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Collective, especially group-based, managerial decision making is crucial in organizations. Using an evolutionary theoretic
approach to collective decision making, agent-based simulations were conducted to investigate how human collective decision
making would be affected by the agents” diversity in problem understanding and/or behavior in discussion, as well as by their
social network structure. Simulation results indicated that groups with consistent problem understanding tended to produce
higher utility values of ideas and displayed better decision convergence, but only if there was no group-level bias in collective
problem understanding. Simulation results also indicated the importance of balance between selection-oriented (i.e., exploitative)
and variation-oriented (i.e., explorative) behaviors in discussion to achieve quality final decisions. Expanding the group size
and introducing nontrivial social network structure generally improved the quality of ideas at the cost of decision convergence.
Simulations with different social network topologies revealed collective decision making on small-world networks with high local
clustering tended to achieve highest decision quality more often than on random or scale-free networks. Implications of this
evolutionary theory and simulation approach for future managerial research on collective, group, and multilevel decision making
are discussed.

1. Introduction

Collective decision making plays an increasingly important
role in society and organizations today [1-6]. In high-tech
industries, for example, the number of engineers participat-
ing in the design of a single product can amount to hundreds
or even thousands due to the increase of the product’s
complexity far beyond each individual engineer’s capacity,
which almost inevitably results in suboptimal outcomes [7-
9]. Another example is the online collective decision making

among massive anonymous participants via large-scale com-
puter mediated communication networks, including collec-
tive website/product rating and common knowledge base
formation [10, 11]. In these and related cases, participants and
their societal or organizational structure may influence the
final outcome of decision making processes. The complexity
of the process is more pronounced when the participants
are heterogeneous and are embedded in a topologically
nonuniform network with differential distribution of power,
as in most organizations and social systems [3]. The dynamics
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of human collective decision making in such conditions are
poorly understood and as such pose significant challenges for
the social and organizational sciences.

Evidence of these challenges exists within the leadership,
psychology, and organizational behavior/management disci-
plines where collective dynamics, using both experimental
and applied studies, generally emphasize linear statistical
relationships between specific, narrowly defined team- or
individual-level variables [2, 12-14]. Traditional studies sel-
dom account for nonlinear dynamical processes that take
place in a high-dimensional problem space and/or nontrivial
social structure where interactions occur within a networked
organizational structure. Abbott [15] highlights this problem
within the social sciences by discussing a “general linear real-
ity,” where mainstream social science theories and methods
treat linear models as actual representations of social systems.

Examples of recent research not necessarily following
a “general linear reality” to model inherent complexity in
social systems are found within the complex systems research
community, where social processes are studied using a
mathematical/computational modeling approach [3, 4, 8,17-
25]. Because emphasis is on emergent dynamical behavior
of systems caused by nonlinear interactions among massive
numbers of parts (a pervasive phenomenon also found
in fields such as physics, biology, sociology, psychology,
economics, engineering, and computer science), advances in
modeling complex systems may be applied to benefit organi-
zational research [26, 27]. However, many of these complex
systems models were developed in nonhuman contents such
as physics and biology, and thus their model assumptions
often would be too simplistic to capture the complexity of
collective human decision making.

The aim of this research is to reveal how we may be
able to enhance performance of groups and other entities
involved in collective human decision making by expanding
computational models of social systems to complex problem
domains and by applying them to predict the effects of
individual and collective variables upon decision making
performance. Collective decision making implies a larger
clustering of individuals with interdependency based on
shared expectations or hierarchy. Collectives can be com-
plicated structures and include individuals, groups, and
even much larger social networks [4, 28-30]. We seek to
improve our understanding of both the dynamic nature of
the collective decision process [31] and the influence of
diversity and social connectivity issues related to decision
making among a number of participating group members.
Our unique contributions include employing evolutionary
views in understanding decision making [16], which enables a
straightforward, mechanistic explanation of many empirical
findings about the effects of group composition and dynamics
on group performance. Considering specific within-group
level issues regarding the collaborative process of decision
making also may offer clarity regarding the influence of group
composition on performance.

We first explore how evolutionary theory can address
complex changes over time by providing an explanatory
framework for collective decision processes and then dis-
cuss how specifying a targeted level of analysis can inform
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appropriate interpretation and limitations of decision making
in dynamic environments. Finally, a computational agent-
based model [19, 20, 25] with an evolutionary focus on
collective decision making in groups and social networks
is developed and tested, with diversity of problem under-
standing, behavioral patterns, and social network structure
manipulated as experimental variables. This approach is
similar to Kozlowski and colleagues’ [32] recommendations
for capturing multilevel dynamics of emergence through
development of a conceptual foundation and integration of
agent-based modeling as part of a theory testing process.
Specifically, this study adapts four recommendations
from Meyer et al. [33] to advance our theoretical under-
standing of collective decision making in complex social
systems: (1) consider the impact of time by constructing a
dynamical simulation model; (2) study situations in flux by
situating interacting agents in a continuously changing social
environment; (3) incorporate nonlinear concepts by utilizing
evolutionary theory that naturally represents nonlinearity
in the exploration of a complex problem space; and (4)
design multilevel research by taking into account within-
and between-group differences as well as complex social
network topologies. These guidelines provide a starting point
for investigating the complexity of collective decision mak-
ing with an evolutionary and multilevel, network-oriented
framework. Prior dynamical modeling in organizational
research may have considered the impact of time and sit-
uations in flux; few if any, however, have included specific
evolutionary and multilevel, network-oriented concepts.

2. Backgrounds

2.1. Evolutionary Theory and Collective Decision Making.
Evolutionary theory describes adaptive changes of popula-
tions primarily by combining mechanisms of variation and
selection [34, 35]. The roles of these two mechanisms are
similar to “exploration” and “exploitation” in organizational
learning literature [36-38]. In biological evolution, variation
is caused primarily by internal genetic mechanisms (e.g.,
mutation and recombination) and plays an exploratory role
that could potentially lead to a novel possibility of life
form, but it usually reduces immediate competitiveness of
a population. In contrast, selection is caused primarily by
external environment (e.g., natural and sexual selection)
and plays an exploitative role that enhances the presence of
successful entities (genes, individuals, or groups) and elimi-
nates unsuccessful ones, reducing the number of possibilities
while potentially improving the overall competitiveness of
the population. A dynamically maintained balance of the two
mechanisms is the key to a successful evolutionary adaptation
[39].

