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1 Introduction

In recent years, the ancient art of origami has been revolutionized
by modern technology. Many methods have been developed to
design, adapt, and analyze origami patterns for both artistic and engi-
neering applications [1-6]. Several applications have made use of
interesting energy characteristics exhibited by origami and kirigami
patterns [7-10]. While polyhedral folding—folding where all
creases are straight and surfaces are planar—has become fairly well-
defined, curved folding—folding where creases are curved and
surfaces are allowed to bend—remains relatively enigmatic. A
great deal of the mystery surrounding curved folding is due to the
infinite number of unique configurations a curved fold can assume.
While many remarkable methods have been developed to model
specific configurations of curved folds under certain constraints
[11-13], it remains challenging to predict the natural configurations
that physical models will assume.

To this end, we begin with a review of the fundamentals of
curved folding and introduce the notation we use throughout this
paper. We then simplify curved-fold calculations by utilizing nor-
malized coordinate equations—equations that relate properties of
a curved fold at a point to the normalized distance from the point
to the edge of regression. From these normalized coordinate equa-
tions, we develop an energy method that can be used to find natural
configurations for a general curved fold.

Using this energy method, we make two surprising observations.
First, it was conjectured by Fuchs and Tabachnikov [14] that
general curved folds naturally assume planar, constant fold angle
configurations. We observe that natural configurations of various
simple folds, while close, are not planar or uniform. This observa-
tion is verified with the help of physical models. Second, we
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observe that although the natural configurations of a quarter-circular
fold are neither planar nor uniform, remarkably, the rulings appear
to remain geodesically fixed as the stiffness of the material and the
initial fold angle are varied.

2 Background

As shown by Duncan and Duncan [15], curved folds form natu-
rally when a thin sheet of material is yielded along a curved line
called a crease. As the crease is plastically deformed to a nonzero
fold angle (y), the material on either side bends without ripping,
tearing, or stretching to take a 3D folded form as shown in Fig. 1.
Because ripping, tearing, and stretching are high-energy cost activ-
ities compared to bending, the material on either side of a folded
crease preferentially takes the form of curved developable surfaces.
A developable surface is a singly curved surface which can be
unfolded to a plane through bending only [16]. Thus, a curved

Fig. 1 lllustration of a curved fold formed by folding along a
curve f(u) in an unfolded configuration (left) and folded with a
fold angle y (right)
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Tangent Plane

MNormal Plane

Principle Plane

Fig. 2 Tangent (left), normal (center), and principle (right) planes to a curve embedded in a developable
surface. These planes contain the geodesic curvature (xg), the normal curvature (x,,), and the principle cur-

vature (xp), respectively.

fold consists of two developable surfaces joined by a curved crease
in such a way that the entire fold is globally developable or can be
unfolded to a flat plane.

Several measures of the crease are useful in describing the rela-
tionship between the crease and the curved panels. These include
torsion (z) along with several measures of curvature including the
geodesic curvature (k,), the normal curvature (k,), and the principle
curvature (k,). As these quantities are well-defined in the field of
differential geometry, we will forgo rigorous definitions of these
terms and focus on their geometric significance with respect to
curved folding. The geodesic curvature (of the crease), k,, is a
measure of the curvature of the crease contained within the fold sur-
faces, or the portion of the curvature vector contained in a tangent
plane (see Fig. 2, left). Thus, the geodesic curvature can be under-
stood as the curvature of the crease when the curved fold is unfolded
to a plane. As long as a crease remains geodesically fixed in the
material, the geodesic curvature is a property of the 2D crease
pattern and thus invariant for any fold state a curved fold may
assume. The normal curvature, x,,, measures the portion of the cur-
vature of the crease contained in the normal plane to the fold sur-
faces (see Fig. 2, center). This quantity can be visualized as the
portion of curvature that is added to the crease as a result of
folding (thus, k, =0 when the crease is fully unfolded). Whereas
the geodesic curvature and the normal curvature were properties
of a curve embedded in a surface (in our case, the crease); the prin-
ciple curvature (x,) measures the amount the surface curves in the
direction of the greatest curvature. It is important to note that
since the crease will generally not follow the direction of the great-
est curvature (although such creases, called cross-curves, have par-
ticularly nice properties as noted by Lang et al. [17]), the principle
curvature along the crease is not a measure of the curvature in the
crease.

