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Abstract Irrigation representation in land surface models has been advanced over the past decade, but
the soil moisture (SM) data from SMAP satellite have not yet been utilized in large-scale irrigation
modeling. Here we investigate the potential of improving irrigation representation in the Community Land
Model version-4.5 (CLM4.5) by assimilating SMAP data. Simulations are conducted over the heavily irrigated
central U.S. region. We find that constraining the target SM in CLM4.5 using SMAP data assimilation with
1-D Kalman filter reduces the root-mean-square error of simulated irrigation water requirement by 50% on
average (for Nebraska, Kansas, and Texas) and significantly improves irrigation simulations by reducing
the bias in irrigation water requirement by up to 60%. An a priori bias correction of SMAP data further
improves these results in some regions but incrementally. Data assimilation also enhances SM simulations in
CLM4.5. These results could provide a basis for improvedmodeling of irrigation and land-atmosphere interactions.

Plain Language Summary About 90% of consumptive water use is allocated for irrigation sector
globally. Irrigation not only affects water resources and hydrology but also alters local to regional climate
and weather systems. Therefore, it is important to represent irrigation in land and climate models for better
assessment and prediction of water resources and to understand the potential feedback to climate system.
Given the lack of global irrigation data, irrigation schemes currently included in large-scale land surface
models often use simplified representation to simulate irrigation. The goal of this study is to improve the
estimation of irrigation water in these global models by using the newly available soil moisture information
from the recent National Aeronautics and Space Administration (NASA) satellite, the Soil Moisture Active
Passive (SMAP).We use thewidely used Community LandModel and apply it over the heavily irrigated areas in
the central United States. Our results indicate that SMAP data assimilation yields a significant improvement in
the simulation of irrigation water use. These results have important implications for better assessment and
prediction of irrigation water use and for studying human-climate interactions.

1. Introduction

Irrigation water use accounts for ~90% of consumptive water use globally (Scanlon et al., 2012) and ~40% of
total freshwater withdrawals in the United States (Dieter et al., 2018). Over the past decade, there has been
increasing interest in better simulating irrigation processes in global land surface models (LSMs). Advances
have consequently been made in irrigation schemes used in LSMs through improved representation of the
amount, method, and timing of irrigation. However, challenges and opportunities to better simulate soil
moisture (SM) in irrigated areas and hence the irrigation water requirement (IWR) still remain (Nazemi &
Wheater, 2015; Pokhrel et al., 2016; Wada et al., 2017). In most irrigation schemes in LSMs (e.g., Haddeland
et al., 2006; Ozdogan et al., 2010; Pokhrel et al., 2012), the timing and amount of irrigation are determined
based on SM deficit in the root zone. Irrigation is triggered when root-zone SM drops below a specified
threshold. IWR is then calculated as the amount required to bring the root-zone SM to the target level.
Different studies have used a range of values for threshold and target SM, which are the key variables in
irrigation schemes (Haddeland et al., 2006; Harding & Snyder, 2012; Lawston et al., 2015; Lawston,
Santanello, Franz, & Rodell, 2017; Leng, Huang, Tang, Sacks, et al., 2013; Leng, Huang, Tang, Gao, & Leung,
2013; Ozdogan et al., 2010; Pei et al., 2016; Pokhrel et al., 2012; Sorooshian et al., 2011). Such differences in
the irrigation representation can lead to discrepancies in the estimates of IWR and irrigation timing among
models (Pokhrel et al., 2016), resulting in varying impacts on terrestrial water systems (Chaudhari et al.,
2018; Felfelani et al., 2017) as well as surface energy balance and climate (Sacks et al., 2009). Further, the
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threshold and target SM parameterizations in most irrigation schemes employ spatially constant bulk
coefficients and parameters, causing a small temporal and spatial variability of threshold and target SM
and underrepresenting the heterogeneity in irrigation attributes (e.g., irrigation practices, crop-specific water
requirements, and irrigation timing).

