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Exact interpolation, spurious poles, and uniform
convergence of multipoint Padé approximants

D.S. Lubinsky

Abstract. We introduce the concept of an exact interpolation index n
associated with a function f and open set .#: all rational interpolants
R =p/q of type (n,n) to f, with interpolation points in %, interpolate
exactly in the sense that fq—p has exactly 2n+1 zeros in .. We show that
in the absence of exact interpolation, there are interpolants with interpola-
tion points in .% and spurious poles. Conversely, for sequences of integers
that are associated with exact interpolation to an entire function, there is
at least a subsequence with no spurious poles, and consequently, there is
uniform convergence.
Bibliography: 22 titles.

Keywords: Padé approximation, multipoint Padé approximants, spurious
poles.

§ 1. Introduction
Let 2 be an open connected subset of C, and let f: & — C be analytic. Given
n > 1 and not necessarily distinct points A, = {z;,, }?i‘{'l in 9, and

2n4+1

wn(z) = wn(An,2) = H (z — zjn),

j=1
the multipoint Padé approximant to f with interpolation set A, is a rational func-

tion (An. 2)
Pnllin, z

R, (Ay,2) = ———,

( ) Qn(An:z)

or more simply,

where p, and g, are polynomials of degree < n with g, not identically zero, and

en(z) _ en(Amz) o f(z)Qﬂ.(z) _pﬂ.(z)

wn(z2)  wn(An,2) wn(2)
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is analytic in 2. The special case where all z;, = 0, gives the Padé approximant
[n/n](z). Tt is well known that R,, exists and is unique, though p, and g, are not
separately unique. Moreover, it is possible that, in order to satisfy the interpolation
conditions, p, and g, may need to include some common factors z — z;, with zeros
at the interpolation points {zjn }.

The convergence of sequences of rational interpolants, and especially
Padé approximants, is a complex and much studied subject. Many of the
beautiful results from the Russian school headed by Gonchar have appeared in this
journal. One of the unfortunate properties of such interpolants is the appearance
of spurious poles: R, may have poles that bear no relation to singularities of the
underlying function f. These are typically close to spurious zeros, that also bear
little relation to the zeros of f. See [1], [3]-[6], [8]-[10], [13]-[17], [19], [20] and [22]
for some references and surveys of the convergence theory relating to the issue of
spurious poles. Of course this is not a precisely defined concept, at least for just
one rational interpolant. It is best considered for sequences of interpolants, whose
limit points of poles do not approach singularities of the underlying function.

Spurious poles are also known to be related in some sense to the appearance of

extra zeros of e (2), that is, zeros other than {z;,}31" (see [2] and [20]). This
has been established in a fairly precise sense, especially for algebraic and elliptic
functions, in particular for diagonal Padé approximants {[n/n]}n>1. For polynomial
interpolation, ‘overinterpolation’ has been investigated in [7]. The goal of this
paper is to explore this relationship further, by considering all interpolants with
interpolation points in a given set. This is a new idea to the best of our knowledge
and as we shall see has several advantages.
Definition 1.1. Let 2 C C be a connected open set, and let f: 2 — C be analytic.
Let ¥ C 9 be open and n > 1. We say n is an exact interpolation indez for f and ¥
if for every set of 2n+1 not necessarily distinct interpolation points A, = {zjn }?:{'1
in ¥, and every corresponding interpolant R, (An, z) = pn(2z)/qn(2),

en(Amz) . f(z)qn(z) - pn(z)

wn(z) wn(z)

has no zeros in %.

Note that the condition forces at least one of p, and gy to have degree n. Other-
wise we can add an extra zero ¢ at any point in %, since p,(z)(z—¢) and gn(2)(z—c)
will have degree at most n, while

f(2)an(2)(z — ¢) — pn(2)(z — ¢)
wn(z)

will have the extra zero e¢. The property that at least one of p, and ¢, has full
degree is typically described as ‘R, (An, z) having defect 0.