A great deal of work has been done to analyze, approximate, and
model the developable surfaces that result from curved folding.
While many valid representations exist including Ref. [18], one
common form is the directrix-director (generator) parameteriza-
tion [19]

S(u, v) = f(u) + vd(u) (€))]

where u and v are the parameters of the surface. When u is held
constant, the general form becomes the equation of a line parame-
terized by v. These lines are called rulings or generators. The direc-
trix of the surface is f, and the directors are given by d (see Fig. 1).

As developable surfaces consist of ruling lines joined together,
they form a subset of ruled surfaces. While Eq. (1) describes a
general ruled surface, specializing the directrix and directors can
represent four fundamental types of developable surfaces. Three
of the fundamental types are curved and include generalized cylin-
ders where the rulings are parallel to each other, generalized cones
where the rulings meet at a single point, and tangent developables
where the rulings are tangent to a space curve called the edge of
regression. While the edge of regression is commonly used to
refer to the curve to which all rulings are tangent, this concept
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can be generalized to include the apex of a generalized cone and
a curve at infinity for a generalized cylinder. Thus, when we refer
to the edge of regression, we do not restrict ourselves to tangent
developable surfaces but include the singular points of all three
classes of curved developable surfaces. The fourth fundamental
type is the plane, where rulings can take arbitrary orientations and
positions.

Methods have been developed to relate specific valid crease—
surface pairs such as the principal of reflection [20], optical-ray par-
allels [21], and a distance-sum condition [17]. More general numer-
ical approaches have been explored to expand the range of valid
crease—surface pairs which can be used in designing curved folds
[11,12].

Within the space of curved folding, it becomes of interest to
know the minimum energy state a fold will take. The corresponding
analysis necessarily considers the curved crease, surfaces on each
side, and their boundaries. One energy minimization approach is
found in the doctoral work of Dias [22] in modeling the Bauhaus
concentric fold pattern. While it has been noted that even paper
curved folds exhibit tendencies to move to this minimum energy
state, this behavior becomes more pronounced when materials
with higher bending stiffness are used [23].

3 Methods

Two of the most notable differences between curved and straight
fold origami are (1) the fold angle (y) of curved folds can vary along
the crease and (2) the crease is allowed to bend out of the plane as
it is folded as measured by the torsion (z). Furthermore, these two
curved-fold properties—fold angle (y) and torsion (r)—are indepen-
dent of one another, allowing a single curved fold to assume
infinitely many unique configurations. Defining a specific configu-
ration of a given curved crease, therefore, requires that both fold
angle and torsion functions be defined along the length of the
crease.

Although the fold angle and torsion functions are sufficient to
define the shape of a folded configuration, in most practical appli-
cations, curved folds have finite edges that are fixed within the
paper. Thus, the domain of parameterization must be restricted to
some finite region. As a curved fold transitions through its
diverse configurations, its ruling field often shifts, changing the
region of the domain on which the parameterization is defined.
Accounting for the variability in the restricted domain can prove
challenging. In many applications, this added complexity has
been largely avoided by focusing on curved creases where all
creases and ruling lines remain fixed within the paper—but, as
the field of curved folding advances, the need for a more general
approach becomes increasingly apparent.

For the remainder of this paper, we simplify curved fold relation-
ships through the use of normalized coordinate equations. We then
present a method for restricting the domain for an arbitrary fold con-
figuration so that the boundary of the restricted domain corresponds
to the edge of the fold. Equipped with these tools, we present an
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energy method that can be used to predict natural configurations of
curved folds.

