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Robert Mattila?, Inês Lourenço?, Cristian R. Rojas?, Vikram Krishnamurthy† and Bo Wahlberg?

Abstract—We consider sequential stochastic decision problems
in which, at each time instant, an agent optimizes its local utility
by solving a stochastic program and, subsequently, announces its
decision to the world. Given this action, we study the problem of
estimating the agent’s private belief (i.e., its posterior distribution
over the set of states of nature based on its private observations).
We demonstrate that it is possible to determine the set of
private beliefs that are consistent with public data by leveraging
techniques from inverse optimization. We further give a number
of useful characterizations of this set; for example, tight bounds
by solving a set of linear programs (under concave utility). As
an illustrative example, we consider estimating the private belief
of an investor in regime-switching portfolio allocation. Finally,
our theoretical results are illustrated and evaluated in numerical
simulations.

Index Terms—Estimation; Optimization; Stochastic optimal
control

I. INTRODUCTION

THE classical model for decision making under uncer-
tainty assumes that a Bayesian agent chooses that which

provides it with the highest expected utility [1]–[3]. A key
component that determines the agent’s decision is its private
belief : the Bayesian agent employs private information to
compute its posterior distribution on the set of states of nature.
Additionally, decisions are often sequential and, potentially,
distributed between several distinct agents. For example, in
social learning (e.g., [4], [5]) agents use noisy observations
together with decisions by previous agents to estimate the
underlying state of nature (and subsequently, maximize their
local expected utilities).

In this paper, we address the question:
Can an agent’s private belief be estimated given
measurements of the agent’s decisions; and if so,
how?

Algorithms for estimating the private belief of an agent are
useful since they provide the basis of predicting its future
behavior.

For example, consider the behavior of a rational agent in
portfolio allocation in regime-switching markets (e.g., [6]–
[13]). Recall that a Markowitz-type investor aims to find a
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portfolio that maximizes its risk-adjusted return. In order to
compute this return, a number of random factors have to
be estimated (e.g., current market conditions and regime). A
crucial difference between an unfortunate and a successful
investor is the private information they have access to, and
in turn, how accurate their private beliefs describe the true
state of nature.

Another area where the present work has implications is
Bayesian sequential social learning that is widely studied
in economics and social networks [4], [5]: estimating an
agent’s private belief and revealing it to all other agents raises
important questions of privacy.

In summary, the main contributions of this paper are:
• We determine the set of private beliefs that are consis-

tent with observed data using techniques from inverse
optimization (e.g., [14]–[17]) in Theorem 1;

• Given a prior estimate of the private belief, we provide the
closest belief (in `2-sense) that is consistent with public
data in Corollary 1;

• In Corollary 2, we derive bounds on the set of private
beliefs that are consistent with observed data. Moreover,
we give a constructive answer to the question of when
an agent’s private belief can be uniquely reconstructed in
Lemma 1;

• We specialize our results in a case-study on regime-
switching Markowitz portfolio allocation;

• Finally, our theoretical results are illustrated, and their
sensitivity is evaluated, in numerical simulations.

The rest of the paper is organized as follows. Below, we
give a brief overview of related work. Section II formalizes
the sequential decision-making framework. The private belief
estimation problems are posed in Section III. Our main results
– characterizations of the set of private beliefs that are con-
sistent with public data – are derived in Section IV. Finally,
we discuss an example in portfolio selection and provide
numerical experiments in Sections V and VI, respectively.

A. Related work

The theoretical results in this paper draw heavily on general
results in inverse optimization (e.g., [14]–[17]). In inverse
optimization, the formal goal is to find a minimal perturbation
to the coefficients in the objective function of an optimization
problem so as to make a given feasible point optimal. An
alternative interpretation is that one wishes to reconstruct, or
estimate, the parametric objective function that was used to
generate an observed solution. The works [14]–[17] treat very
general structures (e.g., linear, convex separable, convex). In
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the present work, we narrow the scope and study a particular
structure of the objective function; that of an expected utility.
In this setting, since our parameters represent probabilities, we
can derive useful bounds and interpretations.