The relevance of exact interpolation to spurious poles is clear from the following
simple statement.
Proposition 1.2. Let 9 C C be a connected open set, and let f: 9 — C be
analytic. Let n = 1, and let ¥ and % be open subsets of . Assume that when-
ever we are given a set of 2n + 3 not necessarily distinct points A1 C £ U B,

Rut1(Any1,z) does not have poles in 8. Then n is an exact interpolation index
for f and Z.
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We shall prove this simple proposition in § 2. Note that the pole free interpolant
Rut11(Apy1, z) has type (n+1,n+1), not (n,n). We shall also prove a much deeper
partial converse of Proposition 1.2, that exact interpolation to entire functions forces
the absence of spurious poles, at least for a subsequence.

Throughout this paper,

B, ={z: |z| <}, > 0.

Theorem 1.3. Let f be entire. Let {ny}r>1 be an increasing sequence of positive
integers such that for k = 1, and for some integer L > 1,

NE11
ng

< L. (1.1)

Assume that there is an increasing sequence {Tk }rx>1 of positive numbers with

lim r = oo, (1.2)

k—oo
and that, for k > 1, ny — 1 is an ezact interpolation index for f and the ball By, .
Then there exists a subsequence {ny,};>1 of {nk}r>1 with the following property:
let 7,8 > 0, and for j 2 1, choose interpolation sets Ankj_ in By. Then for large
enough j, Rn, (An,,, z) is analytic in B,. Consequently, uniformly for z in compact
subsets of C,

Jl_l’ngo Rmcj (Aﬂ.kj 12) = f(2).

We emphasize that the same subsequence {n;, }j>1 works for all sets of interpo-
lation points in B,, and for all r.

When we have mild regularity of errors of best rational approximation, we can
establish uniform convergence of full sequences. Let K be a compact set and
f: K — C a continuous function. We let

f_E

En(f, K) = inf{ .

: p,q have degree < n and ¢ # 0 in K}
Leo(K)

A best approzimant of type (n,n), R} (f,K) = p;,/q;,, is a rational function of type
(n,n) satisfying
1f = B (f, K) Lo x6) = En(f, K).

‘We also let
mn(f. K) = En(f,K)"/™, n> 1

Theorem 1.4. Let f be entire. Let {ng}r>1 be a strictly increasing sequence of
positive integers. Assume that there is an increasing sequence {ry}r>1 of positive
numbers satisfying (1.2), such that for k > 1, ny — 1 is an ezact interpolation index
for f and the ball By,. Assume in addition that either

(a) for some 7 >0, € (0,1), integer M > 1 and large enough k,

En.(f,Br) > Enn, (£, Br)' ™, (1.3)

or
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(b) for some T > 1 and an unbounded sequence of values of T,

T 1/np
lim sup (M) <T. (1.4)
k—oo Eﬂ-k(f: B'r/4)

Then given any r,s > 0, and interpolation sets A,, in By for k = 1, for large
enough k the function Ry, (An,,z) is analytic in B;. Consequently, uniformly for z
in compact subsets of C,

k]im Ry (Any, 2) = f(2).

Remark 1.5. (a) We note that the regularity condition (1.3) is a weak one. Indeed,
we can reformulate it as

. (f, Br) > magny (f, Br)-OM

and since (1 — )M may be very large, while
lim nﬂ-}c(f':B_T) = 0:
k—oo

certainly this is true for regularly behaved errors of approximation. For example, if

for some £, {nn(f, Br)}n>¢ is decreasing, then (1.3) is true for ny = k, k > 1. Note

too that B; can be replaced in (1.3) by any set of positive logarithmic capacity.
(b) Similarly, for regularly behaved functions and for all r > 0

7 0\ 1/(2n)
lim ( Eﬂ. (f:‘ B?") ) — 4
n—eo E’n(f: Br‘/4)

(see [15]), so (1.4) is not a severe condition. On the other hand, it is easy to
construct entire functions with lacunary Maclaurin series for which (1.4) fails for
a subsequence of integers.

(¢) This circle of ideas can be extended to non-diagonal sequences of interpolants,
and probably to functions meromorphic in the plane.