3.1 Normalized Coordinate Equations. Developable sur-
faces are typically defined in the directrix-director form given by
Eq. (1), with the edge of regression as the directrix. Because all
rulings are tangent to the edge of regression (excluding the de-
generate cases of cone and cylinder developable surfaces), this
single curve encapsulates all information about the developable
surface and greatly simplifies surface properties and calculations.
However, when defining curved fold surfaces, the curved crease
is typically chosen as the directrix because it allows a single direc-
trix to be used for both left and right surfaces. This representation
thus simplifies the relationship between fold surfaces. The follow-
ing normalized coordinate equations are based on a crease-directrix
parameterization but incorporate information about the edge of
regression to simplify crease relationships.

We can define both sides of our curved fold using the standard
crease parameterization as

Sy (u, v) =f(u) + vd; (1)

()
Sk(u, v) = f(u) + vdg(u)

where f is the curved crease and d gives the ruling directions. For
generality, we allow f to be an arbitrary speed curve and denote
the curve speed s such that s = ||f'||. For simplicity, we assume
that d(x) has unit length.

For a given configuration of a curved fold, the ruling directions
d(u) are determined by the ruling angle f(u)—the angle between
d(u#) and the tangent of f at u. To avoid distinguishing between
left and right fold surfaces and to simplify notation, we use the con-
vention that the left ruling angle will always be positive and the
right ruling angle negative. Thus, the ruling angle # can be calcu-
lated using the equations modified slightly from Ref. [14]

_ _fT+r/Q25)
Pr= [cot (—K - (y/z))mod 77,':|

i
Pr=— |:cot] (M> mod 7{|
xesc(7/2)
This implies that f; € (0, z) and Sg € (—x, 0). Thus, all equations
will be given in terms of a general f but are applicable to both
fold surfaces.

To measure properties of the fold surfaces such as embedded
curve length, area, and mean and Gaussian curvatures, it is conve-
nient to calculate the first and second fundamental surface forms.
For a rigorous definition, derivation, and explanation of these
forms, the reader is referred to Ref. [24]. In our setting, the coeffi-
cients of the first fundamental form (modified from [22]) can be
expressed as

3

E(u, v)=$* + v($kg () + /(W)

< [v(8xg(u) + B/ (w)) — 25 sin f(w) ]
F(u, v) = scos f(u)
Gu,v)=1

)
and the coefficients of the second fundamental form as
le(u, v)| = §%k,(u) — v$(sK,(0) + B (w))
!
’ (?‘)) cos ﬂ(u)} )
2s
fu,v)=g(u,v)=0

where k, is the geodesic curvature and k, is the normal curvature.
These equations offer a concise foundation upon which we can
build an intuitive description of a developable surface. To begin

. |:K,,(u) sin f(u) — (T(u) +
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to develop this intuition, we relate these equations to the edge of
regression.

To locate the edge of regression, we can take advantage of the
fact that the principal curvature is undefined along its entire
length. It can be shown through Egs. (4) and (5) that the magnitude
of the principle curvature k, is given by

Kn(u) csc fi(u)

6
sin B(u) — v(ke () + f'(w)/$) ©

|K[J(u’ V)l =

The singularities of this function will therefore lie on the edge of
regression. Thus, we can recover the edge of regression by
finding the values of u and v for which the denominator is zero.
Solving for such points v in terms of u gives the distance from
the crease to the edge of regression at each point u—we denote
this distance as vy. The resulting equation for vy, can then be
written as

sin p(u)

__Smp) 7
) + P @

vo(u) =

The edge of the regression curve £ can then be found by substituting
vo into Eq. (1), yielding

sin (1)

RO

d(w) ®

This equation alone tells us little about the developable surface of
interest, but by substituting (7) into the first fundamental form
(4), we obtain a simplified form

2
E(u, v) = §* |:cos2 pu) + <M> sin’ [3(“):|

vo(u)
&)
F(u, v) = scos f(u)

G(u,v)=1

To illustrate the simplicity this formulation can enable, we con-
sider the Riemann area metric (or Jacobian)

VEG—F2= g(VO(”) — ”) | sin Q)| (10)

vo(u)

The second factor on the right-hand side is of particular interest—it
is the ratio of the distance along a ruling line from a point to the edge
of regression over the distance along the same ruling line from the
crease to the edge of regression (see Fig. 3). In other words, it is the
normalized distance that the point lies from the edge of regression.