We propose human decision making processes within
a collective (such as a group or an organization) also may
be viewed through a similar lens, by shifting the view-
point from individual members’ personal properties (a more
traditional psychological and decision making approach)
to dynamical changes of ideas being discussed within the
collective, where populations of potential ideas evolve via
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TaBLE 1: Evolutionary concepts applied to corresponding decision making process components.

Evolutionary Concept

Decision Making Component

Genetic possibility space
Genome

Locus on a genome

Allele (specific gene) on a locus
Population

Fitness

Adaptation

Selection

Replication

Recombination

Mutation

Problem space (decision space)

Potential idea (a set of choices for all aspects of the problem)

Aspect of the problem
Specific choice made for an aspect

A set of potential ideas being discussed

Utility value of a potential idea (either perceived or real)
Increase of utility values achieved by an idea population
Narrowing of diversity of ideas based on their fitness
Increase of relative popularity of a potential idea in the discussion
Production of a new potential idea by crossing multiple ideas
Point-like change in an idea (possibly coming up with a novel idea); can be random

(unpremeditated change) or intelligent (premeditated change)

Note: adapted from Sayama and Dionne [16].

repetitive operations such as reproduction, recombination,
mutation, and selection of ideas, conducted by participating
human individual members acting as the environment for the
ideas [16]. Table 1 provides a summary of the evolutionary
framework we propose by illustrating how some key evolu-
tionary theoretic concepts can be linked to components of
human decision making processes. We take this approach
because evolutionary theory provides a powerful theoretical
framework that can readily address complex changes of
systems over time in extremely high-dimensional problem
space, while its explanatory mechanisms (heredity, variation,
and selection) are theoretically clean-cut and easily accessible
[35]. Moreover, by shifting the viewpoint from individuals
to ideas, a model could be liberated from the commonly
used but somewhat artificial assumption that each individual
always has his/her decision in mind. Rather, various ideas
developed within and among participants are collectively
reflected in the idea population, to which diverse within-
individual cognitive/behavioral patterns can be easily applied
as a set of multiple evolutionary operators simultaneously
acting on the same, shared idea population. Shifting a
viewpoint away from individuals has precedence in event-
level literatures as well [40, 41].

2.2. Evolutionary Operators and Collective Decision Processes.
Various human behaviors in discussion and decision making
processes may be mapped to several evolutionary operators
([16, 42]; also see Table 1). For example, advocacy of a
particular idea under discussion can be considered the
replication of an idea, a form of positive selection, where the
popularity of an idea is increased within the population of
ideas. Another example is criticism against an idea. Giving
a critical comment on an idea can be considered a form of
negative, subtractive selection, which reduces the popularity
of the criticized idea within the population of ideas. These
positive and negative forms of selection narrow decision
possibilities based on utilities (“fitness”) of ideas perceived by
participants. Other human behaviors can be understood as

more variation-oriented evolutionary operators. For exam-
ple, asking “what if”-type random questions corresponds to
random point mutation in evolution, which makes random
minor changes to existing ideas. However, such mutations
may occur in a nonrandom, more elaborate manner in
human decision making. Humans can mentally explore
several different possibilities, assessing different “what-if”
scenarios, and then share the idea with the highest perceived
utility. This can be considered an intelligent, or hill-climbing,
point mutation [7] in the evolutionary framework (which is
not present in real biological evolution). Finally, the creation
of a new idea by crossing multiple existing ideas can be
considered a recombination of genomes in the evolutionary
framework. These variation-oriented evolutionary operators
promote exploration of various possibilities, potentially at the
cost of the utilities (fitness) of ideas.

As summarized in Table 1, we define collective decision
making as an evolution of ecologies of ideas. Participating
individuals in the collective decision process have popu-
lations of ideas that evolve via continual applications of
evolutionary operators such as reproduction, recombination,
mutation, selection, and migration of ideas. This definition
can naturally be extended to a social network setting [16],
in which social ties between humans are pathways through
which ideas migrate. Thus, there appears to be an intuitive
parallel between an evolutionary framework and a collective
decision process. Applying an evolutionary theory to col-
lective decision making seems consistent with the spirit of
the Meyer et al. [33] suggestions regarding improvement of
research techniques to better reflect situations in flux and
nonlinear concepts within an evolutionary framework.

2.3. Levels of Analysis and Evolution. Evolutionary biologists
Wilson and Wilson [43] reiterate the link between adaptation
and a specific regard for levels of analysis in reviewing the
history of multilevel selection theory. Their evolutionary
perspective on multilevel selection challenges researchers to
evaluate the balance between levels of selection, specifically



where within-group selection is opposed by between-group
selection. This deeper view of a multilevel evolutionary
process can be applied to organizational research as well
[44]. Research on both levels of analysis within organizational
behavior [28, 45, 46] and on group collaborative processes
[47-50] highlights the importance and value of explicitly
viewing the heterogeneity and/or homogeneity of the group
and/or collective. This homogeneity and heterogeneity per-
spective can be viewed as a within-level examination, where
the entity of interest remains the group, but there can be
at least two valid views at the collective level: homogeneity
or whole groups (what evolutionary theory refers to as a
between-group focus) and heterogeneity or group parts (what
evolutionary theory refers to as a within-group focus) [28,
29, 44, 45]. Note that, in both views, we consider the groups
in a collective decision making context in which individual
participants collaborate toward a shared goal, there is a
dependency among them, and therefore, the heterogeneity
or group parts view is quite different from studying a
mere collection of different individuals that do not form a
collaborative group.