A promising approach to address some of these limitations in large-scale LSMs is the integration of spatially
explicit data from satellite measurements. The recent Soil Moisture Active Passive (SMAP) satellite provides
global surface SM with generally low errors across different climate regions (Kumar et al., 2018). Numerous
studies have evaluated SMAP data with ground-based observations (Chan et al., 2016; Pan et al., 2016) and
used SMAP data to improve hydrological and carbon flux simulations (Alvarez-Garreton et al., 2016; He
et al., 2017; Kumar et al., 2015; Lievens et al., 2017, 2015). Recently, Lawston, Santanello, and Kumar (2017)
demonstrated that SMAP data can be used to detect seasonal timing and spatial signature of irrigation. In
another study (Brocca et al., 2018), SMAP data were incorporated into the soil water balance equation to
quantify IWR. These recent findings imply that SMAP data could potentially be used to better constrain
and improve irrigation simulations in large-scale LSMs; however, to the authors’ best knowledge, such
potential has not yet been investigated.

We propose a novel approach for assimilating SMAP data to overcome the above limitations and enhance
irrigation simulations by (1) presenting a parsimonious parameterization for extrapolating the 5-cm SMAP
SM to the entire root zone, (2) using a 1-D Kalman filter (KF) for SMAP data assimilation into the irrigation
scheme of the Community Land Model version-4.5 (CLM4.5), and (3) accounting for bias correction of the
SMAP data using an a priori scaling approach. Our hypothesis is that the assimilation of SMAP data to set
the target SM can significantly improve the simulation of IWR and SM, thus enabling advancements in the
representation of irrigation in global LSMs.

2. Study Domain, Data, and Methods
2.1. Study Domain and Data

The model is set up for a region overlying the High Plains Aquifer (HPA) in central United States, ranked first
for groundwater withdrawal among all U.S. aquifers (Pokhrel et al., 2015) and a heavily irrigated and data-rich
region for ground-based SM observations (30–50°N, 116–92°W; Figure S1 in the supporting information). The
annual total freshwater withdrawals in the HPA region are estimated at ~22–27 km3/year during 2005–2015
(Dieter et al., 2018), of which >90% is used for irrigation.

We use version-4 of the SMAP level-3 radiometer SM data for 2015–2017 period to generate the daily
climatology, which is then regridded to 3-arc-min model grids. The SMAP data record is short, which means
that extreme events such as wet/drought cycles that might have occurred in the period could have an outsize
effect on our results. However, this concern is less important than at first glance because of the rationale that
irrigation maintains optimal SM level for crop growth, preventing SM anomaly caused by wet/drought cycles.
Nevertheless, since SMAP data might have been affected by other biases (Dong et al., 2018), we apply bias
correction using an a priori scaling approach, in which the cumulative distribution function of SMAP data
(CDFSMAP) is matched with the CDF of ground observations (CDFgrnd) located within a sampling window of
0.5° radius and assumed as the true data (Kumar et al., 2012; Reichle & Koster, 2004). Solving the equation
CDFgrnd(x

0
) = CDFSMAP(x) for x

0
, SMAP data (i.e., x) are scaled to the bias-corrected SM (i.e., x

0
).

The ground-based SM data are taken from three monitoring networks, namely, Soil Climate Analysis Network
(SCAN), U.S. Climate Reference Network (USCRN), and SNOwpack TELemetry (SNOTEL), which are used for
both bias correcting SMAP data and validating simulated SM (Bell et al., 2013; Bitar et al., 2012; Schaefer
et al., 2007). To validate simulated IWR, we use the U.S. Geological Survey (USGS) census data of irrigation
withdrawals (Dieter et al., 2018; Maupin et al., 2014), available every 5 years since 1985.