. &(u), Edge of Regression
N

v, (1)

f(u), crease

Fig. 3 Normalized distance of a point from the edge of
regression
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We will denote this normalized distance as

_vou) —v

Y(u,v)= (@) (11)

Thus, the area metric at a point (u, v) is the curve speed multiplied
by the sine of the ruling angle (a measure of the perpendicularity of
the ruling lines to the crease) scaled by its normalized coordinate Y.

Similarly, we can express the principle curvature in terms of Y as

Kn(ut) csc® fu)

Y(u, v) (12)

kp(u, v) =

but, as Lang et al. noted [17], the principle curvature along the
crease is

i p(10) = k(1) e ) (13)
Therefore, Eq. (12) takes the form
K (i, v) = ]'; (’;(”i) (14)

revealing that the principle curvature at any point is independent of
the curve speed and is given by the principle curvature along the
crease, scaled by the reciprocal of its normalized coordinate Y.
As we will soon see, this relationship will greatly simplify the
energy analysis.

While we do not derive any additional normalized coordinate rela-
tionships in this paper, we note that many complex equations—
including the geodesic equation—can be reduced through the use
of normalized coordinates.

3.2 Energy Analysis. A great deal of the difficulty associated
with solving for minimal energy configurations lies in restricting the
domain of parameterization of fold surfaces under constantly shift-
ing domains of parameterization. Here, we develop a method for
restricting the domain of fold surfaces for a general configuration.

In calculating the energy of a curved fold, we consider two types
of energy: bending energy and crease energy. However, since our
analysis thus far has considered a curved fold as the union of infin-
itesimally thin developable surfaces without specified material
properties, we will focus on primarily on nondimensional forms
of the bending and crease energies. As shown in Ref. [22], formu-
lations of bending and crease energies with appropriate energy units
may be obtained by multiplying the nondimensional forms by the
bending modulus and stiffness, respectively. The energy method
presented here uses the nondimensional energy forms but intro-
duces a stiffness coefficient K to properly scale the contribution
of bending and crease energies. This energy method can be used
to find the natural configuration of a general curved fold.

3.2.1 Restricting the Fold Domain. To compare the energy of a
single curved crease in various folded states where the ruling lines
are free to shift, we need to be able to restrict the domain such that
fold edges remain fixed within the paper.

To find the boundary of the restricted domain, R, we begin by
parameterizing the unfolded edge in terms of the crease and its
normal vectors. If we denote the unfolded edge y, we can write

x() = () + £)N(u) (15)

where N is the unit normal vector to the crease and £(u) is the dis-
tance along the normal that the edge lies from the crease at each
point u. We could, at this point, solve for points along the edge
of the folded form by calculating geodesics in the left normal direc-
tions, but solving the nonlinear differential equation that defines
geodesics is difficult and computationally expensive. Fortunately,
we can reduce this to a nonlinear root finding problem by recon-
structing the flat ruling field and solving for the edge in the unfolded
form.

071006-4 / Vol. 86, JULY 2019

To formulate this flat edge approach, we consider a single point
on the unfolded edge, y(ug), as shown in Fig. 4. Our approach
defines a function D(u) that gives the distance along the crease
normal at u, at which a ruling line, originating at a point on the
crease f(u), intersects that normal. From basic trigonometric rela-
tionships and the law of sines, it can be shown that

(o = x(w)) sin (0w) + pw)) = (yo = y) cos (8w) + f(w))

D) = cos (0(u) + p(u) — o)

(16)

where 0 is the turning angle of the crease (see Ref. [24]). To calcu-
late the u coordinate of the edge point y(u), we therefore find the
root of the equation

D(u) = sign(B)to

By again applying the law of sines, we show that the v coordinate of
the edge point is given as follows:

amn

b (xo — x(u)) cos O(u) + (yo — y(w)) sin O(u)

cos (6(u) + B(u) — 6) (18

Edge curves are then approximated by solving for the parameters
u and v for a sufficient number of edge points and interpolating the
resulting set of v coordinates in terms of u. The resulting edge func-
tions provide the boundary of the restricted domain R, on which we
can perform energy calculations.