The concept of differing perspectives on an entity can
provide more specific insights regarding group processes,
in that phenomena of interest may be more relevant when
groups are homogeneous regarding their membership, but
differ in characteristics from other groups. In this wholes
condition, all members within a group possess the same (or
at least very similar) characteristic, while in the next group all
members possess some other characteristics that first group
perhaps did not. Another view can be taken concerning
amounts of a characteristic present, where members of a
group would possess the same amount of a characteristic,
while members of the next group also would possess the
same characteristic, but all members would have more of
that characteristic, or all members would have less of that
characteristic.

From a contrasting perspective, phenomena of interest
may be more relevant when groups are heterogeneous regard-
ing their memberships. In this case, members within a group
would have varying degrees of a characteristic, and the next
group also would have members with varying degrees of a
characteristic, and the same applies for all groups.

2.4. Decision Research and Levels of Analysis. Precedent for a
broadly applicable modeling approach has been established in
the evolving architecture of problem-solving networks [48].
This research enabled consideration of a generic problem-
solving environment and assessment of emergence regularity
of connectors within the problem environment. Moreover,
Chang and Harrington’s research related to the modeling of
both homogenous agents [47] and heterogeneous agents [48]
is of interest to our work. Specifically, we use homogeneity
and heterogeneity of groups as means for examining levels of
analysis issues related to collective and/or group processes.
Although Chang and Harrington’s [47, 48] modeling
examines a more multilevel relationship between agents
(individuals) and the larger environment, we are concerned
with examining a within-group, collective, or collaborative
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decision process, where individuals would not be considered
outside of the group. Our examination of a unique within-
level evolutionary process, employing both within-group and
between-group perspectives, is a novel view of collaborative
decision making and advances the understanding of a collec-
tive environment.

A critical distinction of our research is that we are
interested in examining a type of process occurring within the
group over time, not necessarily the specific variables within
the process. Dansereau, Yammarino, and Kholes [51] high-
lighted the nature of such research on differing perspectives of
an entity and entity changes rather than on changes in specific
variables over time. Because we are interested in the type of
process occurring within the group during decision making,
we agree with Dansereau and colleagues [51] that the variables
that characterize the level may change or remain stable, but
the level of interest remains the same (in our case, the level of
interest remains the group).

Related, diversity and/or homogeneity and heterogeneity
of groups and information sharing [5, 52-54] present an
additional layer to the decision process that requires con-
sideration. Nijstad and Kaps [55] noted that homogeneity
of preferences leads to a lack of sharing of unique informa-
tion within a group, whereas preference diversity prevented
premature consensus of the group and facilitated unbiased
discussions of preferences. Lightle, Kagel, and Arkes [56]
indicated individual heterogeneity in information recall may
play a role in failure to identify hidden profiles within
groups. Similarly, van Ginkel and van Knippenberg [49]
found that groups in decision tasks performed better when
task representations emphasized information elaboration and
the group acknowledged they shared the view of the task
representation. These findings reinforced that groups tend to
focus on finding common ground and reaching consensus,
but highlighted the importance of understanding, as a group,
the task representation. This shared understanding could be
critical to group success and adaptation, and as such, we
include an indicator of how well group members share a view
of what constitutes the problem.

Although advancements in decision research continue,
many continue to focus on individual-level aspects related to
a decision maker, such as how they adopt practical behav-
ior rules [57] or identification of performance moderator
functions that may affect individual behaviors in simulated
environments [58]. While multilevel implications exist in
recent decision research [49, 55, 59], there is limited focus on
within-group level aspects of a decision process. Moreover,
Maldonato [57] notes there is likely no best way to view
the decision process. As such, there may be some benefit
to development of a preliminary model exploring the effect
of membership similarity and differences on group-based
decision processes from evolutionary and levels of analysis-
based perspectives. Development of such a model advances
understanding of collective decision making in that it builds
on prior key decision research [48, 55, 60, 61], incorporates
the suggestions of improving organizational research offered
by Meyer et al. [33], and incrementally increases the complex-
ity yet fuller understanding of the phenomena represented in
prior collective decision models.
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2.5. Modeling Dynamic Collective Decision Making. Building
from the above notions, the application of computational
modeling to dynamical processes such as collective deci-
sion making may enable organizational researchers to more
appropriately represent the potential nonlinearity of a col-
lective process. For example, interdisciplinary exchange may
have informed recent organizational research which includes
several dynamical models proposed for collective decision
making over social networks that consist of many interacting
individuals [7, 62]. These models, primarily an extension of
models developed in theoretical physics, provide a novel,
promising direction for research on group dynamics and
collective decision making. A limitation of this research and
more specifically its ability to model complex social systems,
however, is the consideration of only simple problem spaces,
typically made of binary or continuous numerical choices
between 0 and 1.

Increasingly complex nonlinear problem space has been
modeled [7, 63, 64] to consider interdependent networks
of multiple aspects of a complex problem. This research,
however, was not modeled in a collective, nontrivial societal
context. This is not surprising because problems arise with
collective decision models in that they commonly assume
every individual agent has or makes his/her own decision.
Following these assumptions, the collective decision mak-
ing dynamic is represented as a process of propagation,
interaction, and modification of individual decisions. This is
an oversimplified assumption compared to actual cognition
processes and behavior of individuals and collectives [65,
66]. Individuals often keep multiple ideas in mind and may
remain undecided during or even after a collective-level deci-
sion emerges. The collective decision forms not just through
the interactions of individual decisions but also through
the more active, dynamic exchanges of incomplete ideas
and mental models being developed by every individual [3].
Such within-individual mental and behavioral complexity
has begun to be included in computational models (c.f,
[61, 67]) and should be taken into account to a greater extent
in order to investigate the complexity of collective human
decision making.

3. Methods

In view of the contexts for computational models of social
and organizational sciences reviewed in the prior section,
we had previously proposed a prototype agent-based model
that applied the evolutionary framework introduced above to
model collective decision making processes within a small-
sized, well-connected social network structure [16]. This
model was used to conduct a specific within-level analysis
on how homogeneity or heterogeneity of goals and decision
utility functions among participants affect dynamics and the
final outcomes of their collective decision making, and the
predictions made by this model were also confirmed by
human-subject experiments [16]. This model was still quite
limited, however, since the size of the collective remained
small, the agents’ evolutionary behaviors were designed in
a rather unsystematic, ad hoc manner, and the effect of

social network structure was not taken into account. In this
sense, it was not developed enough to provide sufficient
answers to key research questions on diversity and network
structure of the collective as discussed in the previous
section.

