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Concurrent regional and global environmental changes are affecting freshwater ecosystems. Decadal-scale

data on lake ecosystems that can describe processes affected by these changes are important as multiple

stressors often interact to alter the trajectory of key ecological phenomena in complex ways. Due to the

practical challenges associated with long-term data collections, the majority of existing long-term data sets

focus on only a small number of lakes or few response variables. Here we present physical, chemical, and

biological data from 28 lakes in the Adirondack Mountains of northern New York State. These data span

the period from 1994–2012 and harmonize multiple open and as-yet unpublished data sources. The dataset

creation is reproducible and transparent; R code and all original files used to create the dataset are provided

in an appendix. This dataset will be useful for examining ecological change in lakes undergoing multiple

stressors.
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Background & Summary
Freshwater lakes are changing in complex ways, with multiple long-term environmental stressors interacting
to form novel conditions in aquatic ecosystems. Most lakes globally are undergoing temperature warming in
response to climate change1,2. Many lakes also face concurrent stressors such as acidification and subsequent
recovery3–5, browning6, eutrophication7,8, invasive species9,10, and/or increased extraction for drinking water
or irrigation11. While some stressors act at global scales (e.g., climate change), many stressors are local or
regional. For example, many lakes in the northeastern U.S. and northern Europe were strongly acidified in
past decades due to sulfur and nitrogen deposition from emissions from fossil fuel combustion and
agricultural activity12,13 and have begun recovering since then in response to regulated decreases in
emissions4,5,14. In agricultural areas, nutrient use and consequent eutrophication continue to result in water-
quality issues such as anoxia15,16 and harmful algal blooms17.

Long-term data are critical to understanding and predicting the effects of ecosystem stressors that may
act on decadal to multi-decadal scales18. Moreover, ecosystems can experience multiple, concurrent
stressors. Understanding the effects of multiple, concurrent stressors is a critical need as disturbance
regimes may interact to alter the trajectory of important biological and biogeochemical phenomena in
complex ways. Regional and global-scale changes that occur simultaneously highlight the critical need for
quality, long-term data on lake ecosystems that describe processes, interactions, and responses to multiple
stressors. A number of existing long-term limnological datasets have been used to understand some
aspects of long-term ecosystem change. For example, a recent analysis of eleven diverse lakes in the North
Temperate Lakes (NTL) Long-Term Ecological Research (LTER) site has shown seasonal heterogeneity of
water temperature warming in response to regional climate change19. Long-term monitoring of lakes in
Europe and the United States have observed changes in water clarity20 and warming surface
temperatures21 and a recently published 80-year data record showed the influence of re-forestation on
long-term browning of Swedish lakes22. Such long-term datasets have formed the foundation of our
modern understanding of limnological change. However, due to the many challenges associated with
long-term data collections, the majority of long-term data sets focus on only a small number of lakes or
response variables, but rarely both.

Here we present a 19-year database of physical, chemical, and biological data that span primary
producers to secondary consumers measured during summers in 28 lakes in the Adirondack Park in New
York State, USA (Fig. 1). The Adirondack Park is a protected state park in northeastern New York that
encompasses c. 26,000 km2 of public and private land, and nearly 3000 lakes (> 0.4 ha)23. These lakes are
poorly buffered due to surficial and bedrock geology, making them highly susceptible to acidification24,25.
Due to the proximity to industrial centers in the mid-western US and prevailing winds26, the region
received elevated atmospheric sulfur and nitrogen deposition, which has decreased in recent years27. This
unique combination of geology and geography of the Adirondacks resulted in widespread and severe
acidification of surface waters, which are now undergoing recovery. Concurrently, the northeastern U.S.
has experienced substantial increases in temperature and precipitation and extreme events associated
with changing climate28. These stressors individually may have contrasting impacts on aquatic
ecosystems. For example, warming surface temperatures and increased thermal stability are predicted to
decrease zooplankton species richness29, while recovery from acidification is associated with increases in
zooplankton richness30,31.