3.2.2 Bending Energy Calculations. We define the bending
energy of a surface as the energy required to bend the surface
from a plane. It has been shown [12,25] that the nondimensional
bending energy Ep can be calculated using the formula

EFJ K, dA
R

For a curved fold surface parameterized in the form of Eq. (2), this
integral becomes (by substituting Eq. (14) and evaluating the Jaco-
bian)

Ep= il | sin B(u)| § dv du (19)
)Y
The bounds of integration here are the edge functions found in
Sec. 3.2.1. These bounds vary depending on the shape of the fold sur-
faces and orientation of the ruling field, but in general, the integral is
straightforwardly calculated by dividing it into sections. Note that
when Y(u, v) =0, the bending energy function has a singularity.
This is because Y(u, v) = 0 corresponds to the edge of regression

(x,)) 0

Fig.4 Solution process for obtaining u, v parameterization of an
edge point x(uo)
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which is known to be singular. Thus, we will consider only fold con-
figurations for which Y(u, v) > 0 on the entire fold domain.

3.2.3 Crease Energy Calculations. Crease energy is the energy
needed to change the fold angle from a yielded stable angle which
we call the initial fold angle. Various formulations of crease energy
exist including those found in Refs. [22,26]. We adopt the formula-
tion in Ref. [22], giving the nondimensional crease energy as

K[ yw
EC—2J <os > cos >du

Ui

(20)

where K is a nondimensional stiffness factor defined as the ratio of
material stiffness to the bending modulus and y is the preset angle.
For the purposes of this paper, we assume that the values K and y,
are constant along a fold. These values are dependent on material
and manufacturing, and the method could be extended to allow
them to vary along a curved fold. In Sec. 4.2, we use a variety of
parameter values to calculate crease energy and observe a surprising
phenomena—in the case of a circular crease, the values of the stift-
ness factor (K) and preset angle (y) have little to no effect on the
ruling field of the optimized crease.

3.3 Optimization. To solve for a minimal energy state, we use
a calculus of variations approach, using a set of basis functions to
define the torsion and fold angle along a curved fold. The coeffi-
cients of these basis functions are varied to minimize the sum of
the bending and crease energies.

We use a degree-6 Legendre polynomial basis with distinct sets
of coefficients to represent fold angle and torsion functions,
giving a total of 14 free variables (including coefficients for the
zeroth degree basis functions). We define the objective function
for this optimization problem to be the sum of the left and right
bending energies (in the form of Eq. (19)) and the crease energy
(in the form of Eq. (20)). The objective function for a specific
curved crease is then given by

Eioal = Ep (v, ) + Eg (v, ) + Ec(y) @n

where Eg; and Ep g are the bending energies of the left and right
surfaces, respectively. In addition, we define the nonlinear con-
straint

min Y(u, v)>0

(u,v)EOR

(22)

to ensure that the energy function is defined at every step. This con-
straint, mentioned in Sec. 3.2.2, can be interpreted physically as
ensuring that the edge of regression does not lie in the restricted
fold domain—implying the resulting fold surfaces are nonsingular.

4 Results

The energy method described above is applied to identify natural
configurations of various curved folds. In Sec. 4.1, we show that the
lowest energy state of this specific curved crease, while close to
planar, is not necessarily a planar uniform fold as conjectured by
Fuchs and Tabachnikov [14]. Similar nonplanar results have
recently been observed in Refs. [13,27,28] using elastica-surface
generation and finite element methods. Given that the lowest
energy state of a circular crease is not planar, we find a natural con-
figuration for the crease. Results for various noncircular and vari-
able width creases are then compared to physical models. Finally,
we contextualize our observations of nonplanar behavior by analyz-
ing how the location of the edge of regression affects fold energy.

