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ABSTRACT

Anomalous conditions in the tropical oceans, such as those related to El Nifio-Southern Oscillation and the
Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet
the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains
unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry
periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the
case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled
oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall vari-
ability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean
interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in
contrast, ocean-atmosphere coupling increases mean rainfall throughout the year. While ocean variability
makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years
are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially
indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere-land-
driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the
simulations. This suggests that oceanic variability may be less important than previously assumed for the long-
term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term
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dry and wet spells for Australia.

1. Introduction

Australia’s climate is characterized by high temporal
and spatial variability (Nicholls et al. 1997). Extreme
events range in spatial extent and time scale, from
multiyear, continental-scale droughts to localized flash
floods. Severe droughts have widespread social and
economic consequences for agriculture, ecosystems,
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and human welfare. For instance, Australia suffered
dramatic crop and livestock losses during the Federa-
tion Drought from 1895 to 1902, the World War II
Drought from 1937 to 1945, and the more recent Mil-
lennium Drought (or Big Dry) from 1995 to 2009
(Verdon-Kidd and Kiem 2009). Extreme wet events
can also have a devastating impact for the nation—for
example, the floods that affected many regions across
the continent during the “Big Wet” in 1974 and also
during 2010-12. Figure 1 summarizes the driest and
wettest eras in Australia using the 1900-2014 Austra-
lian Water Availability Project (AWAP) rainfall
dataset (Raupach et al. 2009).
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FIG. 1. Schematic of (top) era of driest decade and (bottom) era
of wettest decade. Annual mean rainfall anomalies are constructed
from monthly anomalies based on the AWAP rainfall dataset from
1900 to 2014. To avoid influences of data errors or localized rainfall
extreme events, a spatial linear filter was applied to obtain a con-
sistent smooth large-scale pattern over Australia. The wettest or
driest periods indicated in the schematic were then selected by
choosing the maximum and minimum rainfall anomaly of the 11-yr
running mean time series for each grid point. Areas are colored to
indicate grid points within the same decade, and the years repre-
sent the center of the anomalous events. Some of the extensive
droughts and extreme wet events are indicated on the right side of
the color bar. The largest Australian political divisions are also
indicated: Western Australia (WA), Northern Territory (NT),
South Australia (SA), Queensland (QLD), New South Wales
(NSW), Victoria (VIC), and Tasmania (TAS).

After the rainfall deficits of the Federation Drought,
many parts of central and South Australia experienced
intense dry conditions during 1926-28 (Fig. 1, top).
Australia again suffered widespread drought over the
western half of the continent in the 1930s and over large
parts of eastern Australia in the first half of the 1940s
(Fig. 1, top) during the World War II Drought, also
known as the Forties Drought (Verdon-Kidd and Kiem
2009). Dry conditions affected the Northern Territory
and Australian interior in the early 1960s (Fig. 1, top).

In 1982, New South Wales and Victoria were affected
by the worst short-term drought since the beginning of
the century driven by the strong 1982 El Nifio event. In
the early 1990s, parts of northern Australia experienced
dry conditions that were intensified in 1994/95, espe-
cially over Queensland (Fig. 1, top), by a series of weak
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El Nifio events. This dry spell marked the beginning of
the so-called Millennium Drought that persisted into the
early 2000s.

The Millennium Drought was widespread across
much of the continent during 2002-06 and persisted
much longer across localized regions over southeast
Australia. The long duration of this dry spell has been
associated with sea surface temperature (SST) condi-
tions in the Indian and Pacific Oceans. Ummenhofer
et al. (2009) show that the absence of negative Indian
Ocean dipole (IOD) events during the Big Dry from
1995 to 2006, as well as during the Federation Drought in
1895-1903, reduced tropical moisture advection to
southeastern Australia. In addition, during the Big Dry
period, one of the worst short-term droughts was re-
corded in 2002 (Nicholls 2004), particularly intense in
the southeast across Victoria (Fig. 1, top). Low rainfall
rates were associated with a weak EI Nifio event in 2002
and exacerbated by high evaporation rates due to very
high daytime temperatures (Karoly et al. 2003; Nicholls
2004). The drought continued for the following few
years over eastern Australia, persisting until 2009 in
some regions of Victoria (Gergis et al. 2012).

Long wet spells have also affected Australia’s climate
in significant and costly ways. An interesting feature of
Fig. 1 (bottom) is that wet eras are coherent over more
extensive regions than dry eras. The reason for this
spatial asymmetry is unclear, but it is likely related to the
asymmetric response of Australian rainfall to El Nifio—
Southern Oscillation (ENSO) events. In particular,
Power et al. (2006) have shown that strong La Niiia
events are tightly linked to a large-scale Australian re-
sponse, whereas the magnitude of El Nifio events is a
poorer predictor for the severity of Australia’s dryness.
This nonlinear response of rainfall intensity to ENSO
may also apply to spatial scales. Here we will show that
the spatial asymmetry between wet and dry spells is
reproduced in a fully coupled climate model simulation.

At the beginning of the twentieth century, after the
Federation Drought, parts of Western Australia expe-
rienced extreme wet conditions during the period
known as “The Recovery” of 1915-17 (Fig. 1, bottom).
The 1950-56 period was the wettest era over the east
(Fig. 1b), when parts of NSW experienced recurrent
floods over the Maitland region (BoM 2015a). The 1970s
marked the wettest long-term period over large areas of
Australia (Fig. 1, bottom). This unprecedented wet pe-
riod, known as the Big Wet in 1974, was combined with
flash floods in the east and an active cyclone season in
1974/75 (BoM 2015b). The late 1990s were exceptionally
wet over Western Australia and the Northern Territory
(Fig. 1, bottom), particularly because of very heavy rain
events in the tropics during the recurrent La Nifia
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conditions from March 1998 to March 2001 (Okumura
and Deser 2010).

