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Abstract We use Heegaard Floer homology to define an invariant of homology cobordism. This
invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology
sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg—Witten Floer
homology. We use this invariant to study the structure of the homology cobordism group and, along the
way, compute the involutive correction terms d and d for certain families of three-manifolds.

2010 Mathematics subject classification: 5TM27; 57TM58

1. Introduction

The study of homology cobordism, or when two manifolds cobound a homology cylinder,
has been a motivating structure in geometric topology for several decades. Most recently,
Manolescu used an invariant of homology cobordism to disprove the high-dimensional
triangulation conjecture [12]. While the result applies to triangulating manifolds of
dimensions at least five, the invariant is for spin rational homology three-spheres and
smooth homology cylinders between them.

The key idea in constructing Manolescu’s invariant is defining a Pin(2)-equivariant
Seiberg—Witten Floer homology for a three-manifold equipped with a self-conjugate spin®
structure. Building on this, Stoffregen [27] constructed a more refined invariant, the
connected Seiberg—Witten Floer homology, which takes the form of a graded module over
F[U]. Very roughly, this is defined as the part of the S'-equivariant Seiberg-Witten Floer
homology which consists of solutions to the Seiberg—Witten equations that interact with
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2 K. Hendpricks et al.

the reducible in an essential way that respects the Pin(2)-symmetry. One disadvantage
of Stoffregen’s construction is that it passes through Manolescu’s Seiberg—Witten Floer
homotopy type [11], which can be rather difficult to compute explicitly.

In the current article, we define an analogue of Stoffregen’s connected Seiberg—Witten
Floer homology in the setting of Heegaard Floer homology and use this to further study
the structure of the homology cobordism group.

Theorem 1.1. Let Y be a rational homology three-sphere and s a spin structure on Y.
There is a spin rational homology cobordism invariant, HF conn (Y, 5), called the connected
Heegaard Floer homology, taking values in isomorphism classes of absolutely graded
F[U]-modules. Moreover, HF conn (Y, §) is isomorphic to a summand of HF ;eq(Y, 8).

In order to define this invariant, we make use of the work of the first author and
Manolescu [7], in which they use the spin‘-conjugation symmetry in Heegaard Floer
homology to produce involutive Heegaard Floer homology for a pair (Y, s). (Recall that
on a rational homology sphere, self-conjugate spin® structures correspond precisely with
spin structures.) In this case, the involutive package contains two numerical homology
cobordism invariants: d(Y,s) and d(Y,s). Using HFconn, we describe the asymptotic
behavior of d and d under connected sums; this result is the Heegaard Floer analogue
of [26, Theorem 1.3], which concerns the Manolescu invariants «, 8, and y.

Theorem 1.2. Let Y be a rational homology three-sphere and s a spin structure on Y.
Then

. d#(Y,8) . d# (Y, )
lim ——— = lim ———=

n—00 n n— 00 n

=d(Y,s).
Let ®SZ be the three-dimensional homology cobordism group, i.e.,

e = {Z-homology spheres}/Z-homology cobordism.

This group is also often called @fq. We next use HF conn to define a filtration on @%. For
notation, let T,(n) = F,y[U]/U", where gr(1) = a. Let P denote the set of subsets of N.
Note that P is a partially ordered set, with the order induced by inclusion, i.e., given
P1, P, € P, we have that P; < P, if Py C P,. For P € P, define

N

HF conn(Y) = @D Ta; (i), ni € P { .

i=1

H=P]

Here, (n,-)lN: | is any finite sequence of elements in P, possibly with repetition and not
necessarily including every element in P.

Proposition 1.3. The group @% is filtered by P, i.e.,
(1) Fp is a subgroup for each P € P,
(2) if P1 < Py, then Fp, € Fp,.

From the filtration P, we are able to reprove Furuta’s theorem that @% contains a
subgroup of infinite rank [3].
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Applications of involutive Heegaard Floer homology 3

Theorem 1.4. The manifolds Sil(T2’4n+1) are linearly independent in @%.

This was also recently done with involutive Heegaard Floer homology by [1] (see
also [26] for a proof using Seiberg-Witten theory). Note that the knots in the above
theorem have arbitrarily large genus. In fact, if we restrict to surgery on knots with
bounded genus, the subgroup generated by these manifolds will never be all of @%, even
if we allow fractional surgeries.

Theorem 1.5. Fix N > 0. Let ®§\, denote the subgroup of ®3Z generated by {Sl3/n(K) |
g(K) < N,ne€Z}. Then @?\, s a proper subgroup of @%.

As seen from the construction of P, the U-action on HF conn can be used to obtain
significant information. We therefore define an invariant that measures the nilpotence of
this action.

Definition 1.6. Let (Y, s) be a spin rational homology sphere. Define

w(Y,s) = min{n | U"HF conn (Y, 5) = 0}.

Proposition 1.7. Let (Y, s) be a spin rational homology sphere. Then

(1) 3d(Y,5) —d(¥,9)) < o(Y,5),

(2) 1(d(Y,s)—d(Y.5) < o(¥,5).

The proof of Theorem 1.4 relies on the following calculation. Throughout, we will use
the standard identification between spin® structures on Sz (K) and classes [i] in Z/pZ

q
given in [24, § 2.4]. We also will use the concordance invariant Vp from [25] (see [14] for the
current notation). Recall that an L-space knot K C S is a knot that admits a positive
L-space surgery.

Theorem 1.8. Let Y = Sin (K) where K is an L-space knot and n is a positive integer.
Then

HF comn (Y, [0]) = T-1(Vo),
and d(Y, [0]) = d(Y, [0]) = —d(L(n, 1), [0]) and d(Y, [0]) = —2Vy —d(L(n, 1), [0]).

For a complete description of the involution ¢, on HF~(Y), see Proposition 6.1.

Here our assignment Z/nZ >~ Spin®(L(n, 1)) is via viewing L(n, 1) as n surgery on the
unknot. While Theorem 1.8 does not hold for arbitrary knots, in general we have the
following inequality for the invariant d.

Theorem 1.9. Let K be a knot in S and n a positive integer. Then
d(Sin(K), [0 = —2Vo(K) —d(L(n, 1), [0]).

Using Theorem 1.8, we give a complete computation of HF ¢ony for connected sums of
—1 surgeries on L-space knots.
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Theorem 1.10. Let K, ..., K be concordant to L-space knots, ordered so that Vo(K1) >
Vo(K2) = -+ = Vo(Ky)). Let a; = lezl Vo(K;), with ag = 0. Then

m
HF conn 2, 8? |(K)) = @D Ti-2-24,_, (Vo(K)).
i=1
Theorem 1.10 allows us to easily construct homology spheres which are not homology
cobordant to Seifert fibered spaces, first appearing in [27, Corollary 1.11].

Corollary 1.11. Let Ki,...,K, and Ki,..., K] be knots which are concordant to
nontrivial L-space knots such that n # m. Then #?:lsil (K;) is not homology cobordant to
#f”zlSil(Ki’), Moreover, forn > 2, #?:lSil(Ki) is not homology cobordant to any Seifert
fibered space or any surgery on an L-space knot.

Proof. The reduced Floer homology of any Seifert fibered rational homology sphere is
only supported in a fixed parity of gradings [21, Theorem 3.3]. The same is true for
nonzero rational surgery on an L-space knot. The result now follows from Theorem 1.10,

since Vp(K) > 0 for any knot concordant to a nontrivial L-space knot [22, Theorem 1.2].
O

Remark 1.12. The above corollary should be compared to [2, Theorem 1.2]; indeed, up
to a grading shift, for K an L-space knot, Sil (K) is locally equivalent to Dai-Stoffregen’s
Yv,.

Finally, we use the connected Floer homology to show that certain elements of the
homology cobordism group are infinite order, analogous to the work of Lin et al. [10,
Theorems C and D] for certain manifolds with non-vanishing Rokhlin invariant. Recall
that an integer homology sphere Y is said to be d-negative if gr(x) < d(Y) for every
nontrivial grading homogeneous element x € HF oq(Y).

Theorem 1.13. Let Y be an integer homology sphere such that Y is d-negative and d(Y) <
d(Y). Then dimp(HFconn(#,Y)) = 1 for all n # 0. In particular, [Y] has infinite order
m @%.

Without any additional assumptions, in the special case that dimp HF conn(Y) = 1, we
are able to prove a similar statement.

Theorem 1.14. Let Y be an integer homology sphere. If dimp HF conn(Y) = 1, then Y is of
infinite order in @%,

Remark 1.15. Because HF conn is a spin homology cobordism invariant, Theorems 1.13
and 1.14 are equally true if (Y, s) is a Zp-homology sphere with its unique spin structure,
and we consider its order in the Z,-homology cobordism group @%2, or in the quotient

@%Z / @i of the group 6%2 by the group @i generated by the Heegaard Floer L-spaces

which are also Z;-homology spheres. (In this latter case, modding out by ®i has the
effect of replacing the absolute Q-grading on Heegaard Floer homology by a relative
Z-grading.)
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Applications of involutive Heegaard Floer homology 5

We conclude with a general computation of the connected homology of homology
spheres Y whose homology HF~(Y) is represented by the F[U] module H™ (M) associated
to a symmetric graded root M (including the Seifert fibered spaces) up to an appropriate
grading shift. Our computation proceeds quickly from recent computations of Dai and
Manolescu [1]. In this paper, the authors associate to any symmetric graded root M a
preferred monotone subroot M’. (We review this construction in §7.2.) Our result is the
following.

Theorem 1.16. Let Y be an integer homology sphere with the property that HF~(Y) =
H~(M) for some graded root M. Then the connected homology of Y is the U-torsion
submodule of H™ (M), shifted upward in degree by 1.

We will give a more precise technical statement of the above theorem in §7.2. We have
the following corollary of Theorem 1.16, which shows that the connected Heegaard Floer
homology of Seifert fibered homology spheres agrees with Stoffregen’s computation of
the connected Seiberg—Witten Floer homology [27, Corollary 1.7].

Corollary 1.17. Let Y be an integer homology sphere such that HF~(Y) = H (M) for
some graded root M with HF yeq(Y) = @INZI (’7;,. (ni))ki, where (a;, n;) # (aj,nj) if i #j.

Then
N
HF comm(Y) = @ 7; (n; )
where
i — 0 ifki even
' 1 ifk odd.

1.1. Organization

This paper is organized as follows. In § 2 we give the necessary background on involutive
Heegaard Floer homology. Section 3 is where we define the connected Heegaard Floer
homology. Several properties of this invariant are given in §4. Applications of connected
Floer homology to homology cobordism are given in § 5. The involutive structure on the
Floer homology of certain surgeries is then computed in § 6, which leads to the promised
computations of the connected Heegaard Floer homologies of connected sums in §7.1. In
§ 7.2, we compute the connected homology of graded roots.