4.1 Nonplanar, Uniform Folds. Various authors [14,17,22]
have observed that folds tend toward configurations with zero
torsion (planar) and a constant fold angle (uniform). This planar-
uniform behavior appears to hold when the width of the fold
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Non-Planar Slmulated

Fig.5 Physical model of a circular crease of width 0.9 units (top)
with the simulated planar-uniform fold and ruling field (left) and
simulated minimal-energy uniform fold and ruling field (right).
Both simulated configurations have fixed fold-angle y = =/2.

surfaces is small compared to the total length of the crease but is
clearly contradicted when the width of the fold surfaces is compa-
rable to the crease length. To observe this behavior, try folding
along a circle or parabola where the edge extends nearly to the
focus. It then becomes apparent that this planar, constant fold
angle assumption no longer applies. To verify this observation,
we consider two distinct fold surface widths for the quarter-circle
crease, shown in Figs. 5 and 7.

We begin by considering fold surfaces of width 0.9 on either side
of the crease and assume that the fold remains uniform, fixing the
fold angle at y=x/2. While assuming the fold angle to be fixed
requires that crease energy be neglected, our intention is to first
investigate the common observation that folds tend toward a
planar configuration for a constant fold angle by examining the
capability of varying torsion in a crease to reduce the total energy
independent of the fold angle.

Applying the optimization routine with an initial guess of zero
torsion reveals that the lowest energy state is not planar. In fact,
by adding torsion to the ends of the curved crease, we are able to
reduce the bending energy in the surface by 64%. The optimized
result is compared to both a planar-uniform fold and a physical
model in Fig. 5. As shown in the figure, the optimized fold shows
a high degree of fidelity to the physical model—which can most

Torsion

0.08
0.06

Deviation

0.04
0.02

0 /4 /2
Crease Length

Fig. 6 Optimized torsion function (top) and planar deviation

(bottom) for a thin circular crease of width 0.9 units with a fixed
fold-angle y = n/2
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Planar-Uniform Simulated

Non-Planar Simulated

Fig. 7 Physical model of a circular crease of width 0.05 units (top) with the
simulated planar-uniform fold and ruling field (left) and simulated
minimal-energy uniform fold and ruling field (right). Both planar-uniform
and minimal-energy uniform folds have fixed fold-angle y = #/2.

easily be seen by comparing the inner edges of the folds (marked for
clarity). The torsion and resulting planar deviation depicted in Fig. 6
for the optimized fold clearly illustrate that the resulting configura-
tion is nonplanar. The reason for the significant decrease in energy
will be further analyzed in Sec. 4.4.

We now turn our attention to the case when the width of the fold
surfaces is small, by reducing the width of fold surfaces to 0.05
units. This time, bending energy is reduced by about 4%. The opti-
mized result is compared to both a planar-uniform fold and a phys-
ical model in Fig. 7.

We note here that the greatest effect of the optimized torsion on
the shape of the fold is not in deforming the crease out of the plane
but rather in shifting the ruling field and therefore the location of the
edge of regression. For this reason, it can be difficult to visually dis-
tinguish the optimized crease from a planar crease. This phenomena
is observed in Fig. 8, where the optimized torsion function is com-
pared to the magnitude of the distance that the folded crease devi-
ates from a plane. From Figs. 7 and 8, we observe that while the
crease deviates only slightly from a plane, the ruling field near
the endpoints of the crease shifts a great deal.

Although the optimized fold differs only slightly from its planar
counterpart, an important observation can be made—the planar-
uniform assumption appears to be violated even in the case when
the ratio of fold width to crease length is small, indicating that non-
planar behavior is observed even when bending energy is relatively
small.

4.2 Natural Configurations. Now that we have verified that
the natural configuration of a circular crease is not a planar-uniform
fold, and we turn our attention to solving for a natural configuration.

