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Abstract

Transportation networks are considered one of the critical physical infrastructures for resilient cities (cyber-physical systems).

In efforts to minimize adverse effects that come with the advancement of vehicular technologies, various governmental agen-
cies, such as the U.S. Department of Homeland Security and the National Highway Traffic Safety Administration (NHTSA),

work together. This paper develops belief-network-based attack modeling at signalized traffic networks under connected

vehicle and intelligent signals frameworks. For different types of cyber attacks, defined in the literature, risk areas and impacts
of attacks are evaluated. Vulnerability scores, technically based on the selected metrics, are calculated for signal controllers.

In addition, the effect of having redundant traffic sensing systems on intersection performance measures is demonstrated in

terms of average queue length differences.

Resilience of critical infrastructures is defined as their

ability to withstand an upsetting event, deliver essential

levels of service during it, and recover quickly after it.

With the increase of connected systems, cyber attacks

that can target critical infrastructure systems are becom-

ing more troubling. Transportation networks are consid-

ered one of the critical physical infrastructures for

resilient cities (cyber-physical systems [CPSs] [1]).

According to recent reports (2–4), several benefits are

foreseen from upcoming technologies such as connected

and autonomous vehicles (CAVs), including up to 80%

reduction in fatalities from multi-vehicle crashes and pre-

vention of the majority of human-error-related incidents,

which takes out about 94% of all incidents. These intelli-

gent applications, however, come at a price; for example,

in 2015 alone 1.5 million vehicles were recalled because

of cybersecurity vulnerabilities. NHTSA’s current

research focuses on CAVs that are heavily involved in

secure implementations which will enable the field and

its technology experts to harness efficient, reliable, and

secure system design (3). Some of these topics can be

listed as anomaly-based intrusion detection systems,

cybersecurity of firmware updates, cybersecurity on

heavy vehicles, vehicle-to-vehicle (V2V) communication

interfaces, and trusted vehicle-to-everything (V2X) com-

munications (5). The main goals for any critical infra-

structure are quick detection of attacks and rapid

mitigation efforts (6). There are many attack types, of

which some can be resolved via detection and some

require redundant systems and sensors. In intelligent

transportation systems (ITS), to increase security and

resiliency in case of possible attacks or benign system

errors during different events, research is likewise needed

into detection using various sensors and data types.

Research is also necessary to enhance confidence in sen-

sor readings by checking consistency with other sensors

and information sources as well as validating control sys-

tem commands (7). This paper investigates attack model-

ing and impacts on intelligent signals. For different types

of cyber attacks defined in the literature (e.g., [8]). risks

are calculated via probabilistic graphical models (e.g.,

the Bayesian network [BN] [9]) and quantified by system

simulations.

In the literature, related studies with analytical graphi-

cal models include factor graphs, BNs, and Markov ran-

dom fields (10). Two detailed works on current attack

types, survey studies on CPS security, list possible attacks

and discuss their mitigation techniques (11, 12). In these
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studies, abstract cyber-physical models for smart cars are

presented. Possible attacks are listed as criminal, privacy,

tracking, profiling, political threats with different struc-

tures replay, command (message) injection, eavesdrop-

ping, and denial of service (DOS).

Existing research efforts on vehicular communications

discuss possible attacks and their mitigation methods (5,

8). A recent study on current signal cabinets presents the

idea that the possible impact of attacks could be unma-

nageable queues (13). Overall, ITS applications require

protocols that conflict with anonymity and privacy

requirements. The research looks at quantifying such

risks and at traffic control in the case of either lost or

faulty communications. In sum, studies on the quick

detection of such cases and possible redundant data

resources for cost effective control are needed for

improving the resiliency of transportation networks.

Moreover, model-based attacks, usually for power

grids, are investigated by researchers (14). Intrusion mod-

els for different control systems and proper modeling for

moving systems, as in vehicular or mobile ad hoc net-

work (VANET/MANET) cases, are well-investigated in

(11), in which reputation management in vehicular net-

works is recommended. Possible revoking or blacklisting

of information contributors is also recognized in a similar

survey study specifically on cooperative ITS (8). Driver

privacy and safety critical applications are also starting

to be investigated by the researchers (15).