(d) The biggest question that arises from this paper is the existence of sequences
of exact indices of interpolation. If for example, f has a normal Padé approximant
at 0, so [n/n] = pn/qn where p, and g, have full degree n, and

(fan —pn)(2) = ez?n+l 4 L.

with ¢ # 0, then from classical continuity results for interpolation, there exists
€ > 0 such that n is an exact index for f and B.. This is an easy consequence
of the explicit formulae for rational interpolants in terms of divided differences
(see [1], p- 338 and the following pages), which show that the interpolants depend
continuously (and even analytically) on the interpolation points. However, the ¢ of
course depends on n. To be useful, we need a sequence of indices exact on balls
that are independent of n. Results of this type follow for e* from Proposition 1.2
and the fact that diagonal multipoint Padé approximants with interpolation points
in any compact set have been shown to converge [21], but are worth exploring in
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a more general setting. Certainly Proposition 1.2 shows that in the absence of
exact interpolation indices, we cannot have uniform convergence of every sequence
of interpolants with interpolation points in a (compact) ball.

(e) For rational interpolation to be regarded as stable or ‘robust’, it would ideally
be preferable that when the interpolation points are shifted slightly, new spurious
poles do not suddenly arise. Proposition 1.2, Theorems 1.3 and 1.4 suggest that
such stability is associated with sequences of exact interpolation indices.

(f) The main tool in proving Theorems 1.3 and 1.4 is Theorem 3.1, which estab-
lishes a certain dichotomy. Roughly speaking, this asserts that when there are
spurious poles for a sequence of interpolants, then either the preceding indices are
not exact interpolation indices, or we have smaller than expected errors of best
rational approximation.

The paper is organized as follows: we prove Proposition 1.2 in § 2. We establish
a basic alternative in §3, and prove Theorems 1.3 and 1.4 in §4.

§ 2. Nonexact interpolation implies spurious poles

We begin by showing the very simple result that if n is not an exact interpolation
index, then there are rational interpolants with interpolation points close to a given
set of interpolation points, having spurious poles close to any other given point.
Proposition 2.1. Let 2 C C be open, and let f: & — C be analytic. Let n > 1
and suppose that Ay = {zjn }?:{1 C 2 are 2n + 1 given interpolation points which
are not necessarily distinct. Assume that

en(An,z) _ f(2)gn(2) — pn(2)
wn(An, z) wn(z)

has a zero b in 9. Let £ > 0 and c € 9. Then we can find an interpolation set of
2n + 3 points

An-i—l = {z_::i,n-i—l }iffl U {b!:c!}a (21)
with
max |zjn —2jny1l <€, 1<j<2n+1, b—b|<e and |c—c|<e, (2.2)
such that

Pn+1(Anyi,2)
Rusi(Apyy,z) = Entilnth2)
+1( + ) Qn—i-l(ﬁn—i-l:z)

has a pole and a zero less than an € distance from c.

Proof. Choose sequences {am } and {bp} with amy # by, for all m = 1, and

lim a;, =c= lim by,.
TM— D M— 00

Assume in addition that g,(bm) # 0 and pp(am) # 0 for all m > 1. Consider the
functions

9m(2) = f(2)an(2)(z — am) — pn(2)(2 — bm),
m = 1. We see that uniformly for z in compact subsets of D,

1im_gm(2) = (/(2)an(2) — pa(2))(z — ).
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The right-hand side has zeros at the 2n + 3 zeros of wy,(2)(z — b)(z — ¢) (counting
multiplicity), by our hypothesis. By Hurwitz’s Theorem, for large enough m, g,, has
zeros of total multiplicity 2n+3 which approach {zj}?:{'l U{b,c} as m — oco. It fol-
lows that for large enough m, we can choose a set A, ; satisfying (2.1) and (2.2),
and such that

Pnsi(Ans1,2)  Pu(2)(z — bm)
Rui1(Apiq,2) = =
+Bni,2) = O ) T @) —am)

and in particular, this rational interpolant has a pole at a,, and a zero at b,,,
arbitrarily close to c.

Proof of Proposition 1.2. If n is not exact for f and %, we can find A, in & for

which
J(2)an(An,2) — pn(An, 2)
wn(z)
has a zero in .%. Then the construction of Proposition 2.1 shows that we can find
Rut1(Any1,z) with 2n + 2 of its 2n + 3 interpolation points in % and one in %
such that Ry 1(Ant1,2) has poles in &, giving a contradiction.