The dataset presented here is a long-term, comprehensive record of physical, chemical, and biological
measurements of a diverse set of lakes undergoing the effects of a changing climate while recovering from
acidification. It is a harmonization of multiple open and unpublished data sources, including the
Adirondack Effects Assessment Program (AEAP) Aquatic Biota Survey (www.rpi.edu/dept/DFWI/
research/aeap/aeap_research.html), the Adirondack Long Term Monitoring Program (ALTM; www.
adirondacklakessurvey.org), and the North American Land Data Assimilation System (NLDAS; http://
ldas.gsfc.nasa.gov/nldas), and represents a more diverse, long-term data record of Adirondack lakes than
has been previously available.

Methods
Site description
The 28 lakes in this dataset are located in the southwestern portion of the Adirondack Park in New York,
USA (Fig. 1). This area received the highest rates of atmospheric deposition in the Adirondack
Mountains32. When combined with inherently low acid neutralizing capacity (ANC)24,25, high rates of
acidic deposition resulted in severe acidification of surface waters in this region33,34. The study lakes are
located in five of the six major sub-drainage basins in the Adirondack region and span a range of size,
depth, watershed area and hydrologic type (Table 1). The hydrologic classification scheme used was
developed by (ref. 35) and is based upon a combination of hydrology (drainage or mounded seepage
lakes), underlying geology (thickness of glacial till, or presence of calcite in the basin), and dissolved
organic carbon (DOC) concentration (high or low), which combined characterize sensitivity to
acidification of each lake. Of the 28 lakes, 20 are thin-till, drainage lakes, the class considered the most
sensitive to acidification. Of these 20 thin-till drainage lakes, two have historically high DOC
concentrations (TDH), while the remaining 18 have historically low DOC concentrations (TDL). There
are six medium-till drainage lakes, two with historically high DOC concentrations (MDH) and four with
historically low DOC concentrations (MDL). There is a single mounded seepage lake with historically low
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DOC (MSL) and one lake drains a watershed with deposits of carbonate (C), which eliminates sensitivity
to acidification due to high ANC.

The lakes in this dataset were included in two independent long-term monitoring programs that were
established to assess the effects of acid deposition in Adirondack lakes; the Adirondack Effects
Assessment Program Aquatic Biota Study (hereafter referred to as AEAP) and the Adirondack Long
Term Monitoring Program (hereafter referred to as ALTM). While both programs sampled more lakes
than the 28 included in this dataset, these 28 lakes represent the overlap between the two separate
programs and thus provide a comprehensive view of the long-term physical, chemical and biological
characteristics of each lake. The data record starts in 1994 for all lakes and ends in 2006 for half of the
lakes and in 2012 for the remaining half (Table 1). The physical, nutrient and biological data presented
here were collected and analyzed by the AEAP. Additional water chemistry data were collected and
analyzed as part of the on-going ALTM program. Because these monitoring programs were independent
there is overlap in the measured water chemistry analytes. For analytes that were measured by both
programs, we selected the data from a single program based upon completeness of record. Overlapping
water chemistry measurements (i.e., those not selected from inclusion) can be found in the original data
files (Data Citation 1; ‘data_inputs’) but not in the harmonized, final dataset presented here.

Field collection methods
Sampling schedule (AEAP and ALTM). As part of the AEAP, lakes were sampled three times during
the summer (July, Aug, September) from 1994–1996. Starting in 1997, lakes were sampled twice per year
(July and August). The ALTM program collected water chemistry data monthly, 12 months of the year
starting in 1992 and is an on-going monitoring program (http://www.adirondacklakessurvey.org/). For
the purposes of this paper the ALTM monthly chemistry data range from January 1994 to December
2012. For clarity of data sources we note the original program (AEAP or ALTM) that each data type in
the subheadings below.

Physical characteristics (AEAP). Temperature, dissolved oxygen (DO) and photosynthetically active
radiation (PAR) measurements were taken at 1 m intervals throughout the entire water column in the
deepest spot in each lake as part of the AEAP program. Temperature and DO were measured with a YSI
Model 54 meter using a calibrated membrane electrode and thermistor (YSI, Yellow Springs, OH, USA).
The thermocline depth was determined in the field as the depth at which the water temperature
decreased≥ 2 °C in a meter. The thermocline depth determined the depths of epilimnetic samples for
other variables (e.g., phytoplankton abundance and taxonomy). Secchi disk depth was also measured on
each sampling occasion.