The particular contributions of this paper can be listed

as:

� Development of a connected vehicle-based signal

system model with cyber-physical representation
� Application of a probabilistic expert system (BN)

for modeling anomalies and attacks (malicious

messages or benign failures)
� Presentation of the impact of redundancy systems

(sensors) and a number of different traffic states

(from parameters: market penetration rate, and

vehicle–pedestrian traffic composition versus con-

trol reliability)

The rest of the paper is organized as follows. Section 2

introduces the problem and the approach. Section 3

explains the analytical modeling and BNs. Section 4 pre-

sents simulations from BNs. The section also describes

analysis with and without sensors at an isolated traffic

signal. Finally, section 5 summarizes findings and

addresses possible future research directions.

Methodology

The main objective of this paper is to develop analytical

graphical models for quantification of possible attack

impacts on intelligent traffic signal components through

controller states. First, a BN is generated based on the

physical model of an intelligent traffic signal given in

Figure 1 which is adopted from (16). Second, different

attack surfaces, scenarios, and possible impacts for risks

are obtained from (5). Finally, the two previous steps are

combined and standard vulnerability scores from (17)

are calculated.

In Figure 1, possible intelligent signal components

(i.e., physical devices) are depicted. The signal controller

unit has a processor, memory, and connections (e.g.,

ethernet, wireless, or other ports). Although simplified,

the figure is part of the field test architecture of con-

nected adaptive signals (18). In an arterial setting, each

intersection would have a communication device and a

controller overseen by a single traffic management sys-

tem. For communication among the devices, the security

certificate authority (e.g., Security Credential

Management System [SCMS]) is interfaced to the road-

side equipment (RSE) and used to provide security certif-

icates to trusted on-board equipment (OBE).

In the figure, various modes of passenger vehicles,

emergency vehicles, freight, transit, motorcycles, and

other motorized travelers are represented as vehicles.

Pedestrians represent any other nonmotorized modes

such as bicycles. These vehicles and pedestrians can also

be equipped; that is, they could have an OBE or portable

device which can communicate traffic control system

(via RSE). In this study, the traffic control system con-

sists of the signal controller, other surveillance technolo-

gies and environmental sensors, and an RSE. The RSE

radio manages the 5.9 GHz Dedicated Short Range

Communications (DSRC) between vehicles and the

infrastructure. Specific channels are designated for vehi-

cles to broadcast basic safety messages (BSM-channel

172) and RSE to broadcast the map message (MAP), the

signal phase and timing messages (SPaTs), and signal

status messages (SSM-channel 182).

In a broader view of the traffic network, signal con-

trollers can be positioned as part of a traffic management

system in which different control devices can be con-

nected and coordinated for various transportation

modes. These modes can be sensed by different detection

technologies (fixed-inductive loops, video, infrared,

radar, magnetic plates, pedestrian buttons or solely

mobile-GPS, and cell phones, etc.). These detectors pro-

vide information to the signal control algorithms for

presence to change or extend phases. These communica-

tions can be direct (pedestrian push button) or based on

inference (video cameras–queues).

The functions of the signal controller can be listed as

processing traffic sensor data, pedestrian protection, con-

flict monitoring, and giving indicative output data for

roads, other signals, or users. It also monitors RSE oper-

ation and provides a device interface for field
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management stations. The impacts on applications can

be listed as data distribution for eco-signaling, eco-tran-

sit, emergency vehicle preemption, freight signal priority,

pedestrian mobility, red light violation warning, and

transit priority. In this study, for simplicity, the impacts

of cyber attacks are quantified as changes in service

times, specifically average queue lengths (13).

Bayesian Networks

Bayesian (belief) networks are stochastic graphical expert

systems that depict conditional (in)-dependences of prob-

abilities of interest. Basically, they are expressions of

complex joint distributions with a large number of vari-

ables involving levels of conditional independences. They

can be used for finding probability distributions of a

variable with multiple states which can be expressed as

replications of such a variable with unobserved states

(i.e., hidden Markov models); some variables can also be

assumed as parameters connecting different realizations,

therefore calculating the posterior probabilities of such

parameters.

