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Abstract We use Heegaard Floer homology to define an invariant of homology cobordism. This
invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology
sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer
homology. We use this invariant to study the structure of the homology cobordism group and, along the
way, compute the involutive correction terms d̄ and d for certain families of three-manifolds.
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1. Introduction

The study of homology cobordism, or when two manifolds cobound a homology cylinder,

has been a motivating structure in geometric topology for several decades. Most recently,

Manolescu used an invariant of homology cobordism to disprove the high-dimensional

triangulation conjecture [12]. While the result applies to triangulating manifolds of

dimensions at least five, the invariant is for spin rational homology three-spheres and
smooth homology cylinders between them.

The key idea in constructing Manolescu’s invariant is defining a Pin(2)-equivariant
Seiberg–Witten Floer homology for a three-manifold equipped with a self-conjugate spinc

structure. Building on this, Stoffregen [27] constructed a more refined invariant, the

connected Seiberg–Witten Floer homology, which takes the form of a graded module over

F[U ]. Very roughly, this is defined as the part of the S1-equivariant Seiberg–Witten Floer
homology which consists of solutions to the Seiberg–Witten equations that interact with
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supported by NSF grant DMS-1709702.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147474801900015X
Downloaded from https://www.cambridge.org/core. IP address: 35.20.21.20, on 24 Apr 2019 at 20:16:10, subject to the Cambridge Core terms of use, available at



2 K. Hendricks et al.

the reducible in an essential way that respects the Pin(2)-symmetry. One disadvantage

of Stoffregen’s construction is that it passes through Manolescu’s Seiberg–Witten Floer

homotopy type [11], which can be rather difficult to compute explicitly.

In the current article, we define an analogue of Stoffregen’s connected Seiberg–Witten
Floer homology in the setting of Heegaard Floer homology and use this to further study

the structure of the homology cobordism group.

Theorem 1.1. Let Y be a rational homology three-sphere and s a spin structure on Y .

There is a spin rational homology cobordism invariant, HFconn(Y, s), called the connected

Heegaard Floer homology, taking values in isomorphism classes of absolutely graded

F[U ]-modules. Moreover, HFconn(Y, s) is isomorphic to a summand of HFred(Y, s).

In order to define this invariant, we make use of the work of the first author and

Manolescu [7], in which they use the spinc-conjugation symmetry in Heegaard Floer
homology to produce involutive Heegaard Floer homology for a pair (Y, s). (Recall that

on a rational homology sphere, self-conjugate spinc structures correspond precisely with
spin structures.) In this case, the involutive package contains two numerical homology

cobordism invariants: d̄(Y, s) and d(Y, s). Using HFconn, we describe the asymptotic

behavior of d and d̄ under connected sums; this result is the Heegaard Floer analogue

of [26, Theorem 1.3], which concerns the Manolescu invariants α, β, and γ .

Theorem 1.2. Let Y be a rational homology three-sphere and s a spin structure on Y .

Then

lim
n→∞

d(#n(Y, s))

n
= lim

n→∞

d̄(#n(Y, s))

n
= d(Y, s).

Let 23
Z
be the three-dimensional homology cobordism group, i.e.,

23
Z = {Z-homology spheres}/Z-homology cobordism.

This group is also often called 23
H . We next use HFconn to define a filtration on 23

Z
. For

notation, let Ta(n) = F(a)[U ]/U n , where gr(1) = a. Let P denote the set of subsets of N.

Note that P is a partially ordered set, with the order induced by inclusion, i.e., given

P1, P2 ∈ P, we have that P1 6 P2 if P1 ⊆ P2. For P ∈ P, define

FP =

{
[Y ]

∣∣∣∣∣ HFconn(Y ) ∼=

N⊕

i=1

Tai
(ni ), ni ∈ P

}
.

Here, (ni )
N
i=1 is any finite sequence of elements in P, possibly with repetition and not

necessarily including every element in P.

Proposition 1.3. The group 23
Z
is filtered by P, i.e.,

(1) FP is a subgroup for each P ∈ P,

(2) if P1 6 P2, then FP1
⊆ FP2

.

From the filtration P, we are able to reprove Furuta’s theorem that 23
Z
contains a

subgroup of infinite rank [3].
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Applications of involutive Heegaard Floer homology 3

Theorem 1.4. The manifolds S3
−1(T2,4n+1) are linearly independent in 23

Z
.

This was also recently done with involutive Heegaard Floer homology by [1] (see

also [26] for a proof using Seiberg–Witten theory). Note that the knots in the above

theorem have arbitrarily large genus. In fact, if we restrict to surgery on knots with

bounded genus, the subgroup generated by these manifolds will never be all of 23
Z
, even

if we allow fractional surgeries.

Theorem 1.5. Fix N > 0. Let 23
N denote the subgroup of 23

Z
generated by {S3

1/n(K ) |

g(K ) < N , n ∈ Z}. Then 23
N is a proper subgroup of 23

Z
.

As seen from the construction of P, the U -action on HFconn can be used to obtain

significant information. We therefore define an invariant that measures the nilpotence of

this action.

Definition 1.6. Let (Y, s) be a spin rational homology sphere. Define

ω(Y, s) = min{n | U nHFconn(Y, s) = 0}.

Proposition 1.7. Let (Y, s) be a spin rational homology sphere. Then

(1) 1
2
(d(Y, s)− d(Y, s)) 6 ω(Y, s),

(2) 1
2
(d̄(Y, s)− d(Y, s)) 6 ω(Y, s).

The proof of Theorem 1.4 relies on the following calculation. Throughout, we will use

the standard identification between spinc structures on S3
p
q

(K ) and classes [i] in Z/pZ

given in [24, § 2.4]. We also will use the concordance invariant V0 from [25] (see [14] for the
current notation). Recall that an L-space knot K ⊂ S3 is a knot that admits a positive

L-space surgery.

Theorem 1.8. Let Y = S3
−n(K ) where K is an L-space knot and n is a positive integer.

Then

HFconn(Y, [0]) = T−1(V0),

and d(Y, [0]) = d̄(Y, [0]) = −d(L(n, 1), [0]) and d(Y, [0]) = −2V0 − d(L(n, 1), [0]).

For a complete description of the involution ι∗ on HF−(Y ), see Proposition 6.1.

Here our assignment Z/nZ ' Spinc(L(n, 1)) is via viewing L(n, 1) as n surgery on the

unknot. While Theorem 1.8 does not hold for arbitrary knots, in general we have the

following inequality for the invariant d.

Theorem 1.9. Let K be a knot in S3 and n a positive integer. Then

d(S3
−n(K ), [0]) > −2V0(K )− d(L(n, 1), [0]).

Using Theorem 1.8, we give a complete computation of HFconn for connected sums of

−1 surgeries on L-space knots.
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Theorem 1.10. Let K1, . . . , Km be concordant to L-space knots, ordered so that V0(K1) >

V0(K2) > · · · > V0(Km)). Let ai =
∑i

j=1 V0(Ki ), with a0 = 0. Then

HFconn(#
m
i=1S3

−1(Ki )) =

m⊕

i=1

Ti−2−2ai−1
(V0(Ki )).

Theorem 1.10 allows us to easily construct homology spheres which are not homology

cobordant to Seifert fibered spaces, first appearing in [27, Corollary 1.11].

Corollary 1.11. Let K1, . . . , Kn and K ′
1, . . . , K ′

m be knots which are concordant to

nontrivial L-space knots such that n 6= m. Then #n
i=1S3

−1(Ki ) is not homology cobordant to

#m
i=1S3

−1(K
′
i ). Moreover, for n > 2, #n

i=1S3
−1(Ki ) is not homology cobordant to any Seifert

fibered space or any surgery on an L-space knot.

Proof. The reduced Floer homology of any Seifert fibered rational homology sphere is

only supported in a fixed parity of gradings [21, Theorem 3.3]. The same is true for
nonzero rational surgery on an L-space knot. The result now follows from Theorem 1.10,

since V0(K ) > 0 for any knot concordant to a nontrivial L-space knot [22, Theorem 1.2].

Remark 1.12. The above corollary should be compared to [2, Theorem 1.2]; indeed, up
to a grading shift, for K an L-space knot, S3

−1(K ) is locally equivalent to Dai-Stoffregen’s

YV0
.

Finally, we use the connected Floer homology to show that certain elements of the

homology cobordism group are infinite order, analogous to the work of Lin et al. [10,
Theorems C and D] for certain manifolds with non-vanishing Rokhlin invariant. Recall

that an integer homology sphere Y is said to be d-negative if gr(x) < d(Y ) for every
nontrivial grading homogeneous element x ∈ HFred(Y ).

Theorem 1.13. Let Y be an integer homology sphere such that Y is d-negative and d(Y ) <

d(Y ). Then dimF(HFconn(#nY )) > 1 for all n 6= 0. In particular, [Y ] has infinite order

in 23
Z
.

Without any additional assumptions, in the special case that dimF HFconn(Y ) = 1, we

are able to prove a similar statement.

Theorem 1.14. Let Y be an integer homology sphere. If dimF HFconn(Y ) = 1, then Y is of

infinite order in 23
Z
.

Remark 1.15. Because HFconn is a spin homology cobordism invariant, Theorems 1.13

and 1.14 are equally true if (Y, s) is a Z2-homology sphere with its unique spin structure,

and we consider its order in the Z2-homology cobordism group 23
Z2
, or in the quotient

23
Z2
/23

L of the group 23
Z2

by the group 23
L generated by the Heegaard Floer L-spaces

which are also Z2-homology spheres. (In this latter case, modding out by 23
L has the

effect of replacing the absolute Q-grading on Heegaard Floer homology by a relative

Z-grading.)
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We conclude with a general computation of the connected homology of homology

spheres Y whose homology HF−(Y ) is represented by the F[U ] module H−(M) associated

to a symmetric graded root M (including the Seifert fibered spaces) up to an appropriate

grading shift. Our computation proceeds quickly from recent computations of Dai and
Manolescu [1]. In this paper, the authors associate to any symmetric graded root M a

preferred monotone subroot M ′. (We review this construction in § 7.2.) Our result is the
following.

Theorem 1.16. Let Y be an integer homology sphere with the property that HF−(Y ) ∼=
H−(M) for some graded root M. Then the connected homology of Y is the U -torsion

submodule of H−(M ′), shifted upward in degree by 1.

We will give a more precise technical statement of the above theorem in § 7.2. We have

the following corollary of Theorem 1.16, which shows that the connected Heegaard Floer

homology of Seifert fibered homology spheres agrees with Stoffregen’s computation of
the connected Seiberg–Witten Floer homology [27, Corollary 1.7].

Corollary 1.17. Let Y be an integer homology sphere such that HF−(Y ) ∼= H−(M) for

some graded root M with HFred(Y ) ∼=
⊕N

i=1

(
Tai
(ni )

)ki , where (ai , ni ) 6= (a j , n j ) if i 6= j .

Then

HFconn(Y ) ∼=

N⊕

i=1

(
Tai
(ni )

)k′
i ,

where

k′
i =





0 if ki even

1 if ki odd.

1.1. Organization

This paper is organized as follows. In § 2 we give the necessary background on involutive

Heegaard Floer homology. Section 3 is where we define the connected Heegaard Floer

homology. Several properties of this invariant are given in § 4. Applications of connected
Floer homology to homology cobordism are given in § 5. The involutive structure on the

Floer homology of certain surgeries is then computed in § 6, which leads to the promised

computations of the connected Heegaard Floer homologies of connected sums in § 7.1. In

§ 7.2, we compute the connected homology of graded roots.

2. Background on involutive Heegaard Floer homology

In this section we briefly review involutive Heegaard Floer homology and the group

of ι-complexes, following [7, 8]. We assume that the reader is familiar with ordinary

Heegaard Floer homology, as in [15, 19, 20, 23]. Throughout, we work over coefficients in

the field F = Z/2Z, and restrict ourself to the case of a rational homology sphere Y with

a spin structure s. In this case Ozsváth and Szabó’s Heegaard Floer groups HF◦(Y, s),

with ◦ ∈ {+,−, ,̂∞}, are modules over F[U ] with an absolute Q-grading.
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6 K. Hendricks et al.

Before going further, it will be helpful to state our grading conventions. We let

HF+(S3) = F[U,U−1]/UF[U ] with gr(1) = 0, whereas HF−(S3) = F[U ] with gr(1) = −2.