Torsion

0.006

0.004

0.002

Deviation

0 /4 /2

Crease Length
Fig. 8 Optimized torsion function (top) and planar deviation

(bottom) for a thin circular crease of width 0.05 units with a
fixed fold-angle y = n/2
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We again consider a quarter unit-circle crease, with fold width of
0.8. To find a natural state, we allow both fold-angle and torsion
to vary. In accounting for crease energy, we used various values
of K (ranging between 1 and 100) and y, (ranging between z/4
and #). In general, larger values of the stiffness (K) and initial
fold-angle (yo) result in more folded (larger fold-angle) natural con-
figurations. Figure 9 shows the resulting natural configuration and
ruling field for parameter values K =50 and yo=n/2.

The result shows high fidelity to physical models, and one other
surprising result is observed: as the values K and y are varied, the
fold angle of the natural form varies but the ruling field remains
almost completely fixed. In fact, for parameter values in the previ-
ously defined range, the ruling angles f for both left and right fold
surfaces show a maximum deviation of 0.02 rad. This deviation
could likely be attributed to the truncation error of using a
degree-6 Legendre basis to represent torsion and fold angle
functions.

This surprising observation hints that even though the natural
configuration is neither planar nor uniform, it may remain
ruling-rigid foldable throughout its range of motion. This observa-
tion appears to agree with physical prototypes, but verifying this
conjecture is left to future work.

— Torsion (length™)
----- Fold Angle (rad)

0 /4 /2
Crease Length

Fig. 9 A physical model (top) and simulated natural configura-

tion using K=50 and yo=~/2 (bottom) for a circular crease of
width 0.8 units
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We briefly note that the natural configuration of a fold may be
altered by varying the width of the fold along the crease. Addition-
ally, methods such as material prestressing [29] may be used to alter
the natural configuration and could be used to produce multiple
natural fold configurations (i.e., multistable configurations).

4.3 General Curved Folds. The proposed energy method is
valid for general curved folds. To illustrate the application of the
previously proposed energy method to noncircular creases,
Fig. 10 compares a physical model and corresponding simulated
natural configuration for a crease defined by curvature k, = cos(s)
for s€[0, 3x] and of constant width 0.7 units. The simulated
natural configuration shows a high degree of fidelity to the physical
model.

Additionally, Fig. 11 illustrates the physical and predicted natural
configuration of a curved fold with variable width. The crease is
defined by curvature Kg=4tan71(s) for se[—-1.5, 1.5], and the
width of fold surface varies linearly between 0.1 and 0.7 units.
The simulated natural configuration again shows a high degree
fidelity to the physical model, capturing various distinguishing fea-
tures including the highly nonplanar behavior and decreasing fold
angle near the ends.

4.4 Edge of Regression Analysis. We now make observations
about the motion of the edge of regression as a fold transitions from
a planar-uniform configuration to a natural configuration.

For the planar-uniform circle fold (depicted in Fig. 5), the edge of
regression is 1 unit from the crease at each point along the fold, but
the inner edge of the fold (near the apex of the cone) is more curved
than the outer edge. This is because the value of v is positive for the
inner fold surface (since it lies in the direction of the director) and
negative for the outer fold surface (since it lies in the opposite direc-
tion of the director). Consequently, the inner surface has a higher
bending energy than the outer surface. In contrast, functions of v,
of the natural configuration are negative for both fold surfaces.

—— Torsion {length™)
=== Fold Angle (rad)

Crease Length

Fig. 10 Physical model (left) and natural simulated configura-
tion using K=100 and y, = /2 (right) along with the simulated
torsion and fold-angle functions (bottom) for a crease with curva-
ture x4 = cos(s) for s € [0, 3] of width 0.7 units
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Fig. 11 Physical model (left) and natural simulated configura-
tion using K=100 and y, = /2 (right) along with the simulated
torsion and fold-angle functions (bottom) for a crease with curva-
ture kg = 4tan~'(s) for s € [-1.5, 1.5] and variable fold width

This reduces the bending energy of the inner surface and results
in a lower total bending energy.