Figure 1. Location of study sites. The 28 study lakes (purple points) are located in the southwestern and

south-central Adirondack Park (outlined in blue). Inset shows park location within New York, United States.
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Chlorophyll and nutrient concentrations (AEAP). Water samples to measure chlorophyll a, total
nitrogen (TN), total phosphorus (TP), total filterable phosphorus (TFP), and molybdate reactive
phosphorus (MRP) were collected at each study site coincident with the collection of the physical data
(described above) and biological samples (see below). For sampling occasions when the water column was
thermally stratified (as determined by the temperature profile) an integrated epilimnetic sample was
collected with a 2.54-cm diameter hose. For un-stratified sampling events, a single integrated sample from
the surface to 1 m above the bottom was collected. Samples were stored in high-density amber
polyethylene bottles and transported in chilled coolers to the Keck Laboratory at Rensselaer Polytechnic
Institute Troy, NY for processing and analysis36,37.

Water chemistry (ALTM). The ALTM collected water samples for a suite of water chemistry
parameters (Table 2). Samples were collected in two different ways depending on the mode of physical
access and hydrology of the lake. For all lakes that were accessed by a helicopter and any lake without a
surface outlet (see Table 1), samples were collected near the deepest part of the lake at 0.5 m below the
surface with a Kemmerer sampler. For all other sites, water samples were collected at the lake outlet to
allow safe sampling during periods of thin ice cover and because of limited helicopter availability.
Samples were collected in high-density polyethylene bottles and transported in chilled coolers to the
Adirondack Lakes Survey Corp. laboratory in Ray Brook, NY for processing and analysis38.

Lake Lat. Long. Hydro. type Max. depth (m) Mean depth (m) Lake volume (m3 x 103) Surface area (ha) End date

