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Abstract—This paper presents a new technique for providing
the analysis and comparison of wiretap codes in the small
blocklength regime over the binary erasure wiretap channel. A
major result is the development of Monte Carlo strategies for
quantifying a code’s equivocation, which mirrors techniques used
to analyze forward error correcting codes. For this paper, we limit
our analysis to coset-based wiretap codes, and give preferred
strategies for calculating and/or estimating the equivocation
in order of preference. We also make several comparisons of
different code families. Our results indicate that there are security
advantages to using algebraic codes for applications that require
small to medium blocklengths.

I. INTRODUCTION

Due to the increased number of automated and wireless
devices in use today, it appears that the internet of things
(IoT) is slowly, but surely, becoming a reality. With the
increased flexibility and convenience that the IoT promises
to bring about, come also a plethora of security and privacy
challenges. These challenges are unique to other applications
for several reasons. For one, the IoT will be comprised of
power-constrained devices; for two, these devices will likely
need only short packets to communicate a large proportion of
transmitted data; and for three, communications will need to
have low latency to cope with small memory sizes on smaller
connected devices [1]. The architectures currently deployed in
communication systems are unsuited for this new environment,
as they typically rely on large blocklength coding schemes for
reliability, including interleaving techniques that bring about
added latency, and power-hungry and complicated algorithms
for secret key exchange and/or cryptography. Thus, there is a
current need for low-power secrecy algorithms that can make
security guarantees over short blocklengths.

One technique that may prove itself to be a nice match for
many security and privacy issues in the IoT is that of wiretap
(or secrecy) coding [2], [3] for physical-layer security [4], [5].
The general idea of such techniques is to code data in such
a way that the channel over which an eavesdropper observes
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communications naturally secures the data transmission, while
also allowing reliability over other communications channels
for legitimate receivers.

If coding for secrecy is to prove itself adequate for solving
the security issues inherent in the IoT, it must be better
understood how these codes perform in the finite blocklength
regime, particularly with very short blocklengths. Tradition-
ally, wiretap codes are evaluated and analyzed as blocklengths
approach infinity using information theoretic security mea-
sures. Let a message M be encoded into a length n codeword
X™ for transmission across a communications channel. The
eavesdropper observes a possibly noisy version of X™ denoted
by Z™. Data are transmitted with weak secrecy [4] if the
leakage rate of information about the message goes to zero
in the limit; that is,

%H(M; Z™) =0 as n— 0. ()
Data are communicated with strong secrecy [6], [7] if the
total amount of leaked information about the original mes-
sage approaches zero as blocklength approaches infinity, or
equivalently

I(M;Z™) — 0 as n — oc. (2)

While a majority of secrecy coding structures (e.g., [2], [8],
[9]) make use of these measures to classify their security
achievements, we argue that a new approach in the finite
blocklength regime, beginning with extremely short block-
length codes, would be of great value. Furthermore, we wish
to actually quantify the total equivocation as a function of
channel parameters in the eavesdropper’s channel, rather than
only analyzing codes in the asymptotic blocklength regime.
In this paper, we analyze coset-based secrecy codes (as
originally presented in [4], [8]) over finite blocklengths to
quantify exactly (where possible) or estimate (using Monte
Carlo techniques) the precise amount of information-theoretic
security in terms of the equivocation

A = H(M|Z"). 3)

In essence, we are proposing that finite blocklength secrecy
codes can be analyzed individually using simulation tech-
niques similar to those that create bit error rate (BER) curves
in generic error-control codes. When possible we can calculate
the exact equivocation, or bound it as appropriate; but when
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Fig. 1. The BEWC model has a noiseless main channel between Alice and
Bob, and a BEC eavesdropper’s channel.

these techniques fail, we can simply estimate the equivocation
using Monte Carlo simulations.