The inverse optimal control problem – under what cost
criteria is a given control law optimal – was studied in the
1960’s by Kalman [18], and is still an active area of research
(e.g., [19]). Related disciplines with inverse problems include
inverse reinforcement learning in machine learning [20] and
revealed preferences in microeconomic theory [21]. The work
[22] is complementary to the present, in the sense that the
authors estimate the utility function given the decisions and
noisy posterior (a form of revealed preferences).

The present work has strong connections to recently pro-
posed inverse filtering problems [23], [24]. In such problems,
a sequence of private beliefs is given and the aim is to infer
sensor specifications of the filtering system. In [23], [24] it
was, however, left as future work how to reconstruct these
sequences of private beliefs in the more realistic setting when
only actions based on them are observed – which is the topic
of the present paper.

II. DECISION MAKER’S MODEL

In this section, we outline our notation and the decision-
making framework. We first consider an agent making a
single decision, and then (potentially multiple agents making)
sequential decisions. Finally, we detail how the private belief
is updated in various settings.

A. Notation
All vectors are column vectors, unless transposed, and 1

denotes the vector of ones. The element i of a vector v
is [v]i. Inequalities (≤,≥) between vectors are interpreted
elementwise. Lastly, Pr[·] denotes the probability of event ·,
and p(·) the probability density.

B. A Single Choice Under Uncertainty
Denote the underlying state of nature (i.e., all factors

external to the decision-making agent) as the random variable
x ∈ X , where the state-space X can be finite or a subset
of Euclidean space. Associated with each state x is a cost
function c(x, u), where u ∈ U is the decision variable and U
is the decision set which, again, can be either finite or a subset
of Euclidean space. The agent has access to some private
information I. A rational agent makes its decision u∗ ∈ U
based on optimizing its expected cost [1]–[3]:

u∗ ∈ arg min
u∈U

Ex { c(x, u) | I }

s.t. u ∈ C, (1)

where C ⊂ U is the feasible set. The conditional expectation
is computed with respect to the agent’s private information
(sigma-algebra) I. We denote the corresponding conditional
distribution as the agent’s private belief 1:

π(x′) = p(x = x′ | I ) or [π]x′ = Pr[x = x′ | I ]. (2)

1In consistency with the terminology employed in social learning [4], [5]
– however, these are closely related to subjective probabilities in decision
theory (see, e.g., [1]–[3] for further discussions).

Depending on whether X is continuous or discrete, respec-
tively, π(x′) is either a conditional probability density over
continuous X , or π is a conditional probability mass vector
over finite X . Note that, when written out explicitly, for
continuous X , the optimization problem (1) is

min
u∈U

∫
X
c(x′, u)π(x′)dx′

s.t. u ∈ C. (3)

C. Sequential Decisions Under Uncertainty

In a more general framework, the agent does not just
make a single decision but acts sequentially multiple times
(equivalently, there can be multiple agents that sequentially
make the decisions – see below). The state of nature xk ∈ X
is not necessarily static, but can evolve as a random process,
and we therefore add a time-subscript k. Naturally, as time
progresses, more information is made available. We model
this with a time-dependent information set Ik. The sequential
decision-making process is as follows:

1) New information is made available and the private infor-
mation is updated to Ik.

2) The agent uses its private information to update its private
belief:

πk(x) = p(xk = x | Ik ) or [πk]x = Pr[xk = x | Ik ],
(4)

depending on whether X is continuous or discrete.
3) The agent solves the optimization problem:

min
uk∈U

Exk

{
c(xk, uk) | Ik

}
s.t. uk ∈ C. (5)

4) An optimal decision u∗k – from the set of minimizers of
(5) – is made and publicly announced.

5) Time k is increased by one, and we return to step 1.

D. Updating the Private Belief

Depending on the number of agents making the decisions,
and the structure of the information set, there are multiple
ways in which the private belief can be updated:
• In the single-agent setting, if Ik is a set of observations
Ik = {y1, . . . , yk} then optimal filtering techniques can
be used by the agent. In particular, if the observation
process generating the yk:s is linear and Gaussian, then
the Kalman filter is optimal (e.g., [25]); and if the state
of nature xk is discrete, then the hidden Markov model
(HMM) filter is optimal (e.g., [5], [26]). However, more
generally, the private belief is synthesized from expert
opinion and subjective beliefs; consider, for example, a
doctor judging the likelihoods of various diseases, or
the abstract information available to an investor (e.g.,
rumours and gossip).