2. Background on involutive Heegaard Floer homology

In this section we briefly review involutive Heegaard Floer homology and the group
of t-complexes, following [7, 8]. We assume that the reader is familiar with ordinary
Heegaard Floer homology, as in [15, 19, 20, 23]. Throughout, we work over coefficients in
the field F = Z/2Z, and restrict ourself to the case of a rational homology sphere Y with
a spin structure s. In this case Ozsvath and Szabd’s Heegaard Floer groups HF°(Y, s),
with o € {4+, —, 7, oo}, are modules over F[U] with an absolute Q-grading.
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6 K. Hendpricks et al.

Before going further, it will be helpful to state our grading conventions. We let
HFT (8% =F[U, U~"1/UF[U] with gr(1) = 0, whereas HF~(S%) = F[U] with gr(1) = —2.
The module HF (Y, 5) takes gradings as a quotient of HF (Y, s), or equivalently, as a
non-canonical submodule of HFt(Y,s). The U-torsion submodule R of HF~(Y) is also
isomorphic to HF 1q(Y). In particular, with this choice of conventions, HFq(Y) = R[—1].
(Here and throughout, given a graded module M, we write M[—n] to denote the module
M with all gradings shifted upward by n.) When we introduce HF conn(Y) in §3, this
module will take gradings as a submodule of HF.q(Y) C HF(Y).

2.1. Involutive Heegaard Floer homology

We now consider involutive Heegaard Floer homology. Let H = (H, J) be a Heegaard pair
for Y consisting of a pointed Heegaard diagram H = (X, «, B, z) and a family of almost
complex structures J on the symmetric product Symé(X). In [7], the first author and
Manolescu construct a grading-preserving chain map ¢, called the conjugation involution,
on the Heegaard Floer chain complexes, and prove that ¢ is chain homotopic to the
identity map. This involution is constructed as follows. There is a conjugate Heegaard
pair to H given by H = (H, J), with H = (—X, B, o, z). This is also a Heegaard pair for
Y, and there is a chain isomorphism : CF°(H, 5) — CF°(H, s). Using the work of Juhész
and Thurston [9], one can then choose a sequence of Heegaard moves and changes to the
family of almost complex structures from # to H, giving a chain homotopy equivalence
O(H, H): CF°(H,s) — CF°(H,s). Then the map ¢ is the composition of these maps.
That is, we have
L= ®(H, H)on: CF°(H,s) — CF°(H, s).

For each of the four flavors of Heegaard Floer homology, the involutive Heegaard Floer
chain complex CFI°(H, s) is then the mapping cone

CFI°(H, 5) = Cone(CF°(H, 5) 2% 0. CFo (34, )[~1]).

Here Q is a formal variable with deg(Q) = —1, so that if x € CF°(H, s) has gr(x) =r,
in the complex CFI°(H,s) we have gr(x) =r+1 and gr(Qx) = r. The resulting chain
complex is a module over R = F[U, 01/(Q?) = H*(BZ4; Z»). The involutive Heegaard
Floer homology HFI°(Y, s) is the homology of this chain complex; its isomorphism type is
an invariant of (Y, s). For this paper, we will sometimes abuse notation slightly and refer
to the chain complex CF~ (Y, s) as having an involution ¢. This denotes an appropriate
representative of the chain homotopy class of the complex with its map ¢, which is only
an involution up to homotopy.

It is immediate from the construction that involutive Heegaard Floer homology fits
into an exact triangle

Ol +1y)
HF°(Y,s) ——— Q-HF°(Y, s)[—1]

e - (2.1)

HFI°(Y, 5)

of U-equivariant maps [7, Proposition 4.6].
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Involutive Heegaard Floer homology also behaves well under orientation reversal,
as follows.

Proposition 2.1 [7, Proposition 4.4]. Ifs is a spin structure on Y, there is an isomorphism
CFIF(Y,s) — CFI_" 7! (=Y, ),
where CFI_ denotes the cochain complex dual to CFI~ over F.

The first author and Manolescu extract two numerical invariants of homology
cobordism from HFI. Phrased in terms of HFI~, these invariants are as follows.

Definition 2.2. Let (Y, s) be a rational homology sphere with a spin structure. Then the
involutive correction terms are

d(Y,s) =max{r |3 x € HFI; (Y,s),V n, U"x #0 and U"x ¢ Im(Q)} + 1
and
d(Y,s) =max{r |3 x € HFI, (Y,5),V n,U"x #0;3m >0 s.t. U"x € Im(Q)} +2.

Equivalently, d(Y,s) =r+2 is two more than the maximal grading r such that r =
d(Y,s) modulo 2Z and the map i: HFI, (Y,s) — HFI°(Y, s) is nonzero, and d(Y,s) =
g + 1 is one more than the maximal grading ¢ such that ¢ = d(Y, s) + 1 modulo 2Z and
it HFI, (Y,s) — HFI;’O(Y, 5) is nonzero.

It follows from the long exact sequence (2.1) that the correction terms satisfy
d(Y,s) <d(¥,s) <d(¥,s)
and from Proposition 2.1 that
d(Y,s) = —d(-Y,s).

Furthermore, the correction terms are invariants of Z, homology cobordism, and therefore
descend to set maps
d.d: 0, — Q.
In [8], Manolescu, Zemke, and the first author show that involutive Heegaard Floer
homology obeys a convenient connected sum formula, as follows. Recall from [19, Theorem
1.5] that Ozsvéth and Szabé give a chain homotopy equivalence

CF~ (Y1#Y», s1#sy) = CF™ (Y1, 51) ®F[y] CF~ (Y2, 52)[-2]. (2.2)

The grading shift is necessary since we take HF~(S%) = F[U] with gr(l) = —2. With
respect to this chain homotopy equivalence, we have the following.

Proposition 2.3 [8, Theorem 1.1]. Suppose Y1 and Ya are three-manifolds equipped with
spin structures s1 and sp. Let 11 and i, denote the conjugation involutions on the
Floer complexes CF~(Y1,s1) and CF~(Ya,s3). Then, under the equivalence (2.2), the
conjugation involution ¢ on CF~ (Y1#Y2, s1#s2) is chain homotopy equivalent, over the
ring F[U], to 11 3.
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8 K. Hendpricks et al.

As a corollary, one obtains the following behavior of the correction terms under
connected sum.

Proposition 2.4 [8, Proposition 1.3]. Let (Y1, 51) and (Y2, $2) be rational homology spheres

equipped with spin structures. Then we have
d(Y1,81) +d(Y2,52) < d(Y1#Y, 51#82) < d(Y1,51) +d(Ya,82) < d(Yi#Y2, 51#857)

d(Y1,s1) +d(Y2,52).

NN

Explicit computations of involutive Heegaard Floer homology have been done for
large surgeries on L-space and thin knots by the first author and Manolescu [7], for
Seifert fibered spaces by Dai and Manolescu [1], and for certain connected sums of these
examples [1, 2, 8].

2.2. The group of -complexes

In light of the connected sum formula of Proposition 2.3, one can define a group out
of abstract F[U]-complexes with involutions satisfying the same structural properties as
(CF~ (Y, 5), 1) mentioned above. Throughout this section, >~ will denote a chain homotopy
of maps over F[U]. We recall the following definition.

Definition 2.5 [8, Definition 8.5]. An t-complex C = (C,t) consists of the following data:

e A finitely generated, Q-graded, free chain complex C over F[U] such that there is some
7 € Q such that C is supported in gradings differing from t by integers (i.e., so that C
is relatively Z-graded and absolutely Q-graded) and furthermore there is a relatively
graded isomorphism

U~ H.(C) =FlU, U

e A grading-preserving chain map ¢: C — C such that (> ~ id.

Here by U~!H, we mean the result of localizing H, at U. The definition above slightly
extends the original, which was only for absolutely Z-graded complexes; this formulation
first appears in [1, Definition 2.1].

There are two natural notions of equivalence of t-complexes. First, one can consider
chain homotopy equivalence.

Definition 2.6. Two t-complexes C = (C,t) and C' = (C',) are homotopy equivalent,
denoted C ~ (', if there exist grading-preserving chain maps
fcsc
g:C'—C
such that
(1) for~Vof and got' ~1o0g,
(2) gof ~idc and fog ~ider.

However, it is slightly more useful to consider a weaker relation, called local equivalence.
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Applications of involutive Heegaard Floer homology 9

Definition 2.7. Two t-complexes C = (C,t) and C' = (C’,/) are said to be locally
equivalent if there exist grading-preserving chain maps
f:C—C
g:C' = C
such that
(1) for~Vof and got' ~10g,
(2) f and g induce isomorphisms on U~ H,.

The importance of this second notion of equivalence lies in the following lemma.

Lemma 2.8 [8, Proof of Theorem 1.8]. Suppose that (Y1,s1) and (Y2,%2) are related
by a spin rational homology cobordism. Then (CF~ (Y1, s1),t1) is locally equivalent to
(CF~ (Y2, 872), 12) as t-complexes.

With this in mind, one can consider the group Jg consisting of t-complexes C = (C, 1)
modulo local equivalence, with multiplication given by
C®C = (C®ru C'[-2],:®0).

The identity element is [(F[U], id)], with gr(1) = —2. The inverse of [(C, )] is given by
C* = [(C*, )], where C* = Hompyy1(C, F[U]) and ¢* is the dual map to :. Gradings in
the complex C* are handled as follows: if S is a set of generators for C over F[U], for
each x € S the dual generator x* has grading — gr(x) — 4.

Proposition 2.9 [8, Proposition 8.8]. With the definitions above, Jg is a well-defined
abelian group.

Once again, this is a slight extension of the original to allow for Q-gradings; if one
restricts to absolutely Z-graded complexes, one obtains the group J of [8]. The extension
first appeared in [1].

Given an (-complex, one can define the correction terms analogously to the case of
CF~ (_Y, s) and CFI~ (H, s). In this paper, we will call these correction terms d(C), d(C),
and d(C). (Of course, the first correction term only depends on C and not ¢.) In particular,
we have

d(C)=max{r | 3x € H,(C),Vn,U"'x £#£0}+2,
d(C) =max{r | 3 x € HFI, (C),Y n,U"x # 0 and U"x ¢ Im(Q)} + 1,

and
d(C) =max{r |3 x e HFI (C),Yn,U"'x #0;3m >0 s.t. U"x € Im(Q)} +2.
These correction terms descend to give functions
d,d,d: 39— Q.
So in total one has functions )
03, > 30 225 Q
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10 K. Hendpricks et al.

where the first step is via (Y, s) — [(CF~ (Y, s), t)]. If we consider only integer homology
spheres, this becomes
3~ ddd
Oy - J —— 2Z.

The group J has been subsequently studied by Dai and Manolescu, who computed the
local equivalence classes of (CF~ (Y, s), ¢) for ¥ an almost-rational plumbed manifold [1],
and by Dai and Stoffregen, who studied linear relationships between such manifolds [2].

3. Connected Heegaard Floer homology

In this section, we define connected Heegaard Floer homology and prove Theorem 1.1.
Our approach is an adaptation of [27, §2.5].

Definition 3.1. Let C = (C, ) be an (-complex. A grading-preserving chain map
f:C—->=C
is a self-local equivalence if

(1) for~uof,

(2) f induces an isomorphism on U~!H,.