In this paper, we present a new agent-based model
that can directly address those key research questions by
implementing a systematic control of agents’ behavioral
balance between selection-oriented and variation-oriented
operators, together with much larger, nontrivial social net-
work structure on which agents exchange ideas locally. In
our model, agents collaboratively work on an abstract utility
maximization task, without explicit knowledge of the entire
structure of their utility functions. Agents may have similar
utility functions within the group, but across groups there
may exist different utility functions. Such a homogeneous
condition can represent a “group wholes” view, in which
all members of each particular group share a strong degree
of similarity with their groups’ unique utility function.
Conversely, agents may have different utility functions within
the group. Such a heterogeneous condition can represent a
“group parts” view, in which unique and/or diverse utility
functions prevail within each group, but across groups, this
pattern is not unique, as group after group exhibits this same
type of uniqueness among its members.

We believe that our approach to social dynamics research
can move the social sciences away from an oversimplified
view in that it investigates nonlinear change in organiza-
tional research [33]. Moreover, examining a new theoretical
framework is consistent with development of computational
models, as Adner et al. [68] recognize that simulation is
generally an exercise in theory building.

3.1. Model Assumptions

3.1.1. Groups or Social Networks. Our model assumes that N
agents are connected to a finite number of other agents via
links through which ideas are exchanged. Each agent can
memorize or hold multiple ideas in its mind. Multiple copies
of a single idea may be present, which represents a form of
relative popularity for that idea to the agent. Each agent is
initialized with a small number of randomly generated ideas
in its mind at the beginning of a simulation. The agents begin
to perform a set of actions on the population of ideas in their
minds repeatedly for a fixed number of iterations. The order
by which the agents take actions is randomized every time,
but it is guaranteed that every agent does take exactly one
action per iteration. This round-robin format is commonly
used in idea sharing phases with decision making techniques
such as a nominal group technique and various brainstorm
initiatives [69, 70]. As such, the number of actions performed
in a simulation is a product of the number of agents N and the
number of iterations T.

While other group decision research has modeled hier-
archical teams in decision models (c.f., [67]), we make
no assumptions regarding predetermined leadership and/or
abilities within the team as several teams in organizations
are self-led and share leadership responsibilities [66]. We



investigate the potential impact of varying membership
within the group (i.e., no assumption of identical abilities or
uniform connectivities in general) on the potential pool of
ideas. Since no single person is powerful enough to eliminate
an idea from the group (i.e., shared leadership), we assumed
that actions were performed on single copies of an idea, not
the equivalence set of all idea replicates (described in detail
below).

3.1.2. Utility Functions. The use of utility functions in col-
lective decision research is a natural outgrowth of earlier
research by Hollenbeck et al. [71] noting team decision
making theory can be considered an adaptation of individual
decision models and decision alternatives can vary along
a univariate continuum. This view supplies a multilevel
(e.g., group parts and group wholes) perspective and allows
for adaptation of individual utility functions throughout a
collective decision process. Both factors can be represented
and/or captured by collective decision computer models (c.f.,
[67]). As such, the use of utility functions contributes to the
development of this model as well.

We use a similar model setting for the problem space
and the utility functions as proposed by Sayama and Dionne
[16]. The problem space is defined as an M-dimensional
binary space, within which there are a total of 2" possible
ideas. For a simulation, each possible idea has an inherent
utility value given by a true utility function Ur. None of the
agents has direct access to the true utility function. Instead,
individual agents perceive idea utility values based on their
own individual utility functions U; constructed by adding
noise to the master utility function U,,. The master utility
function U,; may or may not be the same as U;,, depending
on the possibility of group-level bias (explained below). This
initialization reflects the notion that today’s organizational
problems are too complex for a single individual to solve (i.e.,
true utility value not available to any of group members),
and therefore groups or collectives are assembled to solve
problems and make decisions [7, 66]. Ideally, collectives
function by bringing unique information from members (i.e.,
individual utility functions) together in such a way as to
produce ideas that exceed an individual’s idea development
capability [2].

Utility values are assigned to every point (idea) in the
problem space as follows: First, n random bit strings (zeros
and ones) S = {v;} (i=1...n ) are generated as representative
ideas, where each v; represents one idea that consists of M
bits. One of those generated ideas is assigned the maximum
utility value, 1, and another is assigned the minimum utility
value, 0. Each of the remaining n - 2 ideas is assigned
a random number sampled from a uniform probability
distribution between 0 and 1. This method guarantees that the
entire range of utility values is always from 0 to 1, which makes
it easier to compare different simulation results. The detailed
shape of the distribution varies within this range for different
simulation runs.

The utility values of other possible ideas not included
in the representative idea set S are defined by interpolation.
Specifically, the utility value of an idea v not present in S is
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calculated as a weighted average of the utility values of the
representative ideas as follows:

Z?:l Ur(v;)-D (Vi’V)_z
Z?:l D (Vi’ V)_Z

where v ¢ S is the idea in question, Uy (v;) is the utility of
a representative idea v; in S, and D(v;, v) is the Hamming
distance between v; and v. The Hamming distance is a
measure of dissimilarity between two bit strings, which
reflects the number of bits for which two strings vary [72]. The
true utility function U(v) obtained from (1) has a reasonably
“smooth” structure in a high-dimensional problem space
(i.e., similar ideas tend to have similar utility values, in
general). Such a smooth structure of the problem space
is necessary for intelligent decision making to outperform
unintelligent random trial and error.

Note that the utility landscape construction method
described above is different from that of Kauffmans N-K
fitness landscapes often used in management science [73-75].
We chose this approach because our method makes it easier
and more straightforward to introduce group-level bias, i.e.,
discrepancy between the true and master utility functions.