• A common modeling framework for the multi-agent
settings is social learning [4], [5]. In it, each agent acts
once in a predetermined sequential order indexed by k =
1, 2, . . . . More specifically, at time k, agent k receives a
private signal (observation) sk. The information available
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to agent k is the actions by previous agents (referred to
as the public belief ) along with the agent’s private signal
sk: Ik = {u∗1, . . . , u∗k−1, sk}. Standard Bayesian filtering
techniques are commonly assumed to be employed by
the agent to compute its private belief πk (of course,
depending on the characteristics of the private signal) –
see [4], [5]. Following the scheme above, in step 4), the
agent broadcasts its decision u∗k to all subsequent agents,
and it becomes agent k + 1’s turn to act.

III. FORMULATION OF BELIEF ESTIMATION

In this section, we provide formal statements of the private
belief estimation problem. We start with a general formulation
(Problem 1), and then restrict the scope to give a more specific
formulation (Problem 2).

A. General Formulation

Suppose an agent’s cost function c(x, u) as well as its
constraints C are known; for example, when the costs are
related to utilities in a game with public rules, or when they
can be reconstructed (using, e.g., revealed preferences [21],
[27]) or be estimated (see the case-study in Section V). In
social learning, it is typical to assume that all agents share the
same preferences [4], [5]. We refer to the costs and constraints,
together with the announced actions, as public data.

The private information Ik and the corresponding private
belief πk are, typically, not known – nor are they supposed to
be. The problems we pose below aim to estimate the private
belief of the agent.

Problem 1 (Estimation of Private Beliefs). Decisions are
made according to the procedure specified in Section II-C. The
cost functions {c(x, u)}x∈X , constraints C and the decisions
{u∗k}k of the agent(s) are known. Characterize the private
beliefs {πk}k that are consistent2 with the public data.

A solution to this problem provides a basis for predicting the
future behavior of an agent. Moreover, estimating an agent’s
private belief and revealing this belief to all other agents in
the framework of social learning raises important questions of
privacy.

B. Regime-Switching Models

In order to restrict the scope of the paper, we consider a
discrete state-space X = {1, . . . , X} for the state of nature xk,
and a continuous decision variable uk ∈ U ⊂ RU . Problems
with discrete X are known as regime-switching problems. In
this setting, the decision problem (5) becomes

min
uk∈RU

X∑
i=1

[πk]ic(i, uk)

s.t. uk ∈ C, (6)

when written out explicitly, where πk ∈ [0, 1]X such that
1Tπk = 1. For this particular model structure, we can be
more precise than in the general formulation (Problem 1):

2By consistent, we mean that a rational agent would have made its decision
u∗k under any such private belief.

Problem 2 (Estimation of Private Beliefs in Regime-Switching
Models). Decisions are made according to the procedure
specified in Section II-C. The state-space X = {1, . . . , X}
is discrete and the decision set U ⊂ RU is continuous. The
cost functions {c(x, u)}x∈X , constraints C and a decision u∗k
of an agent are known.

a) Determine the set Πk of private beliefs that are consistent
with the public data.

Since the set Πk is, potentially, of a complicated structure, we
would like to obtain useful characterizations of it:

b) Provide bounds
¯
πk ∈ RX and π̄k ∈ RX on the private

belief, such that

¯
πk ≤ πk ≤ π̄k. (7)

c) Given a prior estimate π̃k ∈ RX of the private belief
πk, find the closest private belief π̂k (in the sense that
‖π̃k−π̂k‖2 is minimized) that is consistent with the public
data (i.e., such that π̂k ∈ Πk).

Of course, the bounds
¯
πk = 0 ≤ πk ≤ 1 = π̄k solves

Problem 2b, however, these are clearly not very informative.
Below, we obtain non-trivial bounds.

IV. ALGORITHMS TO ESTIMATE PRIVATE BELIEFS

This section addresses Problems 2a-c that were formulated
above by leveraging results from inverse optimization (e.g.,
[14]–[17]). Our main result Theorem 1 (stated below) deter-
mines the set of consistent private beliefs (i.e., those under
which the agent would make decision u∗k) and therefore pro-
vides a solution to Problem 2a. From this theorem, solutions
to the other two subproblems are derived as corollaries.

