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Abstract

We study the expected number of real zeros for random linear combinations of orthogonal
polynomials. It is well known that Kac polynomials, spanned by monomials with i.i.d. Gaus-
sian coefficients, have only (2/m + o(1)) log n expected real zeros in terms of the degree n.
If the basis is given by the orthonormal polynomials associated with a compactly supported
Borel measure on the real line, or associated with a Freud weight defined on the whole real
line, then random linear combinations have n/«/ﬁ—l— o(n) expected real zeros. We prove that
the same asymptotic relation holds for all random orthogonal polynomials on the real line
associated with a large class of weights, and give local results on the expected number of real
zeros. We also show that the counting measures of properly scaled zeros of these random
polynomials converge weakly to either the Ullman distribution or the arcsine distribution.

1. Introduction

The expected number of real zeros E[N,(R)] for random polynomials of the form
P (x) = Y 4_p ckx®, where {c}_, are independent and identically distributed random vari-
ables, was studied since the 1930’s. In particular, Bloch and Pélya [4] gave an upper bound
E[N,(R)] = O(4/n) for polynomials with coefficients selected from the set {—1, 0, 1} with
equal probabilities. Littlewood and Offord [27, 28] considered several classes of random
coefficients, including standard Gaussian and uniformly distributed in {—1, 1} or in the in-
terval (—1, 1). Their results indicated that the expected number of real zeros is actually
of logarithmic order in terms of n. Shortly thereafter, Kac [20] established the important
asymptotic result

E[N.(R)] = 2/ +o(1))logn asn — 00,

for polynomials with independent real Gaussian coefficients. In fact, Kac [20, 21] found the
exact formula for E[N,(R)] in the case of standard real Gaussian coefficients:

'VAWCE) - BXx)
0 A(x)
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where
Ax)=) x¥, Bx) =) jx¥" and C(x)=)_ jx¥72
j=0 j=1 j=1

More precise forms of Kac’s asymptotic for E[N,(R)] were obtained by many authors, in-
cluding Kac [21], Wang [37], Edelman and Kostlan [11]. Wilkins [38] gave an asymptotic
series expansion for E[N, (R)] in the case of i.i.d. Gaussian coefficients.

The asymptotic result for the number of real zeros was generalized by Erd6s and Offord
[12] to coefficients with Bernoulli distribution (uniform on {—1, 1}), and by Kac [22] to uni-
formly distributed coefficients on [—1, 1]. Later, Stevens [36] showed that Kac’s asymptotic
holds for polynomials with coefficients from a certain general class of distributions. Finally,
Ibragimov and Maslova [18, 19] extended the result to all mean-zero distributions in the
domain of attraction of the normal law. Many additional references and further directions of
work on the expected number of real zeros may be found in the books of Bharucha—Reid
and Sambandham [1] and of Farahmand [13].

We state a result on the number of real zeros for the random linear combinations of rather
general functions. It originated in the papers of Kac [20, 22], who used the monomial basis,
and was extended to trigonometric polynomials and other bases, see Das [8, 9] and Farah-
mand [13]. We are particularly interested in the bases of orthonormal polynomials, which
is the case considered by Das [8]. Further generalizations of Kac’s integral formula for the
expected number of real zeros were obtained by several authors, see e.g. Cramér and Lead-
better [7, p. 285]. For any set E C C, we use the notation N,(E) for the number of zeros of
random functions (1-1) (or random orthogonal polynomials of degree at most n) located in
E. The expected number of zeros in E is denoted by E[N,(E)], with E[N,(a, b)] being the
expected number of zeros in (a, b) C R.

PROPOSITION 1-1. Let [a,b] C R, and consider real valued functions g;(x) €
C'(la,b]), j = 0,...,n, with go(x) being a nonzero constant. Define the random func-
tion

Gu(x) =) c;g;(), (1-1)
j=0

where the coefficients c; are iid. random variables with Gaussian distribution
N(0,062),0 > 0. If there is M € N such that G (x) has at most M zeros in (a, b) for
all choices of coefficients, then the expected number of real zeros of G,(x) in the interval
(a, b) is given by

b JAX)C(x) — BX(x) ix

’ A0 , (1-2)

|
E[N,(a, b)] = —

where

AX) =) gix), Bx)=) gx)gjx) and Cx)=) [gi®P. (13
. pr

j=0 j=1

Clearly, the original formula of Kac follows from this proposition for g;(x) = x/, j =
0,1,...,n. For a sketch of the proof of Proposition 1-1, see [29]. We note that multiple
zeros are counted only once by the standard convention in all of the above results on real
zeros. However, the probability of having a multiple zero for a polynomial with Gaussian
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coefficients is equal to 0, so that we have the same result on the expected number of zeros
regardless whether they are counted with or without multiplicities.