More recently, Australia (on average) experienced
the wettest 24-month period on record from April 2010
to March 2012. The reasons for this continental-scale
wet spell are still under debate; however, it is likely a
combination of a strong La Nifia event and changes as-
sociated with a negative phase of the southern annular
mode (SAM; Hendon et al. 2014; Lim et al. 2016) in
addition to a long-term warming signal in the oceans
(Ummenbhofer et al. 2015). This recent anomalous wet
period is not apparent in Fig. 1 (bottom) as that analysis
highlights only decadal anomalies.

Many of the iconic large-scale droughts and pluvials in
Australia are thought to be driven by anomalous equa-
torial Indo-Pacific SST—for example, the short 1982/83
and long 1991-95 El Nifio-related droughts and the Big
Wet associated with the persistent 1973-76 La Nifia.
Prolonged drought episodes in Australia’s southeast and
Murray-Darling River basin, such as the World War 11
and Millennium Droughts, were also linked to unusual
Indian Ocean conditions (Ummenhofer et al. 2009,
2011). Variations in ocean temperatures on multi-
decadal time scales also cause drought conditions in
Australia. For instance, Verdon-Kidd and Kiem (2009)
associate the Federation Drought with sustained El
Niflo activity and a positive phase of the interdecadal
Pacific oscillation (IPO). The IPO modulates the re-
lationship between ENSO and Australian rainfall on
interdecadal time scales, such that teleconnections are
more robust during IPO negative phases (Power et al.
1999). Multidecadal drought periods, sometimes re-
ferred to as megadroughts, have been reported in North
America via multicentury tree-ring reconstructions
(Cook et al. 2007) and have been associated with a shift
toward a La Nifia-like mean state in the tropical Pacific
(Coats et al. 2015). In Australia, mega-rainfall episodes
over the past few centuries have received much less at-
tention in the literature, although such events have been
found in paleoreconstructions dating back 100kyr
(1kyr = 1000yr; e.g., Cohen et al. 2011, 2012a). In the
past millennium, Cohen et al. (2012b) show evidence
of a megapluvial episode in southern Australia driven by
an anomalous sea level trough extending from the
Southern Ocean into central Australia, resulting in Lake
Callabonna filling to more than 10 times the volume of
its largest historical filling in 1974. Megadroughts in
Australia’s past millennium have been recently identi-
fied by Vance et al. (2015); using a millennial-length IPO
reconstruction, they suggest a close link between its
positive phase and the occurrence of megadroughts in
southeastern Australia (including one lasting 39yr).
Multiproxy reconstruction data by Gergis et al. (2012)
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suggest a robust relationship between variations in
southeast Australia rainfall, ENSO, and IPO. In this
study, we will show that Australian megadroughts and
megapluvials can be simulated in multicentury simula-
tions from a coupled climate model.

Variations of ocean temperatures are not the only
factor affecting floods and droughts in Australia. For
example, Kiem and Verdon-Kidd (2010) suggest that
the SAM was a major driver of the Big Dry in southeast
Australia. Cai et al. (2011) attributed the lowest winter
rainfall in southwestern Western Australia in 2010 to a
positive phase of the SAM. The SAM is an intrinsic
mode of variability in the atmosphere characterized by
variations in the position (latitude) and strength of
the Southern Hemisphere midlatitude westerlies. The
SAM has been shown to modulate precipitation over
southwest Western Australia, Victoria, and Tasma-
nia (Hendon et al. 2007; Hill et al. 2009). Although the
SAM can impact southern high-latitude ocean and sea
ice variability (Sen Gupta and England 20006), it is
mainly associated with internal atmospheric variability
and is largely unrelated to any localized feedback in
oceanic conditions (Sen Gupta and England 2007). On
multidecadal time scales greenhouse gases and ozone
have been implicated in changing the SAM (Arblaster
and Meehl 2006).

In cases where floods and droughts are caused by re-
mote SST variability (e.g., associated with ENSO and
the IOD), ocean memory provides potential forecast
skill on seasonal time scales (e.g., Shukla et al. 2000;
Meinke et al. 2005) and beyond (Meehl et al. 2014;
Jourdain et al. 2016). In contrast, rainfall prediction due
to atmospheric variability ranges from 1 month in case
of low-frequency planetary waves (Shukla 1981) up to
4 months in the case of atmospheric oscillations such as
the SAM (Seviour et al. 2014). There is relatively little
forecasting skill beyond seasonal time scales, and even
when this happens it is indirectly linked to oceanic
conditions; for example, the seasonal predictability of
SAM linked to ENSO reported by Lim et al. (2013).
Moreover, Gallant et al. (2013) suggest that the re-
lationships between ENSO and SAM and precipitation
over Australia are nonstationary on multidecadal time
scales, possibly forced by internal climate variability.
Thus, predicting drought or flood characteristics at ex-
tended lead times is more challenging where ocean
memory is not involved.

Sea surface temperature has been shown to provide
high potential predictive skills for air temperature,
precipitation, and sea level pressure over the tropics,
although this decreases over certain significant land
areas, such as Australia, parts of Africa, and South
America (Manabe and Stouffer 1996; Rowell 1998;
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Taschetto and Wainer 2008; Feng et al. 2011). In con-
trast, internal atmospheric variability dominates varia-
tions in the extratropical regions (Kushnir et al. 2002),
making predictions more difficult. For instance, Power
et al. (1995) demonstrate that stochastic variability be-
comes more important than variability associated with
SST over the extratropics and that it can result in sub-
sequent variability on decadal time scales unrelated to
oceanic processes.

Previous studies using numerical models have sug-
gested that stochastic atmospheric variability can play a
significant role in the occurrence of megadroughts in
certain regions of the globe—for example, North
America (Coats et al. 2013a; Stevenson et al. 2015), In-
dia (Hunt 2012), and Australia (Hunt 2009; Gallant et al.
2013). If stochastic processes are the primary factor
driving megadroughts and megapluvials, this compro-
mises the predictability of extended periods of dry and
wet episodes.