The remainder of this paper is organized as follows. Section
IT contains background information about the channel model
used throughout the paper, coset coding in general, and a
specific encoding and decoding algorithm. Section III demon-
strates how to quantify equivocation when using coset coding
techniques over binary erasure channels. Section IV introduces
simulation techniques for analyzing the equivocation of short
blocklength codes, including a new parameter to compare
finite-length codes with the achievable secrecy limits under
the infinite blocklength assumption. Finally, Sections V and VI
present empirical results for different coset coding techniques
and summarize the major findings of the paper, respectively.

II. BACKGROUND

In this section, we discuss the channel model used for this
paper, as well as existing techniques for wiretap coding over
the binary erasure wiretap channel (BEWC).

A. Overview of Channel Model

The channel model assumed in this paper is a variant
of Wyner’s wiretap model [4] called the BEWC, which is
depicted in Fig. 1. In this model, Alice wishes to securely
transmit a binary message to Bob in the presence of Eve, an
eavesdropper who has full knowledge of the coding scheme
in use. Alice encodes a message M from the alphabet
M ={1,2,...,2%} into a corresponding n-bit codeword X"
(n > k). Alice transmits X" to Bob through the main channel
of communication, and Bob receives Y at the output of the
channel. From this observation, Bob decodes and forms his
estimate of the original message, denoted M’. In the BEWC,
the main channel is noiseless, and thus, Y = X" and
M’ = M. An eavesdropper named Eve observes Z™ through
the eavesdropper’s channel, which is a BEC with parameter
€. Each bit of X" is erased by the channel with probability e
independent of all other bits, and erasures are denoted as ‘7’
symbols. Our choice of the BEWC for this work is for two
reasons: (1) the problem is made much simpler by considering
only this case for now, and (2) good forward error correcting
code designs over binary erasure channel models have tended
to produce good codes over more practical channels [10], and
the same may be true for secrecy codes.

B. Overview of Coset Coding

In general, data should be encoded to minimize the proba-
bility of error for Bob and to restrict the amount of information
intercepted by Eve. Since the main channel is noiseless,
however, we need not worry about Bob. Secrecy over the

TABLE 1
CODEBOOK STRUCTURE OUTLINED IN EXAMPLE 1.
M | Codewords
1 0000 0110 1001 1111
2 0001 0111 1000 1110
3 0010 0100 1011 1101
4 0011 0101 1010 1100

eavesdropper’s channel can be achieved through the coset
coding procedure described in [4], [11]. Let the messages,
M € M, be chosen uniformly at random. An (n,n — k)
linear block code C'; (also referred to as the base code) is
chosen that contains 2"*~* n-bit codewords [12]. From C;, 2*
cosets (Cq,Co,Cs,...,Cy) can be obtained. By Lagrange’s
Theorem of cosets [12], each coset will contain 2" % n-bit
binary vectors. Each message is then assigned to a unique
coset, forming a codebook that contains every binary vector in
the n-bit space. To encode M, a codeword is chosen at random
from its corresponding coset and is transmitted as X". Since
the main channel is noiseless, Bob simply has to find Y" in
the codebook and map back to M. Eve also has access to the
codebook and can obtain M provided Z" allows her to rule
out all but one coset. If Z™ contains erasures, it is possible to
achieve a measure of security further explored in Section III.
The following example depicts the encoding process and the
possible security benefits of coset coding.

Example 1. Let £ = 2, and let the elements in M =
{1,2,3,4} be equally likely. We choose the base code C;
to be the (4, 2) linear, block code containing the codewords
{0000,0110,1001,1111}. Cosets are formed, and each mes-
sage is arbitrarily mapped to a corresponding coset resulting
in the codebook seen in Table I. Suppose we wish to transmit
m = 3. A codeword from the third coset is chosen at random,
for example 1011, and is transmitted as z™. Since the main
channel is noiseless, Bob receives y” = 2™ and he can map
y™ = 1011 back to the message m = 3. Suppose that Eve
observes z™ = 1077. Since each coset contains a codeword
consistent with z”, Eve cannot rule out any cosets. Therefore,
H(M|Z™ = z™) = 2 bits, meaning Eve gains no information
from the observation about m.