2. Random orthogonal polynomials

Let W = e~ 2, where Q : R — [0, 00) is continuous, and assume that all moments
jn;xfwz(x)dx, j=0,1,2,--,
are finite. Forn = 0, let
Pa (x) = pa (W2 x) = yux" + ...
denote the nth orthonormal polynomial with y, > 0, so that

I, m =n,

fpu(x)pm(x)wz(x) dx = lo, m =+ n.

Using the orthonormal polynomials {p;}72, as the basis, we consider the ensemble of ran-
dom polynomials of the form

P,i(x)zzcjpj(x), neN, (2-1)
j=0
where the coefficients ¢y, ¢y, . . ., ¢, are i.1.d. random variables. Such a family is often called

random orthogonal polynomials. If the coefficients have Gaussian distribution, one can ap-
ply Proposition 1-1 to study the expected number of real zeros of random orthogonal poly-
nomials. In particular, Das [8] considered random Legendre polynomials, and found that
E[N,(—1, 1)] is asymptotically equal to n/+/3. Wilkins [39] improved the error term in this
asymptotic relation by showing that E[N,(—1, 1)] = n//3 + o(n®) for any ¢ > 0. For
random Jacobi polynomials, Das and Bhatt [10] concluded that E[N,(—1, 1)] is asymptot-
ically equal to n/+/3 too. They also stated estimates for the expected number of real zeros
of random Hermite and Laguerre polynomials, but those arguments contain significant gaps.
The authors recently showed [29] that if the basis is given by the orthonormal polynomi-
als associated to a finite Borel measure with compact support on the real line, then random
linear combinations have n/ﬁ + o(n) expected real zeros under mild conditions on the
weight. The second and the third authors [33] extended this asymptotic to random ortho-
gonal polynomials associated with the Freud weights W(x) = e=*", ¢ > 0, A > 1. The
results of this paper provide detailed information on the expected number of real zeros for
random polynomials associated with a large class of weights defined on the whole real line.
In particular, they cover the case of random Freud polynomials considered in [33].
For the orthonormal polynomials {p;(x)}Z,. define the reproducing kernel by

n—1

K.(x,y) =) pi@)p;),

j=0

and the differentiated kernels by

n—1
K& (x,y) = Z pf',’”(x)p}”(y), k,1 e NU{0}.
=0
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We intend to apply Proposition 1-1 with g; = p;, so that

A(x) = K, (x,x), Bx) =K% (x,x) and C(x)=K"P(x,x). (2:2)

n+1 n+1

Universality limits for the reproducing kernels of orthogonal polynomials (see Levin and
Lubinsky [25, 26]), and asymptotic results on zeros of random polynomials (cf. Pritsker
[32]) allow us to give asymptotics for the expected number of real zeros for a class of random
orthogonal polynomials associated with weights from the class F(C?) [24].

Definition 2-1. Let W = e~ <, where Q : R — [0, 00) satisfies the following conditions:
(a) Q' is continuous in R and Q(0) = 0;
(b) Q' is non-decreasing in R, and Q" exists in R \ {0};
(c)
|l|im Q(t) = o0;
t—oo
(d) the function

tQ'(r)
T(t) = ——, 0;
(1) 00 t+

is quasi-increasing in (0, 00), in the sense that for some C, > 0,
O<x<y=>Tx) <CT(y).

We assume an analogous restriction for y < x < 0. In addition, we assume that for some
A>1,

()= AinR\ {0}
(e) there exists C; > 0 such that

') 10
<c ,
oo S 0w
Then we write W € F(C?).

x e R\ {0}.

Our main result on the global asymptotic for the expected number of real zeros of random
orthogonal polynomials is below.

THEOREM 2-2. Let W = e=¢ € F(C?), where Q is even. If the function T in the defini-
tion of F (C?) satisfies

lim T(x) =a € (1, 00], (23)

then the expected number of real zeros of random orthogonal polynomials (2-1) with inde-
pendent real Gaussian coefficients satisfies
1 1
lim —E[N,(R)] = —. (2-4)
Jlim BN, ()] = —=
Theorem 2-2 is a combination of Theorem 2.3 and Corollary 2.5 given below. Define the
Ullman distribution . for 0 < o < 0o by

o 1 trx—l
P";(x):_f —Zdt, xE[—l,l],

T Jix /12 —x
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and for @ = 00, the arcsine distribution pto, by
, 1
Poo(X) = ﬁ,
see [35] and [24]. We use the contracted version of P,:

P¥(s) = Py(a,s), neN, (2-5)

xe[-1,1],

where a, is the Mhaskar-Rakhmanov-Saff number associated with the weight W, see [24,
30, 35] and Section 3 below.