Group-level bias is simulated by adding random pertur-
bation when the master utility function U,, is constructed
from the true utility function Uy, using a similar algorithm
as employed by Sayama and Dionne [16]. Specifically, with
a bias parameter f3, each bit on representative ideas in S
is flipped with probability 0.253 per bit, and a random
number within the range [-f, f] is added to the utility
value of each representative idea. Their utility values are then
renormalized to the range [0, 1]. The master utility function
U, is generated from these perturbed representative ideas
using (1). In this setting, 5 = 0 creates a condition with perfect
understanding of the problem (U,; = U;) as a collective,
while larger values of 3 represent the lack of understanding
of the problem.

Moreover, each agent will unconsciously have a different
individual utility function, U j(v) (j =1...N), which is gener-
ated by adding random noise to the master utility function
U, so that

Ur(v) = 1)

U; (v) € [max (Uy (v) = &,0),min (Up, (V) +&,1)]  (2)

for all v, where & is the parameter that determines the varia-
tions of utility functions among agents. £ = 0 represents a per-
fectly homogeneous collective where every agent has exactly
the same utility function (U;(v) = Uj(v) for all i and ), while
larger values of £ represent a heterogeneous collective made of
diverse agents with very different individual utility functions.
Figure 1 shows an example of such individual utility functions
in contrast to the master utility function. Misunderstanding
of the problem by the individual is evident in that the
perturbed individual utility function (gray dots) maintains
some structures of the master utility function (black dots),
but they are not exactly the same. As bounded rational actors,
agents are not aware of the full set of alternatives available to
them, nor can agents fully specify potential action-potential
outcome causal linkages [76]. Therefore agents in our model
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FIGURE 1: Master and Individual Utility Functions. Note: The master utility function with M = 10, generated from a representative set of idea
utilities of size n = 10, is shown by black dots. An individual utility function by adding noise with & = 0.2 is shown by gray dots. The x-axis
shows idea indices generated by interpreting bit strings as binary notations of an integer; i.e., all of different ideas are lined up along the

horizontal axis and their utility values are plotted.

are not aware of the entire structure of their own individual
utility functions. They cannot tell what ideas would produce
global maximum/minimum utility values, though they can
retrieve a utility value from the function when a specific idea
is given, which is a common assumption made in complex
global optimization problems [77].

We recognize that a homogeneous group with no group-
level bias would be unlikely in actual groups and collectives.
In reality, reduction of a group-level bias would be facilitated
by different perspectives, expertise, and experiences (i.e.,
diversity). While varying diversity on any number of dimen-
sions (e.g., ethnic, gender, functional background, education,
age) within teams has been studied in the literature (c.f,
[78-80]), research related to group performance has mixed
reviews regarding the benefit of diversity within teams. While
some diversity is thought to produce a more productive, func-
tional conflict as opposed to an unproductive, relationship
conflict [81], a meta-analysis on conflict [82] underscores that
these various forms of conflict are all negatively related to
group performance. Thus, group-level bias is included in our
model to assess potential issues associated with homogeneity
within groups.

3.1.3. Evolutionary Operators. Our model uses agent behav-
iors reflecting either selection or variation as analogues
for decision making behavior: replication, random point
mutation, intelligent point mutation, recombination, and
subtractive selection. While these five operators reflect com-
mon forms of action in evolution (except the intelligent point
mutation that does not exist in real biological evolution), they
also align with actions commonly found in brainstorming
and normative decision making idea generation phases where
the goal is to build new ideas from individually generated
suggestions [69] (i.e., mutations and recombination) and
idea evaluation phases where culling or supporting ideas
(i.e., replication and/or subtraction) lead to final group idea
selection and decision. Among those evolutionary operators,
replication and subtractive selection use a preferential ran-
dom search algorithm [83], by which an agent randomly

samples r,, ideas from the idea population in its mind, and
then the agent selects the best (or worst) idea among the
sampled ones for replication (or subtractive selection). Note
that the designs of the evolutionary operators used in this
model are different from those used in earlier models [16],
in order to make the variation and selection mechanisms
more clearly separable. They are also extended so that their
outcomes affect not only the agent’s own idea population but
also those of its local neighbors on a social network, which
represents the exchange of ideas through social ties. In other
words, other agents can “hear” the focal agent’s opinion and
update their own idea population according to it.

Of the five evolutionary operators, replication and sub-
tractive selection are selection-oriented operators, driving the
exploitation in the discussion and decision making process.
The other three processes (random/intelligent point muta-
tions and recombination) are variation-oriented operators
that increase the idea diversity and explore the problem
space further. To systematically control and sweep the balance
between the two evolutionary “forces” (selection/exploitation
and variation/exploration), we introduced a global parameter
p> which determines the behavioral tendency of agents.
Specifically, each agent chooses an exploitative operator with
probability p (or, an explorative operator with probability 1
- p; see Table 2). Setting p = 1 makes the agents completely
selection-oriented, while p = 0 makes them fully exploratory.

3.1.4. Simulation Settings. Table 2 summarizes the parameter
values used in our computer simulations. Most of those values
were taken from earlier work [16] and were chosen so as to be
reasonable in view of typical real collective decision making
settings. We tested several variations of parameter settings
and confirmed that the results were not substantially different
from the ones reported below in this paper.

There are several experimental parameters that we varied
in the three sets of computational experiments presented
below. The first set of computational experiments manipu-
lated f3, group-level bias, and &, within-group noise. These
two parameters were varied to represent different levels
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TABLE 2: Parameters and symbols.
Parameter Value Meaning
Parameters Related to Evolutionary Decision Process
M 10 Problem space dimensionality
" 10 Number of representative ideas to generate true/master utility
functions
", 5 Number of sample ideas in preferential search algorithm
T 5 Number of offspring generated in intelligent point mutation
P 0.2 Random mutation rate per bit
Ds 0.4 Probability of random switching in recombination
)4 0~1 Probability for an agent to take selection-oriented actions
p/2 Probability of replication - advocacy
pl2 Probability of subtractive selection - criticism
(1-p)/3 Probability of random point mutation - minor modification of idea
(1p)/3 Probability of intelligent point Iputation - improvement of existing
idea
Lp)/3 Probability of recombination - generating new ideas from crossing

multiple existing ideas

Parameters Related to Team Characteristics

N 5~640 Size of group/social network

Network topology RD, SW, SF RD: random network, SW: small-world network, SF: scale-free
network

d 4 Average degree (average number of links connected to each agent)

k 5 Number of initial randomly generated ideas in each agent’s mind

B 0~1 Group-level bias

4 0~1 Within-group noise

T 60 Number of iterations

Note: bold indicates experimental parameters varied.