To better understand prediction limitations, it is im-
portant to understand the extent to which long-term dry
and wet periods in Australia can be triggered and
maintained without ocean memory. The goal of this
study is to investigate the role of the ocean in modu-
lating annual to multidecadal variability in rainfall and
whether extended dry and wet periods are possible as a
result of internal atmospheric and land surface vari-
ability alone. We use experiments within a coupled cli-
mate model to assess how prolonged dry and wet spells
differ when ocean variability is suppressed. The model
and numerical simulations are described in the next
section. The simulated rainfall response to oceanic and
atmospheric variability is examined in terms of mean
and extremes in section 3. The spatial impact of droughts
and wet spells is examined in section 4. Section 5 ex-
plores rainfall distribution in three regions in Australia
and its variability via power spectrum and autocorrela-
tion analyses. The severity, duration, and return period
of extended dry and wet spells, as well as their season-
ality, are evaluated in section 6. Section 7 presents a
discussion of decadal variability and identifies internal
atmosphere-land-driven and ocean-driven mega-
droughts and megapluvials in the model and associated
mechanisms. Finally, discussion and conclusions are
presented in the last two sections.

2. Methodology

To assess the role of internal atmospheric vari-
ability in driving long-term dry and wet spells over
Australia, we use the NCAR Community Earth Sys-
tem Model, version 1.0.5 (CESM1.0.5; Gent et al.
2011), configured both 1) in fully coupled mode and

JOURNAL OF CLIMATE

VOLUME 29

2) in atmospheric experiments. The configuration of
the CESM used in this study consists of the following
model components: atmosphere [Community Atmo-
sphere Model, version 4 (CAM4)], sea ice [Commu-
nity Ice Code, version 4 (CICE4)], land [Community
Land Model, version 4 (CLM4)], and ocean [Parallel
Ocean Program, version 2 (POP2)] as well as a cou-
pling infrastructure (CPL7) that exchanges state in-
formation between them.

The two simulations are performed at a resolution
of 1.9° latitude by 2.5° longitude for both atmosphere
and ocean—a fully coupled simulation performed
with the general circulation model (GCM) referred to
as CPLD and an atmospheric GCM run, referred to
as AGCM.

The CPLD simulation consists of a 700-yr in-
tegration. In this simulation, all components of the
climate system fully interact with each other, and thus
this run contains all forms of coupled variability, in-
cluding coupled variability reliant on oceanic process,
such as ENSO.

The AGCM simulation is integrated for 1000 yr and
is forced with a repeating 12-month SST and sea ice
climatology constructed from output of the CPLD
simulation. As such, the monthly SST climatology is the
same in both simulations, but the AGCM simulation
has no interannual or longer time-scale variability in
SST. In both experiments the land component is active
and responds to the atmospheric fluxes.

In neither experiment did we impose any external
forcings that could result in further decadal and/or mul-
tidecadal variability, such as solar forcing, volcanoes,
aerosols, ozone depletion, or greenhouse gas increases.
Therefore, any unforced component of decadal rainfall
extremes arises as a result of internal atmosphere—land
variability (AGCM) and/or coupled ocean—atmosphere—
land-ice processes (CPLD).

By examining the difference between these two
simulations we can determine whether internal vari-
ability in the atmosphere-land system is able to gen-
erate extended periods of dry or wet conditions as
intense and/or persistent as those produced when
coupling the atmosphere with the ocean. These ex-
periments are not, of course, mutually exclusive in that
regard; that is, internal atmospheric and land variabil-
ity will be present in the CPLD experiments, as well as
in the AGCM.

The NCAR CESM skillfully simulates the large-scale
Australia monsoon pattern and exhibits clear improve-
ments in the representation of intraseasonal-to-
interannual variability from previous versions of this
model (Meehl et al. 2012; Taschetto et al. 2011). The
model captures the Australian monsoon strength and
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seasonality with high fidelity compared to other climate
models taking part in phases 3 and 5 of the Coupled
Model Intercomparison Project (CMIP3 and CMIPS;
Jourdain et al. 2013). Jourdain et al. (2013) further
demonstrated that the NCAR CESM is among the 12
best CMIP3/CMIPS5 models in representing the ob-
served Australian monsoon-ENSO teleconnection.
Previous studies have shown that the intensity of Aus-
tralian rainfall response to El Nifio and La Nifia events
are satisfactorily reproduced in a previous version of the
NCAR model (Taschetto et al. 2010; Ummenhofer et al.
2015), although the teleconnection pattern is slightly
shifted to the west (Cai et al. 2009), a common bias in
CMIPS5 models due to the cold tongue bias in the
equatorial Pacific and a warm pool located too far west
in coupled climate models (e.g., Taschetto et al. 2014).

3. Australian precipitation statistics simulated by
AGCM and CPLD simulations

A brief evaluation of the model is first undertaken in
terms of Australian rainfall characteristics. Figure 2
shows the annual average precipitation and seasonal
averages for November-March (NDJFM) and for
May-September (MJJAS) for observations and simu-
lations. The model is able to reproduce the overall
pattern and seasonality of precipitation, with in-
creasing rainfall from the subtropics to the tropics
where the monsoon occurs in DJF. However, the sim-
ulations overestimate the observed precipitation in
most regions. Precipitation biases are proportionally
largest in the driest regions, such as in the Australian
interior. For instance, the annual observed pre-
cipitation in the Australian interior (Fig. 2a, red line) is
0.7mmday ', while the CPLD and AGCM simulate
2.1mmday ! for the same area (i.e., approximately
3 times more rain than observed). However, it is in the
tropics north of 25°S, particularly during austral sum-
mer when the monsoon occurs, that precipitation bia-
ses are largest in absolute magnitude (Figs. 2b,e,h).
Elsewhere the CPLD and AGCM simulations un-
derestimate observed rainfall over western Tasmania
and along the far east coast of Australia, likely related
to the inability of the model to resolve steep topogra-
phy and the resulting effect on rainfall.

Despite biases in magnitude, the model broadly
captures the overall spatial patterns and seasonal
changes of observed precipitation over Australia. Note
that the differences between observations and simula-
tions are not overly problematic here, as the main
purpose of this study is to compare the wet and dry
aspects of CPLD and AGCM relative to each other.
For the rest of the study, we will primarily focus on
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differences between the CPLD and AGCM simula-
tions. Observations will only be evaluated when
needed to put the simulated results into context with
regard to historical droughts and wet spells.