Recall that a preorder on a set S is binary relation < on § that is reflexive and transitive.
We may define a preorder on the set of self-local equivalences of C by f < g if ker f C
ker g. Note that we have a preorder rather than a partial order because f: C — C is
not uniquely determined by its kernel. We say that f is maximal if for g a self-local
equivalence, g 2 f implies g < f. Roughly, the connected homology will be the torsion
submodule of the homology of the image of a maximal self-local equivalence. The rest of
this section is dedicated to showing that this is well defined.

We begin with the following technical lemma.

Lemma 3.2. Let C = (C,t) and C' = (C’, ') be t-complexes. Suppose
F:C—C

18 a chain complex isomorphism such that Foi >~/ oF. Then C and C' are homotopy
equivalent as t-complezes.

Proof. By assumption, Fot~i0oF via some homotopy H: C — C’. Then it is
straightforward to verify that F~'ot ~ 10 F~! via F-lo Ho F~!: ¢’ — C. Now F and
F~! provide the desired homotopy equivalence. O

We now prove several lemmas regarding maximal self-local equivalences.
Lemma 3.3. Mazimal self-local equivalence always exists.

Proof. The set of self-local equivalences is nonempty (the identity is a self-local
equivalence) and finite (since C is finitely generated over F[U] hence finite-dimensional
as an F-vector space in each grading). Therefore, a maximal self-local equivalence always
exists. O
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Applications of involutive Heegaard Floer homology 11

Lemma 3.4. If f,g: C — C are mazimal self-local equivalences of C = (C,t), then
flimg: img — im f s an isomorphism of chain complezes.

Proof. The composition go f: C — C is a self-local equivalence and ker(go f) 2 ker f.
Since f is maximal, ker(g o f) = ker f and glim s is injective. Similarly, flim, is injective.
Then we have injective grading-preserving F[U ]-equivariant chain maps between finitely
generated chain complexes over F[U], thus the maps are isomorphisms. O

Lemma 3.5. If f is a maximal self-local equivalence of C = (C, 1), then C is isomorphic
to the sum im f @ker f.

Proof. By Lemma 3.4, the map f|im s is injective. Then a standard algebra argument
shows that C = im f @ ker f. Namely, given (x, y) € im f @ker f and z € C, the maps
@) = Flim )™ @)+
2 (f@ 24 (flimp) o f(2)
provide the desired isomorphism. (Note that (f|im f)_l is a chain map since f|im s is an
injective chain map, hence this is an isomorphism of chain complexes.) O
For f a maximal self-local equivalence, define t7: im f — im f by foto (flim f)_l and

Lj;: ker f — ker f by (14 (flim ) "' o f) ot

Lemma 3.6. If f is a mazimal self-local equivalence of C = (C,t), then (imf,i7)®
(ker f, LJ%) is an t-complex which is homotopy equivalent to C.

Proof. Since f is a maximal self-local equivalence, we have from Lemma 3.5 a chain
complex isomorphism
¢: im fdker f - C
@) = (Flim )™ @)+ .
We will show that ¢ satisfies g ot' >~ to¢, where /' =1y ® L%. Once this is established, it
is then easy to verify that (im f, ¢f) ® (ker f, Lj;) is an (-complex.

Let H: C — C be a chain homotopy between fotandto f,ie., fot+tof =Hod+
do H. Then for (x, y) € im f @ ker f, we have

e, )+l ¥) = ((flim )7 @)+ + Flim )7 FrlFlim )™ ()
1)+ Flim )~ fe(y)

L+ Flim D7 OGO Flim )7 Flim )~ ()
+ flim ) L lim )7 F e+ O)

aJ(x,y)+ Jo(x,y),

where

Je,y) = A+ Flim )T OHE lim £) 7 Flim £) 7O+ Flim )7 Flim )" FHO).

Since ¢ is a chain complex isomorphism, this shows that (im f,:r) @ (ker f, Lj;) is an
t-complex and Lemma 3.2 implies that ¢ induces an equivalence of (-complexes. O
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12 K. Hendpricks et al.

We are now able to show that (im f, ¢f) carries the local equivalence type of C.

Lemma 3.7. If f is a mazximal self-local equivalence of C = (C,t), then f: (C,1) —
(im f,tr) and (f|imf)_1 2 (im f,tr) — (C, 1) are local equivalences.

Proof. By Lemma 3.6, we have that (im f,17) @ (ker f, Lj;) is an t-complex which is
locally equivalent to (C, ). Note that U~ H,.(im f) EF[U, U] since f is a self-local
equivalence. From this, it is straightforward to verify that (im f,:17) is an i-complex
and the inclusion (im f, tf) — (im f, ¢ ) ® (ker f, LJ%) is a local equivalence. Therefore, the
composition of this inclusion with the local equivalence ¢ from Lemma 3.6 is a local
equivalence as well. However, by definition of ¢, this local equivalence is just given by
(flim f)il-

Since ¢ is a chain complex isomorphism, ¢~ is also a local equivalence from (C, t)
to (im f, 1) @ (ker f, Lj;), by the proof of Lemma 3.2. Composing with the projection to
(im f, 1), we obtain a local equivalence from (C, t) to (im f, t7). This map is exactly f.

O

Moreover, the following lemma shows that the homotopy type of (im f,ir) is
independent of the choice of maximal self-local equivalence.

1

Lemma 3.8. If f and g are mazimal self-local equivalences of C = (C, 1), then (im f, t5)
and (im g, tg) are homotopy equivalent as t-complezes.

Proof. By Lemma 3.4, fling: img — im f is an isomorphism of chain complexes. We
will show that f|img ote and tf o f|img are chain homotopic. In what follows, the domain
is im g and the codomain im f:
fotg=fogoto(glimg)™

~ forogo(glimg) ™

= fou

= (flimp) " o fo fo

= (flimp) " o fotof

=(flimp) o forofolflmp) o f

= (flimp) o foforo(flmp) o f

= foto(flimp) o f

=tfof,
as desired. Now by Lemma 3.2, the map f|img induces a homotopy equivalence between
the t-complexes (im f,¢r) and (img, tg). O]

The above lemma, tells us that we can use a maximal self-local equivalence to define an
invariant of an (-complex. Note that the homotopy type of (im f,(r) as an (-complex is
independent of the choice of f by Lemma 3.8. Moreover, the isomorphism type of im f
as a chain complex over F[U] is independent of the choice of f by Lemma 3.4. This leads
to the following definition.
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Applications of involutive Heegaard Floer homology 13

Definition 3.9. Let C be an (-complex and f a maximal self-local equivalence. The
connected complex (Cconn, Leonn) is (im f, ¢ 7).

Proposition 3.10. Let C and C’ be locally equivalent t-complexes. Then Ceonn and Cl.yy, are
isomorphic as chain complexes; in particular, Coonn s an tnvariant of the local equivalence
type of C. Furthermore, the homotopy type of (Cconn, tconn) @S an t-complex is an invariant
of the local equivalence type of C.

Proof. Since C = (C,t) and C' = (C’, /) are locally equivalent, there exist

F:C—C
G:C'—>C

such that For~ /o F and Go! ~10G, and F and G induce isomorphisms on U~ H,.

Let f: C — C and g: C' — C’ be maximal self-local equivalences. Then Gogo F o f is
a self-local equivalence of C. Since ker(Gogo Fo f) D ker f and f is maximal, we have
that ker(Gogo Fo f) Cker f, ie., ker(Gogo Fo f) =ker f. Thus, go Flims: im f —
im g is injective. Similarly, f o Glimg: img — im f is injective. Since we have injective
grading-preserving F[U]-equivariant chain maps between the finitely generated F[U]
chain complexes im f and im g, the maps are isomorphisms.

We would like to show that (imf,tr) and (img,t,) are homotopy equivalent
t-complexes. By Lemma 3.7, it follows that go F o (f|im f)_1 is a composition of local
equivalences, and hence induces a local equivalence between (im f,tr) and (img, tg).
(The map in the other direction is given by foGo (g|img)7l .) Since this is also a chain
complex isomorphism, Lemma 3.2 implies that we have in fact constructed a homotopy
equivalence of (-complexes. O

With this, we are ready to define the connected homology of an t(-complex, and
consequently, the connected Heegaard Floer homology for a spin rational homology
sphere. The following definition will be useful in defining the connected homology.

Definition 3.11. Let C be a finitely generated graded chain complex over F[U]. The
reduced homology of C is

Hyea(C) = ker (U": Hi(C) — Hi(O))[-1],
for N > 0, i.e., Hyeq(C) is the U-torsion submodule of H,(C) with gradings shifted by one.

Remark 3.12. Note that if C = CF~ (Y, s), then Hyoq(C) = HFyeq(Y, 5).

Definition 3.13. Let C be an (-complex. The connected homology of C is

Hconn (C) = Hieq (Cconn)-

If (Y, s) is a spin rational homology sphere, the connected Heegaard Floer homology of
(Y,s) is
HFconn (Y, 5) = Heonn (CF™ (Y, 5), 0).
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14 K. Hendpricks et al.

The grading shift is included so that HF conn(Y, s) is graded isomorphic to a direct
summand of HF¢q(Y, ), viewed as a quotient of HF (Y, s).

With the work of this section, we can easily deduce that HF conp (Y, ) is a spin homology
cobordism invariant.

Proof of Theorem 1.1. That the isomorphism class of HF conn(Y, s) is an invariant of
homology cobordism follows directly from Lemma 2.8 and Proposition 3.10. O

We conclude this section with the following proposition, which is useful for

computations of connected homology.

Proposition 3.14. Let C = (C,t) and C' = (C’,) be t-complezes. Then (C ®C )conn is
isomorphic to (Ceonn ® Cronp)conn -

The proposition relies on the following lemma.

Lemma 3.15. Let C=(C,0)=(C'./)@&(C",\") be an t-complex with U~'H,(C') =
F[U, U_1]~ Then Ceonn = (C’, ) conn-

Proof. Note that since U~'H,(C") Z F[U, U~'], we have that (C’,!) is an t-complex,
and (C,t) and (C’,!) are locally equivalent (via projection and inclusion). The result
now follows from Proposition 3.10. O

Proof of Proposition 3.14. Let f and f’' be maximal self-local equivalences of C and C’
respectively. By Lemma 3.6 together with the definition of the connected complex, we
have that

C 2~ (Cconn, tconn) ® (ker f, Ljf_) and ('~ (Céonn’ [/conn) @ (ker f/’ L/Jf_’)'

Then Ceonn ® Clypy is a direct summand of C ® C’, and by Lemma 3.6, (Cconn ® Clonp)conn

i : . / / o ; .
is a direct summand of Ceonn ® Cfopnp- Hence (Ceonn ® Clonp)conn is & direct summand of

C®C'. The result now follows from Lemma 3.15. O

4. Properties of connected homology

4.1. Properties and a numerical invariant of Hconn
In this section, we study the properties of Hconn through connections with the involutive
correction terms. We first give the relationship between Heopn(C) and Heonn (C*).

Proposition 4.1. If Heonn(C) = @; Ta; (i), then Heonn(C*) = @B; T—a;+20,—3(ni).