The module HFred(Y, s) takes gradings as a quotient of HF+(Y, s), or equivalently, as a

non-canonical submodule of HF+(Y, s). The U -torsion submodule R of HF−(Y ) is also
isomorphic to HFred(Y ). In particular, with this choice of conventions, HFred(Y ) ∼= R[−1].

(Here and throughout, given a graded module M , we write M[−n] to denote the module
M with all gradings shifted upward by n.) When we introduce HFconn(Y ) in § 3, this

module will take gradings as a submodule of HFred(Y ) ⊂ HF+(Y ).

2.1. Involutive Heegaard Floer homology

We now consider involutive Heegaard Floer homology. LetH = (H, J ) be a Heegaard pair

for Y consisting of a pointed Heegaard diagram H = (Σ,α, β, z) and a family of almost

complex structures J on the symmetric product Symg(Σ). In [7], the first author and

Manolescu construct a grading-preserving chain map ι, called the conjugation involution,

on the Heegaard Floer chain complexes, and prove that ι2 is chain homotopic to the

identity map. This involution is constructed as follows. There is a conjugate Heegaard

pair to H given by H̄ = (H̄ , J̄ ), with H̄ = (−Σ, β,α, z). This is also a Heegaard pair for
Y , and there is a chain isomorphism η : CF◦(H, s) → CF◦(H̄, s). Using the work of Juhász

and Thurston [9], one can then choose a sequence of Heegaard moves and changes to the

family of almost complex structures from H̄ to H, giving a chain homotopy equivalence

8(H̄,H) : CF◦(H̄, s) → CF◦(H, s). Then the map ι is the composition of these maps.

That is, we have

ι = 8(H̄,H) ◦ η : CF◦(H, s) → CF◦(H, s).

For each of the four flavors of Heegaard Floer homology, the involutive Heegaard Floer
chain complex CFI◦(H, s) is then the mapping cone

CFI◦(H, s) = Cone(CF◦(H, s)
Q(1+ι)
−−−−→ Q · CF◦(H, s)[−1]).

Here Q is a formal variable with deg(Q) = −1, so that if x ∈ CF◦(H, s) has gr(x) = r ,

in the complex CFI◦(H, s) we have gr(x) = r + 1 and gr(Qx) = r . The resulting chain

complex is a module over R = F[U, Q]/(Q2) = H∗(BZ4;Z2). The involutive Heegaard

Floer homology HFI◦(Y, s) is the homology of this chain complex; its isomorphism type is

an invariant of (Y, s). For this paper, we will sometimes abuse notation slightly and refer
to the chain complex CF−(Y, s) as having an involution ι. This denotes an appropriate

representative of the chain homotopy class of the complex with its map ι, which is only

an involution up to homotopy.

It is immediate from the construction that involutive Heegaard Floer homology fits

into an exact triangle

HFI◦(Y, s)

HF◦(Y, s) Q·HF◦(Y, s)[−1]
Q(1 + ι∗)

(2.1)

of U -equivariant maps [7, Proposition 4.6].
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Applications of involutive Heegaard Floer homology 7

Involutive Heegaard Floer homology also behaves well under orientation reversal,

as follows.

Proposition 2.1 [7, Proposition 4.4]. If s is a spin structure on Y , there is an isomorphism

CFI+
r (Y, s) → CFI−r−1

− (−Y, s),

where CFI− denotes the cochain complex dual to CFI− over F.

The first author and Manolescu extract two numerical invariants of homology

cobordism from HFI. Phrased in terms of HFI−, these invariants are as follows.

Definition 2.2. Let (Y, s) be a rational homology sphere with a spin structure. Then the

involutive correction terms are

d(Y, s) = max{r | ∃ x ∈ HFI−
r (Y, s),∀ n, U n x 6= 0 and U n x /∈ Im(Q)} + 1

and

d̄(Y, s) = max{r | ∃ x ∈ HFI−
r (Y, s),∀ n,U n x 6= 0; ∃ m > 0 s. t. U m x ∈ Im(Q)} + 2.

Equivalently, d̄(Y, s) = r + 2 is two more than the maximal grading r such that r ≡

d(Y, s) modulo 2Z and the map i : HFI−
r (Y, s) → HFI∞

r (Y, s) is nonzero, and d(Y, s) =

q + 1 is one more than the maximal grading q such that q ≡ d(Y, s)+ 1 modulo 2Z and

i : HFI−
q (Y, s) → HFI∞

q (Y, s) is nonzero.

It follows from the long exact sequence (2.1) that the correction terms satisfy

d(Y, s) 6 d(Y, s) 6 d̄(Y, s)

and from Proposition 2.1 that

d(Y, s) = −d̄(−Y, s).

Furthermore, the correction terms are invariants of Z2 homology cobordism, and therefore

descend to set maps
d, d̄ : 23

Z2
→ Q.

In [8], Manolescu, Zemke, and the first author show that involutive Heegaard Floer
homology obeys a convenient connected sum formula, as follows. Recall from [19, Theorem

1.5] that Ozsváth and Szabó give a chain homotopy equivalence

CF−(Y1#Y2, s1#s2) ' CF−(Y1, s1)⊗F[U ] CF−(Y2, s2)[−2]. (2.2)

The grading shift is necessary since we take HF−(S3) = F[U ] with gr(1) = −2. With

respect to this chain homotopy equivalence, we have the following.

Proposition 2.3 [8, Theorem 1.1]. Suppose Y1 and Y2 are three-manifolds equipped with
spin structures s1 and s2. Let ι1 and ι2 denote the conjugation involutions on the

Floer complexes CF−(Y1, s1) and CF−(Y2, s2). Then, under the equivalence (2.2), the

conjugation involution ι on CF−(Y1#Y2, s1#s2) is chain homotopy equivalent, over the

ring F[U ], to ι1 ⊗ ι2.
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8 K. Hendricks et al.

As a corollary, one obtains the following behavior of the correction terms under

connected sum.

Proposition 2.4 [8, Proposition 1.3]. Let (Y1, s1) and (Y2, s2) be rational homology spheres

equipped with spin structures. Then we have

d(Y1, s1)+ d(Y2, s2) 6 d(Y1#Y2, s1#s2) 6 d(Y1, s1)+ d̄(Y2, s2) 6 d̄(Y1#Y2, s1#s2)

6 d̄(Y1, s1)+ d̄(Y2, s2).

Explicit computations of involutive Heegaard Floer homology have been done for

large surgeries on L-space and thin knots by the first author and Manolescu [7], for

Seifert fibered spaces by Dai and Manolescu [1], and for certain connected sums of these
examples [1, 2, 8].

2.2. The group of ι-complexes

In light of the connected sum formula of Proposition 2.3, one can define a group out

of abstract F[U ]-complexes with involutions satisfying the same structural properties as

(CF−(Y, s), ι) mentioned above. Throughout this section, ' will denote a chain homotopy

of maps over F[U ]. We recall the following definition.

Definition 2.5 [8, Definition 8.5]. An ι-complex C = (C, ι) consists of the following data:

• A finitely generated, Q-graded, free chain complex C over F[U ] such that there is some

τ ∈ Q such that C is supported in gradings differing from τ by integers (i.e., so that C

is relatively Z-graded and absolutely Q-graded) and furthermore there is a relatively

graded isomorphism
U−1 H∗(C) ∼= F[U,U−1].

• A grading-preserving chain map ι : C → C such that ι2 ' id.

Here by U−1 H∗ we mean the result of localizing H∗ at U . The definition above slightly

extends the original, which was only for absolutely Z-graded complexes; this formulation

first appears in [1, Definition 2.1].

There are two natural notions of equivalence of ι-complexes. First, one can consider

chain homotopy equivalence.

Definition 2.6. Two ι-complexes C = (C, ι) and C′ = (C ′, ι′) are homotopy equivalent,
denoted C ' C′, if there exist grading-preserving chain maps

f : C → C ′

g : C ′ → C

such that

(1) f ◦ ι ' ι′ ◦ f and g ◦ ι′ ' ι ◦ g,

(2) g ◦ f ' idC and f ◦ g ' idC ′ .

However, it is slightly more useful to consider a weaker relation, called local equivalence.
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Applications of involutive Heegaard Floer homology 9

Definition 2.7. Two ι-complexes C = (C, ι) and C′ = (C ′, ι′) are said to be locally

equivalent if there exist grading-preserving chain maps

f : C → C ′

g : C ′ → C

such that

(1) f ◦ ι ' ι′ ◦ f and g ◦ ι′ ' ι ◦ g,

(2) f and g induce isomorphisms on U−1 H∗.

The importance of this second notion of equivalence lies in the following lemma.

Lemma 2.8 [8, Proof of Theorem 1.8]. Suppose that (Y1, s1) and (Y2, s2) are related

by a spin rational homology cobordism. Then (CF−(Y1, s1), ι1) is locally equivalent to
(CF−(Y2, s2), ι2) as ι-complexes.

With this in mind, one can consider the group IQ consisting of ι-complexes C = (C, ι)

modulo local equivalence, with multiplication given by

C ⊗ C
′ = (C ⊗F[U ] C ′[−2], ι⊗ ι′).

The identity element is [(F[U ], id)], with gr(1) = −2. The inverse of [(C, ι)] is given by

C∗ = [(C∗, ι∗)], where C∗ = HomF[U ](C,F[U ]) and ι∗ is the dual map to ι. Gradings in

the complex C∗ are handled as follows: if S is a set of generators for C over F[U ], for
each x ∈ S the dual generator x∗ has grading − gr(x)− 4.

Proposition 2.9 [8, Proposition 8.8]. With the definitions above, IQ is a well-defined

abelian group.

Once again, this is a slight extension of the original to allow for Q-gradings; if one

restricts to absolutely Z-graded complexes, one obtains the group I of [8]. The extension

first appeared in [1].

Given an ι-complex, one can define the correction terms analogously to the case of

CF−(Y, s) and CFI−(H, s). In this paper, we will call these correction terms d(C), d(C),

and d̄(C). (Of course, the first correction term only depends on C and not ι.) In particular,

we have

d(C) = max{r | ∃ x ∈ Hr (C),∀ n,U n x 6= 0} + 2,

d(C) = max{r | ∃ x ∈ HFI−
r (C),∀ n,U n x 6= 0 and U n x /∈ Im(Q)} + 1,

and

d̄(C) = max{r | ∃ x ∈ HFI−
r (C),∀ n,U n x 6= 0; ∃ m > 0 s. t. U m x ∈ Im(Q)} + 2.

These correction terms descend to give functions

d, d, d̄ : IQ → Q.

So in total one has functions

23
Z2

→ IQ
d,d,d̄
−−−→ Q
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10 K. Hendricks et al.

where the first step is via (Y, s) 7→ [(CF−(Y, s), ι)]. If we consider only integer homology

spheres, this becomes

23
Z → I

d,d,d̄
−−−→ 2Z.

The group I has been subsequently studied by Dai and Manolescu, who computed the

local equivalence classes of (CF−(Y, s), ι) for Y an almost-rational plumbed manifold [1],

and by Dai and Stoffregen, who studied linear relationships between such manifolds [2].

3. Connected Heegaard Floer homology

In this section, we define connected Heegaard Floer homology and prove Theorem 1.1.

Our approach is an adaptation of [27, § 2.5].

Definition 3.1. Let C = (C, ι) be an ι-complex. A grading-preserving chain map

f : C → C

is a self-local equivalence if

(1) f ◦ ι ' ι ◦ f ,

(2) f induces an isomorphism on U−1 H∗.

Recall that a preorder on a set S is binary relation. on S that is reflexive and transitive.

We may define a preorder on the set of self-local equivalences of C by f . g if ker f ⊆

ker g. Note that we have a preorder rather than a partial order because f : C → C is

not uniquely determined by its kernel. We say that f is maximal if for g a self-local
equivalence, g & f implies g . f . Roughly, the connected homology will be the torsion

submodule of the homology of the image of a maximal self-local equivalence. The rest of

this section is dedicated to showing that this is well defined.

We begin with the following technical lemma.

Lemma 3.2. Let C = (C, ι) and C′ = (C ′, ι′) be ι-complexes. Suppose

F : C → C ′

is a chain complex isomorphism such that F ◦ ι ' ι′ ◦ F. Then C and C′ are homotopy
equivalent as ι-complexes.