For any set E C C, N}(E) denotes the number of zeros of a random polynomial P}(s)
located in E. The expected number of zeros of P;(s) in E is given by E[N;(E)]. We now
state the local result on the asymptotic of E[N ([a, b])] for intervals [a, b] C (—1, 1).

THEOREM 2-3. Let W = e=¢ € F(C?), where Q is even. Assume that the function T in
the definition of F (C?) satisfies (2-3). If [a, b] C (=1, 1) is any closed interval, then

.1 . 1
Jim —E[N; (la, b)] = ﬁau([a, b)). (2:6)

We will establish a generalisation of Theorem 2-3 for non-even weights in Section 3.
Define the normalized zero counting measure 7, = (1/n)Y_;_, 8, for the scaled polyno-
mial P(s) of (2-5), where {z;};_, are its zeros, and §, denotes the unit point mass at z. We
determine the weak limit of 7, for random polynomials with quite general random coeffi-
cients {c;}72,.

THEOREM 2-4. Let the coefficients {c;}7”, of random orthogonal polynomials (2-1) be
complex i.i.d. random variables such that E[| log |co||] < 00. If W = =€ € F(C?), where
Q is even, and if the function T in the definition of F (C?) satisfies (2-3), then the normalized
zero counting measures T, for the scaled polynomials P;(s) converge weakly to p, with
probability one.

Related results on the asymptotic zeros distribution of random orthogonal polynomials with
varying weights were proved by Bloom [5] and Bloom and Levenberg [6]. Theorem 2.4
permits us to find asymptotics for the expected number of zeros in various sets. In particular,
we need the following corollary for the proof of Theorem 2.2.

COROLLARY 2-5. Suppose that the assumptions of Theorem 2-4 hold. If E C C is any
compact set satisfying ji1o (8 E) = 0, then

lim lE [NH(E)] = pa(E). 27

n—o00 1

It is of interest to relax conditions on random coefficients c;, e.g., by considering probab-
ility distributions from the domain of attraction of the normal law as in [18, 19].

3. Proofs

Our proofs require detailed knowledge of potential theory with external fields, see [24]
and [35].

Let W be a continuous nonnegative weight function on R such that W is not identically
zero and limp, |, o, |x| W(x) = 0. Set Q(x) := — log W(x). The weighted equilibrium meas-
ure iy of R is the unique probability measure with compact support Sy = supp uywy C R
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that minimizes the energy functional

= ff =

; dv(t)dv(z)—l—Zdev

amongst all probability measures v with support on R. It satisfies

|
flog iz =1l dpuw(t)+ Q) =C, ze€ Sy,
and

1
flog - duw()+ Q) = zeR,

where C is a constant.
For a weight function W(x) = e 2@, where Q is often assumed convex on R, the
Mhaskar-Rakhmanov-Saff numbers

a,<0<a,

are defined for n > 1 by the relations

1 “__ 30w
‘\/(x - a—n)(au - x)

and
l Ay ’
0=— *x) dx.
a_, \/(x —a_,)(a, — x)

We also let

1 1

& =—=(a, +]a_,]) and B, ==(a,+a_,).

2 2

For even Q, a_, = —a,, and we may define a, by

" agt antQ'(at) |
7 Jo V11— -
Existence and uniqueness of these numbers are established in the monographs [24, 30, 35],

but go back to earlier work of Mhaskar, Saff and Rakhmanov. One illustration of their role
is the Mhaskar—Saff identity:

(3-D

IPWllL=@ = [[PW]|L(a_p.a

which is valid for all polynomials P of degree at most n. We define the Mhaskar—
Rakhmanov—Saff interval A, as A, := [a_,, a,]. The linear transformation

_ﬁu

n

Lﬂ(x) = tl X € R,

maps A, onto [—1, 1]. Its inverse is
LI7(s) = By + 85, s € R.
Fore € (0, 1), we let

Jo(&) = L[ —1 46,1 — &l = [a_, + €3,,a, — &8,].
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The equilibrium density is defined as
V& - a_u)(an ) f"" Q'(s) —Q0'(x) ds
§F—x J(s—a_n)(a”—s)’
It satisfies the following equilibrium equations [24, p. 41]:

on(x) = x € A,.

iy l
f Iog| |0'u(s)ds+Q(x):C,x€A,,,
a X —s5

—n

and

a,‘ l
f log | |cru(s) ds+ Q(x)>C, x eR.
d_n X —8

Note that the measure o, (x) dx has total mass n on A,:

f ’ o,(x)dx =n.