C. Practical Encoding and Decoding Algorithm

An explicit method for encoding and decoding data in the
coset coding scheme was developed in [8]. The message M
is mapped to k-bits and is now denoted as M* € {0,1}*.
We first select an (n,n — k) linear block code for C; with
generator matrix GG and parity check matrix H. The rows of
H are denoted hq, ha, ..., hi. We now choose k linearly inde-
pendent n-bit vectors (q1, g, . - . , gx) that satisfy the following

conditions
qi¢01f0r1§i§k:, (4)
ghlt =1for1<i <k, (5)
gih) =0for1<i,j<k,i#j. (6)

The last two requirements ensure that the syndrome equals the
message, which will be explained shortly. We will now create



a matrix, G’, whose rows are ¢, g2, - . . , qx. We also generate
a random (n — k) bit vector v(»~*) for each transmission. The
encoding procedure is a simple matrix multiplication and is
represented as

" = [mk: vnfkrjl |:G/:| ) (7)

G
Using this encoding procedure, m* determines the coset while
the particular codeword within the coset is determined by
V™ *_If it is assumed that y™ is received erasure-free, the
receiver calculates the syndrome to obtain

sk _ ynHT
_ anT
G/
_ k n—k T
= [m v ] { G} H
=m*(G'HT) + v F(GHT)
= 7’nk:7
because (5) and (6) ensure that G’HT = I}, and GHT = 0 by
definition, where I is the k£ x k identity matrix. The authors
of [8] further reduce the complications required by the encoder
resulting in very efficient algorithms.

ITII. EQUIVOCATION CALCULATION OVER THE BEC

Let us now calculate H(M|Z™) for an eavesdropper in our
system. Note that [13]

H(M|Z") = ) p(z"H(M|Z" = z"),
ZnezZn

= E[H(M[Z" = z,)],

where Z™ = {0,1,7}"™.

The expression H(M|Z"™ = 2") measures Eve’s level
of uncertainty regarding the message conditioned upon a
particular observation z, from the eavesdropper’s channel
and is measured in units of bits. Our goal is to maximize
Eve’s equivocation using coset coding. The following theorem
quantifies Eve’s equivocation for a specific observation z"
given the number of erasures, the placement of erasures, and
the generator matrix of C.

®)

Theorem 1. Assume MF is chosen uniformly at random from
{0,1}*. Let the (n,n — k) linear, block code C; be the base
code to be used in the coset coding scheme. Let G, a binary
(n—k) xn matrix, be the generator matrix for Cy. Consider an
instance of an eavesdropper’s observation z" € {0,1,7}". Let
1 represent the number of revealed positions in observation
2" and let G, be a binary matrix with dimensions (n— k) x 1
whose columns correspond to the revealed column indices of
G. Then,

H(M*|Z" = 2") = k — p+ rank(G,,). )
Proof. If G, has rank r, then there exist 2" ways to fill in
the revealed positions within the codewords of Cy. Due to the
properties of cosets, there are also 2" ways to fill in the the
revealed positions within the codewords of any and all solitary

cosets. With this in mind, there exist 27~% /2" = 2n=k=" pog-

sible codewords in each possible coset. There must exist 2" ~#

total codewords consistent with 2", therefore, 27~ /(2n—k=T)

cosets are consistent with z™. Since all cosets are equally
likely,

H(M*|Z" = 2™) = log, (2F+1T7)

=k — p+rank(G,,). (10)

. . .

It should be noted that this result is stronger than that given

in Theorem 2 of [8], which was derived from results in [11],

and a similar observation was made in [14]. The previous

result from [8], [11] merely indicates that an observation z"

is secured by C iff rank(G,) = p, which is a special case

of our result.