Proof. By assumption, F ◦ ι ' ι′ ◦ F via some homotopy H : C → C ′. Then it is
straightforward to verify that F−1 ◦ ι′ ' ι ◦ F−1 via F−1 ◦ H ◦ F−1 : C ′ → C . Now F and

F−1 provide the desired homotopy equivalence.

We now prove several lemmas regarding maximal self-local equivalences.

Lemma 3.3. Maximal self-local equivalence always exists.

Proof. The set of self-local equivalences is nonempty (the identity is a self-local

equivalence) and finite (since C is finitely generated over F[U ] hence finite-dimensional

as an F-vector space in each grading). Therefore, a maximal self-local equivalence always

exists.
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Applications of involutive Heegaard Floer homology 11

Lemma 3.4. If f, g : C → C are maximal self-local equivalences of C = (C, ι), then

f |im g : im g → im f is an isomorphism of chain complexes.

Proof. The composition g ◦ f : C → C is a self-local equivalence and ker(g ◦ f ) ⊇ ker f .

Since f is maximal, ker(g ◦ f ) = ker f and g|im f is injective. Similarly, f |im g is injective.

Then we have injective grading-preserving F[U ]-equivariant chain maps between finitely
generated chain complexes over F[U ], thus the maps are isomorphisms.

Lemma 3.5. If f is a maximal self-local equivalence of C = (C, ι), then C is isomorphic

to the sum im f ⊕ ker f .

Proof. By Lemma 3.4, the map f |im f is injective. Then a standard algebra argument
shows that C ∼= im f ⊕ ker f . Namely, given (x, y) ∈ im f ⊕ ker f and z ∈ C , the maps

(x, y) 7→ ( f |im f )
−1(x)+ y

z 7→ ( f (z), z + ( f |im f )
−1 ◦ f (z))

provide the desired isomorphism. (Note that ( f |im f )
−1 is a chain map since f |im f is an

injective chain map, hence this is an isomorphism of chain complexes.)

For f a maximal self-local equivalence, define ι f : im f → im f by f ◦ ι ◦ ( f |im f )
−1 and

ι⊥f : ker f → ker f by (1 + ( f |im f )
−1 ◦ f ) ◦ ι.

Lemma 3.6. If f is a maximal self-local equivalence of C = (C, ι), then (im f, ι f )⊕

(ker f, ι⊥f ) is an ι-complex which is homotopy equivalent to C.

Proof. Since f is a maximal self-local equivalence, we have from Lemma 3.5 a chain

complex isomorphism

ϕ : im f ⊕ ker f → C

(x, y) 7→ ( f |im f )
−1(x)+ y.

We will show that ϕ satisfies ϕ ◦ ι′ ' ι ◦ϕ, where ι′ = ι f ⊕ ι⊥f . Once this is established, it

is then easy to verify that (im f, ι f )⊕ (ker f, ι⊥f ) is an ι-complex.

Let H : C → C be a chain homotopy between f ◦ ι and ι ◦ f , i.e., f ◦ ι+ ι ◦ f = H ◦ ∂ +

∂ ◦ H . Then for (x, y) ∈ im f ⊕ ker f , we have

ιϕ(x, y)+ϕι′(x, y) = ι( f |im f )
−1(x)+ ι(y)+ ( f |im f )

−1 f ι( f |im f )
−1(x)

+ ι(y)+ ( f |im f )
−1 f ι(y)

= (1 + ( f |im f )
−1 f )( f ι+ ι f )( f |im f )

−1( f |im f )
−1(x)

+ ( f |im f )
−1( f |im f )

−1 f ( f ι+ ι f )(y)

= ∂ J (x, y)+ J∂(x, y),

where

J (x, y) = (1 + ( f |im f )
−1 f )H( f |im f )

−1( f |im f )
−1(x)+ ( f |im f )

−1( f |im f )
−1 f H(y).

Since ϕ is a chain complex isomorphism, this shows that (im f, ι f )⊕ (ker f, ι⊥f ) is an

ι-complex and Lemma 3.2 implies that ϕ induces an equivalence of ι-complexes.
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12 K. Hendricks et al.

We are now able to show that (im f, ι f ) carries the local equivalence type of C.

Lemma 3.7. If f is a maximal self-local equivalence of C = (C, ι), then f : (C, ι) →

(im f, ι f ) and ( f |im f )
−1 : (im f, ι f ) → (C, ι) are local equivalences.

Proof. By Lemma 3.6, we have that (im f, ι f )⊕ (ker f, ι⊥f ) is an ι-complex which is

locally equivalent to (C, ι). Note that U−1 H∗(im f ) ∼= F[U,U−1] since f is a self-local

equivalence. From this, it is straightforward to verify that (im f, ι f ) is an ι-complex
and the inclusion (im f, ι f ) → (im f, ι f )⊕ (ker f, ι⊥f ) is a local equivalence. Therefore, the

composition of this inclusion with the local equivalence ϕ from Lemma 3.6 is a local
equivalence as well. However, by definition of ϕ, this local equivalence is just given by

( f |im f )
−1.

Since ϕ is a chain complex isomorphism, ϕ−1 is also a local equivalence from (C, ι)

to (im f, ι f )⊕ (ker f, ι⊥f ), by the proof of Lemma 3.2. Composing with the projection to

(im f, ι f ), we obtain a local equivalence from (C, ι) to (im f, ι f ). This map is exactly f .

Moreover, the following lemma shows that the homotopy type of (im f, ι f ) is

independent of the choice of maximal self-local equivalence.

Lemma 3.8. If f and g are maximal self-local equivalences of C = (C, ι), then (im f, ι f )

and (im g, ιg) are homotopy equivalent as ι-complexes.

Proof. By Lemma 3.4, f |im g : im g → im f is an isomorphism of chain complexes. We

will show that f |im g ◦ ιg and ι f ◦ f |im g are chain homotopic. In what follows, the domain

is im g and the codomain im f :

f ◦ ιg = f ◦ g ◦ ι ◦ (g|im g)
−1

' f ◦ ι ◦ g ◦ (g|im g)
−1

= f ◦ ι

= ( f |im f )
−1 ◦ f ◦ f ◦ ι

' ( f |im f )
−1 ◦ f ◦ ι ◦ f

= ( f |im f )
−1 ◦ f ◦ ι ◦ f ◦ ( f |im f )

−1 ◦ f

' ( f |im f )
−1 ◦ f ◦ f ◦ ι ◦ ( f |im f )

−1 ◦ f

= f ◦ ι ◦ ( f |im f )
−1 ◦ f

= ι f ◦ f,

as desired. Now by Lemma 3.2, the map f |im g induces a homotopy equivalence between

the ι-complexes (im f, ι f ) and (im g, ιg).

The above lemma tells us that we can use a maximal self-local equivalence to define an
invariant of an ι-complex. Note that the homotopy type of (im f, ι f ) as an ι-complex is

independent of the choice of f by Lemma 3.8. Moreover, the isomorphism type of im f

as a chain complex over F[U ] is independent of the choice of f by Lemma 3.4. This leads

to the following definition.
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Applications of involutive Heegaard Floer homology 13

Definition 3.9. Let C be an ι-complex and f a maximal self-local equivalence. The

connected complex (Cconn, ιconn) is (im f, ι f ).

Proposition 3.10. Let C and C′ be locally equivalent ι-complexes. Then Cconn and C′
conn are

isomorphic as chain complexes; in particular, Cconn is an invariant of the local equivalence

type of C. Furthermore, the homotopy type of (Cconn, ιconn) as an ι-complex is an invariant
of the local equivalence type of C.

Proof. Since C = (C, ι) and C′ = (C ′, ι′) are locally equivalent, there exist

F : C → C ′

G : C ′ → C

such that F ◦ ι ' ι′ ◦ F and G ◦ ι′ ' ι ◦ G, and F and G induce isomorphisms on U−1 H∗.
Let f : C → C and g : C ′ → C ′ be maximal self-local equivalences. Then G ◦ g ◦ F ◦ f is

a self-local equivalence of C . Since ker(G ◦ g ◦ F ◦ f ) ⊇ ker f and f is maximal, we have
that ker(G ◦ g ◦ F ◦ f ) ⊆ ker f , i.e., ker(G ◦ g ◦ F ◦ f ) = ker f . Thus, g ◦ F |im f : im f →

im g is injective. Similarly, f ◦ G|im g : im g → im f is injective. Since we have injective

grading-preserving F[U ]-equivariant chain maps between the finitely generated F[U ]

chain complexes im f and im g, the maps are isomorphisms.

We would like to show that (im f, ι f ) and (im g, ιg) are homotopy equivalent

ι-complexes. By Lemma 3.7, it follows that g ◦ F ◦ ( f |im f )
−1 is a composition of local

equivalences, and hence induces a local equivalence between (im f, ι f ) and (im g, ιg).
(The map in the other direction is given by f ◦ G ◦ (g|im g)

−1.) Since this is also a chain

complex isomorphism, Lemma 3.2 implies that we have in fact constructed a homotopy

equivalence of ι-complexes.

With this, we are ready to define the connected homology of an ι-complex, and

consequently, the connected Heegaard Floer homology for a spin rational homology
sphere. The following definition will be useful in defining the connected homology.

Definition 3.11. Let C be a finitely generated graded chain complex over F[U ]. The

reduced homology of C is

Hred(C) = ker
(
U N : H∗(C) → H∗(C)

)
[−1],

for N � 0, i.e., Hred(C) is the U -torsion submodule of H∗(C) with gradings shifted by one.

Remark 3.12. Note that if C = C F−(Y, s), then Hred(C) = HFred(Y, s).

Definition 3.13. Let C be an ι-complex. The connected homology of C is

Hconn(C) = Hred(Cconn).

If (Y, s) is a spin rational homology sphere, the connected Heegaard Floer homology of

(Y, s) is

HFconn(Y, s) = Hconn(C F−(Y, s), ι).
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The grading shift is included so that HFconn(Y, s) is graded isomorphic to a direct

summand of HFred(Y, s), viewed as a quotient of HF+(Y, s).

With the work of this section, we can easily deduce that HFconn(Y, s) is a spin homology

cobordism invariant.

Proof of Theorem 1.1. That the isomorphism class of HFconn(Y, s) is an invariant of

homology cobordism follows directly from Lemma 2.8 and Proposition 3.10.

We conclude this section with the following proposition, which is useful for

computations of connected homology.

Proposition 3.14. Let C = (C, ι) and C′ = (C ′, ι′) be ι-complexes. Then (C ⊗ C′)conn is

isomorphic to (Cconn ⊗ C′
conn)conn.

The proposition relies on the following lemma.

Lemma 3.15. Let C = (C, ι) = (C ′, ι′)⊕ (C ′′, ι′′) be an ι-complex with U−1 H∗(C
′) ∼=

F[U,U−1]. Then Cconn
∼= (C ′, ι′)conn.

Proof. Note that since U−1 H∗(C
′) ∼= F[U,U−1], we have that (C ′, ι′) is an ι-complex,

and (C, ι) and (C ′, ι′) are locally equivalent (via projection and inclusion). The result

now follows from Proposition 3.10.

Proof of Proposition 3.14. Let f and f ′ be maximal self-local equivalences of C and C′

respectively. By Lemma 3.6 together with the definition of the connected complex, we

have that

C ' (Cconn, ιconn)⊕ (ker f, ι⊥f ) and C
′ ' (C′

conn, ι
′
conn)⊕ (ker f ′, ι′

⊥
f ′).

Then Cconn ⊗ C′
conn is a direct summand of C ⊗ C′, and by Lemma 3.6, (Cconn ⊗ C′

conn)conn
is a direct summand of Cconn ⊗ C′

conn. Hence (Cconn ⊗ C′
conn)conn is a direct summand of

C ⊗ C′. The result now follows from Lemma 3.15.

4. Properties of connected homology

4.1. Properties and a numerical invariant of Hconn

In this section, we study the properties of Hconn through connections with the involutive

correction terms. We first give the relationship between Hconn(C) and Hconn(C
∗).

Proposition 4.1. If Hconn(C) =
⊕

i Tai
(ni ), then Hconn(C

∗) =
⊕

i T−ai +2ni −3(ni ).

Proof. It follows from the definition of the chain complex Cconn that (C∗)conn ∼= (Cconn)
∗.