2.2. Existing Irrigation Scheme in CLM4.5

The CLM (Lawrence et al., 2011; Oleson et al., 2013) is the land component of the Community Earth System
Model (CESM). The CLM4.5 includes an irrigation scheme based on Ozdogan et al. (2010), which is used in
conjunction with a prognostic crop module (Levis et al., 2012; Peng et al., 2018). Irrigated areas are prescribed
based on the high-resolution global irrigated and rainfed crop areas from Portmann et al. (2010). The
irrigation scheme uses the SM deficit approach, in which irrigation is activated when the crop leaf area
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index is greater than zero and water is limiting for photosynthesis depending on crop type, wilting factor, and
root fraction. IWR is then estimated based on the difference between the prescribed target SM and the
simulated SM in all soil layers within the root zone (i = 1,n), as

SWdef ¼ ∑ni¼1 max SWtar;i � SWsim;i; 0
� �

(1)

where SWdef is the soil water deficit and SWsim,i and SWtar,i are the simulated and target soil water amount (all
in kg/m2), corresponding to the simulated and target SM, respectively, at ith layer from the surface. If
irrigation is required and SWdef > 0, irrigation water (SWdef) is withdrawn from runoff and applied directly
to the surface at a constant rate during 6–10 a.m. each day. Runoff is allowed to become negative when
IWR is larger than runoff (Leng, Huang, Tang, Sacks, et al., 2013) so that irrigation water is not artificially sup-
pressed. The target soil water is simply the weighted arithmetic mean of minimum soil water (SWmin,i)—that
prevents crop water stress—and soil water at saturation (SWsat,i):

SWtar;i ¼ 1� Firrig
� ��SWmin;i þ Firrig�SWsat;i (2)

where Firrig is an empirical factor that is set globally at 0.7 to roughly replicate the global annual irrigation
amount observed circa year 2000. Leng, Huang, Tang, Sacks, et al. (2013); Leng, Huang, Tang, Sacks, et al.
(2015) suggest that the globally calibrated Firrig parameter may not be suitable for regional studies and that
calibration at the scale of administrative units can result in improved regional irrigation simulations.
Minimum SM (mm3/mm3) corresponding to SWmin,i is calculated based on the Clapp and Hornberger
(1978) relation:

SMmin;i ¼ ϕe;i�
ψo;i

ψsat;i

 !�1
Bi

(3)

where ϕe,i is the effective porosity, Bi is the Clapp and Hornberger parameter representing the soil type (i.e.,
organic matter, sand, and clay fractions), and ψo,i is the matric potential when stomata are fully open, set to
�74,000mm, the average of matric potential at wilting point (�150,000 mm) and field capacity (�3,400 mm).

The existing irrigation scheme in CLM4.5 uses constant ψo,i for all crops, and other effective terms in
equations (2) and (3) such as ϕe,i, ψsat,i, Bi, and SWsat,i only represent the soil type. Thus, other parameters that
play crucial roles in irrigation estimation (e.g., crop type and irrigation practices) are ignored altogether due to
the lack of global data. Further, as in other LSMs (e.g., Lawston et al., 2015; Pei et al., 2016), CLM4.5 irrigation
scheme uses a constant bulk coefficient (here Firrig; equation (2)) globally, which is a major limitation of the
existing scheme as described above. Finally, the use of fixed irrigated areas representing approximately
2000 is another structural limitation in CLM4.5 because irrigation location and extent can have significant
interannual variability, especially during wet-dry transitions (Deines et al., 2017).

2.3. Improved Representation for Target SM in Irrigation Modeling

Our rationale is that since SMAP can detect seasonal timing and spatial signature of irrigation (Lawston,
Santanello, & Kumar, 2017), SMAP SM retrievals can be used to constrain the target SM in irrigation
parameterizations, enabling us to capture the effects of some of the missing irrigation attributes (e.g., IWR
for different crops) and practices (i.e., drip, sprinkler, and flood systems). In using SMAP data, we set the target
SM of each irrigated grid cell on any particular day of the year as a function of daily climatology of SMAP data
for the given grid cell and day of the year. The daily climatology of SMAP data is assumed to represent the
daily average level of SM maintained by local farmers based on the crop type, atmospheric conditions, and
irrigation practice during the SMAP period.