A. Main Result

The key idea behind our main result is that the
Karush–Kuhn–Tucker (KKT) conditions (e.g., [28], [29]) for
decision problem (6) are necessary and sufficient when:

Assumption 1. For fixed x, the function c(x, u) is convex and
differentiable in u. The constraints C are affine:

C = {u ∈ RU : Au = b, u ≥ 0}, (8)

for some A ∈ RN×U and b ∈ RN .

Under Assumption 1, we have the following:

Theorem 1 (Solution to Problem 2a). Consider the setup in
Problem 2 under Assumption 1. The agent that made decision
u∗k at time k could have had a private belief πk ∈ RX if and
only if this πk lies in the set Πk, specified by:

Πk = (9)
π ∈ RX :

∃λ ∈ RU , ν ∈ RN s.t.

πT1 = 1, π ≥ 0, λ ≥ 0,

[λ]i = 0 if [u∗k]i 6= 0

for i = 1, . . . , U,
X∑
i=1

[π]i∇uc(i, u∗k)− λ+AT ν = 0


.
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Proof. The idea is to derive the KKT conditions and consider,
not the decision variable uk, but instead the private belief πk
as an unknown variable. This idea is adapted from [15], which
deals with general conic programs.

The Lagrangian of the agent’s decision problem (6) is

L(uk, λ, ν) =
X∑
i=1

[πk]ic(i, uk)− λTuk + νT (Auk − b), (10)

where λ ∈ RU≥0 and ν ∈ RN are Lagrange multipliers. The
corresponding KKT conditions are that any u∗k ∈ RU and
pair (λ, ν) that are primal and dual optimal, respectively, must
satisfy:

u∗k ≥ 0, (11)
Au∗k − b = 0, (12)

λ ≥ 0, (13)
[λ]i[u

∗
k]i = 0 for i = 1, . . . , U, (14)

X∑
i=1

[πk]i∇uc(i, u∗k)− λ+AT ν = 0. (15)

Since the cost function is convex and the constraints in prob-
lem (6) are defined by affine functions (under Assumption 1),
constraint qualification (e.g., [28], [29]) guarantees that these
equations are in fact also sufficient for optimality.

Hence, a candidate private belief in the simplex {π ∈ RX :
π ≥ 0, πT1 = 1} would make the observed decision u∗k
optimal in (6) if and only if corresponding ν and λ exist (i.e.,
that all together satisfy equations (11)-(15)).

Remark 1. Our characterization of Πk in (9), omits (11) and
(12) since if the agent generated the decision u∗k, clearly, it
has to be (primal) feasible. Also, note that the simplex as well
as equations (14) and (15) are affine in the private belief and
the dual variables, so that the set Πk is defined entirely by
affine functions.

Remark 2. Assumption 1 can be relaxed to incorporate
general conic constraints without significantly changing the
results or the derivations – see, e.g., [15] for details.

B. Characterizations of Πk

We now derive useful characterizations of the set Πk. In
particular, we provide solutions to Problems 2b and 2c.

Corollary 1 (Solution to Problem 2b). Given a prior estimate
π̃k of the private belief, the closest estimate π̂k that is
consistent with public data is given by the convex optimization
problem:

min
π̂k∈RX

‖π̂k − π̃k‖2

s.t. π̂k ∈ Πk, (16)

where the set Πk is detailed in equation (9).

Proof. Since the cost function is convex and the constraint
set is defined by affine functions, the optimization problem is
convex – see also [15, Lemma 1].

The second useful characterization is lower-and-upper
bounding the agent’s private belief componentwise via linear
programs (LPs):

Corollary 2 (Solution to Problem 2c). The agent’s private
belief is bounded as

¯
πk ≤ πk ≤ π̄k, (17)

where the lower bound
¯
πk is obtained from the LP

[
¯
πk]i = min

π∈RX
[π]i s.t. π ∈ Πk, (18)

for i = 1, . . . , X , and the upper bound π̄k by the LP

[π̄k]i = − min
π∈RX

{−[π]i} s.t. π ∈ Πk, (19)

for i = 1, . . . , X .