Indeed, if f is a maximal self-local equivalence of C, then it is straightforward to verify

that f ∗ is a maximal self-local equivalence of C∗ and (im f )∗ ∼= im( f ∗).

The result now follows immediately from duality and our grading conventions.

We can also generalize Definition 1.6 to arbitrary ι-complexes, as follows.

Definition 4.2. Let C be an ι-complex. Define

ω(C) = min{n | U n Hconn(C) = 0}.
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We first relate ω to the various correction terms of an ι-complex.

Proposition 4.3. Let C be an ι-complex. Then

(1) 1
2
(d(C)− d(C)) 6 ω(C),

(2) 1
2
(d̄(C)− d(C)) 6 ω(C).

Proof. We may assume that any maximal self-local equivalence C → C is surjective.

Indeed, we may begin by replacing C with its image under some maximal self-local
equivalence f : C → C; any maximal self-local equivalence of (im f, ι f ) must be surjective,

as otherwise, one can derive a contradiction to the maximality of f . Thus Hconn(C) =

Hred(C). Let n = 1
2
(d(C)− d(C)) and m = 1

2
(d̄(C)− d(C)), which are invariants of local

equivalence. The existence of the exact triangle

H∗(C) H∗(C)

H∗(Cone(1 + ι))

(1+ι)∗

of U -equivariant maps implies that if n > 0, the homology H∗(C) must contain Td(C)−2(n)

as a direct summand, and if m > 0, the homology H∗(C) must contain Td(C)+2m−3(m) as

a direct summand. We conclude that HFconn(C) is not annihilated by U max{n,m}−1, and
ω(C) > max{n,m}.

Proof of Proposition 1.7. The result follows immediately from the preceding proposition

by letting C = (C F−(Y, s), ι).

One advantage of the invariant ω is that it is well behaved under connected sums.

Proposition 4.4. For ι-complexes C and C′, we have

ω(C ⊗ C
′) 6 max{ω(C), ω(C′)}.

Proof. As before, we may assume that any maximal self-local equivalence C → C is

surjective, so we may assume that Hconn(C) = Hred(C). Then we have ω(C) = min{n |

U n Hred(C) = 0}. For concreteness, let H∗(C) = F[U ] ⊕ (
⊕k

i=1 T (ni )), with grading

information omitted. Then if we order the numbers ni such that n1 > n2 > · · · > nk ,
we have that ω(C) = n1. Similarly we may assume that Hconn(C

′) = Hred(C
′), and

thus ω(C′) = min{n | U n Hred(C
′) = 0}. Let H∗(C

′) = F[U ] ⊕ (
⊕`

j=1 T (m j )), and order the

numbers m j such that ω(C′) = m1.

We now consider C ⊗ C′. The connected homology of this complex is (up to grading

shift) a submodule of H∗(C ⊗F[U ] C ′). By the Künneth formula for complexes over F[U ]

(see for example [19, Corollary 6.3]), the U -torsion submodule of H∗(C ⊗F[U ] C ′) is a

direct sum of terms of the following forms

F[U ] ⊗ T (m j ) = T (m j ) for each m j

T (ni )⊗F[U ] = T (ni ) for each ni

T (ni )⊗ T (m j ) = T (min{ni ,m j }) for each ni ,m j
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Tor(T (ni ), T (m j )) = T (min{ni ,m j }) for each ni ,m j .

We observe that in no case is there a U -torsion element in H∗(C ⊗F[U ] C ′) which is not

annihilated by either U n1 or U m1 . Therefore there can be no element in Hconn(C ⊗ C′)

which is not annihilated by U max{n1,m1}. It follows that ω(C ⊗ C′) 6 max{ω(C), ω(C′)}.

With the above technical results, we are able to prove the following involutive analogue

of Stoffregen’s linear asymptotics of the Manolescu invariants [26, Theorem 1.3] claimed

in the introduction, Theorem 1.2. For notation, we will use nC to mean the tensor product
of C with itself n times.

Theorem 4.5. Let C be an ι-complex. Then

lim
n→∞

d(nC)

n
= lim

n→∞

d̄(nC)

n
= d(C).

In particular, if (Y, s) is a spin rational homology three-sphere, then

lim
n→∞

d(#n(Y, s))

n
= lim

n→∞

d̄(#n(Y, s))

n
= d(Y, s).

Proof. Since d(C) is additive under tensor products, we have that d(nC) = nd(C).
Proposition 4.4 implies that ω(nC) 6 ω(C). Since d(C) 6 d(C) and d(C) 6 d̄(C), it now

follows from Proposition 4.3 that

d(C)−
2ω(C)

n
6

d(nC)

n
6

d̄(nC)

n
6

2ω(C)

n
+ d(C).

Since ω(C) is independent of n, the result follows. For the claim about the three-manifold
invariants, we use C = (C F−(Y, s), ι).

4.2. ι-complexes with small connected homology

In this section, we study ι-complexes with small connected homology. We begin by
characterizing when the connected homology is trivial.

Proposition 4.6. Let C = (C, ι) be an ι-complex. Then Hconn(C) = 0 if and only if d(C) =

d(C) = d̄(C).

First, we need a technical structural lemma about ι-complexes.

Lemma 4.7. Let C = (C, ι) be an ι-complex. If d(C) = d(C), then there exists a homotopy
equivalent complex C′ = (C ′, ι′) such that

C ′ = F[U ]〈x〉 ⊕
⊕

i

(
F[U ]〈yi 〉 ⊕F[U ]〈zi 〉

)
,

where ι′(x) = x and there exist positive integers ni such that

∂x = 0

∂yi = U ni zi

∂zi = 0.
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Applications of involutive Heegaard Floer homology 17

Remark 4.8. Note that ι′ above does not necessarily split since x could appear in ι′(yi )

for some i .

Proof. Recall that two free chain complexes over a principal ideal domain with isomorphic
homology are necessarily chain homotopy equivalent. Since C is a finitely generated free

chain complex over F[U ] with homology rank one (as an F[U ]-module), and deg(U ) = −2,
we may assume that

C = F[U ]〈x〉 ⊕

p⊕

i=1

(
F[U ]〈yi 〉 ⊕F[U ]〈zi 〉

)
,

where ∂x = 0 and ∂yi = U ni zi for some ni ∈ Z>0.

We now show that if d(C) = d(C), then ι ' ι′ where ι′(x) = x . Indeed, since ι is a chain

map and induces an isomorphism on U−1 H∗(C), we have that

ι(x) = x +
∑

i∈I

U mi zi ,

for some I ⊆ {1, . . . , p} and mi ∈ Z>0. Define

ι′(x) = x

ι′(yi ) = ι(yi )

ι′(zi ) = ι(zi ).

We have that ι ' ι′, and hence (C, ι′) is a homotopy equivalent ι-complex, via a homotopy

H defined on basis elements x, yi , zi to be

H(x) =
∑

i∈I

U mi −ni yi

H(yi ) = 0

H(zi ) = 0.

To see that H is well defined, we must show that mi − ni > 0 for all i ∈ I . Indeed, d(C) =

d(C) implies that ι(x) is homologous to x and thus the sum
∑

i∈I U mi zi is contained in

im ∂. Since ∂yi = U ni zi , we have that mi > ni for all i ∈ I . This completes the proof of

the lemma.

Proof of Proposition 4.6. The ‘only if’ direction follows immediately from

Proposition 4.3.
We now prove the ‘if’ direction. By Lemma 4.7, without loss of generality we may

assume that there exists a basis {x, y1, . . . , yp, z1, . . . , z p} for C such that ∂yi = U ni zi

and ∂x = ∂zi = 0 for all i , and ι(x) = x since d(C) = d(C).

Now consider C∗ = (C∗, ι∗), the dual of C. We dualize the above basis to obtain a basis

{x∗, y∗
1 , . . . , y∗

p, z∗
1, . . . , z∗

p}

for C∗ with the property that x∗ does not appear in ι∗(y∗
i ) or ι

∗(z∗
i ) for any i since no yi

nor zi appears in ι(x).
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We have that d(C) = d̄(C) if and only if d(C∗) = d(C∗) by duality. We now apply

the proof of Lemma 4.7 to the basis {x∗, y∗
1 , . . . , y∗

p, z∗
1, . . . , z∗

p} to obtain (ι∗)′ with the

property that (ι∗)′(x∗) = x∗. It follows that C∗ = (C∗, (ι∗)′) splits as

(F[U ]〈x∗〉, id)⊕ (A, (ι∗)′|A),

where

A =
⊕

i

(F[U ]〈y∗
i 〉 ⊕F[U ]〈z∗

i 〉).

Therefore, Hconn(C
∗) = 0, so Hconn(C) = 0 as well by Proposition 4.1.

We are also able to characterize when dimF Hconn(C) = 1.

Proposition 4.9. If dimF Hconn(C) = 1, then either

(1) the unique element in Hconn(C) is in grading d(C)− 1 and d(C) = d̄(C) = d(C)+ 2,

or

(2) the unique element in Hconn(C) is in grading d(C) and d(C) = d(C) = d̄(C)− 2,

Proof. Since dimF Hconn(C) = 1, we have that C = (C, ι) is locally equivalent to an

ι-complex C′ = (C ′, ι′) with H∗(C
′) = F[U ] ⊕F. Moreover, if dimF Hconn(C) = 1, then by

Proposition 4.6, at least one of d(C) or d̄(C) is not equal to d(C). Since d, d, and d̄ are

invariants of local equivalence, it follows that at least one of d(C′) or d̄(C′) is not equal
to d(C′). Consider the exact triangle

H∗(C
′) H∗(C

′)

H∗(Cone(1 + ι′)).

(1+ι′)∗

If d(C′) < d(C′), then it follows that the F summand must be in grading d(C′)− 2 and

d(C′) = d(C)− 2. Furthermore, it follows from parity of the gradings in HFconn(C) that
d̄(C) = d(C). Similarly, if d̄(C′) > d(C′), then it follows that the F summand must be in

grading d(C′)− 1 and d̄(C′) = d(C)+ 2, while d(C) = d(C). Applying the grading shift

from the definition of Hconn, we have the result.

Corollary 4.10. If dimF Hconn(C) = 1, then C is locally equivalent to either the involutive

complex for Σ(2, 3, 7) or −Σ(2, 3, 7), up to an overall grading shift.

Here, following [7, 15], our orientation convention is that Σ(2, 3, 7) = S3
−1(T2,3).

Proof. If the unique element in Hconn(C) is in grading d(C)− 1 and d(C) = d̄(C) = d(C)+

2, then by the proof of Proposition 4.9, the ι-complex C = (C, ι) is locally equivalent to an

ι-complex C′ = (C ′, ι′) with H∗(C
′) = F[U ]〈x〉 ⊕F〈z〉 and (1 + ι)∗(x) = z. Then [1, Proof

of Theorem 1.1] shows us that the action of ι∗ on H∗(C
′) determines (up to homotopy)

the underlying action on the chain level on any free chain complex with homology H∗(C
′).

In particular, C ′ is homotopy equivalent to

F[U ]〈a〉 ⊕F[U ]〈b〉 ⊕F[U ]〈c〉,
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with ∂c = U (a + b) and ι′′(a) = b, ι′′(b) = a, and ι′′(c) = c, which is the ι-complex for

Σ(2, 3, 7) [7].

If the unique element in Hconn(C) is in grading d(C) and d(C) = d(C) = d̄(C)− 2, then

we repeat the above argument to conclude that C∗ = (C∗, ι∗) is locally equivalent to the

involutive complex for Σ(2, 3, 7), i.e., C is locally equivalent to the involutive complex

for −Σ(2, 3, 7).

5. Applications to homology cobordism

In this section, we give the applications of connected Floer homology to homology
cobordism promised in the introduction. The arguments will rely on a few direct

computations of the connected Floer homology of a certain class of manifolds. These

computations are done in §§ 6 and 7.

We now discuss a filtration on IQ which will yield the filtration on the homology

cobordism group described in the introduction. Recall that P denotes the set of subsets
of N, partially ordered by inclusion. For P ∈ P, define

F
I

P =

{
[C] ∈ IQ | Hconn(C) ∼=

⊕

i

F[U ]/U niF[U ], ni ∈ P

}
.

The above isomorphism is ungraded. We will often be interested in [N ] = {1, 2, . . . , N } ∈

P. We now prove that P induces a filtration on IQ.

Proposition 5.1. The collection of subsets FI

P induces a filtration of IQ by P.