We also define the normalised version of o, as follows:
L
o} (s) == —o, (LI (), se[-11]
n

Note that o, (s) ds is a unit measure supported on [—1, 1]:

1
f o, (s)ds = 1.
-1

For details on 0, and o, one should consult the book [24].
In particular, the Ullman distribution pu;, is the normalized equilibrium density for the
standard Freud weight w(x) = e %" on R, see [35, theorem 5-1, p. 240], where

INCINE))
ArE+1)
An alternative formula for the Ullman distribution follows from that for o, above, namely,

2\/ x2 —x% dt

ﬂ:

My (x) = rz Ry xel[-1,1], (3-2)
where
b= ;f e
For n = 1, we also define the square root factor
Pa(x) =/ (x —a_p)(@ —x), x €A, (3-3)
In the sequel C, Cy, Cy, ... denote constants independent of n, x, and polynomials of de-

gree < n. The same symbol does not necessarily denote the same constant in different
occurrences. Given sequences {c,}, {d,}, we write

Cp ~ dy
if there exist positive constants C; and C; such that forn = 1,

C] "-<-h Crx/dn g C2
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Similar notation is used for functions and sequences of functions.
We start with a general result, our only one that allows non-even weights. In this more
general setting, P, is given by

PI(s) = P, (L))
rather then by (2.5).

THEOREM 3:-1. If W = ¢~ ¢ € F(C?) and |a, b] C (-1, 1) is any given closed interval
then, as n — 00,

1 . 4o [,
ZEN; (la.b)] = === [ o700 dy.

Proof. The strategy is to apply [25, theorem 1-6]. It states that for all r, 5 = 0, and any
e € (0, 1), we have uniformly for x € J,(g) asn — 00,

W2)KI D (x,x) = [r\ (s (O
(a1 ‘Z(j)g(k) want (35) o

j=0
where
B 0, J + k odd,
k= (=D, Jj +k even.
In particular, uniformly in x € J,1(g),
w2 K(O,U) ,
@Kd 00 _
Ont1 (x)
WK &) 0@
= 0
(Ont1(x))? On+1(X)
and
w2 K(l 1) ,
() K,y (x, x) :( Q'(x) ) +—+o(1)
(0n1(X))? Op41(X) 3
Next, from Proposition 1.1, for any closed interval [/, g] C J,,(¢) (where [, ¢ may depend
onn),

LE N, (1. 4] = — fq Kt &%) Ky’ &,0) 2d
n n s q = ar ), K 0.0 KO ¢ ) X

n+1 (x’x) n+1

Substituting the above asymptotics, and cancelling, yields

1
=E[N, (1, gD]
n
2 ’
:_f Oni1 (X) ( ow) ) o)+ 29 (1) +o(lydx asn — .
3 n+l( ) ﬂ+|( )
We note that [25, lemma 5-1(a),(d), p. 87] uniformly for x € J,,(¢),
Guni(x) > G A
n+1
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and
, n+1
|Q'x)| < C;———,
pﬂ+|(x)
so that
0'(x) St G
<C < , x e Ji(e).
o1 @) | S o (@) S VR —9) #®

Thus, uniformly for all intervals [I, g] C J,1(¢), asn — 00,

1 1 = Clto(l) [
“EIN,(1, D] = — [ one Oy T o = = fi Gnin (x) dx.

Note that the number N, (E) of real zeros of P,(x) in E equals the number N}(E*) of real
zeros of P*(s) in E* := L,(E) = {L,(x) : x € E}, since L, is a bijection. We recall that
a, is increasing to 400 and a_, is decreasing to —00 as n — ©00. It is also known that

n - —i(n . 3;1
lim 2240 — ) fim =D and fim 2,
n—0oQ aﬂ n—oQ a—ﬂ n—og n
see [24, lemma 3-11(a), p. 81]. Hence we have
L (L[_]] _ _ n JB."I _ﬁrx+l
n+1 \ Ly (S)) = er+l (Bn +8,8) = 5 s+ R — 5 as n— 00, (3:4)
n+1 n+1

uniformly for s in compact subsets of R. If [a, b] C (—1, 1) then, for large n € N,
L7 (a, b)) = [a_, 4+ 8,(1 +a), a, — 8,(1 — b)] C Juy1(e),
provided 0 < &£ < min{l + a, 1 — b}. It follows that

1 1
~E[N;(la,b)] = ~E[N, (L] "(la, b])]
L)
_ 1o Oni1 () dx

4+ D)V3 e
1 +o(l) [Ln(LM®)

V3 @)

1+o0(1) [°
=——— [ o ,(s)ds asn — 00,
\/g ./,;. n+1

0,.,(5)ds (wheres = L, ,(x))

where we used (3-4) on the last step, and also that

C
J;_g_](s) S‘ y— RS (_1, 1)1
1 —s?2

by [24, theorem 1-11(V), p. 18].