of accuracy and consistency of individual utility functions
within a group. The second set of computational experiments
varied p, the parameter that determines the balance between
selection-oriented and variation-oriented operators in agents’
behaviors. The third set of computational experiments varied
the size and topology of the group, by exponentially increas-
ing the number of agents from N = 5, a small group whose
size is within the optimal range for decision making teams
[2,12], to N = 640, which forms a nontrivial social network.
In all cases, the average node degree (i.e., average number
of connections attached to a node) was always kept to four,
which is a typical number of people one could have meaning-
ful conversations with simultaneously. This assumption made
the N =5 case a fully connected network, while the network
became increasingly sparse as N increased. For each specific
value of N, three different network topologies were tested:
random (RD), small-world (SW) [84], and scale-free (SF)
[85]. For small-world networks, the link rewiring probability
was set to 10%, which realizes the small-world property [84]
for relatively small-sized networks like those used in this
study. These topological variations do not cause any effective
differences for smaller N, but as N increases, their influences
on network topology and dynamics of idea evolution begin
to differentiate.

3.1.5. Metrics of Group Performance. Performance of a group
is likely a multidimensional construct, as different authors
have tested differing dimensions of group-based adaptation
(c.t., [86, 87]). For the purposes of collective decision making
in organizational settings, the ability to converge on a deci-
sion is critical, as a group that cannot produce a decision likely
fails in their task. In the meantime, convergence on a poor
decision may be equally detrimental to a group as well, as mis-
takes could be costly. As such, it would seem that minimally
the consideration of both convergence and decision quality
would be needed to assess group performance. As required by
increasingly complex organizational environments, groups
and organizations need to converge quickly on decisions and
yet ensure these decisions have high efficacy related to solving
perceived problems.

We therefore used the two separate performance metrics
originally proposed by Sayama and Dionne [16]: one was the
true utility value of the mode idea (the most supported idea)
in the final population of ideas collected from all the agents’
minds, to measure the overall quality of collective decisions.
This was selected as it is most likely that the most supported
idea represents the group’s preferred idea, and once selected,
this supported idea will be tested in the context of real-world
problem solving.
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FIGURE 2: Effects of Within-Group Noise and Group-Level Bias on Decision Convergence and Quality. Note: Effects of within-group noise (&)
and group-level bias (/3) on the level of convergence (left) and the true utility value of the most supported idea (right). Each dot represents an

average result of 500 independent simulation runs.

The other performance metric was the diversity of ideas
remaining in the final population of ideas collected from
all the agents’ minds, to measure the failure of the group
to converge. This measurement is based on the classical
definition of Shannon’s information entropy [88],

H =~} p(x)log,p(x), )
i=1

where m represents the number of different types of ideas
in the final idea population and p(x;) is the ratio of the
number of the i-th type of idea to the total size of the final
idea population. The theoretical maximum of H would be M,
which occurs when all of 2 possible distinct ideas are equally
represented. H decreases as the idea population becomes
more homogeneous, and it reaches the theoretical minimum
0 when the idea population is made of only instances of
the same idea (which would never occur in simulations). To
rescale this quantity to the range between 0 and 1, we used
(M - H) | M as a measurement of the convergence of final
collective decision.

4. Results

In this section, we describe our simulation results in three
parts: (1) effects of within-group noise and group-level bias
(diversity of problem understanding), (2) effects of balance
between selection-oriented and variation-oriented behaviors
(diversity of behaviors), and (3) effects of group size and
social network topology. The first part directly addresses
the knowledge/opinion diversity and multilevel issues of
collective decision making. The second part illustrates the
implications of behavioral diversity of groups for their col-
lective decision performance. Finally, the third part extends
our understanding to large-scale, networked organizational
settings.

4.1. Part I: Effects of Within-Group Noise and Group-Level
Bias. We first conducted a computational experiment to

examine the effects of increasing (a) within-group noise,
&, ie., heterogeneity of individual utility functions within
a group, and (b) group-level bias, f3, ie., discrepancy of
the master utility function from the true utility function at
a group level, on the overall group performance. For this
initial computational experiment, the group was made of five
agents with fully connected social network structure (i.e.,
everyone could talk to everyone else; a small group setting).
We assumed that the agents were balanced in terms of their
tendency between selection-oriented and variation-oriented
behaviors in the discussion (i.e., p = 1/2).

Figure 2 presents a summary of the results of simu-
lations with within-group noise & and group-level bias f3
systematically varied. Each of the two performance metrics
(i.e., level of convergence and utility of most supported idea,
as described above) is visualized in a separate 3D surface
plot. We found that the level of convergence was affected
significantly by the within-group noise, while it was not
affected at all by the group-level bias. On the other hand,
the true utility of collective decisions degraded significantly
when either the within-group noise or the group-level bias
(or both) was increased. The true utility achieved by the most
heterogeneous groups (§ ~ 1.0) or the most biased groups
(B ~ 10) dropped to about 0.5, which could be achieved
just by random idea generation. This means that no net
improvement was achieved during the discussion by those
groups.

4.2. Part 2: Effects of Balance between Selection-Oriented
and Variation-Oriented Behaviors. The above computational
experiment assumed that the agents’ behaviors were well
balanced between selection-oriented and variation-oriented
operators. We therefore ran another computational experi-
ment to investigate the effects of balance between selection-
oriented and variation-oriented behaviors by systematically
varying the parameter p. Greater values of p represent
groups with more selection-oriented behaviors (i.e., advocacy
and criticism), while smaller values of p represent groups
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FIGURE 3: Effects of Balance between Selection-Oriented and Variation-Oriented Behaviors and Group-Level Bias on Decision Convergence and
Decision Quality. Note: Effects of balance between selection-oriented and variation-oriented behaviors (p) and group-level bias () on the level
of convergence (left) and the true utility value of the most supported idea (right). Each dot represents an average result of 500 independent

simulation runs.

with more variation-oriented behaviors (i.e., mutations and
recombination). The group-level bias, f, was also varied
as another experimental parameter, while the within-group
noise, &, was fixed to 0.2 for this experiment. The group size
and their network topology were the same as those in the first
computational experiment.