Proof. That FI

P is closed under inverses follows from Proposition 4.1. The only remaining

point is that FI

P is closed under connected sum. Let [C], [C′] ∈ FI

P . Let C = (C, ι) be a
representative of the local equivalence class with the property that Hconn(C) = Hred(C).

We choose an analogous representative for C′ = (C ′, ι′). Then we see that H∗(C) ∼=
F[U ] ⊕

⊕
i F[U ]/U niF[U ] for some collection of ni ∈ P, and similarly for H∗(C

′). Then

the module HFconn(C ⊗ C′) must be, up to a grading shift, a summand of the U -torsion

submodule of H∗(C ⊗F[U ] C ′). But the Künneth formula implies that the U -torsion

submodule of H∗(C ⊗F[U ] C ′) consists of a direct sum of cyclic modules F[U ]/U m j , each

of which appears as a summand of H∗(C) or H∗(C
′), and therefore m j ∈ P. Consequently,

[C ⊗ C′] lies in FI

P .

We now define the filtration on 23
Z
described in the introduction. Recall that P denotes

the powerset of N, and for P ∈ P, we define

FP =

{
[Y ] | HFconn(Y ) ∼=

⊕

i

Tai
(ni ), ni ∈ P

}
.

Proposition 1.3. The group 23
Z
is filtered by P, i.e.,

(1) FP is a subgroup for each P ∈ P,

(2) if P1 6 P2, then FP1
⊆ FP2

.

Proof. This follows from Proposition 5.1 by applying the map from 23
Z
to IQ which takes

Y to [(C F−(Y ), ι)].
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The filtration P is effective for studying the subgroup of 23
Z
generated by surgery on

knots in S3 of bounded genus.

Theorem 1.5. Fix N > 0. Let 23
N denote the subgroup of 23

Z
generated by {S3

1/n(K ) |

g(K ) < N , n ∈ Z}. Then 23
N is a proper subgroup of 23

Z
.

Proof. By [4, Theorem 3], we have that for any n ∈ Z,

U g(K )+dg4(K )/2eHFred(S
3
1/n(K )) = 0.

In particular, suppose g(K ) < N and let HFconn(S
3
1/n(K ))

∼=
⊕

i F[U ]/U niF[U ]. Then for

each i , we have ni < 3N/2. It follows that the subgroup generated by {S3
1/n(K ) | g(K ) <

N , n ∈ Z} is contained in F[ 3N
2 −1]. There exist L-space knots with any value of V0 (e.g.,

T2,4n+1), so by Theorem 1.8, we have that F[p]/F[p−1] is nonempty for all p ∈ N, hence

23
N is a proper subgroup of 23

Z
.

It is still an open question as to whether every homology sphere is homology cobordant

to one obtained by surgery on some knot in S3.

Note that the above theorem immediately proves that 23
Z
is infinitely generated. Using

the invariant ω, we easily can reprove Furuta’s theorem that 23
Z
contains a Z∞ subgroup.

Theorem 1.4. The manifolds S3
−1(T2,4n+1) are linearly independent in 23

Z
.

Proof. Let Yn = S3
−1(T2,4n+1). By [16, Corollary 1.5], we have that V0(T2,4n+1) = n. It then

follows from Theorem 1.10 that ω(kYn) = n for any integer k > 0. By Proposition 4.1,

the same holds for k < 0. Therefore, by Proposition 4.4, we see that

ω(k1Y1# · · · #knYn) 6 max
ki 6=0

i.

Therefore, we see that no linear combination k1Y1# . . . kN YN with kN nonzero can be

trivial in homology cobordism, since otherwise we would have

N = ω(−kN YN ) = ω(k1Y1# · · · #kN−1YN−1) 6 N − 1,

where the leftmost equality is by Theorem 1.10 (and Proposition 4.1 if kN > 0). Hence

we have reached a contradiction.

More generally, Theorems 1.13 and 1.14 below give sufficient conditions for a homology
sphere to be infinite order in 23

Z
. The following proposition will be used in the proofs of

Theorems 1.13 and 1.14.

Proposition 5.2. Let Y1 and Y2 be integer homology spheres such that d(Y1) < d(Y1) and

at least one of the following is true of Y2:

• Y2 is d-negative, or

• HF−
r (Y2) is nonzero only in gradings r such that r ≡ d (mod 2).

Then d(Y1#Y2) < d(Y1#Y2).

Note that, by Proposition 4.6, this in particular implies that dimF(HFconn(Y1#Y2)) > 1.
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Proof. Either of the conditions on Y2 is sufficient to guarantee that d̄(Y2) = d(Y2). But

then by Proposition 2.4, we have

d(Y1#Y2) 6 d(Y1)+ d̄(Y2)

= d(Y1)+ d(Y2)

< d(Y1)+ d(Y2)

= d(Y1#Y2).

Here the third step uses the assumption that d(Y1) < d(Y1).

The following theorems now follow readily.

Theorem 1.13. Let Y be an integer homology sphere such that Y is d-negative and d(Y ) <

d(Y ). Then dimF(HFconn(#nY )) > 1 for all n 6= 0. In particular, [Y ] has infinite order

in 23
Z
.

Proof. This follows immediately from Proposition 5.2.

Theorem 1.14. Let Y be an integer homology sphere. If dimF HFconn(Y ) = 1, then Y is of

infinite order in 23
Z
.

Proof. This follows from Corollary 4.10 and Proposition 5.2.

Remark 5.3. As noted in the introduction, Proposition 5.2 and therefore Theorems 1.14

and 1.13 also apply in the case that Y is a Z2-homology sphere, together with its unique
spin structure, and we consider either the group 23

Z2
or 23

Z2
/23

L .

6. Computations for integer surgeries

6.1. The mapping cone formula and ι for surgeries

In this section, we will study the behavior of involutive Heegaard Floer homology and
the connected Floer homology for certain Dehn surgeries. This will include the claimed

computations for −1-surgery on T2,4n+1 used in the proof of Theorem 1.4.

We assume that the reader is familiar with the integer surgery mapping cone formula

of [24]. Let CFK∞(K ) be the knot Floer complex of K ⊂ S3, which is freely generated

over F[U,U−1] and Z⊕Z-filtered. For X ⊂ Z⊕Z, let C X denote the subset of CFK∞(K )

generated over F by elements with filtration level (i, j) ∈ X . We will be interested in the

case that a ∈ X implies b ∈ X for all b < a with respect to the product partial order on
Z⊕Z; in this case, C X will always be a subcomplex of CFK∞(K ). We will be particularly

interested in

A−
s = C{i 6 0 and j 6 s}

B− = C{i 6 0}.

The complex B− is homotopy equivalent to C F−(S3). We also have that C{ j 6 0} is

homotopy equivalent to C F−(S3), and, up to a grading shift, C{ j 6 s} is homotopy

equivalent to C{ j 6 0} (via multiplication by U s), and thus also homotopy equivalent to
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Figure 1. A graded root for M( EV ) where V0 = 2, V1 = V2 = 1, and Vs = 0 for s > 3.

C{i 6 0}. Since H∗(C{i 6 0}) ∼= F[U ] and each of these complexes is finitely generated

and free over F[U ], this homotopy equivalence is unique up to homotopy.

We have chain maps

vs : A−
s → B− and hs : A−

s → B−,

where vs is inclusion, and hs is inclusion into C{ j 6 s} followed by the chain homotopy

equivalence from C{ j 6 s} to C{i 6 0}. Let

Vs = dimF(coker vs,∗) and Hs = dimF(coker hs,∗).

Recall from [14, Lemma 2.4] that Vs+1 6 Vs , and that Vs = 0 for s > g(K ), where g(K )

denotes the Seifert genus of K [17, Theorem 1.2]. We also have that Vs = H−s and Hs =

Vs + s (see [6, Lemmas 2.3 and 2.5] combined with [5, Lemma 2.6]). We write EV for the

sequence {Vs}
∞
s=0, which encodes the values of Vs and Hs for all s ∈ Z.

We now define an F[U ]-module M( EV ) which will be used to describe the Heegaard

Floer homology of −1-surgery on an L-space knot. For each s > 0 with Vs 6= 0, we have
two generators xs and x ′

s in grading −s(s + 1)− 2. We have the relations

U Vs xs = U Vs x ′
s for s > 0

U Vs xs = U Vs+
s(s+1)

2 x0 for s > 0.

See Figure 1 for a depiction of the module M( EV ) as a graded root. Let J0 be the
F[U ]-equivariant involution on M( EV ) that interchanges xs and x ′

s . It is clear from the

definition of M( EV ) that this involution is indeed well defined.

More generally, we define an F[U ]-module M( EV , n) for n ∈ Z>0. For each s > 0 such

that Vns 6= 0, we have two generators xs and x ′
s in grading −ns(s + 1)− 2. We have the
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relations

U Vns xs = U Vns x ′
s for s > 0

U Vns xs = U Vns+
ns(s+1)

2 x0 for s > 0.

As before, let J0 be the F[U ]-equivariant involution that interchanges xs and x ′
s . Note

that M( EV ) = M( EV , 1). On the other hand, M( EV , n) only depends on the values of Vk for

k ≡ 0 (mod n).

Proposition 6.1. Let K be an L-space knot and n a positive integer. Then

HF−(S3
−n(K ), [0]) ∼= M( EV , n)[d(L(n, 1), [0])],

and the induced action ι∗ on HF−(S3
−n(K )) coincides with J0 on M( EV , n).

Using Proposition 6.1, we prove the following stronger version of Theorem 1.8.

Theorem 6.2. Let K be an L-space knot and n a positive integer. Let M( EV , n)

[d(L(n, 1), [0])] be the F[U ]-module described above endowed with the involution J0. Then

HFI−(S3
−n(K ), [0]) ∼= ker(1 + J0)[−1] ⊕ coker(1 + J0).

Under this isomorphism, the action of Q on HFI−(S3
−n(K ), [0]) is given by the quotient

map

ker(1 + J0) → ker(1 + J0)/ im(1 + J0) ⊆ coker(1 + J0).

The involutive correction terms are

d̄(S3
−n(K ), [0]) = d(S3

−n(K ), [0]) = −d(L(n, 1), [0])

and

d(S3
−n(K ), [0]) = −2V0(K )− d(L(n, 1), [0]).

Finally, HFconn(S
3
−n(K ), [0]) = T(−d(L(n,1),[0])−1)(V0(K )).

Proof. Consider the long exact sequence from (2.1), which yields a short exact sequence:

0 → coker(1 + ι∗) → HFI−(S3
−n(K ), [0]) → ker(1 + ι∗)[−1] → 0,

where ι∗ is the induced action of ι on HF−(S3
−n(K ), [0]). By Proposition 6.1,

HF−(S3
−n(K ), [0]) is all supported in the same grading mod 2, so ker(1 + ι∗)[−1] and

coker(1 + ι∗) are in different parities of gradings, and the short exact sequence splits. From

this, it follows that Q acts on HFI− as claimed. By the splitting of HFI− established,
d(S3

−n(K ), [0]) is two more than the maximal degree of a U -nontorsion element in

ker(1 + ι∗), while d̄(S3
−n(K ), [0]) is two more than the maximal degree of a U -nontorsion

element of coker(1 + ι∗). The involutive correction terms are then easily computed using

Proposition 6.1. For an alternate and more powerful proof of the involutive Floer

homology and correction terms, see the proof of [1, Theorems 1.1 and 1.2] (combined

with Proposition 6.1).
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By Proposition 6.1, HF−(S3
−n(K ), [0]) ∼= M( EV , n) up to a grading shift, where ι∗

on HF−(S3
−n(K ), [0]) coincides with the involution J0 on M( EV , n). Note that the

module M( EV , n) together with J0 has the structure of a symmetric graded root

together with its reflection involution, as in [1, § 4]. There exists a J0-equivariant
change of basis so that M( EV , n) contains a summand equivariantly isomorphic to

(M( EV ′, n), J0), where EV ′ = (V0, 0, 0, . . .). By [1, Lemmas 4.1, 4.4, and Theorem 6.1],
we see that CF−(S3

−n(K ), [0]) is locally equivalent to a complex with homology

isomorphic to M( EV ′, n), and thus HFconn(S
3
−n(K ), [0]) is isomorphic to a submodule of

T(−d(L(n,1),[0])−1)(V0(K )). (The term −d(L(n, 1), [0]) is from the grading shift between

HF−(S3
−n(K ), [0]) and M( EV , n), and the −1 is from the shift in the definition

of HFconn.) Since d(S3
−n(K ), [0]) = d(S3

−n(K ), [0])+ 2V0, Proposition 4.3 implies that

HFconn(S
3
−n(K ), [0]) is exactly T(−d(L(n,1),[0])−1)(V0(K )).