§ 3. The basic alternative

Recall the definition of the Gonchar-Walsh class %(K). Let K be a compact
set, and f be analytic at each point of K. We write f € Zy(K) if

lim En(f, K)Y" =0.

The main result of this section shows that spurious poles either lead to nonexact
interpolation, or to smaller than expected errors of best rational approximation for
functions in the Gonchar-Walsh class.

We let

Ifllr = sup{|f(2)]: |2] =}

Theorem 3.1. Let f be analytic in a neighbourhood of By and suppose that f
belongs to the Gonchar-Walsh class there. Let L > 1 be an integer. Assume that
6 € (0,1), and that € € (0,1/8) is so small that

3(8¢)w aresin(3)91L < 1 (3.1)

Assume that an infinite sequence ¥ of positive integers is given and, for each
n € %, a number m = m(n) (not necessarily in .%) such that

1< 2 <L
n

Suppose also that for each n € .%, there exist 2n + 1 not necessarily distinct inter-
polation points A, in B., such that Rn,(Ay, z) has a pole in B:.

Then for large enough n € %, either

(I) there is a set Ap_1, of 2n — 1 interpolation points in B;, such that if
Rn 1(An_1,2) =pn-1(2)/gn-1(2), then en_1 = fgn—1 — pn—1 has at least 2n zeros
in By, counting multiplicity,
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or

(I1)
En(f,B1) < En(f,By)' . (3-2)

We begin with a more ‘technical’ form of Theorem 3.1. Then we present a series
of lemmas, and finally prove Theorem 3.1.

Lemma 3.2. Let 0 > 1 and let f be analytic in B,. Let m,n > 1 and € € (0,1).
Assume that

(i) 2n + 1 not necessarily distinct interpolation points A, in B. are given;

(ii) en = fgn — pn has zeros of total multiplicity N (= 2n+ 1) in B;

(iii) Rp(An,z) = pn(2)/qn(z) has a pole a € B-.

Then either

(I) there is a set of 2n — 1 interpolation points in B;, A,_1, such that
if Rn_1(An—1,2) = pn-1(2)/qn-1(2), then en_1 = fgn—1 — pn—1 has at least
N — 1 = 2n zeros in By, counting multiplicity,
or

(II) ife<r<p<l, and

ﬂ 2 aresin(537) p mtn g tplo m 1
. < 5 (3-3)
ming—, |wn ()] T 1—-p/o 2

A\ (1+p/a\™ lanll, —
En(f,B,) < 28n” (T) (1—,0/0) minltlzpmn(t”Em(f,Bg). (3.4)

then

Proof. First observe that since g,(a) = 0 and a is a pole of R,(Ag,z),

en(a) = —pn(a) # 0,

and so

en(2) —en(a) = f(2)gn(2) — (pn(2) — pn(a)) = (2 — a)(fgn-1(2) — pn-1(2)),

where p,_1 and g,_; have degree at most n — 1.
(I) Suppose that for some s € [g, 1],

min |en(2)| > |en(a)l-
|z]=a
Then by Rouché’s Theorem, e (z) —en(a) has the same number of zeros in B; as e,
counting multiplicity, and in particular, it has at least N. Thenep_1 = fgn—1—Pn—1
has at least N — 1 > 2n zeros inside {z: |z| = s}, and this gives us A,_1. In fact, as
we can omit one zero of e,_1 from Ay, _;, there might be multiple choices for A, _;.
So we have (I).
If the hypothesis of (I) fails, then
(IT) For all s € (g,1],

E}g len(2)] < len(a)| < [len]le- (3.5)
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We apply the Beurling-Nevanlinna Theorem (see [18], p. 120, Theorem 4.5.6). Let

e<p<l, and
log(len(02)|/llenll,)
u(z) = ,
)= Tiog(llenlle/llenlly)]

Then u is subharmonic in |z| < 1, and clearly u < Oin |z| < 1, whilefore/p < r < 1,
our hypothesis (3.5) shows that

2] < 1.