BNs in a cybersecurity context are utilized to model

hypothesized communications and to generate risk and

reliability in the presence of possible attacks (9, 19, 20).

Example cases on safety can be found in (21, 22). The lit-

erature involving simulation and analytical models also

addresses different attack types. From a cybersecurity

viewpoint, in general they include message injection,

replay, data manipulation, eavesdropping, routing, DOS,

and coordinated multiple attacks. However, in this study

they are revised for a connected vehicle (CV) framework

(5). The physical model Figure 1 introduced above is

modified with the addition of multiple modes, detection

Figure 1. A possible intelligent signal adopted from (16).
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interfaces, and a series of other signals in simulation. The

critical issue, though, when data are obtained only from

CVs, is that any error could result in significant costs.

Therefore, the impacts of back up surveillance systems

and attacks in a cyber-physical context are investigated.

In the study, multiple BNs are generated to see the

impact of having redundant detection systems which can

be treated as additional costs. BNs are utilized to calcu-

late conditional probability distributions and expected

vulnerabilities and their standard deviations via Monte

Carlo simulations. Some predictions are also provided

given assumed evidences for different scenarios. Thus, a

mixture of various BN usages is incorporated into this

paper. First, variables (nodes) and their discrete states

are defined. Note that these are assumptions mostly

compiled from (5, 17). Second, nodes and respective

edges are formed from Figure 1. These nodes are mainly

variables that are affecting signal control states. Parental

nodes (attack surfaces) along with their vulnerability

scores are given in Table 1. Metrics from (17), (low, med,

high) and (none, low, med, high, cri), represent likeli-

hoods of attacks, states of a node after an attack, and

detection probabilities. Standard values for such metrics

are also described below. The last column of the table,

for example, shows a conditional probability matrix of

p(SDSjLTC) in multiplication of ½l h l�T(13 3) and

½h l l�(13 3) matrices. It basically denotes the probability

of detection given a fake long-term certificate (LTC)

attack. The marginal distribution of LTC is also given as

½h l l� because feasibility is low.

The model’s system constraints or assumed variables,

and their descriptions and metrics (states) are given in

Table 2. For an example description, a signal controller

box is denoted by (SC). Traffic composition (TC)

consists of equipped and unequipped roadway users that

are denoted as pedestrians (EP), cars (CR), emergency

vehicles (EM), freight trucks (FR), transit (TR),

unequipped pedestrians (UP), and unequipped vehicles

(UV). This is by no means an exhaustive list of possible

attacks, and extensions can easily be incorporated into

the developed networks. For instance, satellite systems or

time source manipulations can be incorporated on multi-

ple surfaces along with detailed feasibility and impact of

such attacks. If available, more complex metrics or prob-

ability distributions can be included for feasibility of the

attacks.

Figure 2 shows designed BNs under assumed depen-

dencies among the nodes given in Table 2. Figure 2a is a

BN with single signal controller including a sensor (addi-

tional detection) node. This is critical as the reliability of

the SC could increase via additional ground truth checks

as well as control via this sensor which could be quanti-

fied using simulation in subsection. However, this would

involve additional cost. Similarly, detection nodes can be

seen as a cost for monitoring and delay of communica-

tions. In the figure, SC is connected on pedestrian push

buttons (it is assumed that there is no impact on the SC

state), other ITS which can be other signals, TMC, S,

and most importantly RSE. Transition of the risk at an

SC to series of other SCs (i.e., ten controllers) is demon-

strated by the BN in Figure 2b.

Now, suppose all the nodes in Table 2

N=fSC,SA,...,DCC,LCg. Given:

p(SC)=
X

N=SC

Y

N=SC

p(SCjpa(SC)) ð1Þ

where pa(SC) represents the parental variables of SC.