The proof of Proposition 6.1 will rely on the integer surgery mapping cone formula

of [24]. In particular, we will use the fact that the maps induced by the 2-handle cobordism
from S3 to S3

−n(K ) can be computed from the mapping cone, as follows. Throughout, we

assume that n is a positive integer.
We will define a map

Dn :
⊕

s∈Z

A−
s →

⊕

s∈Z

B−
s ,

where each B−
s is a copy of B− = C F−(S3). The map Dn sends as ∈ A−

s to

Dn(as) = vs(as)+ hs(as)

where

vs : A−
s → B−

s and hs : A−
s → B−

s−n .

Let C = Cone(Dn), the mapping cone of Dn . The absolute grading on the complex C

is determined by setting the grading of 1 ∈ H∗(B
−
−s) to be −2 − d(L(n, 1), [n − s]) for

0 6 s 6 n − 1.

Let W−n(K ) be the four-manifold obtained by attaching a 2-handle to S3 along K ⊂

S3 = ∂B4 with framing −n. Choose a Seifert surface F for K and let F̂ denote the capped

off surface in W−n(K ).

Fix N a positive integer. Let

AN =
⊕

−N6s6N

A−
s and BN =

⊕

−N−n6s6N

B−
s .

Write C
N for the subcomplex of the mapping cone C given by

C
N = AN ⊕BN .

For notational purposes, we denote the differential by DN
n . Unlike C, C

N is finitely

generated over F[U ]. The following allows us to compute the cobordism map associated
to W−n(K ) in terms of the subcomplex C

N .

Proposition 6.3. Fix a knot K ⊂ S3, a positive integer n > 0, and a spinc structure t on

W−n(K ). There exists N � 0 such that the following holds.
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(1) H∗(C
N ) ∼= HF−(S3

−n(K )) as absolutely graded F[U ]-modules.

(2) If |〈c1(t), F̂〉| 6 2N + n, then F−
W−n(K ),t

(1) can be computed via the inclusion of B−
s

into C
N , where 〈c1(t), F̂〉 − n = 2s.

(3) If |〈c1(t), F̂〉| > 2N + n, then F−
W−n(K ),t

(1) is the unique nonzero element of

HF−(S3
−n(K ), t|S3

−n(K )
) in degree c1(t)

2−7
4

.

While statements of the form found in Proposition 6.3 are more standard for HF+, we
find that for our use here, the version for HF− is more suitable for our computations.

We postpone the proof of Proposition 6.3 to § 6.2. Assuming this proposition, we now
proceed toward the proof of Proposition 6.1.

When K is an L-space knot, it follows from [18, Theorem 4.4] and [19, Theorem 9.6]

that H∗(A
−
s )

∼= F[U ] for all s. Furthermore, we will show that if K is an L-space knot,

we have the following identification.

Lemma 6.4. If K is an L-space knot, then

HF−(S3
−n(K ))

∼= coker DN
n,∗,

where
DN

n,∗ :
⊕

−N6s6N

H∗(A
−
s ) →

⊕

−N−n6s6N

H∗(B
−
s ).

Proof. We have an exact triangle

H∗(A
N ) H∗(B

N )

H∗(C
N )

DN
n,∗

which yields the short exact sequence

0 → coker DN
n,∗ → H∗(C

N ) → ker DN
n,∗ → 0.

Since K is an L-space knot, H∗(A
−
s )

∼= F[U ] for all s. It is straightforward to verify in
this case that vs and hs are injective on homology for each s, which can then be used

to prove that DN
n,∗ is injective. Hence H∗(C

N ) ∼= coker DN
n,∗. The result now follows from

Proposition 6.3.

Lemma 6.5. Let n be a positive integer. Then

coker DN
n,∗

∼= M( EV , n)[d(L(n, 1), [0])].

Proof. We consider the case n = 1; the argument readily generalizes to arbitrary n. Write

D∗ for DN
n,∗. For 0 6 s 6 N , identify xs with 1 ∈ H∗(B

−
−s−1)

∼= F[U ] and x ′
s with 1 ∈

H∗(B
−
s )

∼= F[U ]. For −N 6 s 6 N , let ys denote 1 ∈ H∗(A
−
s )

∼= F[U ]. Note that U V0 x0

and U V0 x ′
0 are identified in coker D∗ via

D∗(y0) = U V0 x0 + U V0 x ′
0. (6.1)
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For 1 6 s 6 N , using that V−s = Hs = Vs + s, we have

D∗(ys) = U Vs x ′
s + U Hs x ′

s−1 = U Vs x ′
s + U Vs+s x ′

s−1 (6.2)

D∗(y−s) = U V−s xs−1 + U H−s xs = U Vs+s xs−1 + U Vs xs . (6.3)

Because the yi ’s form a basis for
⊕

−N6s6N H∗(A
−
s ), (6.1), (6.2), and (6.3) span the

image of D∗.
Note that applying (6.2) recursively yields that for 1 6 s 6 N ,

U Vs+
s(s+1)

2 x ′
0 + U Vs x ′

s ∈ im D∗,

and similarly for xs . From this, it is straightforward to see that the image of D∗ is spanned

by

U V0 x0 + U V0 x ′
0, U Vs xs + U Vs+

s(s+1)
2 x0, U Vs x ′

s + U Vs+
s(s+1)

2 x ′
0,

It follows that

coker DN
n,∗

∼= M( EV , n)[d(L(n, 1), [0])], (6.4)

as desired.

Proof of Proposition 6.1. Let K be an L-space knot. By Lemmas 6.4 and 6.5, we have

HF−(S3
−n(K ), [0]) ∼= coker DN

n,∗
∼= M( EV , n)[d(L(n, 1), [0])].

We now prove that under this isomorphism, the induced action ι∗ on HF−(S3
−n(K ), [0])

is identified with the involution J0 on M( EV , n). By [23, Theorem 3.6] and [28, Theorem

A], we have that
F−

W−n(K ),t
= ι∗ ◦ F−

W−n(K ),t
, (6.5)

where we have used the fact that the involution ι∗ on HF−(S3) is the identity.
Let N � 0 be as in Proposition 6.3. For 0 6 s 6 N , let x ′

s denote the image of

F−
W−n(K ),t

(1), where 〈c1(t), F̂〉 = 2s + n. By Proposition 6.3(2), this is identified with the

image of 1 ∈ H∗(Bs) under the inclusion of Bs into C
N . Likewise, let xs = F−

W−n(K ),t
(1),

which is the image of 1 ∈ H∗(B−s−n) under the inclusion map to H∗(C
N ), where

〈c1(t), F̂〉 = −2s − n. By Equation (6.5) it follows that ι∗ interchanges xs and x ′
s for

0 6 s 6 N . Since these elements generate coker DN
n,∗ over F[U ], we see that ι∗ agrees

with J0 under the isomorphism in Equation (6.4).

Proof of Theorem 1.9. The proof is nearly identical to the proof of Proposition 6.1 and

Theorem 1.8. The only difference is that now coker DN
n,∗ is a submodule of, rather than

isomorphic to, H∗(C
N ). The generator U V0 x0 is still fixed by ι. The grading of U V0 x0 is

−2V0 − d(L(n, 1), [0])− 2, and the result follows.

6.2. The proof of Proposition 6.3

In this subsection we prove Proposition 6.3.

First, we must recall a bit more about the mapping cone formula for HF−. It turns out

that a direct analogue of the usual mapping cone formula from [24] does not work for

the minus flavor of Heegaard Floer homology. In [13], Manolescu and Ozsváth instead
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establish an analogue with F[[U ]] coefficients. One needs to work with F[[U ]] coefficients

because the cobordism maps appearing in the mapping cone formula can be nonzero

for infinitely many spinc structures in the minus flavor. We summarize the relevant

construction and facts below, before using this to prove Proposition 6.3. Throughout,
we will write a term in bold to indicate tensoring a finitely generated module over

F[U ] with the power series ring F[[U ]], e.g., A
−
s = A−

s ⊗F[[U ]]. Technically, the relevant
objects are no longer chain complexes, because they are not a direct sum of their

grading homogeneous pieces, but the homological constructions we will use (e.g., grading

homogeneous elements, mapping cones, etc.) still make sense.

Fix a nonzero integer p. We will be interested in the cone of

ψp :
∏

s∈Z

A
−
s →

∏

s∈Z

B
−
s , (s, a) 7→ (s, v(a))+ (s + p,h(a)).

Note that in this cone, which we denote by C
−(p, K ), we use direct products instead

of direct sums. (We do not use the bold notation, because this does not arise as the

U -completion of a finitely generated module over F[U ].) As in the uncompleted case,

B
−
s = CF

−(S3). We have the following:

Theorem 6.6 [13, Theorem 1.1]. Fix a nonzero integer p and a knot K in S3. There is
an isomorphism of relatively graded F[U ]-modules

H∗(C
−(p, K )) ∼= HF

−(S3
p(K )). (6.6)

This is a direct analogue of the mapping cone formula for computing HF+ of surgery,
given by Ozsváth and Szabó [24]. While the statement in Theorem 6.6 is relatively graded,

we will upgrade this to respect the absolute gradings for negative surgeries in the proof
of Proposition 6.3.

Recall that we would also like to compute the cobordism map from HF−(S3) to

HF−(S3
p(K )) associated to the trace of the surgery, Wp(K ). We index the spinc structures

on Wp(K ) by

〈c1(ts), [F̂]〉 + p = 2s, s ∈ Z. (6.7)

Here, F̂ denotes a capped off Seifert surface for K in Wp(K ). Consequently, the above

equation implicitly depends on a choice of orientation of F̂ , hence K . This will not matter

for us, since we are only interested in comparing the different F−
Wp(K ),ts

to each other,

and determining the isomorphism type of (HF−(S3
p(K )), ι∗), not identifying any of these

as canonical elements.

With completed coefficients, the cobordism map F
−
Wp(K ),ts

can be computed as follows.

Theorem 6.7 [13, Theorem 14.3]. Under an isomorphism between H∗(C
−(p, K )) and

HF
−(S3

p(K )) as in (6.6), the inclusion from B
−
s into C

−(p, K ) induces F
−
Wp(K ),ts

on

homology for each s.

In order to establish Proposition 6.3, we must first translate the above results from
HF

− back to HF−. We will need the following technical lemma about completions with

respect to U . This is well known, but we include it for completeness. (See [13, § 2] for a

similar discussion.)
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Lemma 6.8. Let C and D be finitely generated, free, relatively Z-graded complexes over

F[U ], where U has degree −2. Suppose that η : C → D is a grading homogeneous chain

map. Then, there exists a chain map f : C → D such that f∗ = η∗. Further, f∗ is unique.

Finally, η∗ is an isomorphism of F[[U ]]-modules if and only if f∗ is an isomorphism of
F[U ]-modules.

Proof. By the assumptions on C ,

H∗(C) ∼= (F[U ])b ⊕

k⊕

i=1

F[U ]/(U mi ),

and similarly for D. Recall that F[[U ]] is flat over F[U ], and hence there is a canonical

isomorphism H∗(C) ∼= H∗(C)⊗F[[U ]] and similarly for D. Consequently, we then see

that

H∗(C)⊗F[[U ]] ∼= (F[[U ]])b ⊕

k⊕

i=1

F[U ]/(U mi )

and the result is easily deduced.

With this, we are ready to prove the claimed technical proposition.

Proof of Proposition 6.3. Fix a knot K ⊂ S3, a positive integer n, and let N � 0.

(1) By [13, Lemmas 4.4 and 10.1], we see that when n > 0, the inclusion of CN into
C

−(−n, K ) is a quasi-isomorphism. (This is the analogue of the standard truncation

for the mapping cone for HF+ found in [24, Lemma 4.3].) Combining this with
Theorem 6.6, we see that H∗(C

N ) ∼= HF
−(S3

−n(K )). Lemma 6.8 now implies that

H∗(C
N ) ∼= HF−(S3

−n(K )) as relatively graded F[U ]-modules. We will return to the

absolute grading at the end of the proof.