IV. MONTE CARLO CHANNEL SIMULATION TECHNIQUES

It is true that the choice of C plays an important role in the
equivocation of Eve. Although for small codes H(M |Z™) may
be calculated exactly by cycling through all possible z” € Z"
in (8) and using Theorem 1, this becomes computationally
infeasible as blocklength grows to even moderate lengths. To
estimate the security performance of any base code in the coset
coding scheme, a Monte Carlo simulation can be performed.

A. Methodology

Let G be the binary generator matrix with dimensions
(n — k) x n for Cy. Recall that the eavesdropper’s channel
has probability of erasure e. The equivocation of a particular
observation can be calculated using Theorem 1. This process
is repeated for a predetermined number of iterations, resulting
in an estimate of the average equivocation.

Lemma 1. The expected value of
o1 E
H= > H(M|Z" = 2]), (1D
i=1
where N is the number of iterations in a Monte Carlo simu-
lation, is the true equivocation. Therefore, H is an unbiased

estimator of A = H(M|Z™).
Proof. The expected value of His

N
E[H] =E %ZH(MM" =z
i=1

1 & (12)
= < Y EHM|Z" = 27)
i=1
= H(M[Z"),
where the final line in the proof comes from (8). O

Although H is an unbiased estimator, we will also be
interested in the confidence intervals of the simulated results
as a statistical guarantee that N is large enough to differen-
tiate between the equivocations of different codes. We will
display these intervals as error bars in later sections. Using
the estimator H, the security performance of any coset code



can be thoroughly characterized by simulating across a range
of L evenly spaced e values. Similar types of Monte Carlo
simulations have been used to characterize bit error rates
(BER) of forward error correcting codes [12], [15], so it should
not surprise us that simulation can be used to evaluate wiretap
codes.

B. Achievability Gap

Suppose that the simulation techniques from the previous
section are implements with large N and L requirements
to return a high fidelity result. Suppose also that C; has a
blocklength that is large enough such that the rank calculation
in (9) is too costly to complete the required simulation in
an acceptable amount of time. In this section, we present a
single point simulation parameter (L = 1) that can be used to
evaluate the equivocation rate at a particularly meaningful e
value.

Let C; be the (n,n— k) linear, block code that will be used
as the base code in the coset coding scheme as before. In the
worst case scenario where z™ contains zero erasures, all the
information is leaked to the eavesdropper, and H(M|Z™) = 0.
In the best case scenario, z™ contains sufficient erasures such
that H(M|Z™) = k = H(M). It now makes sense to present
equivocation on a normalized scale, and we note that

A H(M|Z")
n o n

13)

is usually called the equivocation rate. Notice that this quantity
can be bounded as

H(M|Z™)
n n

0< (14)
where R = k/n is called the secret information rate, using the
standard inequality rule of conditional entropy [13]. Further
note that the secrecy capacity Cj, defined as the supremum
of rates such that weak or strong secrecy can be achieved
while also maintaining reliable communications over the main
channel, is equal to € for the BEWC [8]. Thus, it is also true
that

H(M|Z™)

n

<e. (15)

Combining (14) and (15) results in the overall bound of
H(M|Z™)
n

0< < min(e, R), (16)

which is depicted in Fig. 2. Let us judge how closely a finite
blocklength code gets to approaching the asymptotic secrecy
supremum by considering the gap between H(M|Z") and R
at € = R. Thus, we now define the achievability gap, Ag, as

M|Z™)

A, -r- (17

n e=R
Using Monte Carlo techniques, individual choices of C; in
a coset coding scheme can now be compared side by side
using their entire equivocation rate curves, or using a single
metric A,. Both of these are depicted in Fig. 2. As A,
gets smaller, the equivocation rate curve also approaches the
bound in (16), which is best possible, even for infinite length

min(e, R)
Ay -7
N
==
— Supremum of Equivocation Rate
- - - True Equivocation Rate of Code
0 0.5 1

€

Fig. 2. The achievability gap is the difference between the true equivocation
rate of a code and it’s supremum in the limit evaluated at e = R.

codes. Therefore, good secrecy codes and codes with larger
blocklengths will tend to have smaller A, values. Due to this,
code comparison should be done using A, only at identical
blocklengths for the codes to be compared.