Simply when nodes are incorporated, Equation 1 follows:

Table 1. Attack Surfaces for Equipped Vehicles and Pedestrians

Target Type Feasibility Metric Detection Metric

SA LTC low ½h l l� med ½l h l�T3½h l l�
CRL med ½l h l� med ½l h l�T3½l h l�
PC med ½l h l� med ½l h l�T3½l h l�

RSE WSA high ½l l h� low ½h l l�T3½l l h�
DB high ½l l h� med ½l h l�T3½l l h�

DOSR high ½l l h� high ½l l h�T3½l l h�
SD low ½h l l� high ½l l h�T3½h l l�

VEHs CB low ½h l l� low ½h l l�T3½l h l�
BLK med ½l h l� low ½h l l�T3½l h l�
RB low ½h l l� low ½h l l�T3½h l l�
BSM high ½l l h� low ½h l l�T3½l l h�
DOS high ½l l h� low ½h l l�T3½l l h�
MP high ½l l h� med-high ½l m h�T3½l l h�

DCC med ½l h l� med ½h l l�T3½l h l�
LC med ½l h l� low ½h l l�T3½h l l�

Note: vehs = vehicles; pedes = pedestrians.
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p(SC)=
X

(S, RSE, :::,WSA)

p(SC, S,RSE,:::,WSA)

= p(SCjS,RSE,:::,WSA)p(RSEjRDS,:::)

p(SjUV,UP,EP,:::, TR):::p(WSA)

ð2Þ

Probabilities in Equation (2) from BNs are propa-

gated (posteriors) by the junction tree algorithm with

O(n3) time complexity for marginal distributions. The

algorithm actually yields the multiplication of condi-

tional probabilities including the independences, a sim-

plified version. The algorithm, on directed acyclic

graphs, first marries parent nodes, then triangulates and

removes unnecessary links through generation of cliques

and assignments, and reports message propagation (22).

Note that parent nodes p(WSA) require probability

assumptions for uncertain evidence setting. Scales are

adopted from (5) and assigned from (17). Specifically

state vectors (levels) for RSE (low, med, high) and SC

(none, low, med, high, cri) are assigned with maximum

probabilities (0.25, 0.50, 0.75) and (0.01, 0.39, 0.69, 0.89,

1.0) respectively. Note that for RSE these probabilities

represent low (affected by a serious attack, failure like),

med (less affected), and high (working) states. For SC,

the state probabilities are none (not affected), low (work-

ing state), med (still working, but service times would be

affected), and high and cri, which are highly affected

states in which traffic is disrupted with long delays

(e.g., hazardous conditions for emergency vehicles). To

address the sensitivity, these probabilities are generated

randomly from a uniform distribution and the resulting

posteriors are obtained as distributions for each state

rather than a single value. Moreover, the resulting

expected utilities for vulnerabilities are calculated on a

scale of 0–10, on which up to 0.1 shows no risk or impact

and 10 means cri vulnerability. BNs are coded and devel-

oped using gRain package in R (23). Examples of

Table 2. Nodes on the Designed BNs with Assumed Metrics

Node Description States

SC signal controller none, low, med, high, cri
SA certificate (security) authority low, med, high
RSE roadside equipment low, med, high
TC traffic composition UP, EP, UV, CR, EM, FR, TR
UP unequipped pedestrians none, low, med, high, cri
EP equipped pedestrians none, low, med, high, cri
UV unequipped vehicles none, low, med, high, cri
CR regular equipped vehicles none, low, med, high, cri
EM emergency vehicles none, low, med, high, cri
FR freight trucks none, low, med, high, cri
TR transit vehicles none, low, med, high, cri
ITS other ITS devices low, med, high
TMC traffic management center low, med, high
S sensor true, false
DD detection by driver low, med, high
DP detection by pedestrian low, med, high
DS detection by system (vehs) low, med, high
PDS detection by system (pedes) low, med, high
RDS detection by system (RSE) low, med, high
SDS detection by system (SA) low, med, high
LTC fake long-term certificate low, med, high
CRL fake certificate revocation list low, med, high
PC pseudonym certificate low, med, high
WSA wrong safety warning and signal phasing low, med, high
DB database and map poisoning low, med, high
DOSR denial of service (RSE) low, med, high
SD device shutdown low, med, high
CB sending channel busy low, med, high
BLK block pseudonym change low, med, high
RB remote reboot low, med, high
BSM send/intrusion/fake basic safety message low, med, high
DOS denial of service (vehs, pedes) low, med, high
MP database and map poisoning (vehs) low, med, high
DCC distributed congestion control mechanisms low, med, high
LC location tracking low, med, high

Note: vehs = vehicles; pedes = pedestrians.