LEMMA 3-2. Let W = e~ ¢ € F(C?), where Q is even. Let a € (1, o). If the function T
in the definition of F(C?) satisfies

lim T(x) = «,
then
lim o (x) = pu,(x), xe(—1,1)\ {0}
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Remark 3-3. An equivalent form of

lim T(x) =« € (1, 00)

X—00

is that uniformly for 7 in compact subsets of (0, 1],

"(xt
lim 20 _ a1, (3-5)
X—»00 Q’(x)
Indeed, if this last condition holds, then as x — 00,

o) 1 [*
X0 _xQ’(x)fo Q () du

1 ' 1

t 1

= Q(x)dreft““dt:—.
o 9'(x) 0 a

Here we also used 0 < Q'(x#)/Q’'(x) < 1 and dominated convergence. In the other direc-

tion, as x — 0Q,

Q) TGy Q& Tk (_ ! Q’(u)du)
Q(x) T tQkx) 1T (x) x Qu)

= f;_fft; exp (— fx T du)

x o U
T (xt) Ta+o(l)
T " (_ f u d“)

= ﬂexp (—(a +o(1)) log }) = 1" (1 + o(1)).

Tx)!'=

Given any ¢ € (0, 1), this holds uniformly for f € [e, 1].

Proof of Lemma 3-2. We prove the case 1 < o < 00 first:
from (3-1), as n — o0,

n _Ef‘ t Q' (aut) dr
a.Q'(a) 7)o Qa)VT—12
2 b
——);fa mdt:Bu. (3-6)

Indeed, the integrand converges pointwise, and because Q is convex, so Q'(a,t)/Q'(a,) <
1, and we can apply Lebesgue’s Dominated Convergence Theorem. In particular, forn > 1,
and some C; > 1 independent of n,

Ci'n < a,Q'(ay) < Cin. (3-7)

Next, we know that for x € (0, 1),
2/1T—=x2 f‘ a,t Q'(a,t) — a,x Q' (a,x) dt
2 o n(t? — x?) V1=
Fort € (0, 1) \ {x}, we obtain from (3-5) and (3-6) that
ant Q'(ant) — apx Q'(anx)

o (x) =

. apt Q'(apt) — apx Q'(anx) 1 -
lim > =B, lim - ——
n—oo n(t* —x%) neoo a,Q'(an)(t —x%)
" —x"®
_ p-!
= B, T
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We need a bound on the integrand so as to apply dominated convergence. First, T (u) is
bounded above. Next, for some & between ¢ and x,

L (a,u Q' (i) luce
n(t +x)

< Q'(an€) +ay€ Q" (@)
n(t + x)

a,t Q'(apt) — anx Q'(ax)
n(t? — x2)

Here (3-7) gives (since Q' is increasing)
a, Q'(a,§) < a,Q'(a,) _Cy
nt+x)  nt+x)  x
By definition of F(C?) and boundedness of T, we have
LW _CTw G
Q (y) y y

so that
at Q"(a,§) <G azt Q'(a,€) <G a,Q'(@,§) _C4
nit+x) - CagEnt+x) S on(t+x) < x
Thus, forall t € (0, 1),

a,t Q' (apt) — apx Q' (ayx)

n(tr —x2)

and we can apply dominated convergence to deduce that

2\/_x2 —x* dr
r2 —2 g e

(&
<=

=

X

(x).

lim o, (x) =
n—oo

Next, we deal with the case ¢ = 00:
Let0 <r <s < 1. We consider x € (0, r] and split

e 2T =X2([* N a.t Q' (ast) — a,xQ'(apx)  dt
aW =" (fo +f ) n(i? —x7) VT
=1+ I,. (3-8)

We shall show that the main contribution to ¢, comes from I,. Since the integrand in the
integral defining o, is nonnegative, we have for x € (0, r] that

2VT=x2 [ apt Q'(ant) — a,xQ'(anx)  dt

2 f n(t* — x?) J1=12
. 2J/1—x2 fl ant Q'(ast)  dt
= 2 n(r? — x2) m

IZZ

21T —x2 (! (0 (@) dt
= " A, 5 v aﬂ aﬂ
m2(s? — xH)n V1T —12
— x2
<=x 2 f Q' (a,1) e
Jr(si—xz)n:fr 0 J1-12
A1 —x2

T (3-9)
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Next, note that by the lower bound in [24, (3-5), p. 64], fort € [0, r],
< ant Q' (ayt) < apr Q'(ar) < T (a,r) (i)“’““‘fﬁ”“*”l
ansQ'(ans) — apsQ'(ans) ~ T(ans)

o CeTlanr)
<)

§

since T is quasi-increasing. Our hypothesis

lim T(x) =00

gives
ot Q' (a,t
lim max 202 @1) _ (3-10)
n—>00te[0.r] ap§ Q' (AnS)
It also then follows easily from (3-1) that for each fixed T € (0, 1),
lim 2@ _ 3-11)
n—oo n
Now uniformly for x € [0, r],
. 2V1T—=x% [la,tQ'(a,t) —a,xQ'(a,x) dt
7 a1 —-x2) ) n NAETZ
1 2 fl dt
z——— a,tQ(@,t)(1 +o0(1))—
oy g ) Q' (ant)( ( ))m
l4+o(l) 2 [! , dt
= —_— ant QO (a,t
/T —=x27n Jy e )vl—ﬂ
1 1
o) sn s oo, (3-12)