. log(llenlle/llenllp)
inf u(z) < =
|z|=r (=) [log([lenle/llenlo)]

On the other hand, for 0 € r € ¢/p, the maximum modulus principle shows that
even

log(llenlle/llenll,)
sup u(z) <
S U2 S Tog(enlle/lenll,)

In summary, we have shown that u is subharmonic in |z| < 1, that u(z) < 0 there,
and forall 7, 0 < r < 1,

=1

inf u(z) < —1.

|z|=r

Then the Beurling-Nevanlinna Theorem (see [18], p. 120, Theorem 4.5.6) shows that

for all |z| £ 1,
2 1-
u(z) € —— arcsm( |z|)1
1+ |z|

which can be reformulated as

z|
len(p2)| _ (HBHHS) 2 3rcsm(l+| 7)
< .

llenll llenllp

Now considering p|z| = r gives

||en||-r - ( ||en ||e ) 2 arcsin( p_,_,.)

lenlls = \llenllo

) O<r<p<l

Next, the maximum modulus principle shows that

€n €n
wn ||, Wn p’
S0
”eﬂ-”E ”‘-‘-"n”s
< — .
llenllp ~ minjg—p wn(t)]
Thus also
—arcsm( +r)
lenll o (__llwnlle T 0<r<p<l. (3.6)
llenllp ~ \mingy—p [wn(%)|

Next, write R}, (f, Bo) = i/}, and observe that if e}, = fq, — pl,, then

en(i':n - e:nQ’n = p*mQ'n - pnq;,&.
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By Bernstein’s growth inequality (see [18], p. 156) applied to the right-hand side,
which is a polynomial of degree < m + n,

m4+n
p
”enq;kn - e;;;‘l'n”p < (;) ||eﬂQ;1 - e:nqn”f'

P m+n
= leatll = lentnlly < (£) (el + el

m+n
: * * p * *
= |lexll, min |95 (D) = llemllpllgnll, < (;) (llenllrllgmllr + llem lollgnll o)

m+n *
S ||e'n||p{]- _ ||e‘-’1||7' (E) _ ||Qm||‘”'* }
llenllp \ 7 minyy—, |q5, ()]

<ol (2) el 7
= milp T mil‘l|3|:p |Q?n(t)|’ |

recall that 7 < p. Next, as ¢, has no zeros in B,
gl lamlle (1 +p/o)’“
. * = . * =~ -
ming|—p |gp, (¢)| ~ minge—p |g5, (2| 1—p/o
Then using (3.6),
+ M
llenllr (P)m " llgmlr

llenll, minje|—p |¢7 ()]
2]

r
||w ” 2 arcsirl(?_:) m-4n 1+ /J m 1
< (—nlle P P <=
miny—, |wn ()] T 1—p/o 2
by our hypothesis (3.3). So (3.7) gives

+

leall < lleillo(2) " el (39
r minyy|—p |z, (t)|

Here, provided that g, has no zeros on the circle |t| = p,

q

n

llenllp = min [gn(£)]
[t|=p p

1 _
= lrrlli_n lgn (t)| En(f, {t: [t| = p}) = min |gn(t)| 55 En(f, Bp)
t|=p tl=p ™

by a classical inequality of Gonchar and Grigorjan’s for the analytic parts of mero-

morphic functions, for the simply connected domain B, (see [12], p. 145, Corollary 1,
and [11], p. 571, Theorem 1). Moreover,

lexlle < Em(f,Bo)llamll,-

Combining the last two inequalities and (3.9) gives

i 1 VR 197 [l P\ -
— <4 MR )
min |gn(t)| 7 5 En(f, Bp) < 4 llgnlpEm (f, Bs)

mings—p gy, (£)| \ 7

Applying (3.8) once more, we obtain (3.4).
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We also give an alternative form, which involves errors of the same approximant
on balls of different radii.