Lemma 2. The achievability gap measures the largest differ-
ence between the equivocation rate bound in (16) and a code’s
true equivocation rate; i.e.,

argmax, <min(R, €) — :LH(M|Z")> = R. (18)

Proof. A code’s equivocation rate is always a concave function
of € [13]. For 0 < ¢ < R the bound in (16) is a linear function
of €. Therefore, the difference between the bound and the
code’s true equivocation rate will continue to grow along this
interval (from left to right). Along the interval R < e < 1
the bound in (16) is a horizontal line, and as a result, the
difference between the bound and the code’s true equivocation
rate will shrink along this interval (also from left to right).
Thus, the largest difference between the bound and the code’s
true equivocation must occur at € = R, precisely where the
achievability gap is evaluated. O

While this is certainly a nice property, one should avoid
making claims as to the superior nature of certain codes over
others using only the achievability gap. Essentially this metric
is a single point Monte Carlo simulation of the equivocation
curve, and it will be seen in the following example that this
is not sufficient to rank code performance for all e.

Example 2. C; is chosen to be the (7,4) Hamming code
with secret information rate R ~ 0.4286. Since the block-
length is reasonably small, the equivocation rate can be
calculated exactly, as can all the equivocation rate curves
for every linear block code with n = 7 and £ = 4. The
results of this experiment can be seen in Fig. 3. Notice that
SH(M|Z")
For this codee,_gl'gzgz 0.0812 bits. By inspection, it is easy to
see that the largest difference between the bound and the true
equivocation rate occurs at € = R. Careful inspection of the

< R, as expected for finite length codes.
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Fig. 3. Equivocation rate curves for all (7,4) linear block codes. The Hamming
code achieves the highest equivocation for all codes of this size.

figure reveals that A, is actually minimized for (7,4) linear
block codes in the choice of C; as the Hamming code, but it
is also easy to see several equivocation curves that cross each
other somewhere within the range of ¢ € [0,1], indicating
that evaluation of code performance at a single point is not
sufficient to rank codes for all e.

V. CHARACTERIZING ALGEBRAIC AND RANDOM CODES
WITH SMALL TO MEDIUM BLOCKLENGTHS

In this section, we present recommendations on how to
characterize the security performance of small to medium
blocklength codes. Ideally, the true equivocation rate of a
code should be calculated through (8). From a computational
resource standpoint, this is only feasible for codes with very
small blocklengths. For slightly larger codes, the logical next
step would be to place bounds on the true equivocation
rate. Steps toward bounding the true equivocation rate are
presenented in [16], however these bounds tend to be loose
for codes of small blocklength, and are not guaranteed to
provide any reasonable comparison between codes. Thus,
when (8) becomes too computationally costly, performing a
Monte Carlo simulation over L evenly spaced € values, as
described in Section IV, provides a valid method to estimate
the security performance of a code. When this likewise be-
comes too costly to execute, the single-point Monte Carlo
estimate (L = 1) given by the achievability gap is a reasonable
approach since it measures the maximum difference between
the code’s theoretical maximum equivocation rate and its true
equivocation rate. We explore some of these ideas in the
following subsections.

A. Calculating True Equivocation for Small Blocklengths

By directly calculating the equivocation rate (8), we have
observed that Hamming and simplex codes are the best
performing codes for their respective information rates when
blocklength is equal to seven. Figure 3 shows the equivocation
rate curves for every (7,4) linear block code in a coset coding
scheme, while Fig. 4 shows the curves for every (7,3) linear
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Fig. 4. Equivocation rate curves for all (7,3) linear block codes. The simplex
code achieves the highest equivocation for all codes of this size.