A realistic use of SMAP data for SM-based irrigation modeling requires vertical extrapolation of SM from 5 cm
to the entire root zone. Various filtering approaches have been suggested to relate the root-zone SM to
surface SM (observed by satellite sensors), by applying recursive equations on time series of surface SM to
update certain parameters (e.g., characteristic time length and gain factor) and then to estimate the
root-zone SM (Albergel et al., 2008; Sabater et al., 2007). Here for simplicity, we propose a parsimonious
(i.e., requires minimal parameters) formulation based on the concept of Clapp and Hornberger (1978) to
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vertically extrapolate the SMAP SM as a function of the model soil type (represented in Bi) and the degree of

saturation (θ� ¼ SMsim;i

ϕe;i
). The target SM for soil layers deeper than 5 cm from the surface is then computed as

SMtar;i ¼ SMSMAP;5cm þ SMSMAP;5cm� 1� 1� SMsim;i

ϕe;i

 !Bi
0
@

1
A (4)

where SMSMAP,5cm is the SMAP SM and SMtar,i is the target SM in layer i, both in mm3/mm3. Overall, the multi-
plying term 1� 1� θ�ð ÞBi

� �
starts from 0 and approaches unity as the degree of saturation ranges from 0 to

1. Therefore, SMtar,i ranges from SMSMAP,5cm in the top two layers (where depth is less than 5 cm) to twice the
SMSMAP,5cm close to the water table (where θ* ≈ 1). The vertical profile of extrapolated SMAP SM thus derived
is presented in Figure S2, which is comparable with the temporally averaged vertical SM profile discussed in
previous studies (e.g., Zeng & Decker, 2009).

We test the original CLM4.5 irrigation scheme and two new representations for target SM using SMAP data
assimilation by (1) directly integrating raw SMAP data and (2) assimilating SMAP data using KF with and with-
out bias correction. In the direct integration approach, the target SM at each time step is set by evaluating
equation (4), given the daily climatology of SMAP SM for the day of the year and the grid cell considered.
If there is no SMAP observations for the day of the year, the scheme relies on the CLM4.5 estimation of irriga-
tion water (section 2.4). In the second approach, original and bias-corrected SMAP data are assimilated into
the irrigation scheme using 1-D KF to set the target SM based on the SMAP data for the day of the year and
the grid cell considered as well as adjacent spatial and temporal grid cells. That is, some degree of ergodicity
is assumed in the assimilation framework following previous studies (e.g., Reichle & Koster, 2004). We note
that SMAP data are assimilated into CLM to modify the target SM representation in irrigation parameteriza-
tion and not to directly adjust SM, meaning that SM simulation is not constrained by SMAP data and hence
SMAP can be used for an independent validation of simulated SM. See Text S1 in the supporting information
for 1-D KF assimilation framework.

2.4. Experimental Design

We conduct five sets of off-line simulations (i.e., CLM decoupled from CESM and forced by meteorological
data) using CLM4.5 with (1) no crop and irrigation schemes (NOirrig simulation), (2) the default irrigation
scheme (control simulation; CTRL), (3) the improved representation for target SM by directly integrating
raw SMAP data (SMAP_raw), (4) the improved representation for target SM enhanced by 1-D KF
(SMAP_KF), and (5) the improved representation for target SM enhanced by using a priori bias reduced
SMAP data and 1-D KF (SMAP_KF_BC). The crop model is activated for all simulations except for NOirrig.
The model is set up at high resolution of 3 arc-min (0.05°) to capture fine-scale details of irrigation processes
and reduce scale mismatch with field observations. The model is first spun up for 100 years; simulations are
then conducted for 1985–2016 period using the North America Land Data Assimilation System phase II
(NLDAS2) forcing data (Xia et al., 2012).