Lemma 3.3. Assume the hypotheses of Lemma 3.2 hold. Then either we have (I)
there, or
(I') fore<r<p<landp<s <o,

p—r)

En(f, E) - 7n2 ( D) )“( ”wn”E )%arcsin( T
En(f,Be) ~ 1—p/s\1—p/s) \miny—, |wn(t)|
lwn |l llgnlls
minje|— |wn(t)| minjej—r [gn ()|

Proof. (II') We start with (3.6). As in the previous proof,

1 ] —
lenllr > 725 min [gn(t) Bn(£, Br). (3.10)

Also, if p < s < o and R} (f, Bs) = pi/q;, Cauchy’s integral formula gives for
2| <s,

(fan — pn)(2)q(2) _ i/ (fan —pn)(t)qy(t) dt
|t|=8

wn(2) 2mi wn(£) PR
_1 / (fan —pr)(t)an(t) dt
211 Jyg=s wn (£) t—z

(since (plgn — Pnql)(t)/(wn(t)(t — 2)) is analytic outside this circle and O(t~2)
at co). We deduce that

Jenll, gy gl 1
cally < ol g, ot '
lenllp < ming—, |wn (2)| n{ S)m-mlt|=.0 lgnl(t) 1 —p/s

Combining this, (3.10) and (3.6) gives

E(£Br) - Tn® leallr _llealls
En(f: Bs) mjn|t|=r |qﬂ-(t)| ”eﬂ-“P E’n(f: Bs)

<™ ( Jlon e )%“‘“i"(‘?i—?)
= 1— p/s \minjg—p [wn ()|
llwnllp gngnlls
miny—g |wn(t)| minjg—, [gn(t)| miny -, [g5[(t)’

provided g, has no zeros on the circle |t| = r. Finally, as ¢ has no zeros in B,

il (2 )
. * = .
ming|=p |g5|(£) ~ \1—p/s
The lemma is proved.

Next, we apply Cartan’s Lemma in the standard way.
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Lemma 3.4. Let @ be a polynomial of degree < n and s 2 1. Letn € (0,1). There
erists a set & C [0, s] of linear measure < sn such that for 7 € [0,s] \ &,

1Qlle (g)
ming— QO] S\ 0 )

Proof. We can factorize Q) as
w0=(ILe=)(IL0-5)

Let k be the number of terms in the first product and ¢ the number in the second.
Then for r < s,

[[2] P (3s)*3¢ _
minj—, [Q)]  minje—r [T, <2a(t — 2)]

By Cartan’s Lemma (see [1], p. 325, Theorem 6.6.7),

IT ¢-=2)

|zj]<2s

K
=€

outside a union of at most k circles, the sum of whose diameters is at most 4ec. Let
€ = sn/(4e) and let & be the set of all 7 € [0, 00) for which some z with |z| = r lies
in one of these circles. Then it is clear that & has linear measure at most 4dec = sr,

and for r ¢ &,
k
sn
> (22
> (2) .

IQls  _ (3s)*3¢ _ (2)

min, . [Q(t)] = (52)* T\ 7

The lemma is proved.

The next lemma appears in [14], p. 514, Lemma 3.3, as a consequence of a more
general result. However, for completeness, we give a simpler proof of this special
case.

Lemma 3.5. Let 9 be a bounded simply connected open set and let f € Ho(D).
Let T and K be compact subsets of 9 with T having positive logarithmic capacity.
Let 6 € (0,1). Then for large enough n,

Eu(f,K) < En(£,T)".
Proof. Write R (f,T) = p,/q;,. Let 8 € (0,1) and for k so large that E,(f,T) < 1,

log En(f, T)‘

= = 1 =
k = k(n) = least integer > Tog 0

(3.11)
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We shall choose 6 small enough later. Observe that k — oo as n — oo, and

< En(f,T). (3.12)

Since f € Ro(2), we can find for large enough n and k = k(n), a rational function
Pf/qf of type (k, k) such that

< 6F. (3.13)
Loo()

|-
qk

Then "
Pn Pk

. z < En(f,T) 46" < 2E,(£.7),
qn q
k

so that
Ipsal — pf ailloe ) < 2En(f,D)lIgkal || L (-

Next, as T has positive logarithmic capacity, the Bernstein-Walsh inequality
(see |18], p. 156) shows that there is a constant Cp, depending only on T and 2,
such that

Iphaf —pf il @) < CoFlphal — P . )

and hence

Iphaf — pf @il @) < 2C0 ™ En(£, )| G50} | Loo()- (3.14)