Figure 3 shows a summary of the results of the second
computational experiment comparing group performances
with different group behaviors, plotting two performance
metrics in separate 3D plots as used for Figure 2 (note that
one of the axes is now for p, not for £). The effect of behavioral
balance on the level of convergence is straightforward in
that greater p (more selection-oriented behaviors) tended to
promote convergence more. The effect of p on the utility of
collective decisions, however, turned out not so trivial. While
purely variation-oriented behaviors (p ~ 0.0) did not help
increase the decision quality, neither did purely selection-
oriented behaviors (p ~ 1.0). There was a range of optimal
balance (p = 0.7~0.9) where the groups achieved the highest
decision quality. In the meantime, the effect of group-level
bias is similar to that seen in Figure 2, so that the utility of
collective decisions would be significantly lower if there was
group-level bias.

4.3. Part 3: Effects of Group Size and Social Network Topology.
The first two computational experiments above assumed
small, fully connected networks of agents. While the results
produced useful implications for collective decision making
in small group settings, they were not sufficient to generate
insight into more general collective decision making dynam-
ics on a larger nontrivial social environment, such as in
a complex organization or on social media. We therefore
conducted the third computational experiment in which the
size of groups was increased from 5 to 640 in an exponential
manner. For each size of the groups/networks, the average
number of connections per agent (i.e., “degree” in network
science terminology) was always kept to four, which was
the same value as in the first two experiments above. The

following values were used for other parameters: 3 = 0.0, &
=0.2,p=05.

In this computational experiment, larger groups were no
longer considered a typical “group,” but rather they formed a
more complex social/organizational network, perhaps more
indicative of a “collective” in the organizational sciences. For
each network size, we used the following three social network
topologies. A new network topology was generated for each
independent simulation run:

(i) Random network (RD): A random network is a
network in which connections are randomly assigned,
which can be used as a random control condition.
For our computational experiment, a total of 2N links
were established between randomly selected pairs of
agents.

(ii) Small-world network (SW) [84]: A small-world net-
work is a locally clustered (pseudo-)regular network,
with a small number of global links introduced to
reduce the effective diameter of the network sig-
nificantly (i.e., a “small-world” effect). The small-
world network may be considered a spatially extended
network made of mostly local connections but with
a few global connections. For our computational
experiment, N agents were first arranged in a circle
and each agent was connected to its nearest and
second nearest neighbors so that the degree would
be four for all. Then 10% of the links were randomly
selected and either the origin or destination of each of
those links was rewired to a randomly selected agent.

(iii) Scale-free network (SF) [85]: A scale-free network is
a network in which the distribution of node degrees
shows a power-law distribution. It represents a het-
erogeneous network made of a large number of poorly
connected nodes and a few heavily connected “hubs.”
Many real-world networks, including biological, engi-
neered, and social networks, were shown to be scale-
free [89]. While such networks show a small effective
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FIGURE 5: Distributions of Utilities of Most Supported Ideas between Different Social Network Topologies. Note: Simulation results comparing
the distributions of utilities of most supported ideas at the end of simulation between the three social network topologies (random, small-
world, or scale-free) for N = 640. The small-world network topology (middle) achieved the highest number of the maximal utility value (1.0)
compared to the other two topologies, random (left) and scale-free (right).

diameter like small-world networks, they may not
have high local clustering. For our experiment, a well-
known preferential attachment algorithm [85] was
used, starting with a fully connected network of five
agents and then incrementally adding an agent by
connecting it with two links to two existing agents
selected preferentially based on their degrees, until
the network size reached N.

Figure 4 shows the effects of size and topology of
networks on the decision outcomes. The larger the group
(or network) becomes, the harder it achieves convergence.
Apparently there was no substantial difference between the
three topological structures regarding their effects on the
level of convergence. On the other hand, increasing group size
had positive effects on the utility of the most supported idea
within the group or on the social network.

One particularly interesting phenomenon seen in Fig-
ure 4 is the difference in the utility of collective decisions
between small-world networks and other two networks for
larger N (N > 100). Figure 5 provides a more detailed
view into this finding, showing the distributions of utilities

of most supported ideas for 500 independent simulation
runs for N = 640 under each of the three conditions. In
each condition, the agents were able to find the best idea
with utility 1.0 most of the time, but small-world networks
facilitated such optimal decision making most frequently.
The Mann-Whitney U test detected statistically significant
differences between small-world and random (p < 0.003)
as well as small-world and scale-free (p < 107%) networks,
while there was no significant difference between random and
scale-free (p = 0.107) networks. The key distinctive feature of
small-world networks that are not present in either random
or scale-free networks is the local clustering.

5. Discussion

In this study, we developed an agent-based model and
applied evolutionary operators as a means of illustrating how
individuals, groups, and collectives may move through a
decision process based on ecologies of ideas over a social
network habitat. We also considered various compositions
of group members ranging from homogeneity to hetero-
geneity and examined the impact of group behaviors on



12

the dynamic decision process as well. These explorations
move toward a more realistic view of collective decision
making within complex social systems and answer calls (e.g.,
[33]) for research that considers the impact of time and
situations in flux, along with nonlinear, multilevel concepts
incorporating evolutionary conceptual development. In what
follows, we discuss our findings and their implications for
human collective decision making.