Ca/T—x2
by (3:1) and using (3-10). Now we deal with I, - it clearly suffices to show only an upper
bound. Let s < p < 1. By definition of the class 7(C?) and (3-11), we have that

2V —=x2 [*aptQ'(ant) —apxQ'(a,x)  dt
o fo n(t? — x?) V1 =12

i
E(auu Q'(ayu))

I

24/1 — x2
< = max

2nx  ue0.s]

f’ dt
0o J/1T—12
C.
< —[a,Q'(a5) + max a2u Q" (a,u)]
nx ul0,5]
Cy ,
< o(1) + — max a,Q'(a,u)T (a,u) as n — 00.
nx uef0,s]

Using the fact that T is quasi-increasing and the lower bound in [24, (3.5), p. 64], we con-
tinue this as

C
I < o(1) + —a, Q' (a,5)T (ays)
nx

C9 T(G.'HS) s max{A,CsT (a,s)}—1
<o(l) + —a, Q' (ayp) s Tas)
nx T(aup) P
C max{A,Csy)—1
< o(l) + —a,0'(a.p) sup (_) 3= o(ly asn — oo,
nx yel0.00) \ P
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by (3-11) and as s/p < 1. Together with the fact that I; = 0, and using (3-8), (3-9), (3-12),
we have shown that for x € (0, r],

1 T —x2
——— < liminfo, (x) < limsupo, (x) < N
T/ 1 —x2 A—00 n—»00 Jr(.5'2 —xz)
As s is independent of r, we can let s — 1— to deduce that for x € (0, r],
1
lim 0, (x) = ————= = u,, (x).
n—o0 T /1 _ x?.

Proof of Theorem 2-3. We know from Theorem 3-1 that

1 . 14+o(l) [,
;E [Ny ([a,b])] = Tfa O, (y)dy.
Lemma 3-2 gives for 1 < a < oo that
lim o7,,(y) = 1, (), ¥ € (=1, 1)\ {0}
Next, by [24, theorem 1-11(V), p. 18],
. C
O‘u+](5)§ﬁ, SE(—I,I).

Lebesgue’s Dominated Convergence Theorem now implies that

b
Jim %E[N: ([a.b])] = %f Jlim o, (y) dy = %na(la, b)).
LEMMA 34. If W = e ¢ € F(C?) then

lim a)/" = 1.
n—00

Proof. [24, lemma 3-5(c), p. 72] implies that there is a constant C > 0 such that
ay 1/A
1< — < Cn/*foralln =1,
a
which immediately gives the needed result.

LEMMA 3-5. Let W = e ¢ € F(C?), where Q is even. If the coefficients {c;}%,
of random orthogonal polynomials (2-1) are complex i.i.d. random variables such that
E[| log|col|] < oo, then

lim || P,W || g, = 1 with probability one.

Proof. Using orthogonality, we obtain for polynomials defined in (2.1) that

n

[ imeorwi@ar =y le

j=0
Hence
) 1/2
1< 2w? < il.
omax lejl < (j:wlPu(x)I Wo(x) dx) <(n+ 1)0rgn?énlql
[32, lemma 4-2, (see (4.6))] implies that
0 1/@2n) 1/n
lim (f |P,,(x)|2W2(x)dx) = lim (max |cj|) =1

oo n—o0 \ 0<j<n
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with probability one. That is,

lim I PaW | %, = 1 with probability one. (3-13)

We use the Nikolskii inequalities of [24, theorem 10-3, p. 295] stated as

172
n
I1PaWlem < Ci (a—) (T (@) 1PaWl 2

and
1 PaW 2wy < Czﬂm I Pa Wl Lo ) -
Since T'(a,) = O(n?) by [24, lemma 3.7, p. 76], we obtain that
1 1
C: \fan
and the result follows by applying Lemma 3-4 and (3-13).