Proof. Clearly, (18) and (19) define an axis-aligned bounding
box of Πk (e.g., [30]). Since the set Πk is defined by
affine functions and the objective functions are linear, the
optimization problems are LPs.

C. Uniqueness
A natural question to ask is: when can the private belief of

an agent be reconstructed uniquely? The next lemma provides
a constructive answer to this question.

Lemma 1. Consider the setup in Problem 2 under Assump-
tion 1. The private belief πk of the agent acting at time k can
be uniquely reconstructed if and only if

¯
πk = π̄k (computed

as in Corollary 2). Moreover, in this case, the bounds all
coincide:

¯
πk = πk = π̄k.

Proof. First, if the agent’s belief πk is unique (in the sense that
it is the only belief that would generate the observed decision
u∗k), then this is the only value of πk for which there exist
λ and ν such that the KKT conditions (13)-(15) hold. This
means that problems (18) and (19) have only a single point (the
agent’s πk) in their feasible sets. Clearly, then, the minimizers
must coincide so that

¯
πk = π̄k, and thus πk =

¯
πk = π̄k.

Second, if
¯
πk = π̄k, then (by rewriting (19) as an equivalent

maximization problem)

min
π∈Πk

[π]i = max
π∈Πk

[π]i, (20)

for all i = 1, . . . , X . This implies that the set Πk is a
single point. Now, the agent’s private belief πk is, of course,
consistent, so πk ∈ Πk. In turn, we have that

[
¯
πk]i = min

π∈{πk}
[π]i = [πk]i = max

π∈{πk}
[π]i = [π̄k]i, (21)

for all i = 1, . . . , X .

V. CASE-STUDY: ESTIMATING THE BELIEF OF A
RISK-AVERSE INVESTOR BY OBSERVING

PORTFOLIO ALLOCATION

This section considers the following inverse estimation
problem involving portfolio allocation. Given the utility func-
tion and observed portfolio allocation of a risk-averse investor,
we estimate the private belief of the investor. This establishes
a basis for predicting how the investor operates by observing
his or her behavior.
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A. Background

In portfolio allocation, there have been substantial advances
in regime-switching market models (e.g., [6]–[13]) that take
into account that markets (randomly) switch between differ-
ent states; for example, bull (“optimistic”) and bear (“pes-
simistic”). These works, in particular [11]–[13], deal with the
question: Given U assets, how should a fixed amount of capital
be invested so as to maximize the risk-adjusted return under
switching market conditions?

Denote the portfolio allocation vector by uk ∈ RU , where
a fraction [uk]i of the total capital will be invested in asset
i. Usually, one requires that 1Tuk = 1 (that the full capital
is exposed to the market), that uk ≥ 0 (it is only allowed to
buy, not sell, assets), and that investments are held for one full
time-period. In regime-switching market models, it is assumed
that there exists a set of market conditions X = {1, . . . , X}
for the market state xk ∈ X . Each market state xk results
in a different mean vector µxk

∈ RU , and a corresponding
covariance matrix Σxk

∈ RU×U , for the different assets. For
a given risk aversion parameter γ ∈ R≥0 – which quantifies
how the investor trades potential return against risk – a regime-
switching mean-variance portfolio allocation problem is on the
form:

min
uk∈RU

Exk

{
γuTk Σxk

uk − µTxk
uk | Ik

}
s.t. 1Tuk = 1, uk ≥ 0, (22)

whose solution provides the investor with the portfolio giving
the optimal risk-adjusted return for period k. Here, Ik is the
investor’s private information that is employed to compute the
posterior distribution of the current market state xk.

B. Estimating the Investor’s Belief

Public stock data allows everyone to form estimates of
the expected returns and covariances under different market
conditions, meaning that, in practice, the cost functions of a
Markowitz-type investor can be approximated (for robustness,
see Section VI-B). However, clearly, the success of an investor
is closely related to how well he or she can estimate the
current market conditions. This estimation depends on private
information; for example, rumours or privileged information.
Reconstructing an investor’s private belief could allow for, e.g.,
change detection; which could indicate insider trading, and/or
reverse engineering trading strategies.