Proof. It follows from the definition of the chain complex Ceonn that (C*)conn = (Ceonn)™-
Indeed, if f is a maximal self-local equivalence of C, then it is straightforward to verify
that f* is a maximal self-local equivalence of C* and (im f)* = im(f*).

The result now follows immediately from duality and our grading conventions. O

We can also generalize Definition 1.6 to arbitrary (-complexes, as follows.

Definition 4.2. Let C be an t-complex. Define
w(C) = min{n | U" Heonn (C) = 0}.
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Applications of involutive Heegaard Floer homology 15

We first relate w to the various correction terms of an (-complex.

Proposition 4.3. Let C be an t-complex. Then
(1) 3(d(©) ~d(€) < w(©),
(2) 3(d(©C)—d(C) < w(©).

Proof. We may assume that any maximal self-local equivalence C — C is surjective.
Indeed, we may begin by replacing C with its image under some maximal self-local
equivalence f: C — C; any maximal self-local equivalence of (im f, t ;) must be surjective,
as otherwise, one can derive a contradiction to the maximality of f. Thus Heonn(C) =
Hieq(C). Let n = %(d(C) —d(C)) and m = %(c?(C) —d(C)), which are invariants of local
equivalence. The existence of the exact triangle

(A+0+

H,(C) > Hy(C)

~

H,(Cone(1+1))

of U-equivariant maps implies that if n > 0, the homology H,(C) must contain 74cy—2(n)
as a direct summand, and if m > 0, the homology H,(C) must contain Tyc)+am—3(m) as
a direct summand. We conclude that HF¢onn(C) is not annihilated by U™m=1"and
w(C) > max{n, m}. O

Proof of Proposition 1.7. The result follows immediately from the preceding proposition
by letting C = (CF~ (Y, $), v). O

One advantage of the invariant w is that it is well behaved under connected sums.
Proposition 4.4. For t-complezes C and C', we have
o(C®C) < max{w(C), w(C)}.

Proof. As before, we may assume that any maximal self-local equivalence C — C is
surjective, so we may assume that Heonn(C) = Hpeq(C). Then we have w(C) = min{n |
U"H.cq(C) = 0}. For concreteness, let H,(C) = ]F[U]EB(GBLI’7'(n,~))7 with grading
information omitted. Then if we order the numbers n; such that ny >ny > --- > ng,
we have that w(C) =n;. Similarly we may assume that Heonn(C') = Hpeq(C'), and
thus w(C’) = min{n | U" Hyeq(C") = 0}. Let H,(C') = F[U] & (@f-zl T (m})), and order the
numbers m; such that w(C) =m.

We now consider C ® C'. The connected homology of this complex is (up to grading
shift) a submodule of H.(C ®p[y)C’). By the Kiinneth formula for complexes over F[U]
(see for example [19, Corollary 6.3]), the U-torsion submodule of H.(C ®py; C’) is a
direct sum of terms of the following forms

FUIQ T (mj) =T (mj) foreach m;
Tn) QF[U] =T (n;) for each n;
T ;) ®T (mj) =T (min{n;,m;}) for each n;, m;
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16 K. Hendpricks et al.

Tor(T (n;), T (m;)) = T (min{n;, m;}) for each n;, m;.

We observe that in no case is there a U-torsion element in H,(C ®pyj C") which is not
annihilated by either U™ or U™!. Therefore there can be no element in Heonn(C ®C')
which is not annihilated by U™{m1} Tt follows that (C ® C') < max{w(C), w(C)}. O

With the above technical results, we are able to prove the following involutive analogue
of Stoffregen’s linear asymptotics of the Manolescu invariants [26, Theorem 1.3] claimed
in the introduction, Theorem 1.2. For notation, we will use nC to mean the tensor product
of C with itself n times.

Theorem 4.5. Let C be an t-complex. Then
. d@nC) . dn0)
lim = lim

n—oo n n—oo n

—d ().

In particular, if (Y, s) is a spin rational homology three-sphere, then

. d#.(Y,5) . d#.(Y,9))
lim ———~ = lim ———*~

n—o00 n n—oo n

Proof. Since d(C) is additive under tensor products, we have that d(n_C) =nd(C).

Proposition 4.4 implies that w((nC) < w(C). Since d(C) < d(C) and d(C) < d(C), it now

follows from Proposition 4.3 that

2w (C) < d(nC) < d(nC) < 2w (C)
n n

X
n n

=d(Y,s).

d(C) — +d(C).

Since w(C) is independent of n, the result follows. For the claim about the three-manifold
invariants, we use C = (CF~ (Y, 5), t). L]

4.2. (-complexes with small connected homology

In this section, we study t(-complexes with small connected homology. We begin by
characterizing when the connected homology is trivial.

Proposition 4.6. Let C = (C, 1) be an t-complex. Then Heonn(C) = 0 if and only if d(C) =
d(C) =d().

First, we need a technical structural lemma about (-complexes.

Lemma 4.7. Let C = (C, t) be an t-complex. If d(C) = d(C), then there exists a homotopy
equivalent complex C' = (C’, (') such that

¢’ = FlUl) & @D (FLUl o @ FIUG:),

where '(x) = x and there exist positive integers n; such that

dx =0
dyi =U"zi
daz; = 0.
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Applications of involutive Heegaard Floer homology 17

Remark 4.8. Note that ¢/ above does not necessarily split since x could appear in ¢/(y;)
for some i.

Proof. Recall that two free chain complexes over a principal ideal domain with isomorphic
homology are necessarily chain homotopy equivalent. Since C is a finitely generated free
chain complex over F[U] with homology rank one (as an F[U]-module), and deg(U) = —2,
we may assume that

P
¢ =) e @ (Fv1) @ FlU)@) ),

i=1

where dx = 0 and dy; = U"iz; for some n; € Z~.
We now show that if d(C) = d(C), then ¢ >~ ¢/ where ¢/(x) = x. Indeed, since ¢ is a chain
map and induces an isomorphism on U~!H,(C), we have that

t(x) =x+ZUm"zi,

iel
for some I C {1,..., p} and m; € Zx¢. Define
d(x) =x
(i) = (i)
U(zi) = u(zi).

We have that « >~ ¢/, and hence (C, ') is a homotopy equivalent -complex, via a homotopy
H defined on basis elements x, y;, z; to be

H(x) =Y U™y,
iel

H(y)) =0

H(z;) =0.

To see that H is well defined, we must show that m; —n; > 0 for all i € I. Indeed, d(C) =
d(C) implies that ((x) is homologous to x and thus the sum ) ,.; U™iz; is contained in
ima. Since dy; = U" z;, we have that m; > n; for all i € I. This completes the proof of
the lemma. O

Proof of Proposition 4.6. The ‘only if’ direction follows immediately from
Proposition 4.3.

We now prove the ‘if’ direction. By Lemma 4.7, without loss of generality we may
assume that there exists a basis {x, yi,...,¥p,21,...,2p} for C such that dy; = U"z;
and dx = dz; = 0 for all i, and ¢(x) = x since d(C) = d(C).

Now consider C* = (C*, t*), the dual of C. We dualize the above basis to obtain a basis

k * k k %
5y 2 25

for C* with the property that x* does not appear in (*(y) or ¢*(z}) for any i since no y;
nor z; appears in ¢(x).
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18 K. Hendpricks et al.

We have that d(C) =d(C) if and only if d(C*) =d(C*) by duality. We now apply
the proof of Lemma 4.7 to the basis {x*, y},..., y;, 7, ...,z;‘,} to obtain (1*)" with the
property that (¢*) (x*) = x*. It follows that C* = (C*, (¢*)’) splits as

(FIUNx™), id) ® (A, () |a),

where

A = P FIU;) ®FIUN)).

1

Therefore, Heonn(C*) = 0, s0 Heonn(C) = 0 as well by Proposition 4.1. O

We are also able to characterize when dimp Heonn(C) = 1.

Proposition 4.9. If dimp Heonn(C) = 1, then either

(1) the unique element in Heonn(C) is in grading d(C) — 1 and d(C) = d(C) = d(C) +2,
or

(2) the unique element in Heonn(C) is in grading d(C) and d(C) = d(C) = dc) -2,

Proof. Since dimp Heonn(C) =1, we have that C = (C, ) is locally equivalent to an
t-complex C' = (C’, ) with H,(C") = F[U]®F. Moreover, if dimp Heonn(C) = 1, then by
Proposition 4.6, at least one of d(C) or d(C) is not equal to d(C). Since d, d, and d are
invariants of local equivalence, it follows that at least one of d(C’) or d(C’) is not equal
to d(C’). Consider the exact triangle

A+

H,(C") > Hi(C')

'\ /

H..(Cone(1 +1)).

If d(C") < d(C'), then it follows that the F summand must be in grading d(C") —2 and
d(C") = d(C) — 2. Furthermore, it follows from parity of the gradings in HF conyn(C) that
d(C) = d(C). Similarly, if d(C") > d(C'), then it follows that the F summand must be in
grading d(C’) —1 and d(C') = d(C)+2, while d(C) = d(C). Applying the grading shift
from the definition of Heonn, we have the result. O

Corollary 4.10. If dimp Heonn (C) = 1, then C is locally equivalent to either the involutive
complex for X(2,3,7) or —X(2,3,7), up to an overall grading shift.

Here, following [7, 15], our orientation convention is that X(2,3,7) = SEI(T2,3).

Proof. If the unique element in Heonn (C) is in grading d(C) — 1 and d(C) = d(C) = d(C) +
2, then by the proof of Proposition 4.9, the t-complex C = (C, ¢) is locally equivalent to an
t-complex C' = (C’, () with H,(C") = F[U](x) ®@F(z) and (1 +1)«(x) = z. Then [1, Proof
of Theorem 1.1] shows us that the action of ¢, on H,(C’) determines (up to homotopy)
the underlying action on the chain level on any free chain complex with homology H,(C’).
In particular, C’ is homotopy equivalent to

F{UY(a) ® FIUID) @ F[U(c),
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Applications of involutive Heegaard Floer homology 19

with dc = U(a+b) and ("(a) = b, ("(b) = a, and ’(c) = ¢, which is the -complex for
2(2,3,7) (7.

If the unique element in Heonn (C) is in grading d(C) and d(C) = d(C) = d(C) — 2, then
we repeat the above argument to conclude that C* = (C*, t*) is locally equivalent to the
involutive complex for ¥ (2,3, 7), i.e., C is locally equivalent to the involutive complex
for —X(2,3,7). O

5. Applications to homology cobordism

In this section, we give the applications of connected Floer homology to homology
cobordism promised in the introduction. The arguments will rely on a few direct
computations of the connected Floer homology of a certain class of manifolds. These
computations are done in §§6 and 7.

We now discuss a filtration on Jg which will yield the filtration on the homology
cobordism group described in the introduction. Recall that P denotes the set of subsets
of N, partially ordered by inclusion. For P € P, define

Fi= {[C] € 3g | Heonn(©) = @D FLUT/ U FIU], n; € P}.

The above isomorphism is ungraded. We will often be interested in [N] = {1,2,..., N} €
P. We now prove that P induces a filtration on Jg.