5.1. On Diversity of Problem Understanding and Multilevel
Issues. Our exploration revealed that the composition of the
team or group has implications for decision making and likely
considers the complex nature of asking several individuals to
come together and agree on a direction that is best suited
for the group/collective, rather than for each individual.
Research on group diversity has found mixed results related
to diversity and group performance issues such as creativity
and decision effectiveness [90-97]. Our research, however,
indicates an important trade-off between reduction of within-
group conflicts and mitigation of group-level bias, as they
are not independent of each other. Specifically, if a group
is assembled by gathering similar individuals with similar
backgrounds, expertise, and opinions, then the group tends to
have less within-group conflicts but may risk having a greater
group-level bias. On the other hand, if a group is made of
diverse individuals with different backgrounds, expertise, and
opinions, the group may have greater within-group conflicts
but it may successfully reduce potential group-level bias and
accomplish deeper discussion and better integration of ideas,
as the diverse perspectives may represent the actual nature of
the problem more correctly.

This means that what kind of strategies of group forma-
tion will be optimal to maximize the true utility of collec-
tive decisions remains a nontrivial and problem-dependent
question, and the best team or group composition may
depend greatly on specific problem settings. For example,
if a team is tasked to work on a time-critical mission, then
the convergence speed is key to their success and thus the
emphasis should be placed more on the group homogeneity
to avoid within-group conflicts. Or, if a team is formed to
seek a truly high-quality solution to a problem, then min-
imizing the possibility of group-level bias is critical for the
team’s success, which may require increasing within-group
diversity.

5.2. On Diversity of Behaviors and Evolutionary Tendencies.
Our results also imply that the balance between selection-
oriented and variation-oriented behaviors may play an
important role in collective decision making. Exploration of
such behavioral balances was a meaningful step of research
because, in realistic organizational settings, some groups may
be more prone to be critical, trying to purge bad ideas,
while other groups may tend to promote combinations of
multiple ideas in discussion. Examples of such behavioral
patterns include organizational “cultures” shared by all group
members, which is a plausible view of a factor that may
influence group dynamics [12].

Complexity

Our results showed that selection-oriented behaviors
greatly promoted convergence, yet they were not suffi-
cient to achieve the highest possible utility. To improve
the decision quality, the group needs a good mixture of
exploratory (variation-oriented) and exploitative (selection-
oriented) behaviors. This also ties back to the diversity
issue discussed above; a group may not necessarily benefit
from diversity of individual problem understanding, but it
can benefit from behavioral diversity of group members. In
our simulations, the optimal balance between selection and
variation was attained at p ~ 0.8 (i.e., 80% selection, 20%
variation) but this particular balancing point may be problem
dependent.

5.3. On Group Size and Social Network Structure. Finally, our
results with social network structure illustrated intriguing
effects of group size and network topologies on decision qual-
ity, which were manifested particularly for larger networks.
Without surprise, the larger the group (or network) becomes,
the more elusive the convergence on a decision becomes as
well. However, group size did positively affect the utility of
the most supported idea because, in a large network, agents
can conduct different threads of discussions in parallel, which
increases the chance for them to collectively find a better idea
in the complex problem space. It is important for the agents
to remain connected to each other so that the better ideas
gradually spread over the network and are widely accepted
to become the more supported ideas. The same number of
disconnected (noncollaborative, noninterdependent) agents
would not be able to achieve this kind of information
aggregation and selection task.

A more intriguing finding was obtained regarding the
effects of nontrivial network topology. While network topol-
ogy did not seem to affect level of convergence, small-world
networks with spatially localized clusters tended to promote
collective search of optimal ideas more often than random or
scale-free networks, despite the fact that the network size and
the average degree were all identical. Such locally clustered
social network structure helps agents in different regions in a
network maintain their respective focus areas and engage in
different local search, possibly enhancing the effective paral-
lelism of collective decision making and therefore resulting in
a greater number of successful decisions. In contrast, random
and scale-free networks lack such local clustering, and the
links in those networks are all “global,” mixing discussions
prematurely and therefore reducing the effective parallelism
of collective decision making. These observations have an
interesting contrast with the fact that random and scale-free
networks are highly efficient in information dissemination
because of their global connectedness. Our results indicate
that such efficiency of information dissemination may not
necessarily imply the same for effective collective decision
making.

This finding offers another implication for the diversity in
collective decision making: certain organizational structures
may be more effective in generating and maintaining idea
diversity in discussion, while other structures would tend to
reduce idea diversity and promote premature convergence
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on suboptimal ideas more often. This is similar to the
biological fact that certain geographical habitat structures can
maintain greater biodiversity in evolutionary ecology. In the
decision making context, this implies that not only within-
group diversity or behavioral balance but also social network
topologies could influence the dynamics of idea evolution in
collective decision making processes.

6. Conclusions

In this work, we demonstrated that, using an evolutionary
framework to model human collective decision making pro-
cesses, one can specifically examine the efficacy of a variety
of decision processes employed by groups and collectives.
The framework we proposed enables a means for direct
comparison of various idea evolution paths within collective
decision making and enables an exploration of how the
make-up and structure of teams could be critical depend-
ing on the overall requirements for decision making tasks.
Furthermore, the evolutionary framework and subsequent
computational model enable advancements in understanding
collective decision making within a dynamic and complex
social system. By employing an evolutionary framework we
can explore the impact of time and situations in flux, and the
modeling enables nonlinear exploration of processes. Finally,
the multilevel, network-oriented nature of this research
more appropriately models the potential differences in team
composition and organizational topologies. It adds to our
understanding of the complex nature of collective decisions,
and the potential pitfalls and caveats of employing various
decision processes and designing teams in a heterogeneous
and/or homogeneous manner.

6.1. Limitations and Future Directions. There are several lim-
itations to our computational modeling study. For example,
evolutionary operators may not exist in groups as “cleanly”
as modeled in our simulation. We used simple parameterized
settings to control the prevalence of operators, which may
not be appropriate to represent the real individual behavior
in discussion. Also, our model considered only the hetero-
geneity of the utility functions of agents. To conduct a more
comprehensive, systematic investigation of the homogene-
ity/heterogeneity issues, it would be critical to incorporate
the heterogeneity of the participants’ domains of expertise,
in addition to their utility functions. Furthermore, we tested
only three typical social network topologies, but they are
by no means an exhaustive list of possible organizational
structures. Conducting computational and human-subject
experiments on more realistic social network topologies
would add more realistic dynamics to the results, which are
among our future research plan.
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