LEMMA 3.6. Let W = e~ € F(C?), where Q is even. If the function T in the definition
of F(C?) satisfies

<P, W"Lw(m Csn || P, W"LZ(R)’

lim T(x) =

X—00

then

lim y,/"a, =2,
n—00

where vy, is the leading coefficient of the orthonormal polynomial p,(x) associated with the
weight W2,

Proof. 24, theorem 1.22, p. 25] gives

1 /anp\—-} 1 [
yHZE(‘%) exp( \/f(% )(l—l—o(l)) as  n —» 00,

so that

Va'"ay —QGLexp(l "2 )(1+0(1)) as n—o00. (314

o Y=

Since Q is increasing on (0, 00), we have that

0 < lim L o Q(S) Q(au) ds__ _ Q(an) C o

n—o00 UIT ,.I'a2 —dy ,/aﬁ — 52 n 'V T(an)

(3-15)
as n — 00, by [24, lemma 3-4, p. 69]. Thus

. “0(s)
lim — _—
n—oo NIT —an a;% — 52

ds =0

and (3-14) together with Lemma 3-4 imply the result.
LEMMA 3.7. Let W = e~ ¢ € F(C?), where Q is even. If the function T in the definition
of F(C?) satisfies
lim T(x) = a € (1, 00),
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then

lim y,/"a, = 2¢'*,
n—oo

where y, is the leading coefficient of the orthonormal polynomial p,(x) associated with the
weight W2,
Proof. Considering Lemma 3-4 and (3-14), we only need to show

y 1
lim L 26) ds = lim l Mdr = l/a.

n—oo NI J_,. \/a?— noon J_y w112

In terms of the function T, we can recast this as
i L f‘ 1 a,tQ'(aqt)
nsoon J_y T(ant) m/T =12

Using our assumption that lim;_.« T (f) = & € (1, 00), we have uniformly for |t| > a, /2
that T'(a,t) = a(l + o(1)), so as the integrand is non-negative,

dt = 1/a.

]

1 1 a,tQ'(a,t l1+o0(1) 1 a,tQ'(a,t
—] Q@D 4 1E ()-] WD 40 (316
n Jorgugcr T(@nt) wa/1 — 12 a  nJgrgn<n wa/l — 12
The integral over the remaining range is small: for j = 0, I, using (3-6) and lim, .o a, =
00, we have

Y L arQ@n
h e T(@nt)) /1 — t2
< 1 ﬂf],ﬁQ (a,”) 2072 < CQ’(GHZ) Q’(ﬂn) — o(1),
nAin /T—at " n
Thus (3-16) and (3:1) yield
lf‘ | aiQ@) . _ 1—|—0(l)1 ‘at Q@) | 1+o())
1 T(apt) /1 =12 o —1 nm o

Proof of Theorem 2-4. We first deal with the case
lim T(x) =00

X—00

and show that the normalized zero counting measures t, for the scaled polynomials P (s)
converge weakly to the arcsine distribution (., with probability one. [3, theorem 2-1, p.
310] states that if {M,}>2, is any sequence of monic polynomials of degree deg(M,) = n
satisfying

1
) 1
lim sup || M,, "L{;g([—l,l]) <5

n—oo 2

(3-17)

then the normalised zero counting measures 7, for the polynomials M, converge weakly
to [oo. Note that 1/2 in the above equation is the logarithmic capacity of [—1, 1], see [34,
corollary 5-2-4, p. 134]. We show that the monic polynomials

M,(x) = P;(x)/(fn}’nﬂﬁ), neN,

satisfy (3-17) with probability one, so that the result of Theorem 2-4 follows for « = co0. We
know from Lemma 3-5 that

lim sup ||P,,W||:._£'.:(m 1 with probability one.

A—00
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62 DORON S. LUBINSKY, IGOR E. PRITSKER AND XIAOJU XIE
Using the contracted weight

w,(s) := /W(a,s) =e @9 s5eR,

and the properties of a, [24, p. 4], we obtain that

|| Prwy, ||L°°([—1,1]) = 1PaWlr=-g,a0) = I PaWlLog, -
It follows that
1/n

Lot S < | with probability one.

H *
lim sup || Prw ||
n—og

Since lim,_, o, Q(a,)/n = 0 (recall (3-15)), we have that

llmsup || P"”i{f( i S Ilmsup || Pw eQ@/n < |

”” L=([—1,1])

with probability one. We use below that lim,,_, yﬂ /ng, = 2, by Lemma 3-6, and that

lim,_, o |c,|"™ = 1 with probability one by [32, lemma 4-2]. This implies that
* 1/n
lim sup | M, IILM([ Ly = 11m sup
n—>00 Cn¥nlp || foo—1,17)
. L]1/n | 1 1
=1 P L —
lﬁil:p " n " L= (g, [Tn g S 2

with probability one.
Next, we prove the case

lim T(x) =a € (1, 00).
Recall that the standard Freud weight with index « is given by
w(s) =e =" s eR,
where
r($raG ) f
ZF(“ V11— ﬂ

see [35, p. 239]. Since yoy1 = Bym/2, we apply [(1/2) = J/mwand T'(t + 1) = t'(f) to
obtain that

o

b, =y Den _2TOTG TEHIG 1
:rr TN E+HorE +15) «
Note that by [35, p. 240], F,, = log2 + 1/a is the modified Robin constant and pu,, =
We 18 the equilibrium measure corresponding to w. Following [35], we call a sequence of
monic polynomials {M,}5°,, with deg(M,) = n, asymptotically extremal with respect to
the weight w if it satisfies

lim [[w" M, |2y = e = e7V2/2, (3:18)