Comert et al 5



SC

TMC ITS

EP

PDS

CR

DS

EM FR TR

DD DP

CB BLK RB BSM DOS DCC MP LC

RSE

RDS

SD DOSRDB WSA

SDS

CRL LTC PC

S

UPUV

SA TC

(a) Bayesian network with single signal controller

SC.10

SC.9

SC.8

SC.7

SC.6

SC.5

SC.4

SC.3

SC.2

SC

TMC ITS

EP

PDS

CR

DS

EM FR TR

DD DP

CB BLK RB BSM DOS DCC MP LC

RSE

RDS

SD DOSRDB WSA

SDS

CRL LTC PC

S

UPUV

SA TC

(b) BN of progression of risk from a single SC

Figure 2. Designed BNs.
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propagated conditional distributions are shown in

Table 3. Given different states of RSE, probabilities for

SC states are calculated. Notice that they are all high for

the none state as states of other nodes are also affecting

the SC. If S is false, though, p(SC = none) decreases.

Similar probabilities can be calculated easily for other

higher nodes. For instance, detection state transition to

RSE can be calculated as p(RSEjRDS). Reasonably,

from the table, if the detection state is low, RSE can be

at high state, else RSE is at failing low state. Likewise,

the propagation of risks to a series of other SCs (from

Figure 2b) is also represented. For instance, at SC.10,

probabilities of p(SC = low) and p(SC = med) are sig-

nificantly higher. Note that impacts at attacked SC’s

RSE and S states do not play an important role. This

can be seen from the equal probabilities across different

states.

Simulations

Types of Simulation

Analyzing the cyber-physical model, impact on an SC is

propagated through service times (see Figure 2a).

Primary objectives are quantification and identification

of possible problems. These would yield risk areas,

impacts, and possible solutions for more resilient sys-

tems. Monte Carlo simulations (MCSs) are carried out

on BNs, including a series of intersections as well as

replications of complete BNs. MCSs generate probability

distributions and expected utility as well as dispersion so

that confidence intervals can be generated. A second

approach generates a Bayesian framework for posterior

probability of a critical node common among these sig-

nals, such as SA, considering it as a parameter.

This section presents numerical results for BNs with

and without redundant surveillance systems. MCSs are

run for 10,000 cycles which result in state probabilities,

and in expected, and standard deviation of, vulnerabil-

ities. Simulations are repeated 200 times to obtain distri-

butions of these measures for CV market penetrations of

p = (0.01, 0.05, 0.10, 0.20, 0.50, 0.75, 0.90, 1.00), which

is constituted by (CR = 0.80, EM = 0.03, FR = 0.07,

TR = 0.10). Vehicle and pedestrian traffic are 95% and

5%, respectively. In Figure 3a, probabilities, expected

value, and standard deviation of vulnerability of SC are

presented. Boxplots are used to show the ranges within

200 replications, as metrics are assigned randomly from

uniform distribution. Probabilities are used to calculate

the moments. The probability of SC being at the no

effect level is about 93% and about 6% at low impact.

These values vary in the ranges 0.80–0.99 and 0–0.20,

respectively, changing the central tendency and the dis-

persion of vulnerabilities. The expected value certainly

falls mostly into the low impact (. 0.1) region. The med-

ian of standard deviations is about 0.9. Thus a simple

confidence interval for mean level (0.37) with mean

Table 3.

Propagated p(SCjRSE), p(SCjS), and p(RSEjRDS) with sensor.

SC RSE

none low med high cri low med high

RSE low 0.923 0.076 0.00002 0.00003 0.00002 RDS 0.007 0.198 0.794
med 0.923 0.076 0.0001 0.0001 0.00004 0.890 0.057 0.053
high 0.923 0.076 0.00005 0.0002 0.0001 0.999 0.00003 0.00003

S true 0.937 0.062 0.00006 0.00008 0.00005
false 0.703 0.296 0.00031 0.00041 0.00024

Propagated p(SC:10jSC), p(SC:10jS), and p(SC:10jRSE) with sensor.