(2) Note that if |s| 6 N , then the inclusion of B
−
s into C

−(−n, K ) factors through C
N .

Therefore, if |〈c1(ts), [F̂]〉| 6 2N + n, then F
−
W−n(K ),ts

is computed from the inclusion

of B
−
s into C

N . The result again follows from Lemma 6.8.

(3) The last part of the proposition does not need the mapping cone formula. Since
W−n(K ) is a negative-definite cobordism, the induced cobordism map must localize

to be an isomorphism on HF∞, and thus F−
W−n(K ),t

(1) is nonzero. It thus remains to

show that this element is unique in its grading. Since HF∞(S3
−n(K ), s)

∼= F[U,U−1]

for any s, there is at most one nonzero element in each sufficiently negative degree
of HF−(S3

−n(K ), s). The result now follows, since |〈c1(t), [F̂]〉| � 0 implies that

gr(F−
W−n(K ),t

(1)) =
c1(t)

2 − 7

4
� 0.

To complete the proof, it suffices to show that the isomorphism H∗(C
N ) ∼= HF−(S3

−n(K ))

respects the absolute grading. Note that the absolute grading on HF−(S3
−n(K )) is

determined by that of one element in HF−(S3
−n(K ), s) for each s. By choosing N > n,

for each spinc structure s on S3
−n(K ), there exists s so that |〈c1(ts), [F̂]〉| 6 2N + n and

ts |S3
−n(K )

= s. The definition of the absolute grading on C
N is chosen such that the
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Figure 2. The highest gradings in the complex Cn . The complex continues with further U -powers of the
three generators. The involution is reflection across the centerline of the page.

generator of H∗(Bs) ∼= F[U ] is precisely in degree gr(F−
W−n(K ),ts

(1)). The absolute gradings

must therefore agree since F−
W−n(K ),ts

(1) 6= 0 by the negative-definiteness of W−n(K ).

7. Computations of HFconn

7.1. Connected homology of connected sums of surgeries on L-space knots

In this section we prove Theorem 1.10, computing the connected Heegaard Floer

homology of a connected sum of −1-surgeries on L-space knots. We begin by introducing

some notation. For n ∈ Z>0, let Cn denote the chain complex appearing in Figure 2

with involution given by reflection across the centerline of the page. More precisely,

Cn is generated over F[U ] by x1, x2, y such that gr(x1) = gr(x2) = −2, gr(y) = −2n − 1,
∂(y) = U n(x1 + x2), and the involution ι interchanges x1 and x2 and fixes y.

Recall that in Proposition 6.1, we showed that if K is an L-space knot, HF−(S3
−1(K ))

∼=

M( EV , 1), where EV = (V0(K ), V1(K ), . . .). We then used the results of [1] to compute
HFI−(S3

−1(K )). Going further, Dai and Manolescu showed that if an ι-complex C has

homology M( EV , 1) with involution given by the reflection J0 as described in § 6, then C is

locally equivalent to CV0
[1, Theorem 6.1]. Therefore, if K1, . . . , Km are L-space knots, in

order to compute HFconn(#
m
i=1S3

−1(Ki )), it suffices to compute the connected homology of

CV0(K1)⊗ · · · ⊗ CV0(Km ) by Proposition 3.14 . Recall that if Ki is the unknot, then S3
−1(Ki )

is trivial in homology cobordism, so it suffices to assume that Ki is a nontrivial L-space
knot, or equivalently, Vi > 0 for all i . Theorem 1.10 is thus a corollary of the following.

Proposition 7.1. Let n1 > n2 > · · · > nm > 0. Let ai =
∑i

j=1 n j , with a0 = 0. Then

Hconn(Cn1
⊗ Cn2

⊗ · · · ⊗ Cnm ) is given by

m⊕

i=1

Ti−2−2ai−1
(ni ).
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Figure 3. The highest gradings of the complex C2,1. The complex continues with further U -powers of the
five generators. The involution is given by reflection across the centerline of the page.

As a warm-up, we present the argument for m = 1. (The argument given in the proof of

Theorem 6.2 could also be used to establish this first lemma more succinctly, but would
not help us as much in the general case.)

Lemma 7.2. Hconn(Cn) = T−1(n).

Proof. As above, let Cn = (Cn, ι) be generated by x1, x2, and y such that ∂(y) = U n(x1 +

x2), gr(x1) = gr(x2) = −2, gr(y) = −2n − 1, and ι fixes y and interchanges x1 and x2.

Observe that x1 and x2 are both generators of U−1 H∗(Cn), in which [x1] = [x2]. Since
Hred(Cn) = T(−1)(n), it suffices to prove that any self-local equivalence is surjective.

Suppose that f : Cn → Cn is a self-local equivalence. Let G : Cn → Cn be a chain
homotopy such that ∂G + G∂ = f ◦ ι+ ι ◦ f .

Now, consider x1. Because f preserves the homological grading, f (x1) = λ1x1 + λ2x2

for λ1, λ2 ∈ {0, 1}. However, notice that if f (x1) = 0, then in the map f∗ : U−1 H∗(Cn) →

U−1 H∗(Cn), we have f∗([x1]) = 0, so f∗ is not an isomorphism. Similarly if f (x1) =

x1 + x2, then f∗([x1]) = [x1] + [x2] = 0 as a map U−1 H∗(Cn) → U−1 H∗(Cn). So in fact
either f (x1) = x1 or f (x1) = x2.

Moreover, G(x1) must have grading −1, implying that G(x1) = 0. Hence

f (ι(x1))+ ι( f (x1)) = ∂G(x1)+ G(∂(x1)) = 0.

This implies that f (x2) = ι( f (x1)). So f (x1 + x2) = x1 + x2. Now, consider f (y). Again
for grading reasons, either f (y) = y or f (y) = 0. But ∂( f (y)) = f (∂y) = f (U n(x1 +

x2)) = U n f (x1 + x2) = U n(x1 + x2). So f (y) cannot be zero, and we have that f (y) = y.

We see f is a surjection and Hconn(Cn) = Hred(Cn) = T−1(n).
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Lemma 7.3. Let n1 > n2 > · · · > nm > 0. Then Cn1
⊗ · · · ⊗ Cnm is locally equivalent to the

complex Cn1,...,nm generated by elements x
j

i such that i ∈ {1, 2}, 1 6 j 6 m and an element

y such that

gr(x1
i ) = −2

gr(x
j

i ) = −2a j−1 + ( j − 3) for 2 6 j 6 m

gr(y) = −2am + m − 2

with differentials

∂(x1
i ) = 0

∂(x
j
i ) = U n j−1(x

j−1
1 + x

j−1
2 ) for 2 6 j 6 m

∂(y) = U nm (xm
1 + xm

2 ),

and involution ι interchanging x
j

1 and x
j

2 and fixing y.

As an example, Figure 3 shows the complex C2,1.

Proof. We proceed by induction on m. The base case m = 1 is true by definition. Suppose

that we know the theorem up to m − 1 inputs. Then given integers n1 > n2 > · · · > nm ,
we know that Cn2

⊗ · · · ⊗ Cnm is locally equivalent to D = Cn2,...,nm . So it suffices to show

that Cn1
⊗D is locally equivalent to Cn1,...,nm .

For this argument, let Cn1
consist of the chain complex generated by s1, s2, t such

that gr(s1) = gr(s2) = −2, gr(t) = −2n1 − 1, and ∂(t) = U n1(s1 + s2), with involution ι

exchanging s1 and s2 and fixing t . (That is, we change notation to avoid repeating x

and y.) The complex D has elements c, b
j
i such that gr(b2

i ) = −2, gr(b
j
i ) = −2(n2 + · · · +

n j−1)+ ( j − 4) for 3 6 j 6 m, and gr(c) = −2(n2 + · · · + nm)+ (m − 3), with differentials

∂(c) = U nm (bm
1 + bm

2 )

∂(b
j
i ) = U n j−1(b

j−1
1 + b

j−1
2 ) for 3 6 j 6 m

∂(b2
i ) = 0.

It is important to note that b
j
i corresponds to x

j−1
i in the notation of the lemma

when applied to Cn2,...,nm . We have chosen this to simplify the notation in the following

computations. The underlying chain complex of Cn1
⊗D has generators sk ⊗ b

j
i , t ⊗ b

j
i ,

sk ⊗ c, and t ⊗ c, where throughout i, k ∈ {1, 2} and 2 6 j 6 m. The gradings of these

generators are

gr(sk ⊗ b
j
i ) = −2(n2 + · · · + n j−1)+ ( j − 4)

gr(t ⊗ b
j
i ) = −2(n1 + · · · + n j−1)+ j − 3 = −2a j−1 + ( j − 3)

gr(sk ⊗ c) = −2(n2 + · · · + nm)+ m − 3

gr(t ⊗ c) = −2(n1 + · · · + nm)+ m − 2 = −2am + m − 2,

where we are using that the tensor product of ι-complexes has a grading shift by 2 in the
definition. The differentials are
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∂(sk ⊗ b2
i ) = 0

∂(t ⊗ b2
i ) = U n1(s1 ⊗ b2

i + s2 ⊗ b2
i )

∂(sk ⊗ b
j
i ) = U n j−1(sk ⊗ b

j−1
1 + sk ⊗ b

j−1
2 ) for 3 6 j 6 m

∂(t ⊗ b
j
i ) = U n j−1(t ⊗ b

j−1
1 + t ⊗ b

j−1
2 )+ U n1(s1 ⊗ b

j
i + s2 ⊗ b

j
i ) for 3 6 j 6 m

∂(sk ⊗ c) = U nm (sk ⊗ bm
1 + sk ⊗ bm

2 )

∂(t ⊗ c) = U nm (t ⊗ bm
1 + t ⊗ bm

2 )+ U n1(s1 ⊗ c + s2 ⊗ c).

We now perform a U -equivariant and ι-equivariant change of basis. Let

ỹ = t ⊗ c

x̃m
i = t ⊗ bm

i + U n1−nm (si ⊗ c)

x̃
j

i = t ⊗ b
j
i + U n1−n j (si ⊗ b

j+1
i+1 ) for 2 6 j 6 m − 1

x̃1
i = si ⊗ b2

i+1

s̃k = sk ⊗ b2
1 + sk ⊗ b2

2.

Here i + 1 is to be taken modulo two; that is, this expression denotes a change of index

between 1 and 2. Then the elements x̃
j

i for 1 6 j 6 m, ỹ, s̃i , si ⊗ c, and sk ⊗ b
j
i for

3 6 j 6 m generate Cn1
⊗D, with differentials given by

∂(ỹ) = U nm (̃xm
1 + x̃m

2 )

∂(̃x
j
i ) = U n j−1 (̃x

j−1
1 + x̃

j−1
2 ) for 2 6 j 6 m

∂(̃x1
i ) = 0

∂(sk ⊗ c) = U nm (sk ⊗ bm
1 + sk ⊗ bm

2 )

∂(sk ⊗ b
j
i ) = U n j−1(sk ⊗ b

j−1
1 + sk ⊗ b

j−1
2 ) for 3 6 j 6 m

∂(̃sk) = 0.

This complex has a self-local equivalence onto the summand generated by ỹ and the

elements x̃
j
i for 1 6 j 6 m, via sending the remaining generators to zero. Indeed, this

summand is exactly Cn1,...,nm .

Proof of Proposition 7.1. By Lemma 7.3, it suffices to compute the connected homology

of the ι-complex C = Cn1,...,nm . Let f : C → C be a maximal self-local equivalence, and
let G : C → C be a chain homotopy such that f ◦ ι+ ι ◦ f = G∂ + ∂G. We will show that

f is surjective.

First we consider x1
1 and x1

2 . By the same logic as in Lemma 7.2, we see that f (x1
1) and

f (x1
2) are x1

1 and x1
2 in some order.

Now, suppose that f is not surjective. First, suppose that some x
j
i is not contained

in the image of f , and pick a minimal j > 1 such that x
j
i is not in im( f ) for some i .