Although the AGCM and CPLD simulations have
the same mean state and climatology in SST by con-
struction, they do exhibit significant differences in
rainfall seasonality. In particular the absence of in-
terannual and longer time-scale ocean variability
reduces the annual mean precipitation along the
northern and southern coasts of Australia but in-
creases precipitation over the interior of Queens-
land, Northern Territory, and Western Australia
(Fig. 2j) from November to March (Fig. 2k). The
large rainfall difference in Tasmania throughout the
year between AGCM and CPLD suggests that vari-
ations in SST are important for modulating rainfall.
This may be linked to an enhancement of baro-
clinicity at the storm-track region that ultimately
affects weather phenomena for southern Australia
(e.g., cold fronts, cutoff lows, and blocking highs;
Risbey et al. 2009).

The interannual variability of rainfall is assessed
here in terms of the standard deviation of the annual
mean precipitation (Figs. 3a—c). The regions where
the simulated interannual standard deviation of rain-
fall is largest coincide with areas of larger mean
rainfall (i.e., the tropics; Fig. 3a). The AGCM simu-
lates less variability than CPLD almost everywhere
(Fig. 3c), with an average reduction of 32%. This is
unsurprising given the absence of variability forced by
interannual oceanic changes.

The CPLD rainfall distribution is positively skewed
over most of Australia (Fig. 3d). This is due in part to the
nature of the precipitation distribution, which is by ne-
cessity bound below by zero but can take large positive
values. The AGCM experiment has a less skewed rainfall
distribution (i.e., fewer extreme heavy rainfall years) for
much of the continent with the most obvious exception
over the north of Australia (Fig. 3f).

The extremes of precipitation in CPLD are estimated
by the 5th and 95th percentiles of annual precipitation
(Figs. 3g and 3j, respectively). The AGCM simulates less
intense extremes and a narrower precipitation distri-
bution than CPLD across most of Australia, as revealed
by the differences in the tails of the distribution in
Figs. 3i,1.

In summary, the absence of ocean variability in the
AGCM s reflected in the precipitation variability across
Australia. Specifically, the CPLD experiment shows
larger standard deviations and skewness and more-
extreme values compared to the AGCM simulation
(Figs. 3c.f.i,l).
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FIG. 2. Annual, NDJFM, and MJJAS averaged precipitation (mm dayfl). (a)—(c) Observations (OBS) from
AWAP. (d)-(f) Fully coupled simulation (CPLD). (g)—(i) Atmospheric forced simulation (AGCM). (j)-(1)
Differences between the AGCM and CPLD. The upper color bar refers to (a)-(i) and uses a logarithmic scale to
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represent zero.

The following sections investigate the spatial extent,
duration, and intensity of simulated dry and wet periods
for Australia.

4. Spatial scale of Australian dry and wet spells

We first examine whether the areal extent affected
by dry and wet spells varies between CPLD and
AGCM. It could be expected that droughts and wet
conditions in the CPLD simulation would extend over
larger areas given that coupled phenomena, such as
ENSO and the IPO, are associated with large-scale
reorganization of the atmospheric circulation. In
contrast, the stochastic nature of internal atmospheric
variability may result in more localized impacts. To
address the spatial scale of rainfall extremes simulated

by CPLD and AGCM, we first examine the area across
Australia in which the annual rainfall exceeds the 5th
and 95th percentiles (Figs. 4a—f). Note that we exam-
ine the sum of Australian land areas that experience
extreme rainfall; these areas are not necessarily
contiguous.

In line with our expectation, extreme wet and dry
conditions simulated over Australia cover a larger area
of the continent in CPLD (Figs. 4b,e) compared to the
AGCM (Figs. 4c,f) simulation in most years. For in-
stance, extreme wet (dry) conditions extending over an
area exceeding one-quarter of Australia occurs 2.7 (1.5)
times more frequently in CPLD than in the AGCM
simulation. This means that large-scale dry/wet events
are more likely to occur when coupled ocean—
atmosphere variability is present.
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In general, extreme wet conditions in observations
affect a larger area of the continent than extreme dry
conditions on interannual time scales (Figs. 4a,d). This
asymmetry is also simulated in CPLD (Figs. 4b,e). For
instance, 1% of CPLD wet events extend over 50% of
the continent while only 0.5% of CPLD dry events affect
more than half of Australia. Although the AGCM sim-
ulation does not show any events where extreme rainfall
occurs over half of Australia, there does appear to be a
significant asymmetry between the wet and dry cases
(at the 90% level based on a Monte Carlo test). How-
ever, the asymmetry is in the opposite sense to that

found for the CPLD experiment, with 1.9% of AGCM
wet events against 3.4% of dry events affecting at least a
quarter of the continental area (Figs. 4c.f).

Figure 4g shows the proportion of years when a cer-
tain percentage of the Australian land area (x axis) had
high (solid lines; >75th percentile) or low (dashed lines;
<25th percentile) rainfall. If rainfall at each grid cell
were uncorrelated to neighboring grid cells, this would
lead to a normal distribution of rainfall area centered
around 25%. However, in the case of the model exper-
iments, the probability of extended land areas being
subject to extreme rainfall decreases for larger areas. In
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particular for the CPLD experiment (Fig. 4g, blue lines),
dry and wet years occur more often locally, with ap-
proximately 370 out of 1000 years affecting up to 10% of
the land area. Conversely, the AGCM simulation
(Fig. 4g, brown lines) shows a distribution with the
maximum number of dry and wet events affecting be-
tween 10% and 20% of the area of Australia. By re-
placing the rainfall data with a randomly generated time
series, the distribution peaks at 25% (Fig. 4¢g, gray lines).
However, the random distribution is less concentrated
around 25% if we artificially introduce a spatial auto-
correlation. At a large spatial autocorrelation, the ran-
dom distribution decreases monotonically (not shown)
as found for the CPLD simulation in Fig. 4g. Thus, the
fact that the model experiments and observations do not
show peaks at 25% of the area suggests the existence of a
physical mechanism (rather than a white noise process)
producing coherent wet and dry patterns in both the
CPLD and AGCM simulations.