Proposition 5.1. The collection of subsets fg induces a filtration of Jg by P.

Proof. That ]-'g is closed under inverses follows from Proposition 4.1. The only remaining
point is that fg is closed under connected sum. Let [C], [C'] € ]-"g. Let C=(C,t) be a
representative of the local equivalence class with the property that Heonn(C) = Hyedq(C).
We choose an analogous representative for C' = (C’,t). Then we see that H,(C) =
F[U1® B, F[U]/U™F[U] for some collection of n; € P, and similarly for H.(C"). Then
the module HF conn (C ® C') must be, up to a grading shift, a summand of the U-torsion
submodule of Hy(C ®py;C’). But the Kiinneth formula implies that the U-torsion
submodule of H,(C ®py1 C’) consists of a direct sum of cyclic modules F[U]/U™J, each
of which appears as a summand of H,(C) or Hy(C’), and therefore m; € P. Consequently,
[C ®C'] lies in fg. O

We now define the filtration on 6% described in the introduction. Recall that P denotes
the powerset of N, and for P € P, we define

Fp = {[Y] | HF conn (Y) = @) Ta, (ni). ni € P}.
i
Proposition 1.3. The group (9% is filtered by P, i.e.,
(1) Fp is a subgroup for each P € P,
(2) if P1 < Py, then Fp, € Fp,.

Proof. This follows from Proposition 5.1 by applying the map from @% to Jg which takes
Y to [(CF~(Y), 0] O
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The filtration P is effective for studying the subgroup of @% generated by surgery on
knots in S? of bounded genus.

Theorem 1.5. Fiz N > 0. Let @?\, denote the subgroup of ®3Z generated by {Sf/n(K) |
g(K) < N,n e€Z}. Then ®?\, is a proper subgroup of ®3Z.
Proof. By [4, Theorem 3], we have that for any n € Z,

ysOHTaORIEE, (57, (K)) = 0.

In particular, suppose g(K) < N and let HFconn(Sf/n(K)) = @, F[U1/U"F[U]. Then for
each i, we have n; < 3N/2. It follows that the subgroup generated by {Sf/n(K) | g(K) <
N,n € Z} is contained in ]-"[ Wy There exist L-space knots with any value of Vy (e.g.,
T 4n+1), so by Theorem 1.8, we have that F,)/F,—1] is nonempty for all p € N, hence
@?\, is a proper subgroup of ®3Z. O

It is still an open question as to whether every homology sphere is homology cobordant
to one obtained by surgery on some knot in $3.

Note that the above theorem immediately proves that ®% is infinitely generated. Using
the invariant w, we easily can reprove Furuta’s theorem that ®% contains a Z* subgroup.

Theorem 1.4. The manifolds Sil(T2,4n+1) are linearly independent in @%.

Proof. Let Y, = Sil(T2,4n+1). By [16, Corollary 1.5], we have that Vo(T2,4n+1) = n. It then
follows from Theorem 1.10 that w(kY,) = n for any integer k > 0. By Proposition 4.1,
the same holds for k < 0. Therefore, by Proposition 4.4, we see that

w(kiY1#---#k,Y,) < maxi.

Therefore, we see that no linear combination k1Y #...kyYy with ky nonzero can be
trivial in homology cobordism, since otherwise we would have

N = o(—kyYn) = w1 Y1#-- - #ky_1Yy_1) < N —1,
where the leftmost equality is by Theorem 1.10 (and Proposition 4.1 if ky > 0). Hence
we have reached a contradiction. O

More generally, Theorems 1.13 and 1.14 below give sufficient conditions for a homology
sphere to be infinite order in ®3Z. The following proposition will be used in the proofs of
Theorems 1.13 and 1.14.

Proposition 5.2. Let Y1 and Y> be integer homology spheres such that d(Y1) < d(Y1) and
at least one of the following is true of Ya:

e Y is d-negative, or

e HF(Y2) is nonzero only in gradings r such that r =d (mod 2).

Then d(Y1#Y2) < d(Y #Y3).

Note that, by Proposition 4.6, this in particular implies that dimp(HF conn (Y1#Y2)) > 1.
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Proof. Either of the conditions on Y, is sufficient to guarantee that d(¥>) = d(Y»). But
then by Proposition 2.4, we have

d(Y1#Yy) < d (Y1) +d(Y2)
=d(Y)) +d(Y»)
<d(Y1)+d(Y2)
= d(Y1#Y7).

Here the third step uses the assumption that d(¥7) < d(Yy). O

The following theorems now follow readily.

Theorem 1.13. Let Y be an integer homology sphere such that Y s d-negative and d(Y) <
d(Y). Then dimp(HFconn(#,Y)) = 1 for all n #0. In particular, [Y] has infinite order
m @%.

Proof. This follows immediately from Proposition 5.2. O

Theorem 1.14. Let Y be an integer homology sphere. If dimp HF conn(Y) = 1, then Y is of
infinite order in ®%,

Proof. This follows from Corollary 4.10 and Proposition 5.2. O

Remark 5.3. As noted in the introduction, Proposition 5.2 and therefore Theorems 1.14
and 1.13 also apply in the case that Y is a Z,-homology sphere, together with its unique
spin structure, and we consider either the group @%2 or ®3Z2 / @i.

6. Computations for integer surgeries

6.1. The mapping cone formula and ¢ for surgeries

In this section, we will study the behavior of involutive Heegaard Floer homology and
the connected Floer homology for certain Dehn surgeries. This will include the claimed
computations for —1-surgery on 7T 4,41 used in the proof of Theorem 1.4.

We assume that the reader is familiar with the integer surgery mapping cone formula
of [24]. Let CFK*®(K) be the knot Floer complex of K C §3, which is freely generated
over F[U, U~'] and Z & Z-filtered. For X C Z@® Z, let CX denote the subset of CFK*(K)
generated over I by elements with filtration level (i, j) € X. We will be interested in the
case that a € X implies b € X for all b < a with respect to the product partial order on
Z @ Z; in this case, CX will always be a subcomplex of CFK*°(K). We will be particularly
interested in

Ay =C{i <0and j <s}
B™ =C{i <0}
The complex B~ is homotopy equivalent to CF~(S%). We also have that C{j <0} is

homotopy equivalent to CF~(S3), and, up to a grading shift, C{j < s} is homotopy
equivalent to C{j < 0} (via multiplication by U*), and thus also homotopy equivalent to
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Zo x|,
231 x
T2 @

Figure 1. A graded root for M(\7) where Vo =2,V =V, =1, and Vg =0 for s > 3.

C{i < 0}. Since H,(C{i < 0}) ZF[U] and each of these complexes is finitely generated
and free over F[U], this homotopy equivalence is unique up to homotopy.
We have chain maps

vg: Ay - B~ and hy: Aj — BT,

where vy is inclusion, and Ay is inclusion into C{j < s} followed by the chain homotopy
equivalence from C{j < s} to C{i < 0}. Let

Vs = dimp(cokervg ) and H; = dimp(coker A ).

Recall from [14, Lemma 2.4] that Vi1 < Vi, and that V; =0 for s > g(K), where g(K)
denotes the Seifert genus of K [17, Theorem 1.2]. We also have that V; = H_; and Hy =
Vi +s (sce [6, Lemmas 2.3 and 2.5] combined with [5, Lemma 2.6]). We write V for the
sequence {V;}52,, which encodes the values of Vs and H; for all s € Z.

We now define an F[U]-module M (\7) which will be used to describe the Heegaard
Floer homology of —1-surgery on an L-space knot. For each s > 0 with V; # 0, we have
two generators x; and x; in grading —s(s + 1) —2. We have the relations

UVsxg =U%x. fors>0
s(s+1)

UVsx, =U%t > xg fors > 0.
See Figure 1 for a depiction of the module M(\7) as a graded root. Let Jy be the
F[U]-equivariant involution on M (V) that interchanges x, and x,. It is clear from the
definition of M (V) that this involution is indeed well defined.

More generally, we define an F[U]-module M (V, n) for n € Z~¢. For each s > 0 such

that V,s # 0, we have two generators x; and x; in grading —ns(s + 1) —2. We have the
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relations
UVrsx, = UV’”x; fors >0
ns(s+1)
UVsx, =U"T"2 xy fors>0.

As before, let Jy be the F[U]-equivariant involution that interchanges x; and x;. Note
that M(V) = M(V, 1). On the other hand, M(V, n) only depends on the values of Vj for
k=0 (mod n).

Proposition 6.1. Let K be an L-space knot and n a positive integer. Then
HF™(S2,(K), [0]) = M(V, m[d(L(n, 1), [0]D],
and the induced action L, on HF_(Sin(K)) coincides with Jy on M(\7, n).

Using Proposition 6.1, we prove the following stronger version of Theorem 1.8.

Theorem 6.2. Let K be an L-space knot and n a positive integer. Let M(\7, n)
[d(L(n, 1), [0])] be the F[U]-module described above endowed with the involution Jy. Then

HFI_(Sin (K), [0]) = ker(1 + Jo)[—1] D coker(1 + Jp).

Under this isomorphism, the action of Q on HFI~ (Sin(K), [0]) s given by the quotient
map
ker(1 4+ Jo) — ker(1 4 Jo)/im(1 + Jy) C coker(1 + Jp).

The involutive correction terms are
d(S2,(K), [0]) = d(S?,(K), [0]) = —d(L(n, 1), [0])

and
d(82,(K), [0]) = —2Vo(K) —d(L(n, 1), [0]).

Finally, HF conn(S2,,(K), [0)) = T(—awm.1).001-1) (Vo(K)).

Proof. Consider the long exact sequence from (2.1), which yields a short exact sequence:
0 — coker(1 +ty) — HFIf(Sin(K), [0]) — ker(1 + ¢ )[—1] — O,

where 1, is the induced action of ¢ on HF~ (Sin(K), [0]). By Proposition 6.1,
HF_(Sin(K), [0]) is all supported in the same grading mod 2, so ker(l + ¢,)[—1] and
coker(1 + ¢,) are in different parities of gradings, and the short exact sequence splits. From
this, it follows that Q acts on HFI~ as claimed. By the splitting of HFI~ established,
c_z’(SE ,(K),[0]) is two more than the maximal degree of a U-nontorsion element in
ker(1 4 t4), while c?(Sin(K), [0]) is two more than the maximal degree of a U-nontorsion
element of coker(l + t,). The involutive correction terms are then easily computed using
Proposition 6.1. For an alternate and more powerful proof of the involutive Floer
homology and correction terms, see the proof of [1, Theorems 1.1 and 1.2] (combined
with Proposition 6.1).
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By Proposition 6.1, HF_(Sin(K),[O]) gM(\7,n) up to a grading shift, where i,
on HFf(Sin(K),[O]) coincides with the involution Jy on M(V,n). Note that the
module M (‘7,n) together with Jy has the structure of a symmetric graded root
together with its reflection involution, as in [1, §4]. There exists a Jy-equivariant
change of basis so that M (V,n) contains a summand equivariantly isomorphic to
(M(V', n), Jy), where V' = (V,0,0,...). By [I, Lemmas 4.1, 4.4, and Theorem 6.1],
we see that CF_(Sin(K),[O]) is locally equivalent to a complex with homology
isomorphic to M(\7’, n), and thus HFconn(Szn(K), [0]) is isomorphic to a submodule of
T—dwm.1.j0p-1Vo(K)). (The term —d(L(n, 1), [0]) is from the grading shift between
HF~ (Sin(K), [0]) and M(\7, n), and the —1 is from the shift in the definition
of HF conn.) Since d(S3,(K),[0]) = d(S3,(K), [0]) +2Vp, Proposition 4.3 implies that
HF conn (52 ,,(K), [0]) is exactly T(—a(w,1,00n-1) (Vo(K)). O

The proof of Proposition 6.1 will rely on the integer surgery mapping cone formula
of [24]. In particular, we will use the fact that the maps induced by the 2-handle cobordism
from 3 to Sin (K) can be computed from the mapping cone, as follows. Throughout, we
assume that n is a positive integer.