Big Moose 43.816874 − 74.856111 TDL 21.3 6.8 34882 512.5 2012

Brooktrout* 43.600966 − 74.660624 TDL 23.2 8.4 2420 28.7 2012

Carry* 43.682037 − 74.488558 MSL 4.6 2.2 62 2.8 2006

Cascade 43.789104 − 74.812042 MDL 6.1 4.2 1719 40.4 2012

Constable 43.831008 − 74.806420 TDL 4.0 2.1 435 20.6 2006

Dart 43.793758 − 74.872572 TDL 17.7 7.3 3807 51.8 2012

G* 43.417142 − 74.633945 TDL 9.8 4.5 1437 32.2 2012

Grass* 43.693004 − 75.060844 MDL 5.2 1.5 78 5.3 2006

Indian* 43.622864 − 74.760748 TDL 10.7 3.0 981 33.2 2012

Jockeybush* 43.302775 − 74.591444 TDL 11.3 4.5 786 17.3 2012

Limekiln 43.713005 − 74.812459 TDL 21.9 6.1 11476 186.9 2012

Long 43.837892 − 74.479025 TDH 4.0 2.0 33 1.7 2006

Loon Hollow* 43.963601 − 75.042530 TDL 11.6 3.4 191 5.7 2006

Middle Branch* 43.699117 − 75.100869 TDL 5.2 2.1 363 17.0 2006

Middle Settlement* 43.682807 − 75.101427 TDL 11.0 3.4 545 15.8 2006

Moss 43.781396 − 74.852986 MDL 15.2 5.7 2598 45.7 2012

North* 43.527752 − 74.939567 TDL 17.7 5.7 10107 176.8 2012

Queer* 43.805956 − 74.803521 TDL 21.3 10.9 5960 54.5 2006

Raquette 43.794924 − 74.651303 MDH 3.0 1.6 24 1.5 2006

Rondaxe 43.760879 − 74.915920 TDL 10.1 3.0 2733 90.5 2012

Sagamore 43.766050 − 74.628371 MDH 22.9 10.5 7131 68 2012

South* 43.510956 − 74.875888 TDL 18.3 8.3 16302 197.4 2012

Squash 43.825567 − 74.886135 TDH 5.8 1.4 45 3.3 2006

Squaw* 43.635083 − 74.739599 TDL 6.7 3.4 1249 36.4 2012

West 43.811890 − 74.882960 TDL 5.2 1.5 152 10.4 2006

Willis 43.369628 − 74.243171 MDL 2.7 1.6 229 14.6 2006

Willys* 43.970776 − 74.957396 TDL 13.7 4.9 1188 24.3 2006

Windfall 43.804966 − 74.830768 C 6.1 3.2 78 2.4 2006

Table 1. Characteristics of 28 lakes in dataset. Geographic coordinates identify the lake, not necessarily the
exact sampling location. End date refers to last year that all data types are available; all data start in 1994. Note

that water chemistry extends to 2012 for all lakes. First two letters of the abbreviations for hydrologic type

(hydro. type) are: TD= thin till, drainage; MD=medium till, drainage; MS=mounded, seepage. The last letter

refers to historical DOC concentration (L= low (o 500 μM) or H= high>500 μM). Windfall is a carbonate

lake (C). Information compiled from (ref. 87) and (ref. 36). *water chemistry data typically collected by

helicopter near the deep spot of the lake.
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Phytoplankton (AEAP). A single phytoplankton sample was collected in the deepest part of each lake
from the surface down to the 1% PAR (estimated at twice the Secchi depth) with a 2.54-cm diameter
integrated hose. For lakes shallower than the estimated 1% PAR depth, samples were collected from the
surface to 1 m above the bottom. This approach contrasts with the methodology used for nutrients and
chlorophyll a, which were collected as an integrated sample in the epilimnion. A 250-ml subsample of an
integrated sample was preserved in the field with a 3% mixture of equal parts glutaraldehyde and
formaldehyde for later enumeration and identification of species.

Zooplankton (AEAP). Replicate zooplankton samples were collected in the deepest part of each lake
from surface to 1 m above the bottom or to the depth where DO waso2 mg/L, whichever was shallower,
using a hose-integration technique and constant-flow pump. The hose was lowered through the water
column at a constant rate and at least 100 L were pumped from each lake (150–200 L for lakes identified
as having low zooplankton densities) and concentrated with a 64- μm mesh. Zooplankton were
narcotized with carbonated water and immediately preserved in the field with buffered formaldehyde.

Sample Processing
Water chemistry (ALTM). Aliquots of water samples were divided as necessary for the measurement of
each analyte following standard methods outlined in Table 2 and briefly described here. Water color was
determined on an unfiltered water sample by visual comparison to a platinum-cobalt standard.
Conductivity, pH and ANC were measured electrometrically using a calibrated Orion or YSI glass
electrode. Conductivity and pH where measured directly, with pH measured in the field immediately after
collection, while ANC was measured using Gran titration39.

A Technicon Autoanalyzer (Seal Analytical, Inc., Mequon, Wisconsin, USA) was used for colorimetric
determination of concentrations of ammonium (NH4

+), reactive silica (SiO2), total monomeric aluminum
(AlTM) and organic monomeric aluminum (AlOM) on an aliquot; the NH4

+ samples were acidified with
sulfuric acid prior to colorimetric analysis. Inorganic monomeric aluminum (AlIM) concentration was
estimated as the difference between AlTM and AlOM (refs 40,41). Major anions including sulfate (SO4

2− ),
nitrate (NO3

−), fluoride (F−) and chloride (Cl−) concentrations were measured chromatographically42,43

with a Dionex ICS-1100 ion chromatograph (Thermo Fischer Scientific, Waltham, MA, USA). Base
cations including sodium (Na+), potassium (K+), magnesium (Mg2+), and calcium (Ca2+) were measured
with a PinAAcle 900H atomic absorption spectrophotometer (PerkinElmer, Waltham, MA, USA)44.
Total dissolved aluminum (AlTD) was also measured with a PinAAcle 900H atomic absorption

Variable Analytical Method Reference

Acid neutralizing capacity (ANC) Gran titration US EPA Method 310.1 (ref. 39)

Aluminum, total dissolved (AlTD) Atomic absorption spectrophotometry with high-temperature graphite furnace US EPA Method 200.9 (ref. 45)