The number of years when below- and above-average
rainfall exceeds the 25th percentile decreases with the
increase in the spatial scale (Fig. 4g). Perhaps surpris-
ingly, the AGCM, not the CPLD, simulates a larger
number of rainfall events affecting between 10% and
50% of the continent similar to observations. The dif-
ference in the number of dry and wet events affecting
up to 40% of land between CPDL and AGCM is sta-
tistically different at the 95% level based on a Monte
Carlo test. On the other hand, the CPLD run simulates
more continental-scale impacts than the AGCM. For
instance, wet (dry) events impacting over 70% of the
continent occur approximately 17 (2) times more often
in the CPLD than the AGCM simulation, the wet case
being statistically significant at the 95% level using a
Monte Carlo test (Fig. 4g). This suggests that coupled
ocean—atmosphere variability plays an important role
in the spatial scale of extreme rainfall events over
Australia.

5. Characteristics of regional rainfall in CPLD and
AGCM

As most wet and dry events simulated in Australia
cover less than one-quarter of the land area, we follow
the previous analysis with a regional evaluation of
rainfall anomalies. Australia was initially subdivided
into eight different regions, as shown in Fig. 5a (colored
boxes). However, the results indicated that in the model
the behavior of these regions could be largely summa-
rized based on three main regions: 1) Western Australia
(WA; 13°-35°S, 113°-129°E); 2) eastern Australia (EA;
11°-39°S, 138°-154°E), spanning Queensland, New South
Wales, and Victoria; and 3) Tasmania (TAS; 40°-44°S,
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143°-150°E). These regions roughly delineate the zones
that are influenced by different climate modes in the
surrounding oceans. Specifically, WA is primarily influ-
enced by local processes in the Indian Ocean, EA is
strongly impacted by the tropical Pacific and ENSO, and
TAS is directly affected by the westerly winds and the
SAM in the Southern Ocean region.

Figures 5b,d,f show the simulated climatologies of
precipitation for the three selected regions. The clima-
tologies are similar between the experiments, except for
larger rainfall in CPLD than AGCM during the austral
summer for WA (Fig. 5b) and EA (Fig. 5d) and
throughout the year for TAS (Fig. 5f). The frequency
distributions of annually averaged rainfall for all of the
three regions (Figs. Se,f) simulated in the AGCM is
statistically different from CPLD at the 95% level
using a Kolmogorov—Smirnov test. The annual rainfall
variability estimated by the interquartile range is
0.2mm day ' larger in CPLD than AGCM for both WA
and EA regions. This difference is dominated by
changes in the tails of the distributions (Table 1). In
contrast, the shape of the rainfall distribution for TAS
remains similar in CPLD to AGCM; however, the me-
dian precipitation decreases by 0.4 mmday ' in the ab-
sence of ocean variability. It is interesting that the role of
the ocean for Australian rainfall seems to vary meridi-
onally; that is, the ocean increases rainfall variability by
adding extreme values to the distribution in the tropics/
subtropics of Australia (i.e., WA and EA; Figs. 5c,e) but
by shifting rainfall mean in the midlatitudes (i.e., TAS;
Fig. 5g).

Figure 6 shows the time series of annual mean pre-
cipitation averaged for each region and the corre-
sponding decadal time series. It is clear from the time
series that rainfall anomalies simulated in CPLD are
larger than in AGCM. An analysis of the standard de-
viation ratio between the CPLD and AGCM simula-
tions reveals that the rainfall interannual variability due
to oceanic processes is approximately 62%, 66%, and
24% larger than atmospheric variability in the WA, EA,
and TAS regions, respectively. As previously discussed,
the rainfall standard deviation difference between
CPLD and AGCM is primarily due to more frequent
extreme events for WA and EA (Fig. 5).

The power spectra and autocorrelation analyses
shown in Fig. 7 reveal that AGCM rainfall variability is
essentially a white noise process on interannual time
scales. While autocorrelation decays exponentially in
both simulations, CPLD clearly shows the enhanced
memory of the coupled system for WA and EA regions.
For instance, the autocorrelation coefficient crosses the
zero line in 14 months for WA and EA in CPLD, similar
to observations (i.e., 15 months for WA and 14 months
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TABLE 1. Quartiles of annual mean precipitation (mm day ') in WA, EA, and TAS simulated in CPLD and AGCM and the difference
between them (CPLD minus AGCM).

25% 50% 75%
CPLD AGCM Diff CPLD AGCM Diff CPLD AGCM Diff
WA 2.32 2.38 —-0.06 2.60 2.55 0.05 2.90 2.73 0.17
EA 2.50 2.49 0.01 2.73 2.63 0.10 2.99 2.78 0.21
TAS 2.09 1.69 0.40 2.23 1.81 0.42 2.39 1.94 0.45
for EA), while it takes 7 and 9 months for WA and EA, climate models tend to underestimate the observed de-

respectively, in AGCM (Figs. 7j,k). Curiously TAS does
; that is, auto-
correlation functions decay to zero in 8, 11, and
10 months in observations, CPLD, and AGCM, re-

not show signs of additional ‘“memory”

spectively (Fig. 71).
While CPLD simulates larger variance

within the interannual time scale of the power spectrum
(Figs. 7b,e,h), the CPLD time series show larger vari-
ability concentrated with a period around 4.3 yr, par-
ticularly prominent over the WA and EA regions. This
periodicity is similar to the observed 4.3yr in WA
(Fig. 7a), and it is likely associated with SST variations
during ENSO and IOD events. No spectral peaks are
simulated on decadal time scales in CPLD. This is con-

sistent with previous studies that show

cadal variability particularly in the tropics (e.g., England
et al. 2014).