We will define a map
D,: @Ay — P s,
SEL seZ

where each B, is a copy of B~ = CF~(83). The map D, sends a5 € A to
Dy (as) = vg(as) + hg(as)

where

vyt Ay - By and hg: A — B,
Let € = Cone(Dy,), the mapping cone of D,. The absolute grading on the complex €
is determined by setting the grading of 1 € Hy(BZ,) to be —2—d(L(n, 1), [n —s]) for
0<s<n—1.

Let W_,(K) be the four-manifold obtained by attaching a 2-handle to S along K C
§3 = 9 B* with framing —n. Choose a Seifert surface F for K and let F denote the capped
off surface in W_, (K).

Fix N a positive integer. Let

A= @ A7 and BV= & B .

~N<s<N —N-n<s<N
Write €V for the subcomplex of the mapping cone € given by
eV =AY aBY.

For notational purposes, we denote the differential by DY. Unlike ¢, €V is finitely
generated over F[U]. The following allows us to compute the cobordism map associated
to W_,(K) in terms of the subcomplex ¢V .

Proposition 6.3. Fiz a knot K C S3, a positive integer n > 0, and a spin® structure t on
W_,(K). There exists N > 0 such that the following holds.
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(1) Hy(eN) = HF_(Sin(K)) as absolutely graded F[U]-modules.
(2) If {c1(®), F)| <2N +n, then Fy_ xy.((1) can be computed via the inclusion of By
into €N, where (c1(%), ﬁ) —n =12s.
(3) If {c1(V), F)| >2N+n, then Fy o) s the wunique mnonzero element of
. L (H2—
HF (83, (K), t'Si,,(K)) in degree ”(?TT

While statements of the form found in Proposition 6.3 are more standard for HF ', we
find that for our use here, the version for HF~ is more suitable for our computations.
We postpone the proof of Proposition 6.3 to §6.2. Assuming this proposition, we now
proceed toward the proof of Proposition 6.1.

When K is an L-space knot, it follows from [18, Theorem 4.4] and [19, Theorem 9.6]
that H.(A;) = F[U] for all s. Furthermore, we will show that if K is an L-space knot,
we have the following identification.

Lemma 6.4. If K is an L-space knot, then
HF*( 2 (K)) = coker Dn %

pY.: P HA)—> P HaB)).

—N<s<KN —N—-n<s<N

where

Proof. We have an exact triangle

N

D
H.(AN) o H.([BY)

~N

H,(€V)

which yields the short exact sequence
0— cokerD,IX* — Ho(€N) - keerx* — 0.

Since K is an L-space knot, H,(A;) = F[U] for all 5. It is straightforward to verify in
this case that vy and hg are injective on homology for each s, which can then be used
to prove that Dn , is injective. Hence H,(¢") = coker DN The result now follows from
Proposition 6.3. O

Lemma 6.5. Let n be a positive integer. Then
coker DY, = M(V,m)[d(L(n, 1), [O])].

Proof. We consider the case n = 1; the argument readily generalizes to arbitrary n. Write
D, for DY,. For 0 <s < N, identify x, with 1 € Hy(BZ, ;) ZF[U] and x| with 1€
H,(B;y) = F[U]. For —N < s < N, let y; denote 1 € H,(A;) = F[U]. Note that U"0x,
and U Vox(’) are identified in coker D, via

Dy(y0) = U"xo+ U x]. (6.1)
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For 1 < s < N, using that V_g = H; = V45, we have
Di(ys) = U x|+ UMxl_| = UVx] + U +x]_, (6.2)
Di(y—g) = U= x_1 + U x, = U xe_ 1+ UV x,. (6.3)

Because the y;’s form a basis for _yc,<n He(Ay), (6.1), (6.2), and (6.3) span the
image of D,.
Note that applying (6.2) recursively yields that for 1 <s < N,

s(s+1) .
UVt x(’)—}—UV‘x;61mD*,

and similarly for x;. From this, it is straightforward to see that the image of D, is spanned
by

s(s+1) s(s+1)
UVxg+UYx), UVx+UT 2 xy, UYxl4+U%T 2 x|,

It follows that

coker DY, = M(V, n)[d(L(n, 1), [0D], (6.4)
as desired. O
Proof of Proposition 6.1. Let K be an L-space knot. By Lemmas 6.4 and 6.5, we have

HF~(82,,(K), [0]) = coker DY, = M(V, m)[d(L(n, 1), [0D].

We now prove that under this isomorphism, the induced action t, on HF _(Sin (K), [0]D)
is identified with the involution Jo on M(V, n). By [23, Theorem 3.6] and [28, Theorem
A], we have that

FVT,_"(K)’,( =140 FVl_/,n(K),? (6.5)
where we have used the fact that the involution 1, on HF~(S%) is the identity.

Let N > 0 be as in Proposition 6.3. For 0 <s < N, let x] denote the image of
Fy oD, where (c1(t), F) = 2s +n. By Proposition 6.3(2), this is identified with the

image of 1 € Hy(By) under the inclusion of By into eN. Likewise, let x3 = FV; (Kﬁ(l)’

which is the image of 1 € Hy(B_s_,) under the inclusion map to Hy(¢V), where
(c1(®), I:") = —2s —n. By Equation (6.5) it follows that i interchanges x; and x| for
0 < s < N. Since these elements generate coker D,ZX . over F[U], we see that i, agrees
with Jo under the isomorphism in Equation (6.4). O
Proof of Theorem 1.9. The proof is nearly identical to the proof of Proposition 6.1 and
Theorem 1.8. The only difference is that now coker D,JX . i1s a submodule of, rather than
isomorphic to, Hy(¢V). The generator U"0xq is still fixed by ¢. The grading of U"xg is
—2Vo—d(L(n, 1), [0]) — 2, and the result follows. O

6.2. The proof of Proposition 6.3

In this subsection we prove Proposition 6.3.

First, we must recall a bit more about the mapping cone formula for HF~. It turns out
that a direct analogue of the usual mapping cone formula from [24] does not work for
the minus flavor of Heegaard Floer homology. In [13], Manolescu and Ozsvath instead
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establish an analogue with F[[U]] coefficients. One needs to work with F[[U]] coefficients
because the cobordism maps appearing in the mapping cone formula can be nonzero
for infinitely many spin® structures in the minus flavor. We summarize the relevant
construction and facts below, before using this to prove Proposition 6.3. Throughout,
we will write a term in bold to indicate tensoring a finitely generated module over
F[U] with the power series ring F[[U]], e.g., Ay = Ay ® F[[U]]. Technically, the relevant
objects are no longer chain complexes, because they are not a direct sum of their
grading homogeneous pieces, but the homological constructions we will use (e.g., grading
homogeneous elements, mapping cones, etc.) still make sense.
Fix a nonzero integer p. We will be interested in the cone of

vp: [TAT = [[Br 6 a@) > (s.¥(@) + (s + p. h(@)).
seZ SEL
Note that in this cone, which we denote by €~ (p, K), we use direct products instead
of direct sums. (We do not use the bold notation, because this does not arise as the
U-completion of a finitely generated module over F[U].) As in the uncompleted case,
B, =CF~ (83). We have the following:

Theorem 6.6 [13, Theorem 1.1]. Fiz a nonzero integer p and a knot K in S>. There is
an isomorphism of relatively graded F[U]-modules

H, (€™ (p. K)) = HF (S, (K)). (6.6)

This is a direct analogue of the mapping cone formula for computing HF' of surgery,
given by Ozsvath and Szabé [24]. While the statement in Theorem 6.6 is relatively graded,
we will upgrade this to respect the absolute gradings for negative surgeries in the proof
of Proposition 6.3.

Recall that we would also like to compute the cobordism map from HF~(S3) to
HF 7(SZ(K )) associated to the trace of the surgery, W,(K). We index the spin® structures
on W,(K) by

(c1(ts), [Fl)+p=2s, seZ (6.7)
Here, F denotes a capped off Seifert surface for K in W,(K). Consequently, the above
equation implicitly depends on a choice of orientation of F , hence K. This will not matter
for us, since we are only interested in comparing the different F‘;,p( k)., 1O each other,

and determining the isomorphism type of (HF~ (S;(K )), tx), not identifying any of these
as canonical elements.
With completed coefficients, the cobordism map F;V,,( K).t, Can be computed as follows.

Theorem 6.7 [13, Theorem 14.3]. Under an isomorphism between H,(€~(p, K)) and
HF‘(S;(K)) as in (0.6), the inclusion from By into € (p, K) induces F;VP(K),ts on
homology for each s.

In order to establish Proposition 6.3, we must first translate the above results from
HF~ back to HF~. We will need the following technical lemma about completions with
respect to U. This is well known, but we include it for completeness. (See [13, §2] for a

similar discussion.)
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Lemma 6.8. Let C and D be finitely generated, free, relatively Z-graded complexes over
F[U], where U has degree —2. Suppose that n: C — D is a grading homogeneous chain
map. Then, there exists a chain map f: C — D such that £, = n.. Further, fy is unique.
Finally, ny is an isomorphism of F[[U]]-modules if and only if fi is an isomorphism of

F[U]-modules.

Proof. By the assumptions on C,

k
H.(C) = (FIU) & @D FIU1/U™),
i=1
and similarly for D. Recall that F[[U]] is flat over F[U], and hence there is a canonical
isomorphism H,(C) = H,(C)  F[[U]] and similarly for D. Consequently, we then see
that

k
H.(C)®F([U]] = (FIUI)’ & P FIUI/(U™)
i=1
and the result is easily deduced. O
With this, we are ready to prove the claimed technical proposition.

Proof of Proposition 6.3. Fix a knot K C §°, a positive integer n, and let N > 0.

(1) By [13, Lemmas 4.4 and 10.1], we see that when n > 0, the inclusion of €V into
¢~ (—n, K) is a quasi-isomorphism. (This is the analogue of the standard truncation
for the mapping cone for HF* found in [24, Lemma 4.3].) Combining this with
Theorem 6.6, we see that H,(€V) = HF~(S3,(K)). Lemma 6.8 now implies that
H,(eN) = HF*(Sin(K)) as relatively graded F[U]-modules. We will return to the
absolute grading at the end of the proof.