Aluminum, total monomeric (AlTM)
Aluminum, organic monomeric (AlOM)

Atomic absorption spectrophotometry McAvoy et al. 1992 (ref. 41)

Aluminum, inorganic monomeric (AlIM) Calculated as AlTM - AlOM McAvoy et al. 1992 (ref. 41)

Ammonium (NH4
+) Colorimetric US EPA Method 350.1 (ref. 45)

Calcium (Ca2+) Atomic absorption spectrophotometry US EPA Method 215.1 (ref. 45)

Chloride (Cl−)
Fluoride (F−)
Nitrate (NO3

−)
Sulfate (SO4

2− )

Chromatography US EPA Method 300.0 (ref. 43)

Conductivity Electrometric US EPA Method 120.1 (ref. 45)

Chlorophyll a (Chl) Fluorometric Turner (1985) (ref. 47)

Dissolved oxygen (DO) Membrane electrode US EPA Method 360.1 (ref. 45)

Dissolved inorganic carbon (DIC)
Dissolved organic carbon (DOC)

UV/Persulfate Oxidation US EPA Method 415.1 (ref. 45)

Magnesium (Mg2+) Atomic absorption spectrophotometry US EPA Method 258.1 (ref. 45)

Nitrogen, total (TN) Persulfate oxidation Langer & Hendrix (1982) (ref. 48)

pH Electrometric EPA AERP 05 (ref. 39)

Phosphorus, orthophosphate (MRP) Colorimetric US EPA Method 365.1 (ref. 45)

Phosphorus, total (TP)
Phosphorus, total filterable (TFP)

Colorimetric US EPA Method 365.4 (ref. 45)

Potassium (K+) Atomic absorption spectrophotometry US EPA Method 242.1 (ref. 45)

Silica (SiO2) Colorimetric US EPA Method 370.1 (ref. 45)

Sodium (Na+) Atomic absorption spectrophotometry US EPA Method 273.1 (ref. 45)

Water color Colorimetric platinum (Pt-Co units) US EPA Method 110.2 (ref. 45)

Table 2. Analytical methods used for all analytes in the database.
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spectrophotometer but one fitted with a high-temperature graphite furnace and an AS900 auto sampler
(PerkinElmer, Waltham, MA) to volatilize the inorganic and organic Al complexes40,45. A Tekmar
Dorhmann Pheonix 8000 carbon analyzer (Teledyne Tekmar, Mason, OH, USA) was used to measure
concentrations of dissolved organic and inorganic carbon (DOC and DIC, respectively) by converting the
carbon in the sample to carbon dioxide and measuring the carbon dioxide with an infrared spectroscopic
sensor45. A filtered aliquot (0.45 micron pore size GFF), preserved with phosphoric acid, was used to
determine DOC via UV persulfate oxidation. DIC was measured in a separate sealed water sample
collected in the field to ensure the DIC was not lost to the atmosphere and therefore underestimated46.

Chlorophyll and nutrient concentrations (AEAP). As with the water chemistry, aliquots of water
samples were divided as necessary and measured with standard methods outlined in Table 2 and
described here. Chlorophyll a concentration was determined by filtering water sampled onto a glass fiber
filter, extracting the chlorophyll a in 90% acetone for 4–24 h and measuring fluorescence with a Turner
MODEL 10- AU fluorometer47 (Turner Designs, Sunnyvale, CA, USA).

Total nitrogen (TN) and total phosphorus (TP) concentrations were measured on a well-mixed
unfiltered aliquot of lake water while total filterable phosphorus (TFP) was measured on filtrate passed
through a 0.45-micron membrane filter. TN was measured using persulfate oxidation48. For TP and total
filterable phosphorus (TFP) concentrations, aliquots were digested in a potassium persulfate solution via
autoclave at high heat, then determined colorimetrically using a spectrophotometer45. Molybdate reactive
P (MRP) and ammonium (NH4

+) were measured on raw water samples. While this differs slightly from
the standard methods, particulates are so low in these lakes that using unfiltered samples should have had
little effect on the outcome. Both MRP and NH4

+ were measured colorimetrically via flow injection
(Lachat QuikChem Flow Injection Analysis System, Hach Company, Loveland, CO, USA)45. Note that
NH4

+ appears in both the nutrient and water chemistry data sets. The same procedure was used to
estimate NH4

+ concentration but the location and depth of the samples differed. The AEAP data set
measure NH4

+ concentration from an integrated epilimnetic sample near the deep spot while the ALTM
measured NH4

+ concentration at 0.5 m near the deep spot or at the lake outlet depending upon the lake
(see Table 1 for details).