While the AGCM power spectrum is largely flat there
is some enhanced variability between 3.5 and 4 yr in WA

that must be unrelated to ocean coupling (Fig. 7c).

concentrated

that coupled

There is also a significant peak at approximately 2 yr in
WA and to a lesser extent EA, possibly associated with
the so-called tropospheric biennial oscillation (TBO;
Meehl and Arblaster 2002). The TBO (which is thought
to modulate low-latitude rainfall over Australia) has a
tendency for a relatively strong Australian monsoon to
be followed by a relatively weak one, and vice versa. In
principle, the TBO involves coupled land—-atmosphere—
ocean processes over the Indo-Pacific region (Meehl and
Arblaster 2002). However, a small component of TBO
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FIG. 6. Time series of mean annual rainfall (gray lines) averaged over (a)—(c) WA, (d)-(f) EA, and (g)—(i) TAS for (left) observations,
(center) CPLD, and (right) AGCM simulations. To facilitate visualization, decadal variations using a smoothed time series with an 11-yr
running mean window are shown in green for observations, blue for CPLD, and brown for AGCM. Shaded bars indicate the duration of
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rainfall anomalies. Scale of vertical axis differs among regions.
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FI1G. 7. Power spectrum of annual rainfall anomalies based on the multitaper method for (a),(d),(g) observations, (b),(e),(h) CPLD, and
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(I) TAS.

can also occur via atmosphere—land interactions only
(Meehl 1994). Li et al. (2012) have shown that about
half of CMIP3 and CMIP5 climate models are able to
simulate TBO-like oscillations involving the ocean—
atmosphere feedbacks during the Indian and Austra-
lian monsoon transitions. Here we identified no biennial
peak in CPLD, only in the AGCM simulation. One may
question whether the 2-yr peak is related to a physical
mechanism or a statistical artifact from our power
spectrum analysis. For WA it remains statistically sig-
nificant at the 99% confidence level based on a white
noise process.

6. Simulated intensity and duration of Australian
dry/wet spells

To examine the duration of wet or dry spells, we use
the averaged rainfall over the three selected regions
and count the number of years when rainfall is per-
sistently above or below average. The normalized
frequency distribution for periods of multiple con-
secutive anomalously dry or wet years is displayed in
Fig. 8. Results for each of the three selected regions
are shown and plotted on a logarithmic scale in order
to facilitate examination of the tails of the
distributions.

To assess whether the frequency of dry or wet spells
of a certain duration is different from what would be
expected from a random time series, we perform a
Monte Carlo test where random time series are cre-
ated by reshuffling (with replacement) the simulated

precipitation time series for each selected region. In
this way, we compare the simulations against a ran-
dom sample while preserving certain statistical
properties of the original simulation, such as skew-
ness. The resulting frequency distribution is calcu-
lated and the process is repeated 10000 times in order
to find the 95% confidence interval.

Figure 8 shows that the number of consecutive dry
or wet years drops off almost exponentially. In the
CPLD simulation there are significantly more 2-3-yr
extreme events and significantly fewer single-year
events than in the AGCM experiment. The largest
change is for single-year events where the CPLD
simulation has between 16% and 55% fewer individ-
ual years than in AGCM (Fig. 8). For both dry and wet
conditions and for all regions the number of single-
year anomalies in CPLD is statistically different
from a random time series at the 95% level. The ab-
sence of ocean variability in the AGCM reduces the
climatic memory provided by the ocean component
and thus generates behavior that more closely
matches a random distribution. In contrast, the ocean
memory in CPLD tends to produce more 2-3-yr-
duration dry and wet spells than expected by chance,
for the WA and EA regions. For durations longer than
3yr, somewhat surprisingly, there is no evidence that
the ocean variability significantly affects the likeli-
hood of long time-scale events (both AGCM and
CPLD event frequencies are indistinguishable from a
random process). Also interesting is a significant de-
crease in the frequency of 2-yr dry periods in WA
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simulated in the AGCM (Fig. 8a), possibly related to
the 2-yr oscillation found in the AGCM power spectra
(Fig. 7c).

It is interesting to see that long dry and wet spells
occur not only in the CPLD run but also in the
AGCM simulation. In fact the duration of dry and
wet spells is essentially indistinguishable from what
we expect from a random distribution, even when the
ocean memory is considered. A rough statistical es-
timate considering a binomial distribution would
give us one random chance in 1024 years of having 10
consecutive years with positive or negative rainfall
[i.e., probability = 1/(2'°)]. Therefore, it is not sur-
prising that both experiments simulate dry and wet
spells up to a 10-yr length over the course of the
around 1000-yr simulations. Durations longer than
that are rare in a random sample [i.e., the 11-yr dry
spell in EA simulated by AGCM (Fig. 8c) and 10-yr
dry spell in TAS simulated by CPLD (Fig. 8e)]. Any
comparison with observations should be made with
caution as the length of the time series is about

6 (8) times shorter than CPLD (AGCM); there is
therefore a much lower chance of having dry and wet
spells persisting for longer than 6 years. Despite that,
observations show an increased frequency of 7-yr dry
and wet spells in WA and 7-yr dry and 8-yr wet spells
in EA (Figs. 8a,d).

For each selected region we examine the severity and
return period of dry and wet spells with different dura-
tions (Fig. 9). Regardless of the duration of the spells,
dry and wet periods simulated by the CPLD simulation
are more severe than for the AGCM, except for the 7-yr
dry spell in WA, the 7-yr wet spell in EA, and the 5-yr
wet spell in TAS. This reveals the importance of ocean
variability for intensifying rainfall events over Australia.
The return period of dry and wet events for TAS is
similar between the two simulations. For events with a
single-year duration, AGCM has a shorter return period
than CPLD. Conversely, for spells with a 2-3-yr dura-
tion, AGCM produces longer return periods than
CPLD. We caution comparing the return period of
events longer than about 5yr because of the limited
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TABLE 2. Interannual variability and decadal-to-interannual variability ratio for observations (OBS) and simulations (CPLD and
AGCM) over the selected regions. Interannual variability is calculated as the standard deviation of annual rainfall time series after
removing the decadal variability. Decadal variability is calculated as the standard deviation of the 11-yr smoothed annual rainfall time
series. To account for the length of the different time series, we calculate variability as the mean of 100 times the random 114-yr subperiods

from the simulated rainfall time series. An error estimate for the mean variability is given as the standard deviation of the 100 random

samples.