SC.10

none low med high cri

SC none 0.372 0.340 0.195 0.059 0.033
low 0.279 0.328 0.254 0.088 0.049
med 0.172 0.291 0.320 0.132 0.084
high 0.142 0.268 0.330 0.153 0.106
cri 0.116 0.251 0.341 0.169 0.122

RSE low 0.366 0.339 0.199 0.062 0.034
med 0.360 0.338 0.202 0.064 0.035
high 0.358 0.337 0.203 0.065 0.036

S true 0.366 0.339 0.199 0.062 0.034
false 0.347 0.337 0.211 0.068 0.037
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standard deviation (0.93) m6 2s would be within (0,

2.23), which is still in the low impact scale.

Further simulations are carried out to check the

effect of randomly generating all metric values. These

values are only assigned for 200 replications but not for

each node on BNs. Figure 3b shows somewhat higher

expected values; however, much higher standard

deviations with risk likelihoods vary more. Still, median

values are very close; with the mean values (0.57, 1.32),

the same confidence interval in this case would be (0,

3.20), very close to medium risk level. This could be due

to not exploring enough of the metric ranges and result-

ing higher dispersions. Therefore, a completely random

approach would give more robust results. Similar
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Figure 3. Simulated score values from BN with sensors.
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results are demonstrated in Figure 4 for the without

sensor case. They reveal much higher risk levels and

variations. Risk likelihood is still mainly within low

level; however, the low state is more probable than

none. The confidence interval in this case would be

(0,4.81), with mean and standard deviation values of

1.19 and 1.81, respectively. In this case vulnerability

falls into the much more serious med level. As before,

the less random version yields higher dispersion, with

confidence interval (0, 5.03) with means 1.28 and 1.87.

Furthermore, basic progression of the risk present on

signal control to the next 10 signals is represented in

Figure 2b. The vulnerability of SC and SC.10 signal

controllers is presented in Figure 5. From the figure, it
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Figure 4. Simulated score values from BN without sensors.
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is observed that the risk, on moving from SC to SC.10,

increases in a serial scheme based on defined transition

probabilities, which is intuitive. The average score stan-

dard deviation is about 3.1, with mean level 3.65. Thus,

the vulnerability score is already very close to med level

and confidence intervals would fall into all serious lev-

els, med to high impact scales (0, 9.85). In this system,

however, dependency is only through SC nodes, not
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Figure 5. Simulated score values from BN with sensors.
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others. Thus, overall risk may change if other nodes are

included.

Figure 6 is given to demonstrate the impact of CV

market penetration. This is incorporated as increasing

likelihood of CVs in TC by multiplying unequipped

modes with (1� p) and weighing CVs with p. Thus, as p

increases, CV population will increase, resulting in more

communications with RSE and SC. However, based on

this method, CV percentage does not have a significant

effect on SC vulnerability level. Certainly, it should be

noted that a different incorporation (i.e., network design)

might show otherwise.

Traffic Process Simulations

A possible quantification of the impact of state probabil-

ities on an isolated signalized intersection is shown via

traffic queue simulations using a ProModel Process

Simulator. For simplicity, the signal control method is

assumed to be fixed and communications are not

included. Changes are incorporated only through service

times. Average queue lengths are demonstrated for regu-

lar and affected scenarios with and without sensors. The

intersection is designed with approaches that can accom-

modate a maximum of 130 average-length cars per

approach (Figure 7a). For the simulation set up, first the

saturation level is found. To compare with the results

from microsimulations (24), an isolated intersection with

two one-way approaches is designed with 45 s green for

each approach and volumes = (500, 600, 700, ., 2000)

vehicles per hour (vph) per approach. Similar results are

observed with saturation at about 1000 vph per

approach. Simulations are run for 1 h (40 cycles) and

100 replications. Figure 7b below shows volume versus

average queue lengths as number of vehicles (v) and

volume-to-capacity ratios (utilization). From the figure,

the saturation point can be seen at close to 2000 vph with

capacity of 23 vehicles per cycle and 1.95 seconds per
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vehicle (spv) discharge rate. Using the same volume