Phytoplankton (AEAP). Phytoplankton samples from 1994 and 1995 were analyzed at the University
of Louisville (Louisville, Kentucky, USA). All samples from 1996 or later were analyzed at the Patrick
Center for Environmental Research at the Academy of Natural Sciences of Drexel University
(Philadelphia, Pennsylvania, USA) hereafter referred to as ANS. At the University of Louisville, samples
were filtered onto a membrane filter, cleared and mounted under a coverslip on a microscope slide49. One
to three slides were prepared for each sample and 10–30 fields per slide were examined under 625x
magnification. At ANS the samples were concentrated by centrifuge and examined under 538x
magnification with an inverted microscope using Utermöhl sedimentation technique and counting
random fields50,51. Approximately 500 natural units were enumerated for each sample. Identifications of
phytoplankton were made to the species level when possible using keys52–59. All taxonomy was updated
according to60 as of October 2017. All taxonomic information and updates are shown in the
phytoplankton reformat table (Data Citation 1, ‘data_inputs’ folder).

To determine biovolumes of algal taxa a simple geometric shape was matched to an individual cell, 1 to
3 dimensions of the cell were measured and these measurements were used to calculate the volume
(in μm3). Fifteen specimens were measured for each taxon with additional measurements for larger and
variably sized taxa. In several cases of rare taxa, fewer specimens were measured and/or sizes were
determined from literature values.

Zooplankton (AEAP). Crustacean zooplankton were counted in a Bogorov chamber under 60x
magnification using standard subsampling techniques with subsamples 1–5 ml in volume61,62. Rotifers
were counted in a Sedgewick-Rafter cell (1 ml subsample) under 100x magnification. All individuals were
identified to species when possible. Crustacean zooplankton were identified using keys from (refs 63–66),
while rotifers were identified using66–70. All zooplankton counts and identifications were identified and
counted under the supervision of W.H. Shaw with the exception of 2000–2002 when samples were
counted at Marist College (Poughkeepsie, New York, USA) using standard methods. Taxonomy of the
original dataset has been revised to reflect updated classification as of January 2017 based on (refs 71–73).
Taxonomic updates and information are in separate ‘reformat tables’ for crustacean zooplankton and
rotifers for ease of updating in the future (Data Citation 1, ‘data_inputs’ folder).

Zooplankton biomass was estimated from the count data using published empirical length-weight
relationships (crustacean zooplankton) or formulas for body volume calculations (rotifers) for the
freshwater zooplankton species in the dataset or for congeners when necessary. For the rotifers, body
volume formulas are from (refs 74,75). Length-weight regressions for the crustacean zooplankton are
from (refs 75–81).

Since size measurements were not taken of the zooplankton during the enumeration procedure, we
used average organism lengths for each species from published studies or from the North Temperate
Lakes Long-Term Ecological Research site (NTL LTER; https://lter.limnology.wisc.edu/data). The values
derived from the NTL LTER are the average length of all individuals within a species collected across all
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seven lakes from 1982-2015 (year-round sampling). Measurements for an additional seven crustacean
species are from (refs 76,77,82–84), or from a small glacial lake in the Poconos Mountains of
Northeastern PA (T. Leach unpublished data). Measurements for rotifers are from (refs 74,75) or the
North Temperate Lakes LTER zooplankton dataset 1982–2015 (http://lter.limnology.wisc.edu). See Data
Citation 1, zoop_biomass_conversion.csv for all equations, measurements, and references.