To further illustrate the relationship between the edge of regres-
sion and bending energy, we consider the ruling energy, eg, defined
as the bending energy along a ruling line given as follows:

[
R = Y(u, v)

| sin B(u)| s dv (23)
where the bounds of integration are again given by the edge func-
tions. The ruling energy for the quarter circular crease is illustrated
in Fig. 12. Notice that by shifting the edge of regression to the side
of the crease opposite the fold surface (indicated in the figure by vq
<0), the ruling energy of the inner surface is reduced significantly.
To understand the conditions that allow a curved fold to assume a
configuration where v is negative for both fold surfaces, we con-
sider Eq. (7) under the assumptions that x,>0 and s = 1. Thus,

sin
Vo =
0 ke +f

24

Assume for a moment that #' =0 for both left and right surfaces.
Recalling that f; € (0, z) and fg € (—x, 0), we see

_sinfy _sin|f|

Vo,L
Kg Ke
sin fg sin |fg|
Vo,R = =
Ke Ke

Thus, the left surface is positive biased while the right surface is
negative biased. In order to negate v, it is therefore required
that §;, < —k,. Since f; is bounded, this is only possible over a
finite interval and we can bound the turning angle (0) of the flat
crease

6=Jkg<jﬁ2<n

where the turning angle is the total angle the tangent rotates along
some length of a curve. Therefore v, cannot be negative along
the entire crease if the turning angle of the flat crease is greater
than z. For folds where @ is greater than 7, we have observed that
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Fig. 12 Planar (top-left) and natural (bottom-left) configurations of a quarter circular crease of width 0.8. The distance to the
edge of regression, v, (center), and ruling energy (right) are given to illustrate the effect that the location of the edge of regres-
sion on the total energy of the fold. Note that the ruling energies are small near the ends of the crease in the natural configu-
rations because the length of the ruling lines decreases toward the ends of the crease.

portions of the fold near the middle of the crease preferentially take
planar-uniform configurations while the ends of the crease take non-
planar configurations. These findings are in good agreement with
those of Ref. [28] where it was found that as the turning angle is
increased, longer sections of planar-uniform behavior are observed
near the center of the crease.

We briefly note that whenever k, = —f, vy is singular. If v is sin-
gular over an interval, the fold surface is locally (on that interval) a
generalized cylinder. If v is singular at a point, the ruling line at this
point is the boundary between two distinct developable surfaces.
This implies that the fold surface consists of multiple developable
surfaces joined along ruling lines.

5 Conclusion

We presented novel normalized coordinate equations that sim-
plify curved-fold relationships and facilitate energy analysis of
curved folds. These normalized coordinate equations provide a
simple and geometrically intuitive framework for understanding
curved fold behavior. An energy method was derived based on nor-
malized coordinates to predict natural curved-fold configurations
for general curved folds. This energy method revealed that nonpla-
nar behavior lowers surface energy by shifting ruling lines, moving
the edge of regression. While other results have recently observed
nonplanar behavior in various simple folds [13,27,28], we used nor-
malized coordinates to provide mathematical context and physical
intuition for this nonplanar behavior. The method was applied to
noncircular and variable width creases and was observed to accu-
rately predict natural fold behavior for general curved folds.

The ability to determine the natural configuration has interesting
consequences. For example, identifying the natural configuration of
a curved fold allows the orientation of the rulings on the folded
surface to be predicted, and the rulings can then be used as hinge
lines for developable mechanisms [30]. One of the greatest potential
advantages of implementing developable mechanisms on curved-
fold surfaces in this way is that it enables 3D structures with
complex spatial mechanisms to be manufactured from flat sheets
of material. Because a developable mechanism is capable of con-
forming to a surface, these mechanisms may prove useful for
conceal-reveal applications [31] or for integrating structural and
functional geometries [32-34].

071006-8 / Vol. 86, JULY 2019

The normalized coordinate equations and the energy method pre-
sented here provide simple and effective tools for predicting natural
curved-fold behavior for general curved creases, an ability that will
become important as curved-crease origami is used in deployable
engineering applications.
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