3. Results and Discussion

Figure 1 shows the spatial variability of top-5 cm SM from SMAP and CTRL, along with differences between
the SM from SMAP and NOirrig, and SMAP_KF and CTRL, all averaged for June–August (JJA) 2015–2016. It
is evident from Figures 1a and 1b that broad wet/dry patterns of SM are reasonably reproduced in CTRL.
However, a significant wet bias (up to ~0.18 mm3/mm3) compared to SMAP observations can be discerned
especially in regions over the HPA, Snake River Plain (SRP), and western portions of the domain (Figures 1a
and 1b). This SM overestimation in CTRL is due in part to the overestimation of irrigation water (discussed in
Figure 2). However, multiple other factors such as evapotranspiration and soil resistance in CLM (Lawrence
et al., 2011; Sakaguchi & Zeng, 2009; Swenson & Lawrence, 2014), biases in precipitation, and uncertainties
in runoff parameterizations could have also contributed to a certain extent. To isolate the potential SM bias
caused by these factors, surface SM from NOirrig is deducted from SMAP data (Figure 1c); a large wet bias (up
to ~0.15 mm3/mm3) is found even in the absence of irrigation. Further, the large wet bias in surface SM seen
in CTRL is reduced by up to 15% and 40% over the HPA and SRP, respectively, in SMAP_KF (Figure 1d). This
bias reduction results from the lower target SM in the improved irrigation representation in SMAP_KF as
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dictated by SMAP data; consequently, IWR is essentially reduced in SMAP_KF. We note that the 3-month
average SMAP SM is generally drier than in NOirrig (Figure 1c); regardless, irrigation is triggered when daily
SMAP SM becomes wetter than that in NOirrig even when the monthly/seasonal SMAP SM is drier. This is
likely caused by a short surface SM memory during spring-summer time and in dry regions (Rahman et al.,
2015; Wu & Dickinson, 2004).

Figure 2 presents the county-level comparison of simulated annual total IWR with USGS data for census years
during 2005–2015; the data for years other than 2015 are used as out-of-sample test data to evaluate irriga-
tion simulations for non-SMAP period. Results for earlier years during 1985–2005 are shown in Figure S4. We
note that CLM4.5 simulates IWRwithout considering field losses (e.g., conveyance and application losses), but
USGS data represent total withdrawals. Thus, for consistency, we convert USGS withdrawals to equivalent
water requirements by multiplying withdrawals by traditional irrigation efficiency obtained from
Jägermeyr et al. (2015; Figure S5c).

As it is evident in Figure 2, significant improvements in the simulated IWR are achieved in other simulations
compared to CTRL. The CTRL overestimates IWR for regions over the HPA, Southwest Alluvial Basins in
Arizona (ABA), the SRP (green and red rectangles in Figure 2), Montana, New Mexico, and eastern Colorado

Figure 1. Spatial distribution of top-5 cm soil moisture (averaged for June–August of 2015–2016) from (a) SMAP satellite observations, (b) CTRL, (c) the difference
between NOirrig simulation and SMAP observations, and (d) the change (percentage) in surface soil moisture from SMAP_KF relative to CTRL.
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for all years (Figures 2a, 2e, and 2i). Conversely, CTRL underestimates irrigation in western Colorado,
Wyoming, and southwest of Montana. These comparisons clearly demonstrate the deficiency in the default
CLM4.5 irrigation scheme in accurately capturing the amount of irrigation water applied, especially over
highly irrigated areas (e.g., HPA and ABA; Figure S5a). We make the following key observations.

First, notable improvements are found in SMAP_raw (Figures 2b, 2f, and 2j) compared to CTRL (Figures 2a, 2e,
and 2i), most noticeably over the HPA. We find that SMAP detects a likely accurate SM in these highly irrigated
areas over the HPA, thus improving the target SM and hence the IWR compared to that in CTRL, which uses a
static (i.e., temporally invariant; Figure S3) soil-type-based irrigation trigger threshold (section 2.2). In some
counties in the west of the domain, irrigation is underestimated because of relatively low SM in SMAP data
over large SMAP grids (36 km) that are sparsely irrigated (Figure S1); that is, a decreased target SM is set in
the model. The assessment of SMAP data quality against ground networks indicates that the SMAP error
estimate is higher in the western half of the domain, covered mainly by SNOTEL stations (Table S1 in the sup-
porting information). This implies that the potentially lower SMAP data quality in the western half of the
domain could have contributed to the underestimation of irrigation. On the contrary, there are areas of over-
estimated IWR in northwestern Utah, western Montana, and western ABA, which coincide with high SM in
SMAP data (Figure 1a).

