with this repulsive approach, even if
-mass hits the substrate, it could bounce off safely. In fact,
pact could be detected electrically, the device could be

 as a tunable threshold shock sensor. As opposed to con-
l parallel-plate shock sensors, the threshold shock could

 by applying voltage on the side electrodes. This capability
d in the repulsive configuration because of the additional
rodes on the sides.
se  of the limitation on the shock amplitudes that could
ated by the shaker, we  could not test the device under
ere shocks. However, we can use the developed model to
e threshold shock at different voltages. These threshold
plitudes are given in Table 5 for different voltages on side
s. As discussed in Section 5.2, the sensor resilience against
al shock could be improved by increasing the voltage on

electrodes. This also means the threshold shock the sen-
etect can be tuned by varying the DC voltage on the side
s.

usion

 study, a capacitive electrode system that achieves a repul-
rostatic force is employed for acceleration-sensing for the
. An accelerometer is simulated and fabricated. A single
f freedom lumped parameter model is constructed that
the nonlinear dynamics of the system. Comprehensive
analysis of the microstructure under electrostatic force
rent mechanical loads is investigated. As the presented
eter does not suffer from pull-in, the DC voltage can be

 to increase the fundamental natural frequency. This capa-
bles the accelerometer to become tunable. That means the

 range of the accelerometers, which is often below one
heir natural frequency, can be tuned by changing the DC
f the side electrodes. This is superior to current commer-
erometers that often have a fixed resonance frequency,
its their performance. Here, because the resonance fre-

f the accelerometer can be tuned, it has the potential to
in a wider range of applications. Furthermore, the ini-
between the proof-mass and the substrate is increased
sing the voltage on the side electrodes, which improves

erometer robustness against mechanical shocks without
g its stability. This device also has the potential to be

 and used as a shock sensor. By changing the voltage differ-
een the side and bottom electrodes, the threshold shock
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