OBS CPLD AGCM
Interannual Decadal-to- Interannual Decadal-to- Interannual Decadal-to-
(mmday ™) interannual ratio (mmday ™) interannual ratio (mm day 1) interannual ratio
WA 0.22 0.56 0.37 = 0.01 0.34 = 0.06 0.23 = 0.02 0.44 = 0.06
EA 0.28 0.60 0.30 = 0.03 0.36 = 0.05 0.18 = 0.01 0.43 + 0.06
TAS 0.44 0.33 0.20 = 0.01 0.37 = 0.04 0.16 = 0.01 0.41 = 0.06

sample size (see Fig. 8 for number of events with a given
duration). Same caution should thus be taken for com-
parison with observations.

7. Decadal variability: Megadroughts and
megapluvials

Multidecadal variability is simulated in both experi-
ments, as shown in the decadal rainfall time series of
Fig. 6. Decadal rainfall variability is substantially lower
than interannual variability. Here we use observations
to show that the decadal-to-interannual variability ratio
is underestimated in the NCAR CESM model (Table 2)
for all three regions. This is because simulated decadal
variability is considerably smaller than in observations;
that is, the values of decadal variability in the three
regions range from 0.06 to 0.12mmday ' in CPLD
and AGCM compared to 0.12-0.17mmday ' in
observations (OBS).

The decadal variability in the simulations is compa-
rable between CPLD and AGCM. Consequently, the
decadal-to-interannual variability ratio in the AGCM is
slightly larger than CPLD, given the relatively lower
interannual variability in the AGCM. This is somewhat
contrary to what we expect, given that intuitively the
ocean memory should contribute to long-term variabil-
ity in the simulations. On the other hand, we have shown
previously that the ocean does not seem to affect the
duration of dry and wet spells beyond around 3yr.
Therefore, we find that ocean processes in the CESM do
not cause significant changes in rainfall frequency and
strength at decadal time scales.

Notwithstanding the weak decadal variability in the
CESM, long-term droughts and dry spells are simu-
lated in both experiments. We highlight in Fig. 6 the
most severe megadroughts and megapluvials in the
smoothed time series. These are selected by calculat-
ing the periods of largest accumulated rainfall deficit
and surplus for continuous dry or wet spells in the 11-yr
running mean time series. The CPLD run simulates a

megadrought with maximum duration of 41yr in EA
(Fig. 6e). This length is on the same order as the 39-yr
megadrought in eastern Australia recently identified
in paleoreconstructions by Vance et al. (2015) and
associated with the IPO. The decadal time series for
observations reveal a period of averaged dry condi-
tions for about 35yr in EA from 1913 to 1947
(Fig. 6d), a period of predominantly positive IPO. The
CPLD rainfall over continental Australia is signifi-
cantly correlated with the IPO in the model, with a
coefficient of —0.30 in WA and —0.25 in EA. This
agrees with previous studies that reported a strong
modulation of Australian rainfall by the IPO using
reconstruction data and twentieth-century observa-
tions (e.g., Gergis et al. 2012; Palmer et al. 2015; Power
et al. 1999). The decadal rainfall time series regressed
onto the SST and low-level wind anomalies (Fig. 10)
supports the findings that the IPO modulates the
Australian megadroughts and megapluvials in the
model. This reveals a significant negative IPO pattern
associated with positive rainfallin WA, in EA,andtoa
lesser extent in TAS (Fig. 10).

The AGCM also simulates megadroughts and mega-
pluvials (Figs. 6¢,f,i), even in the absence of ENSO and
the IPO. Although the AGCM long-term events are
overall less severe than the CPLD (consistent with the
reduced rainfall variability due to the absence of the
ocean feedback), the megadroughts and megapluvials
simulated in the AGCM last as long as those in CPLD,
with maximum persistence of 40 and 43 yr, respectively,
in WA.

The regression pattern between the AGCM de-
cadal rainfall time series and sea level pressure and
wind anomalies shows significant variability in the
eastern Indian Ocean and northern Australia for WA
and EA, respectively (Figs. 11a,b). This pattern is
dominant during austral summer (not shown), and it
suggests that positive rainfall in both WA and EA are
related to perturbations of easterly winds due to an
anomalous monsoonal low in the eastern Indian
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Black thin contours encompass areas statistically significant at the 95% level based on a Student’s ¢ test.

Ocean extending toward Western Australia. An
anomalous cyclonic circulation is associated with
the enhanced monsoon trough, which in turn drives
northeasterly wind anomalies inland, leading to in-
creased moisture advection and positive rainfall.
For TAS (Fig. 11c), decadal variations of rainfall in
the AGCM simulation is related to an anomalous
low pressure center in the southern midlatitudes
resembling a localized SAM pattern over the Aus-
tralian sector. The reason why the SAM shows de-
cadal excursions in the Australian sector is unclear.
The SAM is a mode of variability largely intrinsic to
the atmosphere and in principle has no preferred

periodicity; that is, it can occur from intraseasonal
to multidecadal time scales.

8. Discussion

We have found that intrinsic variability in the
atmosphere-land system can drive extended periods of
dry and wet episodes. This is in agreement with previous
studies that reported the importance of stochastic at-
mospheric variability to the generation of megadroughts
in many parts of the globe (Hunt 2011). We also found
that ocean processes become unimportant for pre-
cipitation persistence in Australia after about three
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FIG. 11. AGCM rainfall time series regressed onto sea level pressure (hPa) and 850-hPa wind (m s~ ') anomalies
for (a) WA, (b) EA, and (c) TAS. Rainfall time series are smoothed with an 11-yr running mean window. Black thin
contours encompass areas statistically significant at the 95% level based on a Student’s ¢ test.

years. This is in agreement with findings by Boer et al.
(2013), who documented a decline in potential pre-
dictability of precipitation and temperature as a result of
ocean variability on interannual time scales at about
3yr. Boer and Lambert (2008) have shown that potential
predictability of precipitation then increases somewhat
at longer time scales over the oceans at mid to high
latitudes where the surface is connected to the
deeper ocean.