Then for z € 9,

* # # o * F#
p, p Pr q Pndg 1\2
‘f_ ?:(z)g‘f_ ';;(Z) |k‘n nkl()
@, a. \azai |(2)

< Enn(f T){l + QC“H“M}'
lgzaf 1(2)

Here we have used (3.12)—(3.14). Next, as in the proof of Lemma 3.4, given 1 > 0,

langl llzecr) _ (g )““‘
“--.
gl |(2) n

for z € 2\ &, where C} is a constant that depends only on the diameter of Z,
and & is the union of at most n + &k open balls the sum of whose diameters is
at most 7. Choose 7 to be half the distance from K to the boundary of 2. This
parameter is independent of f, n, k and #. Then we can find a simple closed contour
I' in & that encloses K, but lies inside &, that does not intersect any ball in &.
For example, we can take I' to be {t € Z: dist(t,02) = n/3}, but where this level
curve intersects &, we deform I" to run along the boundary of &. Thus

P
q,

n

sup

0001 ) n+k
zel

) <48



444 D. S. Lubinsky

Next, as the interior of I is simply connected, Gonchar-Grigorjan’s classical inequal-

ity shows that

-5
q

T

En(f.K) < T?E,(f,T) < Tn®sup ()
zel

n+k
< 28n2E, (1, T)(C‘)Cl) -

Here, letting B = CoC /7, our choice (3.11) of k gives

(0001
n

k—1
) = exp((k — 1) log B) < Ey(f, T)' o8 B/1og6,

Thus
En(f,K) < En(£,T)(28n? B*H B, (£,T)' 8 B/°80) < B, (£,T)'~°

for n large enough, if we choose 0 so small that |log B/logf| < §/2, and also use
the fact that

lim E,(f,T)"/™ =o0.

n—oo

The lemma is proved.

Proof of Theorem 3.1. We simplify (3.3) and (3.4). We choose 0 = 1 in Lemma 3.2
and s = 1 and 7 = 1/5 in Lemma 3.4. Lemma 3.4 shows that there exists
p € [1/2,3/4] with

”Q’n”p < llgnl1

_ _ < (60e)™.
ity )] S mingy @) S 00O

Also, we choose 7 = 1/4. Then (p—7)/(p+71) = 1/3. Also as m < Ln and all the
zeros of wy lie in By,

e

( ||Wn||s )%arcsin(%) (_p)m—i-n(l +p)m
ming—, |wn ()] T 1—p

- 9% %(2n+1)arc5in(%)3n(1+L) 1 +3/4 Ln
S\p—c¢ 1-3/4

< [(88)% arcsin(%)gl—i-LTL]n < %

for large enough n, by (3.1). So (3.3) is satisfied. Next, we reformulate (3.4) as

1+3/4
1-3/4

m
BB < 2023 (15500) (006 (1)
Since m = n, and f € %,(B,), for some s > 1, this in turn implies that for large

enough n,
En(f,B) < Em(f,B1)' 2.

In view of Lemma 3.5, we can replace B, by B, for large enough n. The theorem
is proved.
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As an immediate corollary of Theorem 3.1, we have the following.

Corollary 3.6. Assume the hypotheses of Theorem 3.1 hold, apart from the hypo-
thesis about the poles of { R, (A,,,z)}. Assume also that forn € ., n—1 is an ezact
interpolation indez for f and By, and (3.2) fails. Then for large enough n € &
and any A, C B:, Ry(An, z) has no poles in B..

§4. Proof of Theorems 1.3 and 1.4
Proof of Theorem 1.3.Fix A > 1 and let g(z) = f(Az). This is entire, and for large

enough k, our hypothesis on f ensures that ngy — 1 is an exact interpolation index
for g and Bj. For k > 1, define k* = k*(k) by

ng» = inf{n;: n; > Lng}.
This is well defined as {n;} is increasing and has limit co. Moreover,

Mg 1 < Lnk,

so using (1.1),
Lnk g Mg+ g Lﬂ.kt_]_ < LGk'