Figure 2. County-level difference between annual total IWR from different simulation settings and U.S. Geological Survey (USGS) data during 2005–2015. USGS with-
drawals are converted to equivalent water requirements, and 3-arc-min model results are aggregated for each county. The dark black outline indicates the High
Plains Aquifer, and the red and green rectangles show the Snake River Plain and Southwest Alluvial Basins in Arizona regions, respectively.
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Second, the positive bias in IWR over the HPA is further reduced for most of the years when the 1-D KF is
applied (Figures 2c, 2g, and 2k, Figure S4, and Table S2). For example, the bias in total IWR in HPA reduces
by up to 60% from CTRL to SMAP_KF when compared with USGS data for years 2005, 2010, and 2015.
Moreover, application of the filter also enables a significant improvement in the highly overestimated IWR
in regions of ABA, Utah, and Montana in SMAP_raw (Figures 2b, 2f, and 2j). These improvements are achieved
through dampening of the potential noise in SMAP data by considering the underestimated signals from the
temporally and spatially neighboring grid cells (see section 2.3 and Text S1). However, KF does not reduce the
underestimation of IWR for some counties in SRP and ABA because the neighboring SMAP observations used
in KF are also dry, meaning that the surrounding regions are also underirrigated (Figures 2c, 2g, and 2k com-
pared to Figures 2b, 2f, and 2j).

Finally, improvements are found in results from the application of bias correction of SMAP data using ground
observations (Figures 2d, 2h, and 2l) compared to those obtained from the application of KF alone (Figures 2c,
2g, and 2k), especially over the HPA and for years 2015, 2010, 1990, and 1985 (Table S2). However, these
improvements are relatively small and results from SMAP_KF_BC resemble SMAP_KF results, due primarily
to similarity in target SM between the two simulations (Figure S3). Nevertheless, results from bias correction
confirm that the bias in simulated IWR is not primarily due to the use of SMAP data for the 2015–2016 period
for all simulation years.

Comparisons for other census years (Figure S4) show similar performance as for 2005–2015 discussed above,
which is primarily because of (1) the target SM that is constant for all years despite the year-round variability
in SMAP simulations and (2) small temporal variability of USGS data throughout 1985–2015 (Figure S5b). In
general, Figures 1c and 2 suggest that CLM4.5 tends to overestimate irrigation and the improvements in irri-
gation simulation are achieved likely due to the reduced wet bias resulting from the constrained target SM
through assimilation of SMAP data. Utilizing higher quality SMAP products with longer record could further
improve irrigation estimation.

A summary of statistical measures obtained from the state-level comparison of simulated IWRwith USGS data
for all census years is provided in Text S2 and Table S2 for the three states that cover the majority of the HPA
(i.e., Nebraska, Kansas, and Texas). These statistics corroborate our findings that promising improvements are
achieved in all modified model settings compared to CTRL. For example, the root-mean-square error (against
USGS data) of simulated irrigation water is reduced on average by 50% for above states in SMAP_KF com-
pared with CTRL.

Figure 3 depicts the comparison of simulated SM using different settings with ground observations from
SCAN and USCRN networks (red squares in Figure S1) for JJA of 2005–2006, a period chosen as a
non-SMAP period. Top panels (Figures 3a–3d) show time series of top-5 cm SM at four of these stations
located over the HPA. For clarity of view, only CTRL, SMAP_raw, and SMAP_KF_BC are shown; results from
SMAP_KF are highly similar to that from SMAP_KF_BC due to the similitude of target SM in most of the areas
across the HPA (Figure S3).

Overall, CTRL fails to capture the episodes of low SM and often simulates false peaks, likely due to false
irrigation timing during the growing season. The overall temporal dynamics is improved in SMAP_raw and
SMAP_KF_BC, especially in terms of better capturing the episodes of low SM. Occasionally, SMAP_raw
outperforms, even the SMAP_KF_BC in reproducing low SM (e.g., in year 2006); however, it fails to capture
the overall temporal variability. For example, while observations show a descending trend in SM, which is
closely followed by SMAP_KF_BC, SMAP_raw exhibits false peaks (e.g., SCAN_2105 and SCAN_2106 during
2005 June–July, SCAN_2107 during 2005 June–July, and SCAN_2111 in 2006 June).