One caveat here is that this is a numerical study based
on a single model (i.e., the NCAR CESM). Given that
climate models have considerable variability in their
representation of ENSO on multidecadal-to-centennial
time scales (e.g., Wittenberg 2009), as well as in

atmospheric teleconnection patterns (Coats et al.
2013b), it is possible that our results are at least in part
model dependent. However, the fact that previous
studies have found similar results using different climate
models supports our findings. For instance, using
ECHAM4 and the global Hamburg Ocean Primitive
Equation (ECHO-G) coupled atmosphere—ocean GCM,
Coats et al. (2013a) show that stochastic atmospheric
variability is able to drive persistent drought in south-
western North America. Hunt (2009) analyzed a mil-
lennium simulation with the CSIRO Mark 2 coupled
global model and concluded that stochastic atmospheric
processes are the cause of extensive dry periods in
Australia, implying no predictability of onset, duration,
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or termination of dry episodes. More recently,
Stevenson et al. (2015) showed that simulated mega-
droughts in North America in the NCAR CESM are
primarily generated by internal atmospheric variability
combined with land surface coupling.

Another important aspect of our study is that our
model simulations were designed to eliminate the
ocean SST variability. As such, they still contain vari-
ability from the land and ice components. While sea ice
is very unlikely to affect precipitation over Australia at
the spatial and temporal time scales studied here, land
variability can affect atmospheric circulation and
thermodynamics. For example, Timbal et al. (2002)
have shown that fluctuations of soil moisture increase
the persistence and the variance of surface temperature
and rainfall particularly over Australia. Thus, our re-
sults potentially reflect a combined effect of the at-
mosphere and land feedbacks on Australian dry and
wet spells. Separating those effects is only possible via
additional numerical simulations where land in-
teractions are suppressed. This will be addressed in a
future study.

9. Summary and conclusions

This study examines the potential role of internal
atmosphere and land variability in controlling the fre-
quency, duration, and intensity of long-term dry and
wet spells over Australia. Two multicentury-scale
simulations were performed with the NCAR CESM:
1) a fully coupled simulation (CPLD) and 2) an atmo-
spheric model forced by a seasonal SST climatology
derived from the coupled experiment (ACGM), such
that the SST climatologies of the two experiments
are identical. While CPLD contains variability from
the ocean, sea ice, land, and atmosphere, the AGCM
experiment eliminates fluctuations due to oceanic
variability. The main results of this study can be sum-
marized as follows.

(i) Intensity: Ocean variability makes droughts and
wet spells worse. Comparison between the CPLD
and AGCM simulations shows that in general
interannual rainfall variability over Australia is
reduced in the absence of ocean variability. The
rainfall distribution in AGCM is less skewed than
in CPLD over most of Australia, and dry and wet
extremes in CPLD are more severe than in the
AGCM. Ocean feedback processes enhance west-
ern and eastern Australia rainfall variability by
about 60% compared to atmosphere-driven pro-
cesses. This is mainly associated with an increase in
the upper tail of the rainfall distribution. For
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Tasmania, the main contribution of ocean variabil-
ity is to increase the mean rainfall, without affect-
ing the variability (i.e., annual mean rainfall over
TAS is around 20% larger in CPLD than AGCM).
The reason why ocean feedback affects rainfall
variability in continental Australia but mean rain-
fall in Tasmania is unclear but suggests that differ-
ent mechanisms may be responsible for those
differences.

Duration: Internal atmosphere- and land-forced
dry and wet spells can last as long as ocean-driven
events. The internal variability of the atmosphere—
land system is capable of producing long periods of
below- and above-average rainfall in Australia.
The ocean memory has its largest impact at rela-
tively short time scales (i.e., up to 3yr). For time
scales longer than that, ocean variability does not
seem to influence the duration of wet and dry spells.
We show that prolonged dry and wet spells occur
not only in the CPLD but also in the AGCM;
however, their durations are both indistinguishable
from a random process. Power spectra analysis
supports the finding that ocean memory acts
around the interannual time scale range; that is,
spectral energy concentrates around the 3—4-yr
period, associated with ENSO events, while de-
cadal variability cannot be distinguished from a
Gaussian white noise process. This poses a chal-
lenge for long-term drought predictions for
Australia.

Frequency: Internal atmosphere- and land-driven
dry and wet spells occur as often as those driven by
ocean processes. Overall, there is little distinction
between dry and wet spell frequency in the CPLD
and AGCM simulations. The clear exception is
1-yr-duration events, which occur more often in the
AGCM, and the 2-3-yr-duration events, which
occur more often in the CPLD run.

Spatial scale: Ocean variability plays an important
role in generating large-scale rainfall impacts over
Australia. Rainfall events below (above) the 25th
(75th) percentile affecting over 70% of Australia
occur 2 (17) times more often in the CPLD than in
the AGCM simulation. Also interesting is the fact
that wet spells generally tend to impact a larger
area of Australia than dry spells, a feature found in
the observations and simulated in the CPLD
experiment. The reason for this wet and dry
spatial asymmetry is unclear; however, given that
this is not seen in the AGCM, it is likely to be
linked with an asymmetric response of Australian
rainfall to ocean modes of variability, such as El
Nifio and La Nifia events.
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(v) Multidecadal variability: Internal atmosphere—
land variability is able to generate megadroughts
and megapluvials. Compared to observations,
decadal variability is underestimated (especially
for TAS), regardless of the inclusion of ocean
variability and ocean—atmosphere coupling. De-
spite lower intensity, the AGCM simulation
generates prolonged rainfall events, or so-called
megadroughts and megapluvials, with durations
comparable to those of the CPLD simulation.
Mega-rainfall events are primarily associated
with IPO variability in the CPLD run, while in
the AGCM they appear to be primarily related to
perturbations in the monsoonal low and winds in the
eastern Indian Ocean and northern Australia for
WA and EA and to the SAM variability for TAS.
Further investigation is under way to uncover the
mechanisms responsible for the atmosphere-only-
driven megadroughts and megapluvials.
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