(2) Note that if |s| < N, then the inclusion of B, into €~ (—n, K) factors through eN.
Therefore, if |{c1 (t5), [I:"])| < 2N +n, then F;V_,,(K),ts is computed from the inclusion
of By into ¢V . The result again follows from Lemma 6.8.

(3) The last part of the proposition does not need the mapping cone formula. Since
W_,(K) is a negative-definite cobordism, the induced cobordism map must localize
to be an isomorphism on HF*°, and thus Fv;,n(K),t(l) is nonzero. It thus remains to
show that this element is unique in its grading. Since HF*® (Sin (K),s) ZFU, U
for any s, there is at most one nonzero element in each sufficiently negative degree
of HF_(Sin (K), 5). The result now follows, since |{c](t), [I:"])| > 0 implies that

1 (H)2=7

F;, 1) =—"— k0.
gr(Fy k(D) ) <

To complete the proof, it suffices to show that the isomorphism Hy(¢N) = HF~ (Sin(K )
respects the absolute grading. Note that the absolute grading on HF_(Sin(K)) is
determined by that of one element in HF~ (Sin(K),ﬁ) for each s. By choosing N > n,
for each spin® structure s on Sin (K), there exists s so that |{ci(ts), [I:"])I < 2N +n and
t | 8, (k)= 5 The definition of the absolute grading on €V is chosen such that the
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—4 Uxq Uxsg
—2n U ltay U la,

—2n —1
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—2n — 2 U™z, Umzo

Figure 2. The highest gradings in the complex C,. The complex continues with further U-powers of the
three generators. The involution is reflection across the centerline of the page.

generator of Hy(B;) = F[U] is precisely in degree gr(FVT,_n(K%tv (1)). The absolute gradings
must therefore agree since Fy o, (D #0 by the negative-definiteness of W_,(K). O

7. Computations of HF conn

7.1. Connected homology of connected sums of surgeries on L-space knots

In this section we prove Theorem 1.10, computing the connected Heegaard Floer
homology of a connected sum of —1-surgeries on L-space knots. We begin by introducing
some notation. For n € Z~¢, let C, denote the chain complex appearing in Figure 2
with involution given by reflection across the centerline of the page. More precisely,
C, is generated over F[U] by x1, x2, y such that gr(x;) = gr(x2) = -2, gr(y) = —2n —1,
d(y) = U"(x1 + x2), and the involution ¢ interchanges x; and x; and fixes y.

Recall that in Proposition 6.1, we showed that if K is an L-space knot, HF~ (Si1 (K) =
M(\7, 1), where V= (Vo(K), Vi(K),...). We then used the results of [1] to compute
HFI_(SEI(K)). Going further, Dai and Manolescu showed that if an (-complex C has
homology M (V, 1) with involution given by the reflection Jy as described in § 6, then C is
locally equivalent to Cy, [1, Theorem 6.1]. Therefore, if Ky, ..., K;, are L-space knots, in
order to compute HF conn (#/2 lSil (K;)), it suffices to compute the connected homology of
Cvy(ky) ® - - - ®Cyy(k,,) by Proposition 3.14 . Recall that if K; is the unknot, then SEI(K,-)
is trivial in homology cobordism, so it suffices to assume that K; is a nontrivial L-space
knot, or equivalently, V; > 0 for all i. Theorem 1.10 is thus a corollary of the following.

Proposition 7.1. Let ny >ny > --->2n, >0. Let a; = ZS‘:] nj, with ag=0. Then
Hconn(cm ®Cn2 Q- ®Cn,,,) 18 given by

B 7220, ().
i=1

Downloaded from https://www.cambridge.org/core. IP address: 35.20.21.20, on 24 Apr 2019 at 20:16:10, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147474801900015X



30 K. Hendpricks et al.

—2 z% Z‘é
-3
—4 Uz Uz
-5 w% wg
| >
—6 U2zl y U2z}
7N
-7 Uz? Ua?
>
_8 U3zl Uz,

Figure 3. The highest gradings of the complex C; 1. The complex continues with further U-powers of the
five generators. The involution is given by reflection across the centerline of the page.

As a warm-up, we present the argument for m = 1. (The argument given in the proof of
Theorem 6.2 could also be used to establish this first lemma more succinctly, but would
not help us as much in the general case.)

Lemma 7.2. Heonn(Cp) = T_1(n).

Proof. As above, let C, = (C,, t) be generated by xi, x3, and y such that a(y) = U" (x| +
x2), gr(xy) = gr(xp) = =2, gr(y) = —2n—1, and ¢ fixes y and interchanges x| and x;.
Observe that x; and x» are both generators of U~!'H*(C,), in which [x{] = [x2]. Since
Hyeq(Cr) = T(—1)(n), it suffices to prove that any self-local equivalence is surjective.

Suppose that f: C, — C, is a self-local equivalence. Let G: C, — C, be a chain
homotopy such that 0G4+ Gd = fot+to f.

Now, consider x;. Because f preserves the homological grading, f(x;) = A1x1 + Axx2
for A1, A2 € {0, 1}. However, notice that if f(x;) = 0, then in the map f,: U~ H.(C,) —
U~ H,(C,), we have f.([x1]) =0, so fsx is not an isomorphism. Similarly if f(x1) =
X1+ x2, then fi([x1]) = [x1]+[x2] =0 as a map U’IH*(C,I) — U’IH*(C,I). So in fact
either f(x;) = x1 or f(x1) = x2.

Moreover, G(x1) must have grading —1, implying that G(x;) = 0. Hence

Fx) +u(f(x1) = 3G (x1) + G(3(x1)) = 0.

This implies that f(x2) = t(f(x1)). So f(x1+x2) = x; +x3. Now, consider f(y). Again
for grading reasons, either f(y) =y or f(y) =0. But 3(f(y)) = f(@y) = f(U"(x1 +
x2)) =U" f(x1 +x3) = U"(x1 +x2). So f(y) cannot be zero, and we have that f(y) = y.
We see f is a surjection and Heonn(Cy) = Hyed(Cn) = T-1(n). O
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1s locally equivalent to the

m

Lemma 7.3. Letny >2ny > --- 2 np >0. ThenC,y; @---®Cy
complex Cp,....n,, generated by elements xl.] such thati € {1,2},1 < j <m and an element
y such that
gr(x}) = -2
gr(x/y = —2a; 1+ (j—=3) for2<j<m
gr(y) = —2ap,; +m—2
with differentials
dxH =0
a(xl.j) = U”i—‘(x{f1 +x§71) for2<j<m
a(y) = U"" (x{" +x3°),

and involution ¢ interchanging xlj and xg and fixing y.

As an example, Figure 3 shows the complex C3 1.

Proof. We proceed by induction on m. The base case m = 1 is true by definition. Suppose
that we know the theorem up to m — 1 inputs. Then given integers ny > ny = -+ = ny,,
we know that Cp, ® - - - ® Cy,, is locally equivalent to D = C,,, . »,,- S0 it suffices to show
that C;, ® D is locally equivalent to Cy,,...n,,-

For this argument, let C,, consist of the chain complex generated by s, s2,t such
that gr(s;) = gr(sz) = =2, gr(t) = —2n1 — 1, and 9(t) = U™ (s; + s2), with involution ¢
exchanging s; and sy and fixing 7. (That is, we change notation to avoid repeating x
and y.) The complex D has elements c, blj such that gr(biz) = -2, gr(blj) =2my+---+
nj_1)+(j—4) for 3 < j <m, and gr(c) = —2(n2+ - - +ny,) + (m — 3), with differentials

.....

dc) = U" (b} +by)
8(bl.j) = U”J’*l(b{_1 +b£_1) for3<j<m
A7) = 0.

It is important to note that bl.j corresponds to xij ~! in the notation of the lemma
when applied to Cp,,.. »,. We have chosen this to simplify the notation in the following

,,,,,

computations. The underlying chain complex of C,; ® D has generators s ®bij , t®bij ,
sy ®c, and t ®c, where throughout i,k € {1,2} and 2 < j < m. The gradings of these
generators are

gr(sk ® b)) = —2(ny+ -+ +nj )+ (j —4)

gt ®b)) = 21+ +nj_)+j—3=-2aj_1+(—3)

grisr ®c) = =2(ma+---+ny) +m—3

gr(t®c) = 2y +---+ny)+m—2=—-2a,+m-—2,

where we are using that the tensor product of (-complexes has a grading shift by 2 in the
definition. The differentials are
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(s ®b7) =0

A @bY) = UM (51 @b} + 5 Q b?)

sk ®b)) = U (st @bl +s5,®@b)7") for3<j<m

@b = Ut @b T +1@b, )+ UM (51 @b +5:0b!) for3<j<m
sk ®c) =U"(sk b + 5, @ DY)

At Rc)=U"1tQb]'+1 b))+ U" (s1 ®c+s5®c).

We now perform a U-equivariant and t-equivariant change of basis. Let

y:t@c
X' =t1@b+ U (s ®0)
¥ —rob] Ui 0Bl or2<j<mo

~

% =si ®bi2+1
5= sk®b%+sk®b%.

Here i 41 is to be taken modulo two; that is, this expression denotes a change of index
between 1 and 2. Then the elements X/ for 1 < j<m, ¥, 5, 5si®c, and sy ®b] for
3 < j < m generate C,, ® D, with differentials given by

3Qy) = UG +33")

aGH =v @ 4w for2<ji<m

AEH =0

sk ®c) =U" (s b + 5, @ DY)

a(sk®bij) = U"/'*‘(sk@b{_l + sp ®b'2/_1) for3<j<m

(k) = 0.

This complex has a self-local equivalence onto the summand generated by y and the
elements )71:’ for 1 < j < m, via sending the remaining generators to zero. Indeed, this
summand is exactly Cpn,,. n,- O

.....

Proof of Proposition 7.1. By Lemma 7.3, it suffices to compute the connected homology
of the t-complex C =Cy,,.. n,- Let f: C — C be a maximal self-local equivalence, and
let G: C — C be a chain homotopy such that fot+to f = Gd +3dG. We will show that
f is surjective.

First we consider xl1 and x;. By the same logic as in Lemma 7.2, we see that f(xll) and
f (le) are xl1 and le in some order.