Interestingly, SMAP_KF_BC realistically simulates the periods of low SM (e.g., SCAN_2105, SCAN_2106, and
SCAN_2107 during 2006 June–July and SCAN_2111 during 2006 July–August) as in SMAP_raw, while also
capturing the observed SM dynamics (e.g., SCAN_2105, SCAN_2106, and SCAN_2107 during 2005
June–August and SCAN_2111 in 2006 August), which is more accurately simulated in CTRL than in
SMAP_raw. This demonstrates the promising performance of KF that predicts the target SM considering
the uncertainties associated with SMAP and the model estimation of target SM (see Text S1). Additionally,
the bar plot in Figure 3 shows daily precipitation stacked above IWR from SMAP_KF_BC, in which the
coincidence of most of observed dry SM events with irrigation application suggests that irrigation is triggered
expectedly during relatively dry periods.
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Figure 3. (a-d) Temporal variability of top-5 cm soil moisture from CTRL, SMAP_raw, and SMAP_KF_BC simulations and Soil Climate Analysis Network (SCAN) obser-
vations for June–August of 2005–2006 at stations not located in irrigated areas. (e–l) Vertical profiles of averaged SM over June–August (JJA) during 2015–2016 from
SMAP, ground observations, and CTRL, SMAP_raw, and SMAP_KF_BC simulations.
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The bottom two rows in Figures 3e–3l show vertical profiles of SM in the top meter averaged over JJA of
2015–2016 from different simulations compared against SMAP and ground observations for eight sta-
tions over the HPA (additional points are shown in Figure S6). In general, a shift in the SM profile toward
the observed profile and SMAP data can be observed in the improved irrigation schemes, suggesting an
improvement also in SM simulations due to SMAP data assimilation. Note that SMAP data are used only
to improve irrigation representation by revising the threshold-based irrigation application and not to
directly alter SM in the model. Therefore, a perfect match between the simulated and observed SM is
not expected. Further, since most of the ground stations are located in nonirrigated areas, wetter SM
profile in the model is expected. The comparison of SMAP data and ground observations further
suggests a fair degree of dry bias in SMAP data across the domain (Figures 3 and S6), more pronounced
over the western states; the underestimation of irrigation water in SMAP_raw, SMAP_KF, and
SMAP_KF_BC (Figure 2) discussed above is caused by this dry bias in SMAP. While these comparisons
demonstrate that SMAP data assimilation in the irrigation scheme also improves SM simulations, the
results should be interpreted with caution because this comparison is done between grid-based results
and point observations from sparse networks. Despite certain caveats (Chan et al., 2016), such a
comparison is common (Pan et al., 2016; Zhang et al., 2017) owing to the lack of dense observation
networks and the difficulty in quantifying and comparing SM across observations and models
(Dirmeyer et al., 2017, 2016).

4. Conclusions

This study presents a new approach to assimilate SM from SMAP satellite into global LSMs to improve
irrigation representation. Results suggest that the simulation of irrigation can be improved by directly
integrating SMAP data to constrain the target SM. However, we find that further improvements in simulation
of irrigation can be achieved if the 1-D KF assimilation framework is applied. The use of bias-corrected SMAP
further improves results in some regions, but the improvements are relatively small compared to those
achieved from the KF application. We conclude that despite certain limitations, the use of SMAP data with
1-D KF better represents the target SM, thus providing robust improvements in simulation of IWR and SM,
and generally reducing wet bias in IWR in the control simulation (e.g., by up to 60% over the HPA). These
results demonstrate the potential of the new parameterizations for constraining target SM using SMAP data
and KF, which can be incorporated into any LSM, and applied and validated globally, even for the regions
where ground-based data are not available for bias correction. Future research directions include (1) the
use of higher quality SMAP data from level-4 products with a longer record, (2) incorporation of other
available information from SMAP (e.g., surface flag and land cover class) in the analysis, (3) refinement in
model spatial resolution (e.g., 1 arc-min) for better comparison of results with point measurements, and (4)
consideration of field-scale details and uncertainties (e.g., in irrigation extent and practices) in irrigation
representation with increased spatial resolution.
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