[35, theorem 4-2, p. 170] states that asymptotically extremal monic polynomials have their
zeros distributed according to the measure p,,. Namely, the normalized zero counting meas-
ures of M, converge weakly to i,, = [4. On the other hand, by [35, corollary 2-6, p. 157]
and [35, theorem 5-1, p. 240],

w" M, L@ = w" M, ||L°°([—I,I])-
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Together with [35, theorem 3-6, p. 46], (3-18) is equivalent to

. 1 _ _
lim sup [|w" My [}y 1y < € = e /2.

n—00

We show that the monic polynomials
M, (x) := Py (x)/(cavnay), n €N,

are asymptotically extremal in this sense with probability one, so that the result of Theorem
2-4 follows. Note that

11m I P, W||Lm(m = 1 with probability one,

by Lemma 3.5, and that

|| Pn*w: " Leo(—1,1) — "PRW"L“"([—an,an]) =1 PHW"L‘”(R)

by [24, p. 4]. Hence

1/n

Ilmsup | Prwe ||Lm( 1 S

< | with probability one.

By Lemma 3.7, and since lim,_, o, |c,|"/"

follows that

= 1 with probability one by [32, lemma 4.2 ], it

1
lim sup || M, w ||L{:( Ly = 11m sup ||P*w || i’:l( n n—”n
n—»00 Vn' Qn
) 1
= Sg/a I‘fligp || Prw" "L:([—l,l])
Ry 1/
= F llrrxrlsol:p || Prw" ||L‘:([—1,1]) .
On the other hand,
limsup || P}w" ||L{:([ LD llmsup | Py w2 ||Li:( _ap 1w/ wall g1,y
n—o00

< limsup [[w/wy ||L°°([—],]]) .
n—00

Since w, and w are both even, it remains to show that

lim sup [[w/wa | poqo,1p < 1-
n—oo

Lete € (0, 1). For x € [g, 1], (3-6) and then (3-5) give that

Q(a,s) 1+o(l) anQ’(a,;x) 1 +0(1) a1
.~ B @.0'@) dx = f (1 +o0(1))dx

o

SB (1 4 0(1)) = yas®(l + o(1)) asn —> oo,

This holds uniformly for s € [e, 1] as (3-5) does. Hence
lw/wall ey = sup exp (M — yas“) —> 1 asn — oo0.
’ sele, 1] n
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Since Q is increasing, we also have that

Q(ane)
n

lw/wy |l p=qo,ep < €xp ( ) —> exp(Va”).

We finish the proof by letting & — 0.

Proof of Corollary 2-5. Consider the normalized zero counting measure 1, =
(1/n) 21;1 8., for the scaled polynomial P}(s) of (2-5), where {z;};_, are the zeros of
that polynomial, and §, denotes the unit point mass at . Theorem 2-4 implies that the meas-
ures 7, converge weakly to p, with probability one. Since p, (9 E) = 0, we obtain that 7,| ¢
converges weakly to i, |g with probability one by [23, theorem 0.5] and [2, theorem 2-1].
In particular, we have that the random variables 7, (E) converge to pu,(E) with probability
one. Hence this convergence holds in L? sense by the Dominated Convergence Theorem, as
7,(E) are uniformly bounded by 1, see [17, chapter 5]. It follows that

lim E[|z,(E) — na(E)] =0
for any compact set E such that u,(dE) = 0 and
|E[7a(E) — pa(E)]l < E[I7a(E) — pa(E)[] — 0 as  n —> o0.
But E[7,(E)] = E[N; (E)]/n and E[j1q(E)] = pe(E), which immediately gives (2-7).
Proof of Theorem 2-2. Theorem 2.3 gives that
lim ~E[N; ({2, b))] = —=tta(a, b])
100 1 /3

for any interval [a, b] C (—1, 1). Note that both E [N;: (H)] and p,(H) are additive func-
tions of the set H. Moreover, they both vanish when H is a single point by (2-7) and the
absolute continuity of p, with respect to Lebesgue measure on [—1, 1]. Hence (2-7) gives
that

1
lim —E [Ny (R\ (—1,1)] = pa(R\ (~1, 1)) = 0.

n—o00 g
It now follows that
1 1
ﬁlu'ﬂ'((_ ﬁl
To complete the proof, observe that N7 (R) = N,(R), so that E[N;(R)] = E[N,(R)], since
L,(x) = x/a, is a bijection for each fixed n. Therefore (2-4) is proved.

lim %E[N:(R)] = L) =
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