rates, this time up to 2200 vph per intersection, possible

interruptions are generated from the probability distribu-

tion BNs. Impacts are reflected on 1.95 spv, with (none,

low, med, high, cri) = (1.95, 2.60, 3.90, 9.75, 19.5) spv

and average probabilities, with sensors, of (0.930, 0.069,

0.0005, 0.0005, 0.0005) and, without sensors, of (0.730,

0.260, 0.003, 0.004, 0.003), respectively. Figure 7c

demonstrates an overall summary of the impact of risk

levels on queue lengths that are obtained from simula-

tions which are medium level realistic between micro-

scopic and point queue simulations. The figure provides

the overall evolution of base performance measures for

with sensor and without sensor scenarios. As would be

expected, impact increases as volume gets higher. The

impact on a single intersection is much higher, about

15% average queue length (QL) increase with a sensor.

Without any sensor, changes are much higher with aver-

age 125% of average queue length across all volume

levels.

Conclusions

In this paper, models are developed based on BNs for

possible attack risks on intelligent signals in a CV frame-

work. From these models, risk probabilities and expected

utilities (impacts) are deduced for SCs with and without

redundant traffic surveillance systems. The impact of

risks at an isolated signalized traffic intersection is quan-

tified via simulations as average queue length differences,

which can be interpreted as meaning higher cost, higher

fuel consumption, and higher emissions. From simple

simulations with and without redundant systems, the

impact of risk is estimated as an increase of queues by

(a) A possible isolated intelligent signal
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averages of 15% and 125%, respectively. Further

improvements are possible via:

� Quantification of impacts of derived risks at signa-

lized traffic networks via simulations as different

performance measures
� Microscopic traffic simulation including commu-

nications with more realistic vehicle movements
� Expression of the systems as a flow network for

possible attack paths to optimize sensor deploy-

ment and minimize communication delays
� Inclusion of alternative CV market penetration

incorporation

A continuation study would aim to generate data using

part real equipment and part simulations. Then, it would

utilize this data to develop crucial detection models

for critical components and generate mitigation efforts.

It is essential to have optimum deployment as unneces-

sary control can result in communication delays, leading

to problems for safety critical applications such as

collision warning. As a systematic approach, similar

methodology would be adopted for different ITS

applications.

Acknowledgments

This research is supported by the U.S. Department of

Homeland Security Summer Research Team Program and was

conducted at the Critical Infrastructure Resilience Institute,

University of Illinois, Urbana-Champaign. It was managed by

ORAU. The research is also partially supported by USDOT

Regional University Transportation Center for Connected

Multimodal Mobility and NSF Grant Nos. 1719501 and

1400991.

Author Contributions

The authors confirm contribution to the paper as follows: study

conception and design: GC; data collection: GC; analysis and

interpretation of results: GC; draft manuscript preparation:

GC. The author reviewed the results and approved the final

version of the manuscript.

References

1. Cárdenas, A. A., S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y.

Huang, and S. Sastry. Attacks Against Process Control

Systems: Risk Assessment, Detection, and Response.

Proc., 6th ACM Symposium on Information, Computer and

Communications Security, ACM, 2011, pp. 355–366.

2. Kaiser, L. Transportation Industrial Control System (ICS)

Cybersecurity Standards Strategy 2013–2023. Technical

Report. National Highway Traffic Safety Administration,

2013.

3. National Highway Traffic Safety Administration. Cyberse-

curity Best Practices for Modern Vehicles. Technical

Report No. DOT HS 812 333. National Highway Traffic

Safety Administration, USDOT, 2016.

4. Beck, K. Smart Security? Evaluating Security Resiliency in

the U. S. Department of Transportation’s Smart City Chal-

lenge, 2017.

5. Petit, J., and S. E. Shladover. Potential Cyberattacks on

Automated Vehicles. IEEE Transactions on Intelligent

Transportation Systems, Vol. 16, No. 2, 2015, pp. 546–556.

6. Nicol, M. D. Critical Infrastructure Resilience Institute,

2016, talk, USCG.