J

Now, suppose that f is not surjective. First, suppose that some x; is not contained

in the image of f, and pick a minimal j > 1 such that xl.j is not in im(f) for some i.
Indeed, since we can postcompose with ¢ to get a new self-local equivalence, without loss
of generality x{ is not in the image of f. This implies that either xé is not in im(f) or

x{ —}—xg is not in im(f), since if they both were then x{ would be as well.
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First consider the case that x% ¢ im(f). Then we claim there is no element z € im(f)
such that d(z) = U"/-! ()c{_1 +x§_1). For if such a z existed, then z would lie in grading
—2aj_1+ (j —3), and therefore could be written uniquely as a linear combination of x]j ,
xg, and elements lef such that k < j and —2a,_1+(k—3)—20=—2a;_1+( —3).
Indeed, since d(z) = U "ffl(x{ - —i—xé._l)7 this linear combination would contain exactly
one of xlj and x{. But since k < j, each element U exf appearing in this linear combination
is in im(f), so this implies that either xlj or xé is in im(f). Hence there is no such z.
This implies that [U”J’*l()c{_l +xg_l)] is a nontrivial element in H,(im(f)) in grading
—2aj_1+ (j —4).1f j is odd, this implies H.(im(f)) in grading —2a;_1 + (j —4) is at least
one-dimensional, and if j is even, this implies that H.(im(f)) is at least two-dimensional,
since it contains both [U"/-! ()c{_1 +x£_1)] and [U“f—l_%“”xll], and there is no element in
C with boundary U"/'*l(x{_1 +x‘2/_1) + U“f*‘*%ﬂx}. But if j is odd, then H,(C) has no
nontrivial element in grading —2a;_1 + (j —4), and if j is even, H,(C) is one-dimensional
generated by [U “/—'_%“xll]. Since f is a maximal self-local equivalence, it follows from
Lemma 3.5 that f.: H.(C) — H,(im(f)) is a surjection, which is a contradiction.

Now consider the case that xé € im(f), but x{ +xé ¢ im(f). Choose any w such
that f(w) = xg. Then we note that f(t(w))+¢(f(w)) = G (w)+ Ga(w), implying that
f(w)) = xlj 4+ 3G (w) 4+ Ga(w). Now each of G (w) and Ga(w) is an element in grading

—2aj_1+ (j —3), and therefore can be written uniquely as a linear combination of xlj , xé

and elements Uexl{‘ such that k < j and —2a4_1 4+ (k—3) —2¢ = —2a;_; + (j —3). Note
that xij cannot appear in dG(w), because the image of 9 is contained in U - Cp, . n,,
because we have assumed that n, > 0. Similarly, xl.] cannot appear in G(dw) because

of the U-equivariance of G. Therefore f(t1(w)) = x{ +0G(w) + Gd(w), where G (w) and
Gd(w) can be written as linear combinations of elements U lek for k < j. But x!‘ € im(f)

for k < j, so we see that x{ is also in im(f).

Now suppose every xij is in the image of f, but y is not. Then by a similar argument
to the first case, there is no element z € im(f) such that d(z) = U™ (x{" +x3'). Thus
[U"n (x]" +x3')] is a nontrivial element in H,(im(f)) in grading —2a,, +m — 3, which as
before implies a contradiction. So y € im(f), and in fact f is surjective.

Since f is surjective, we conclude that Hconn(Cp,,...n,) = Hred(Cn,,...n,,)- The result
follows. O

Proof of Theorem 1.10. Let Kj,...,K,, be L-space knots. By Proposition 6.1,
HF~ (83 (K ;) = M(V;, 1), where V; = (Vo(K ), Vi(K ), ...), and ¢, is given by reflection
on the symmetric graded root. But by [1, Theorem 6.1], this implies that the local
equivalence class of (CF _(Sil (Kj)), v) is represented by Cy;(k ;). The theorem then follows
directly from Proposition 7.1. O

7.2. Connected homology of graded roots

In this section, we give a computation of the connected homology of any i-complex
(C, t) whose homology consists of a symmetric graded root with induced involution given
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by its natural symmetry. (This includes (CF~(Y), ) for ¥ a Seifert fibered space.) Our
computation follows fairly quickly from Dai and Manolescu’s computation of the local
equivalence classes of such (-complexes [1]. This will prove Theorem 1.16.

First, let us to recall some notation for graded roots. With the conventions appropriate
to working with the minus variant of Heegaard Floer theory, recall that a graded root M
consists of an infinite tree together with a grading function x : Vert(M) — Q such that

e x(u) — x(v) = £1 for any edge (u, v),

e x (1) < max{x (v), x(w)} for any edges (u, v) and (u, w) with v # w,
e x is bounded above,

e x "' (k) is finite for any k € Q,

e #tx (k) =1 for k < 0.

To every graded root one can associate an F[U]-module H™ (M) with one generator for
every vertex vin M, and we let U - v = w if (v, w) is an edge and x (v) — x (w) = 1. (Notice
that this means it is simple to reconstruct the graded root from H™ (M) together with
a preferred set of generators.) Because deg(U) = —2, one typically doubles the relative
grading when focusing on this module; from here on we shall do this without comment.

A symmetric graded root is a graded root M together with a grading-preserving
involution Jy: Vert(M) — Vert(M) such that

(1) for each k € Q, the involution Jo fixes at most one vertex in x ~!(k),
(2) (v, w) is an edge if and only if (Jov, Jow) is.

A monotone graded root is a graded root constructed as follows. Let hy, ..., h, and
ri,...,r, be two sequences of rational numbers, all differing from each other by even
integers, such that

(1) hy >hy>--->h,
(2) ri<r<--<ry
(3) hy =1y

It is most convenient to describe the associated graded root M = M (hy, ry; ha, 125 ...
hy,rp) by describing the associated module H™(M). If h, > r,, the monotone graded
root is the tree underlying the F[U]-module with generators v; and Jov; in grading

hj—r; hj—r; hp—r;
h; for each 1 <i < n, with the relationship U™ 2 v; =U "2 Jov; =U vy If hy =1y

then the monotone graded root is the tree underlying the F[U]-module with generators
v; and Jov; in grading h; for each 1 <i < n and a generator v, in grading h,, with the

hi—r; hj—r; hp—r;

relationshipU™2 v; = U7 Jov; = U™ 2 vy,. See Figure 4 for two examples of monotone
graded roots.

Dai and Manolescu associate to any symmetric graded root M a monotone graded
subroot as follows [1, p. 22]. Any symmetric graded root has an infinite downward stem
fixed by the involution Jy. Given a vertex v of the graded root, one lets y(v) be the
infinite path downward through the stem from v. The base b(v) of this path is the degree
of the first place where this path intersects the stem. The collection of all vertices v with
the same base is a cluster Cp. Within every cluster with more than one vertex (called
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v1 Jov1 v1 Jovs

Figure 4. The monotone graded roots M(6, —4; 4, —2; 2, 0) (left) and M (6, 0; 2, 2) (right). The numbers to
the left denote degree of the elements at the corresponding height.

Figure 5. A graded root and its monotone subroot.

nontrivial), we select a pair of vertices interchanged by Jp with maximal grading, called
the tips of the cluster.

The algorithm proceeds by constructing a special subset S of the vertices of M as
follows: One lets r be the maximal degree of a Jp-invariant vertex v in M. If the cluster
C, is trivial, we add v to S; otherwise we add the tips of C, to S. Now we let b be the
greatest number strictly less than r for which Cp is nontrivial. If the tips of Cp, have
grading greater than the degree of all vertices in §, we add them to S; otherwise we
do not. We iterate this process until there are no further numbers b for which Cj is
nontrivial. The monotone graded subroot M’ of M is the smallest subroot containing all
the vertices in S; identifying M with H™ (M), it is the span of the generators associated
to the elements of S in H™ (M). See Figure 5 for an example.

In [1], the authors associate to a symmetric graded root M together with its natural
symmetry an (-complex (Cy(M), t) whose homology H,(M) is the module H™ (M) with
its involution Jy. They show the following.

Theorem 7.4 [1, Corollary 4.6, Theorem 6.1]. Let C be any t-complex whose homology
is the F[U]-module H.(M) determined by the graded root M with induced involution
giwen by the natural symmetry Jo. Then C is locally equivalent to the chain complex
(Ce (M), 1). Moreover, let M’ be the monotone graded subroot of M constructed as above.
Then (C«(M), ) 1s locally equivalent to (Cx(M'),1).

From this, we can compute the following.
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Proposition 7.5. Let M = M(hy,r1; hy,r2; -+ ; by, ry) be a monotone graded root, with
associated complexr (Cw(M), Jo) and homology H.(M). Then the involutive connected
homology of C(M) is the U-torsion submodule of M, shifted upward in degree by 1.

Proof. It suffices to show that any self-local equivalence f: Cyx(M) — C,.(M) necessarily
induces a surjection fi: Hy(M) — H,(M). In particular, since f, is U-equivariant it
suffices to show that each of the generators vy, Jovy, ..., vy, Jov, are in the image of fi
(here v, and Jyv, may be equal). We proceed by induction on n, essentially mimicking
the proof of [1, Theorem 6.2].

First, observe that if v; = Jovy, then H,(M) = F[U], and the statement is trivially
true. So we assume that vy # Jyv;. Consider fi(vi). This must be a linear combination
of v; and Jyvy; furthermore, since U™v; # 0 for all m > 0 and f; is an F[U]-module
homomorphism inducing an isomorphism on U ’IH*(M), we must have U™ f,(vy) # 0.
This implies that fi(v) is either vy or Jovi. Since f,(Jov1) = Jo fx(v1), we see that both
vi and Jov; are in the image of fi, and fi: Hy (M) — Hp, (M) is a surjective map.

Now for 1 <i <n, let us inductively suppose that fi: Hp;(M) — Hp;(M) is known
to be surjective for all j <i. In particular, we assume that all of the generators

v1, Jovy, ..., vi—1, Jovi—1 are in the image of f.. Now consider the element f,(v;), which
h;—h;
. . .. . Jh

we can write as a linear combination of the 2i elements of the form U™ 2 v; and

hi—h;
U Jovj for 1 < j <i (this includes v; and Jov;). Since U™v; # 0 for all m > 0 and
fx is an F[U]-module map inducing an isomorphism on U~'H,(M), we see that f,(v;)

hj—hi

cannot only be a sum of terms of the form U x: (vj + Jov;), but must include at least
one element which is not preserved by Jy. Choose the maximal number j = k for which

such an element appears in f,(v;). Up to postcomposing with Jy we may assume it is
hy—h; . hi—ri | . . :
U™ vg. Now observe that since U ™2 v; is Jy-invariant, and f, commutes with Jo, we
hi—ri hg=hi he=ri . . . . .
must have that U ™2 (U E vw)=U . v is Jo-invariant. This implies that ry > r;.

However, since by monotonicity ry < r; if k < i, this implies that i = k. So, fi(v;) is equal
to a sum of v; and U-powers of the elements v; and Jov; for 1 < j < i. In particular,
since we already know that v; and Jov; are in the image of fi for 1 < j < i, we see that
v; is also in the image of fi. Since fi is Jo-equivariant, Jyv; is also in the image of f.
We conclude that fi.: Hy, (M) — Hp, (M) is a surjection.

Finally, consider the map f; in degree h,. If v, # Jyv,, the argument above applies
and we are done; otherwise, let v, = Jyv,. Then the element f,(v,) must be fixed by Jy

and U-nontorsion. By similar logic as above, this implies that if fi(v,) is written as a
hj—hn hj—hn
linear combination of v, and elements U T j and U = Jovj, this linear combination

must contain v,. Since we know that v; and Jov; are in the image of fi for 1 < j < n,
this implies that v, is in the image of f, and f is therefore a surjection. O

Proof of Corollary 1.17. The corollary follows from the definition of the monotone graded
root M’ associated to a symmetric graded root M. O
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