TABLE II
ACHIEVABILITY GAPS FOR HAMMING AND SIMPLEX CODES.
Code | Blocklength | R | Ay (bits)
Hamming 7 0.4286 0.0812
Hamming 15 0.2667 0.0723
Hamming 31 0.1613 0.0311
Hamming 63 0.0952 0.0181
simplex 7 0.5714 0.0779
simplex 15 0.7333 0.0526
simplex 31 0.8387 0.0305
simplex 63 0.9048 0.0179

block code. We note that the Hamming code wins among the
(7,4) codes, and its dual, the simplex code, wins among the
(7,3) codes for every value of €. We also note in both figures
that some codes perform better than their counterparts at larger
values of e but perform worse than their counterparts at smaller
values of € and vice versa. This makes it difficult to rank
the codes in relation to one another (with the exception of
the Hamming and simplex codes). Noting that these algebraic
structures are quite interesting in a secrecy coding context,
in the next section we investigate larger Hamming and sim-
plex codes, and compare their equivocation rate curves and
achievability gaps to those of randomly generated codes.

B. Estimating Equivocation Rates for Small to Medium Codes

Using the Monte Carlo simulation technique described
earlier, experimental values of A, for Hamming and simplex
codes with larger blocklengths were obtained and are given in
Table II. Here we note a general trend that the achievability gap
Ay shrinks as blocklength grows. This makes sense, because
A, measures the difference between a code’s equivocation rate
and the supremum of achievable equivocation rates, which is
to be understood in the limit as n — oo. Note, however,
that A,/R actually maintains a constant ratio for all tested
Hamming codes; thus we see the need to avoid using A, to
directly compare codes of different blocklength.

We now increase the blocklength and generate codes ran-
domly so as to compare with these highly structured algebraic
codes. The random codes that we consider have a single
parameter «, and generators for these codes are constructed
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Fig. 5. Equivocation rate curves for (63,57) random codes (average case, best
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Fig. 6. Equivocation rate curves for (31,5) random codes (average case, best
case, and worst case) and the (31,5) simplex code.

such that each bit in the generator matrix is equal to one with
probability «, independent from all other bits. For blocklengths
slightly larger than ten, we are no longer capable of calculating
equivocation exactly in any reasonable amount of time. Thus,
we employ the Monte Carlo techniques developed herein, and
find that simulations show random codes with o ~ 0.5, tend
to have smaller A, values. Simulations also show that the
(31,26) Hamming code slightly outperforms (31,26) random
codes with o =~ 0.5. To test this, ten (31,26) random codes
with @ =~ 0.5 were created and tested using the Monte
Carlo simulation techniques. The average security performance
of these random codes compared to the (31,26) Hamming
code’s performance is shown in Fig. 5 with 95% confidence
intervals. Simulations further indicate that the (31,5) simplex
code outperforms (31,5) random codes with a ~ 0.5. Again,
ten (31,5) random codes with a = 0.5 were created and tested
using the Monte Carlo simulation techniques, and the results
can be viewed in Fig. 6. We expect the difference between
algebraic codes and randomly chosen codes to further shrink
for yet larger blocklengths, indicating that codes generated

somewhat randomly may be expected to perform within some
small difference to more optimized structures.

VI. CONCLUSION

In conclusion, we have presented a list of ordered techniques
in terms of preference for quantifying the equivocation rate of
small blocklength secrecy codes over the BEWC. The best
solution, when possible, is to calculate exactly the equivoca-
tion. When this becomes infeasible due to large blocklength
codes, Monte Carlo techniques can provide quantification of
the equivocation of codes. For cases where the blocklength
is large enough to restrict the number of ¢ parameters over
which the equivocation rate can be simulated, we propose the
achievability gap is a meaningful single-point estimate of the
equivocation rate as it marks the maximum deviation from
established bounds.
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