Published length-weight relationships for the crustacean zooplankton typically incorporate dry weights
of an individual. For consistency with rotifers and phytoplankton biomass estimates, we converted dry
weights to wet weights by assuming that the ratio of dry:wet weight was 0.1(10%) following (ref. 85). For
the phytoplankton and some of the rotifer species, the estimates are expressed as volume (mm3

individual− 1). For comparison with the crustacean zooplankton biomass, biovolume was converted to
biomass by assuming that all organisms had a density of 1 (ref. 85); from this assumption organism
volume as μm3 individual− 1 is equivalent to biomass as μg individual− 1.

Meteorological data
Long-term meteorological data, including air temperature, relative humidity, wind speed, and
downwelling shortwave and longwave radiation, were extracted from the North American Land Data
Assimilation System (NLDAS) from 1979–2012 using the geographic location of each lake. NLDAS is a
gridded reanalysis of historic weather data over North America produced and maintained as a
collaboration between NASA and NOAA (http://ldas.gsfc.nasa.gov/nldas). Meteorological data from
NLDAS were averaged (simple mean) to represent daily values for each variable.

Data harmonization
We harmonized the different data sources using a combination of lake names and latitude/ longitude
records. We verified all lake names against the Geographical Names Information System database
(https://nhd.usgs.gov/gnis.html) using latitude and longitude reference. Further, to connect the dataset
with a physical water body, we linked each site with its corresponding polygon in the high-resolution U.S.
Geological Survey’s National Hydrography Dataset (NHD) and include corresponding polygons and
permanent identifiers for future use. Sampling date formats and lake names were also standardized so
that data files can be easily linked by lake and sampling occasion in addition to permanent identifiers. See
Fig. 2 for a detailed workflow and relationship between each data type.

Code availability
All key harmonization and data conversion steps were done in the R scientific computing language
version 3.3.3 (ref. 86). For reference, original data files and all harmonization R code are included in a
Data Citation 1, ‘data_input’ and ‘Code_toclean’ folders, respectively.

Data Records
The data are available in two formats; as comma separated files (.csv) within the folder ‘data’ (Data
Citation 1) and as an R Data Package wrapper, adklakedata (Data Citation 2), which automatically
retrieves and makes the data files available in the R programming environment86. Both the ‘data’ folder
within Data Citation 1 and the adklakedata package contain the same data.

There are several different categories of data in the dataset: (1) geographic, (2) physical, (3) water
chemistry, (4) biological, (5) meteorological and (6) other (Table 3, Fig. 2). Additionally, each.csv data file
has an accompanying text file with the same name that contains a description of each column header,
units of each variable and other pertinent metadata. Data are split across files containing different types of
data based on data structure but all data files contain a column with the unique lake name and date on
which the data were measured, which enables linking data files together for analysis (See data Usage from
more information). A list with a description of the files associated with the dataset is provided in
‘adklake_data_descriptions.txt’ and Table 3. This information is also available in the adklakedata
documentation available on CRAN, the Comprehensive R Archive Network (https://cran.r-project.org/).

Technical Validation
There were two types of technical validation performed on these data. The first involved extensive quality
assessment and quality control (QA/QC) of the data collection and sample analysis methods. The second
included validation of the data cleaning and harmonization to create a unified and compatible data
structure across all data types.

Data collection and sample processing validation
A QA/QC program for the AEAP chlorophyll a and nutrient samples consisted of running a certified
external standards every 10th sample, spikes in 10% of samples to verify analyte recovery and replication
of sample analysis for 10% of samples. Standard curves were run at the beginning and end of every
analyte analysis batch (20 samples) as well as a blank and standard in the middle of each run to assess
drift and develop the standard curve. If the value of these standards was not within 10% of expected the
entire batch was re-analyzed. The Keck Laboratory where the AEAP samples were analyzed was
Environmental Laboratory Accreditation Program and National Environmental Laboratory Accreditation
Conference certified and participated in the USGS Standard Water Sample Program administered by the
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Environment Canada, National Water Research Institute Ecosystem Inter-laboratory Quality Assurance
Program. As part of this program, proficiency samples were analyzed every six months to assure quality
control and the laboratory was audited every two years.