7. Peisert, S., J. Margulies, D. M. Nicol, H. Khurana, and C.

Sawall, Designed-In Security for Cyber-Physical Systems.

IEEE Security & Privacy, Vol. 12, No. 5, 2014, pp. 9–12.

8. van der Heijden, R. W., S. Dietzel, T. Leinmüller, and F.

Kargl. Survey on Misbehavior Detection in Cooperative

Intelligent Transportation Systems. arXiv preprint

arXiv:1610.06810, 2016.

9. Al-Sultan, S., A. H. Al-Bayatti, and H. Zedan. Context-

Aware Driver Behavior Detection System in Intelligent

Transportation Systems. IEEE Transactions on Vehicular

Technology, Vol. 62, No. 9, 2013, pp. 4264–4275.

10. Cao, P., E. Badger, Z. Kalbarczyk, R. Iyer, and A. Slagell.

Preemptive Intrusion Detection: Theoretical Framework

and Real-World Measurements. Proc., 2015 Symposium

and Bootcamp on the Science of Security, ACM, 2015, p. 5.

11. Mitchell, R., and I.-R. Chen. A Survey of Intrusion Detec-

tion Techniques for Cyber-Physical Systems. ACM Com-

puting Surveys (CSUR), Vol. 46, No. 4, 2014, p. 55.

12. Humayed, A., J. Lin, F. Li, and B. Luo. Cyber-Physical

Systems Security—A Survey. arXiv preprint arXiv:

1701.04525, 2017.

13. Ernst, J. M., and A. J. Michaels. Framework for Evaluat-

ing the Severity of Cybervulnerability of a Traffic Cabinet.

Transportation Research Record: Journal of the Transporta-

tion Research Board, 2017. 2619: 55–63.

14. Sridhar, S., and M. Govindarasu. Model-Based Attack

Detection and Mitigation for Automatic Generation Con-

trol. IEEE Transactions on Smart Grid, Vol. 5, No. 2, 2014,

pp. 580–591.

15. Sucasas, V., G. Mantas, F. B. Saghezchi, A. Radwan, and

J. Rodriguez. An Autonomous Privacy-Preserving Authen-

tication Scheme for Intelligent Transportation Systems.

Computers & Security, Vol. 60, 2016, pp. 193–205.

16. CVRIA. Physical Diagram of Intelligent Signal System,

2015. http://local.iteris.com/cvria/html/applications. Accessed

June 26, 2017.

17. NIST. Common Vulnerability Scoring System, 2017. https://

nvd.nist.gov/vuln-metrics/cvss/v3-calculator. Accessed

June 30, 2017.

18. Head, L., W. B. Zhang, G. Duncan, E. Raamot, and R.

Jose. MultiModal Intelligent Traffic Signal System Phase

II: System Development, Deployment and Field Test-

MMITSS. Technical Report. Center for Transportation

Studies, University of Virginia, 2016.

19. Huang, J., and D. M. Nicol. Evidence-Based Trust Reason-

ing. Proc., 2014 Symposium and Bootcamp on the Science of

Security, ACM, 2014, p. 17.

20. Wan, J., D. Zhang, S. Zhao, L. Yang, and J. Lloret. Con-

text-Aware Vehicular Cyber-Physical Systems with Cloud

Comert et al 13



Support: Architecture, Challenges, and Solutions. IEEE

Communications Magazine, Vol. 52, No. 8, 2014, pp.

106–113.

21. MacKay, D. J. Information Theory, Inference and Learning

Algorithms. Cambridge University Press, 2003.

22. Barber, D. Bayesian Reasoning and Machine Learning.

Cambridge University Press, 2012.

23. Højsgaard, S. Graphical Independence Networks with the

gRain Package for R. Journal of Statistical Software, Vol.

46, No. 10, 2012, pp. 1–26.

24. Comert, G. Simple Analytical Models for Estimating the

Queue Lengths from Probe Vehicles at Traffic Signals.

Transportation Research Part B: Methodological, Vol. 55,

2013, pp. 59–74.

The Standing Committee on Critical Transportation

Infrastructure Protection (ABR10) peer-reviewed this paper

(18-06284).

14 Transportation Research Record 00(0)