To demonstrate an application of the results in the previous
section, assume that we have an initial estimate of the market
conditions π̃k – this could, for example, be our own estimate,
or the investor’s private belief that was reconstructed in the
previous time instant π̂k−1.3 The solution to Problem 2c is
then:

Lemma 2. Suppose an investor solves the regime-switching
portfolio allocation problem (22), and that we know the ex-
pected returns and covariances {µx,Σx}Xx=1, the risk-aversion
parameter γ along with the portfolio allocation u∗k.

3Note that π̂k is only of importance in the case of non-uniqueness.

The estimate π̂k of the investor’s private belief πk that is
consistent with public data and that is closest to our prior
estimate π̃k is the solution of the following convex optimization
problem:

min
π̂k∈RX,λ∈RU,ν∈R

‖π̂k − π̃k‖2

s.t. π̂k ≥ 0, π̂Tk 1 = 1, λ ≥ 0,

[λ]i = 0 if [u∗k]i 6= 0 for i = 1, . . . , U,
X∑
i=1

[π̂k]i (2γΣiu
∗
k − µi) = λ− 1ν. (23)

Proof. Use Corollary 1 (together with Theorem 1), and com-
pute the gradient of the cost function in (22).

VI. NUMERICAL RESULTS

We conduct several numerical experiments to illustrate our
theoretical results. In order to visualize the results, we consider
synthetic three-regime portfolio allocation problems, as in
(22), with X = 3 and U = 3.

A. Illustration of the set Πk and the bounds
¯
πk, π̄k

We start with a case where the set of consistent private
beliefs Πk is not a singleton. We computed this set using
Theorem 1, and it is depicted as the blue region (line) in the
left plot of Fig. 1. As expected, the actual private belief πk
(marked with a green circle) lies inside this set. The shaded
red region corresponds to the bounds

¯
πk and π̄k. As expected

(and guaranteed by Corollary 2), the actual private belief and
the set Πk lie within the bounds.

Intuitively, the private belief πk parametrizes the position
of the minimizer (assume it is unique) of the unconstrained
version of the decision problem. In the example in Fig. 1, some
inequality constraint is active which, roughly, projects the
unconstrained minimizer onto it. As can be seen in the figure,
a whole set of unconstrained minimizers, corresponding to the
blue line of private beliefs, is being truncated into the same
constrained decision. Since all private beliefs in this region
will generate the same (observed) constrained decision, we can
not do a unique reconstruction without access to the investor-
agent’s associated Lagrangian multipliers (which would give
us an idea of how much the constraint is violated by its
corresponding unconstrained minimizer).

B. Sensitivity
The cost functions c(x, u) incurred by an agent are not

always known with certainty (e.g., Section V). To explore
the sensitivity of our results, we added random perturbations
to the cost functions when estimating the private belief. To
illustrate the results, we consider an example where the set Πk

is singleton (i.e., it contains only the actual private belief πk).
The results of 40 simulations are displayed in the center and
right plots in Fig. 1. Random zero-mean Gaussian elementwise
perturbations of standard deviations 5% and 10% were added
to both the means µx and covariances Σx (see Section V).
Clearly, the results are robust to small perturbations since all
the estimated private beliefs (blue dots in the figures) lie close
to the actual private belief (green circle).
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Figure 1: The actual private belief πk is marked with a green circle ( ) in all figures. Left: The blue region ( ) corresponds
to Πk – the set of beliefs consistent with public data (defined in Theorem 1). The red region ( ) displays the bounds

¯
πk and

π̄k. Center and Right: The blue dots ( ) mark the beliefs that are estimated when perturbed cost functions are used. Note that
a different example (one in which the set Πk is singleton) is used compared to that in the left figure.

VII. CONCLUSION

In this paper, we formulated and proposed algorithms for
estimating the private belief of an agent in sequential stochastic
decision problems. We exploited results from inverse optimiza-
tion to characterize the set of private beliefs consistent with
public data. Our results have implications in, for example,
social learning [4], [5] where they would allow other agent’s to
gain insight into any agent’s private belief – raising important
questions of privacy. Finally, we illustrated the results in
numerical simulations and demonstrated that they are robust
to small uncertainties in the agent’s cost functions.

In future work, it is worthwhile deriving perturbation
bounds (using, e.g, [31]) on the sets observed in Section VI-B,
and connecting the present work with inverse filtering [23],
[24].
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