QA/QC procedures for all samples counted at the ANS included recounts of specific samples and
consultation with outside experts for verification of taxonomy. Outside experts included Dr Ann St.
Amand (PhytoTech, St. Joseph, Michigan, USA), Dr Rex. L. Lowe (Bowling Green State University,
Bowling Green, Ohio, USA) and William R. Cody (Aquatic Taxonomy Specialists, Malinta, Ohio, USA).
Dr Ann St. Amand also verified taxonomy of samples counted at the University of Louisville. Also,
images were taken of most taxa to help insure consistency of identifications from the beginning to the end
of the project, especially for undescribed taxa.

To ensure consistent species identification of the zooplankton, photographs were taken for both
rotifers and crustaceans. When possible, microscope slides were created for crustaceans showing
important anatomic criteria. Calanoid and cyclopoid species identifications were verified with prepared
slide mounts of antenna and 5th leg preparations of both males and females when possible. When
congeneric species or multiple species of Daphnia were present, slides of 25 randomly selected individuals
were prepared to estimate the relative proportions of each congener and compared to proportions within
full counts. Identification of reoccurring but rare rotifer species were verified by Dr Richard Stemberger
(Dartmouth College, Hanover, NH). For all zooplankton samples the subsample-to-sample ratio was
maximized in order to limit multiplication errors and improve accuracy of counts. Duplicates counts
were performed on samples from every tenth lake during the 1994–1996 and 2001–2002 sampling
periods. These duplicate counts showed that counting precision was high.

The water chemistry data collected as part of the ALTM sampling program also had a QA/QC
program in place to assure data quality and measurement accuracy. This procedure included a clear line
of sample custody, standard maximum holding times and assessment of analytical precision. To assess
analytical precision, 5% of all samples were collected and analyzed in triplicate. On days when field
triplicates were collected the values in the dataset represent the average of those triplicates. Laboratory
duplicates (i.e., samples split in the laboratory from the same field collection container) were analyzed
every 20th sample. Field blanks were also created for at least 5% of the total field samples. Field blanks
were prepared in the laboratory by filling collection containers with deionized water and then processing
them in the field as though they were field samples. Analytical standards were run at the beginning of a
batch and every tenth sample. Only field samples bracketed by passing standards were accepted.

Figure 2. Workflow diagram for data cleaning and harmonization. Input files on the far left, R code scripts

in the grey boxes and output files (.csv format) are on the right. Information on the output files can be found in

Table 3. All original data files and scripts to re-create each file are available at Data Citation 1.
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Correction actions such as recalibration and sample re-runs were performed if coefficient of variation
between laboratory duplicates or standards was greater than 0.1.

Data harmonization validation
The R code to restructure, and harmonize the data, as well as the original data files are included in the
folders called ‘Code_toclean’ and ‘input_data’ in Data Citation 1. All of the code was written by T. Leach
and reviewed by L. Winslow. A series of manual QA/QC steps were performed to verify that there were
no data processing errors between the raw source files and final data tables. A random 1% of each data
type was manually checked between the original and final data files. All physical data including
temperature and dissolved oxygen profiles and Secchi disk depths were manually checked for out of range
or unexpected values. Out of range values were corrected or removed where appropriate. The database
and R code were revised as needed throughout these manual validation steps to correct mistakes.

Usage Notes
The combined dataset is distributed as a series of comma separated value (CSV) files that contain the data
organized by data type (See Table 3 for description of each data type). Despite being separate files, all data
can be linked by geographic location (site) using ‘lake.name’ or ‘PERMANENT_ID’ (from the NHD), or
on a temporal axis using the ‘date’ variable. Keep in mind that not all chemical, physical and/or biological
data were collected on the same day so a matching window (for example± 7 days) may be useful to
employ when merging different data types for analysis.

We have developed two methods for data access. One, the CSV files of all data can be downloaded
directly from an online repository (Data Citation 1). This supports general use cases, as CSV is a common
and widely supported data format. Two, we have developed an R package wrapper for the dataset that is
available from CRAN, the Comprehensive R Archive Network. This package adklakedata automates the
downloading, local storage, and access of the data. Data are accessed using the ‘adk_data’ function which
accepts a parameter for each dataset (e.g., `adk_data(‘tempdo’)’ for temp and dissolved oxygen data).
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