Next, we have L
lim n‘nk(g: Bl) = 0:
k—oo
so we can choose a subsequence {ng,} of {nx} with the property that
nﬂkj (gz F1) > Ting (g: B_l) whenever ¢ > kj
Observe that with k defined as above, we have
Lng; < ngs < LGkj.,

and by the choice of k;, for j large enough
Eny, (0, B1) > (Bn,, (0, B0)"™ "™ > Eu,. (6, B)"/" = En,, (9, B)*,

where § = 1 —1/L > 0. Thus with n = ny,; and m = nk;, (3.2) in Theorem 3.1
is not true. Assume now that ¢ satisfies (3.1); it does not depend on A, g and f,
but does depend on L. If for infinitely many k, and the corresponding Ay, C Bae,
the interpolant Rmcj (Ankj. , -) for f has a pole in By, then for the corresponding
interpolant for g with points in B,, the interpolant has a pole in B.. In this case,
we are fulfilling the initial hypotheses of Theorem 3.1, but neither of the alternative
conclusions (I) and (II) hold, so we have a contradiction. Thus for large enough k,
and any Ay, C Bac, the interpolant Rnkj_ (Am,-: -) for f cannot have poles in B4..
Since A is arbitrary, and ¢ is independent of A, the proof is complete.

Proof of Theorem 1.4 assuming (1.3).Let A > 1. Choose §’ € (4,1). By Lemma 3.5,
for large enough k, our hypothesis (1.3) gives

Eny(f,Ba) > Enny (£, Ba)' 0.
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Applying this to g(z) = f(Az) gives
En.(9,B1) > Eni (9. B1)' ™"

Also for large enough k, ny — 1 is an exact interpolation index for g and B;. We can
then apply Theorem 3.1 with o = 1, n = ng, m = Mng, and L replaced by M.
Since both alternatives (I), (II) of Theorem 3.1 fail, it follows that for large enough
n = ng, the interpolant Ry, (Ay,, 2) for g has no poles in B,, where ¢ satisfies

3(8¢) ¥ aresin(@)1M < 1.

Then for large enough k, the interpolant R,, (An,,z) for f has no poles in By..
As £ does not depend on A, the proof is complete.

Proof of Theorem 1.4 assuming (1.4). We apply Lemma 3.3. Let g(z) = f(2rz),
where 1 is one of the sequence of values r with the property (1.4). Assume that for
infinitely many n = ng, the interpolant R,, (A, ,z) for g has a pole in B;, where
€ € (0,1/8). Assume that e <7 < p <1 and p < s < 0. Our hypothesis on exact
indices for f shows that alternative (I) in Lemma 3.3 is not possible for g. We
now show that this leads to a contradiction in the alternative (II') in Lemma 3.3.
Combining Lemmas 3.3 and 3.4, we have for n € {ny}, such that the interpolant
Ry, (An,,z) for g has a pole in B,

En(g,?r) < Tn2 ( 9 )ﬂ.( 9 )%(‘Zn—kl)arcsin(g;:)
Eﬂ(g:Bs)xl_P/S 1—p/s p—c¢

y P+5 2n+4+1 & n
s—¢ n /)
Here also by Lemma 3.4, we need r € [0,1] \ &, where meas(&) < 5. Choose

n=1/5,s=1,0 =2, p=7T7/8 and some suitable r € [1/2,3/4]. Then, using the
monotonicity of errors of rational approximation in the set, we obtain

E.(g,Bi/2)
En(g,B3)

For large enough n, our hypothesis (1.4) transferred from f to g, gives

2n+1
< 561’12 16%(45)%(2114—1) arcsin(l—13) (g) (606)“’.

1 n , L ] 2n+1
(?) é56n216“(45)?(2“+1)3"'351“(ﬁ)(?) (60e)™.

Let T' > T. Taking nth roots, for large enough n € {ny},

1 8)?
77 < 16(4e) 7 resin(ey) (§) 60e.

Thus for large enough n € {n;}, any interpolant R, (An,,z) for g with inter-
polation points in B, has no poles in B, if £ is so small that it violates this last
bound. Hence also any interpolant Ry, (An,,z) for f with points in B4. has no
poles in B,.. Theorem 1.4 is proved.
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