Indeed, since we can postcompose with ι to get a new self-local equivalence, without loss

of generality x
j

1 is not in the image of f . This implies that either x
j

2 is not in im( f ) or

x
j

1 + x
j

2 is not in im( f ), since if they both were then x
j

1 would be as well.
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First consider the case that x
j

2 /∈ im( f ). Then we claim there is no element z ∈ im( f )

such that ∂(z) = U n j−1(x
j−1
1 + x

j−1
2 ). For if such a z existed, then z would lie in grading

−2a j−1 + ( j − 3), and therefore could be written uniquely as a linear combination of x
j

1 ,

x
j

2 , and elements U `xk
i such that k < j and −2ak−1 + (k − 3)− 2` = −2a j−1 + ( j − 3).

Indeed, since ∂(z) = U n j−1(x
j−1
1 + x

j−1
2 ), this linear combination would contain exactly

one of x
j

1 and x
j

2 . But since k < j , each element U `xk
i appearing in this linear combination

is in im( f ), so this implies that either x
j

1 or x
j

2 is in im( f ). Hence there is no such z.

This implies that [U n j−1(x
j−1
1 + x

j−1
2 )] is a nontrivial element in H∗(im( f )) in grading

−2a j−1 + ( j − 4). If j is odd, this implies H∗(im( f )) in grading −2a j−1 + ( j − 4) is at least

one-dimensional, and if j is even, this implies that H∗(im( f )) is at least two-dimensional,

since it contains both [U n j−1(x
j−1
1 + x

j−1
2 )] and [U a j−1−

j
2 +1x1

1 ], and there is no element in

C with boundary U n j−1(x
j−1
1 + x

j−1
2 )+ U a j−1−

j
2 +1x1

1 . But if j is odd, then H∗(C) has no

nontrivial element in grading −2a j−1 + ( j − 4), and if j is even, H∗(C) is one-dimensional

generated by [U a j−1−
j
2 +1x1

1 ]. Since f is a maximal self-local equivalence, it follows from

Lemma 3.5 that f∗ : H∗(C) → H∗(im( f )) is a surjection, which is a contradiction.
Now consider the case that x

j

2 ∈ im( f ), but x
j

1 + x
j

2 /∈ im( f ). Choose any w such

that f (w) = x
j

2 . Then we note that f (ι(w))+ ι( f (w)) = ∂G(w)+ G∂(w), implying that

f (ι(w)) = x
j

1 + ∂G(w)+ G∂(w). Now each of ∂G(w) and G∂(w) is an element in grading

−2a j−1 + ( j − 3), and therefore can be written uniquely as a linear combination of x
j

1 , x
j

2 ,

and elements U `xk
i such that k < j and −2ak−1 + (k − 3)− 2` = −2a j−1 + ( j − 3). Note

that x
j

i cannot appear in ∂G(w), because the image of ∂ is contained in U · Cn1,...,nm ,

because we have assumed that nm > 0. Similarly, x
j
i cannot appear in G(∂w) because

of the U -equivariance of G. Therefore f (ι(w)) = x
j

1 + ∂G(w)+ G∂(w), where ∂G(w) and
G∂(w) can be written as linear combinations of elements U `xk

i for k < j . But xk
i ∈ im( f )

for k < j , so we see that x
j

1 is also in im( f ).

Now suppose every x
j

i is in the image of f , but y is not. Then by a similar argument

to the first case, there is no element z ∈ im( f ) such that ∂(z) = U nm (xm
1 + xm

2 ). Thus

[U nm (xm
1 + xm

2 )] is a nontrivial element in H∗(im( f )) in grading −2am + m − 3, which as

before implies a contradiction. So y ∈ im( f ), and in fact f is surjective.
Since f is surjective, we conclude that Hconn(Cn1,...,nm ) = Hred(Cn1,...,nm ). The result

follows.

Proof of Theorem 1.10. Let K1, . . . , Km be L-space knots. By Proposition 6.1,
HF−(S3

−1(K j )) ∼= M( EV j , 1), where EV j = (V0(K j ), V1(K j ), . . .), and ι∗ is given by reflection

on the symmetric graded root. But by [1, Theorem 6.1], this implies that the local

equivalence class of (CF−(S3
−1(K j )), ι) is represented by CV0(K j ). The theorem then follows

directly from Proposition 7.1.

7.2. Connected homology of graded roots

In this section, we give a computation of the connected homology of any ι-complex

(C, ι) whose homology consists of a symmetric graded root with induced involution given
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by its natural symmetry. (This includes (CF−(Y ), ι) for Y a Seifert fibered space.) Our

computation follows fairly quickly from Dai and Manolescu’s computation of the local

equivalence classes of such ι-complexes [1]. This will prove Theorem 1.16.

First, let us to recall some notation for graded roots. With the conventions appropriate
to working with the minus variant of Heegaard Floer theory, recall that a graded root M

consists of an infinite tree together with a grading function χ : Vert(M) → Q such that

• χ(u)−χ(v) = ±1 for any edge (u, v),

• χ(u) 6 max{χ(v), χ(w)} for any edges (u, v) and (u, w) with v 6= w,

• χ is bounded above,

• χ−1(k) is finite for any k ∈ Q,

• #χ−1(k) = 1 for k � 0.

To every graded root one can associate an F[U ]-module H−(M) with one generator for

every vertex v in M , and we let U · v = w if (v,w) is an edge and χ(v)−χ(w) = 1. (Notice

that this means it is simple to reconstruct the graded root from H−(M) together with
a preferred set of generators.) Because deg(U ) = −2, one typically doubles the relative

grading when focusing on this module; from here on we shall do this without comment.

A symmetric graded root is a graded root M together with a grading-preserving

involution J0 : Vert(M) → Vert(M) such that

(1) for each k ∈ Q, the involution J0 fixes at most one vertex in χ−1(k),

(2) (v,w) is an edge if and only if (J0v, J0w) is.

A monotone graded root is a graded root constructed as follows. Let h1, . . . , hn and

r1, . . . , rn be two sequences of rational numbers, all differing from each other by even

integers, such that

(1) h1 > h2 > · · · > hn

(2) r1 < r2 < · · · < rn

(3) hn > rn .

It is most convenient to describe the associated graded root M = M(h1, r1; h2, r2; . . . ;

hn, rn) by describing the associated module H−(M). If hn > rn , the monotone graded

root is the tree underlying the F[U ]-module with generators vi and J0vi in grading

hi for each 1 6 i 6 n, with the relationship U
hi −ri

2 vi = U
hi −ri

2 J0vi = U
hn−ri

2 vn . If hn = rn

then the monotone graded root is the tree underlying the F[U ]-module with generators

vi and J0vi in grading hi for each 1 6 i < n and a generator vn in grading hn , with the

relationship U
hi −ri

2 vi = U
hi −ri

2 J0vi = U
hn−ri

2 vn . See Figure 4 for two examples of monotone

graded roots.

Dai and Manolescu associate to any symmetric graded root M a monotone graded

subroot as follows [1, p. 22]. Any symmetric graded root has an infinite downward stem

fixed by the involution J0. Given a vertex v of the graded root, one lets γ (v) be the
infinite path downward through the stem from v. The base b(v) of this path is the degree

of the first place where this path intersects the stem. The collection of all vertices v with

the same base is a cluster Cb. Within every cluster with more than one vertex (called
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Figure 4. The monotone graded roots M(6,−4; 4,−2; 2, 0) (left) and M(6, 0; 2, 2) (right). The numbers to
the left denote degree of the elements at the corresponding height.

Figure 5. A graded root and its monotone subroot.

nontrivial), we select a pair of vertices interchanged by J0 with maximal grading, called

the tips of the cluster.

The algorithm proceeds by constructing a special subset S of the vertices of M as

follows: One lets r be the maximal degree of a J0-invariant vertex v in M . If the cluster

Cr is trivial, we add v to S; otherwise we add the tips of Cr to S. Now we let b be the
greatest number strictly less than r for which Cb is nontrivial. If the tips of Cb have

grading greater than the degree of all vertices in S, we add them to S; otherwise we
do not. We iterate this process until there are no further numbers b for which Cb is

nontrivial. The monotone graded subroot M ′ of M is the smallest subroot containing all

the vertices in S; identifying M with H−(M), it is the span of the generators associated

to the elements of S in H−(M). See Figure 5 for an example.

In [1], the authors associate to a symmetric graded root M together with its natural
symmetry an ι-complex (C∗(M), ι) whose homology H∗(M) is the module H−(M) with

its involution J0. They show the following.

Theorem 7.4 [1, Corollary 4.6, Theorem 6.1]. Let C be any ι-complex whose homology

is the F[U ]-module H∗(M) determined by the graded root M with induced involution

given by the natural symmetry J0. Then C is locally equivalent to the chain complex

(C∗(M), ι). Moreover, let M ′ be the monotone graded subroot of M constructed as above.
Then (C∗(M), ι) is locally equivalent to (C∗(M

′), ι).

From this, we can compute the following.
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Proposition 7.5. Let M = M(h1, r1; h2, r2; · · · ; hn, rn) be a monotone graded root, with

associated complex (C∗(M), J0) and homology H∗(M). Then the involutive connected

homology of C∗(M) is the U -torsion submodule of M, shifted upward in degree by 1.

Proof. It suffices to show that any self-local equivalence f : C∗(M) → C∗(M) necessarily

induces a surjection f∗ : H∗(M) → H∗(M). In particular, since f∗ is U -equivariant it
suffices to show that each of the generators v1, J0v1, . . . , vn, J0vn are in the image of f∗
(here vn and J0vn may be equal). We proceed by induction on n, essentially mimicking
the proof of [1, Theorem 6.2].

First, observe that if v1 = J0v1, then H∗(M) ∼= F[U ], and the statement is trivially

true. So we assume that v1 6= J0v1. Consider f∗(v1). This must be a linear combination

of v1 and J0v1; furthermore, since U mv1 6= 0 for all m > 0 and f∗ is an F[U ]-module

homomorphism inducing an isomorphism on U−1 H∗(M), we must have U m f∗(v1) 6= 0.
This implies that f∗(v1) is either v1 or J0v1. Since f∗(J0v1) = J0 f∗(v1), we see that both

v1 and J0v1 are in the image of f∗, and f∗ : Hh1
(M) → Hh1

(M) is a surjective map.
Now for 1 < i < n, let us inductively suppose that f∗ : Hh j

(M) → Hh j
(M) is known

to be surjective for all j < i . In particular, we assume that all of the generators

v1, J0v1, . . . , vi−1, J0vi−1 are in the image of f∗. Now consider the element f∗(vi ), which

we can write as a linear combination of the 2i elements of the form U
h j −hi

2 v j and

U
h j −hi

2 J0v j for 1 6 j 6 i (this includes vi and J0vi ). Since U mvi 6= 0 for all m > 0 and

f∗ is an F[U ]-module map inducing an isomorphism on U−1 H∗(M), we see that f∗(vi )

cannot only be a sum of terms of the form U
h j −hi

2 (v j + J0v j ), but must include at least

one element which is not preserved by J0. Choose the maximal number j = k for which

such an element appears in f∗(vi ). Up to postcomposing with J0 we may assume it is

U
hk−hi

2 vk . Now observe that since U
hi −ri

2 vi is J0-invariant, and f∗ commutes with J0, we

must have that U
hi −ri

2

(
U

hk−hi
2 vk

)
= U

hk−ri
2 vk is J0-invariant. This implies that rk > ri .

However, since by monotonicity rk < ri if k < i , this implies that i = k. So, f∗(vi ) is equal

to a sum of vi and U -powers of the elements v j and J0v j for 1 6 j < i . In particular,

since we already know that v j and J0v j are in the image of f∗ for 1 6 j < i , we see that

vi is also in the image of f∗. Since f∗ is J0-equivariant, J0vi is also in the image of f∗.
We conclude that f∗ : Hhi

(M) → Hhi
(M) is a surjection.

Finally, consider the map f∗ in degree hn . If vn 6= J0vn , the argument above applies
and we are done; otherwise, let vn = J0vn . Then the element f∗(vn) must be fixed by J0

and U -nontorsion. By similar logic as above, this implies that if f∗(vn) is written as a

linear combination of vn and elements U
h j −hn

2 v j and U
h j −hn

2 J0v j , this linear combination
must contain vn . Since we know that v j and J0v j are in the image of f∗ for 1 6 j < n,

this implies that vn is in the image of f∗, and f∗ is therefore a surjection.

Proof of Corollary 1.17. The corollary follows from the definition of the monotone graded
root M ′ associated to a symmetric graded root M .
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