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1. Introduction

Consider the following natural pricing scenario: We have a set of n items for sale and a single unit-demand buyer, i.e., 

a consumer interested in obtaining at most one of the items. The goal of the seller is to set prices for the items in order 

to maximize her revenue by exploiting stochastic information about the buyer’s preferences. More specifically, the seller is 

given access to a distribution F from which the buyer’s valuations v = (v1, . . . , vn) for the items are drawn, i.e., v ∼ F , 

and wants to assign a price pi to each item in order to maximize her expected revenue. The buyer’s utility for item i ∈ [n]
is given by v i − pi and she will select an item with the maximum nonnegative utility or nothing if no such item exists. 

✩ An extended abstract of this work appeared in the Proceedings of the Twenty-Fifth Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2014), 
SIAM, Philadelphia, pp. 1319–1328.
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This problem is known as the Bayesian Unit-demand Item-Pricing Problem (Chawla et al., 2007) which we refer to as the 

item-pricing problem below, and has received considerable attention during the past decade (more discussion on previous 

work can be found in Section 1.2).

The item-pricing problem is known to have tight connections with the optimal mechanism design problem, a cen-

tral question in mathematical economics (see Manelli and Vincent, 2007 and references therein). Finding an optimal 

item-pricing in our setting is equivalent to finding a revenue-optimal deterministic mechanism. A randomized mecha-

nism, on the other hand, is more general and would allow the seller to offer lotteries6 over items (Briest et al., 2010;

Chawla et al., 2015). Even though randomized mechanisms in general can derive strictly more revenue (as observed in 

Manelli and Vincent, 2007; Thanassoulis, 2004), deterministic mechanisms (such as the item-pricings we study in this pa-

per) are more natural and simple, and indeed they are more commonly used in practice. Optimal mechanism design is 

well-understood in single-parameter settings (such as the case of selling a single item to multiple buyers, including the spe-

cial case of n = 1 in the model we study in this paper) for which Myerson (1981) obtained a closed-form characterization 

for the optimal mechanism; in particular, Myerson showed that in the single-parameter setting the optimal deterministic 

mechanism can achieve as much revenue as any randomized mechanism. The multi-parameter mechanism design problem 

(such as the case of selling multiple items to a single buyer studied here), however, turns out to be much more challenging.

In this paper we study the item-pricing problem with a single unit-demand buyer when F = ×n
i=1

Fi is a product distri-

bution (Chawla et al., 2007, 2010; Cai and Daskalakis, 2011), i.e., the valuations of the buyer for the n items are independent 

random variables. We further assume that the distributions Fi , as the input of the problem, are discrete (i.e., the support 

of each Fi is a finite set) and rational (i.e., both values in the support of each Fi and their corresponding probabilities 

are all rational numbers encoded in binary). Thus the input size is the number of bits needed to represent Fi ’s. We use 

Item-Pricing-Opt to denote the optimization problem:

Given a product distribution, find a price vector that achieves the optimal expected revenue,

and use Item-Pricing-Decision to denote its decision version7:

Given a product distribution and a rational t ≥ 0, decide if the optimal revenue is at least t .

See Section 2 for formal definitions. As is the case for most optimization problems, Item-Pricing-Opt is at least as hard as 

its decision version since, as we show, given any price vector, one can compute the expected revenue it achieves efficiently 

(see Lemma 3.1).

These computational problems exhibit very rich structures. Prior to our work, even the special case when the distribu-

tions Fi have support size 2 was not well understood: First note that the search space is apparently at least exponential, 

since the support size of F is 2n . What makes things more challenging is that the optimal prices are not necessarily in the 

support of F (see Cai and Daskalakis, 2011 for a simple example with two items and distributions of support size 2). So, 

a priori, it was not even clear whether the optimal prices can be described with polynomially many8 bits in the input size, 

whether the decision problem is in NP,9 and whether the problems can even be solved in exponential time.

1.1. Our results

We take a principled complexity-theoretic look at the item-pricing problem with independent discrete distributions. We 

start by showing (Theorem 1) that the decision problem Item-Pricing-Decision is in NP (and as a corollary, the optimal 

prices can be described with polynomially many bits). As mentioned above, the membership proof is non-trivial because 

the optimal prices may not lie in the support of F . Our proof proceeds by partitioning the space of price vectors into a set 

of (exponentially many) cells (defined using the input distributions Fi ), so that the optimal revenue within each cell can 

be computed efficiently by a shortest path computation. One consequence of the analysis is that Item-Pricing-Opt has the 

integrality property: if all values in the supports are integer then the optimal prices are also integer (though they may not 

belong to the support). Another consequence of the analysis is a simple algorithm which computes an optimal pricing by 

generating and evaluating a sufficient set of candidate price vectors which is guaranteed to contain an optimal price vector. 

The algorithm runs in polynomial space and exponential time; for a constant number of items, it runs in polynomial time. 

These results apply also to correlated distributions.

6 A lottery in the setting of a single unit-demand buyer consists of a vector (x1, . . . , xn) and a price p, with xi ≥ 0 for all i = 1, . . . , n, and 
∑

i xi ≤ 1. If it 
is bought, the buyer pays p and receives an item i with probability xi and nothing with probability 1 −

∑
i xi . The seller can offer a set (sometimes called 

a menu) of lotteries and the buyer buys one that maximizes her expected utility or nothing if every lottery in the menu has a negative utility.
7 A decision problem is a problem that poses a “yes” or “no” question. Decision problems play a central role in computational complexity theory.
8 This means that the number of bits is bounded from above by mc for some constant c, where m is the input size.
9 Informally, P is the set of all decision problems that can be solved in polynomial time and NP is the set of all decision problems for which solutions 

can be verified in polynomial time. A problem is NP-hard if it is at least as hard as every problem in NP (shown via polynomial-time reductions) and 
is NP-complete if it is both in NP and NP-hard. Many natural problems from a variety of scientific fields were shown to be NP-complete (Garey and 
Johnson, 1990). With NP vs P being the major open problem in theoretical computer science, NP-hard problems are generally perceived as computationally 
intractable. We refer interested readers to Papadimitriou (1994) for a more formal treatment of complexity theory.
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Table 1

Dimensions of the pricing problem.

Our problem BUPP Variants in the literature

Number of buyers a single buyer multiple buyers

Preference unit-demand additive (and subadditive)

Distribution product distributions correlated distributions

Solution concept deterministic (i.e., item-pricing) randomized mechanisms

Optimality exactly optimal approximately optimal

We then proceed to show (Theorem 2) that when each distribution Fi has support size at most 2, then Item-Pricing-

Opt (and thus, Item-Pricing-Decision) can be solved in polynomial time. Indeed, by exploiting the underlying structure of 

the problem, we show that it suffices to consider a set of O (n2) price vectors (instead of 2n) to find the optimal price vector 

and compute the optimal revenue in this case.10

Our main result is that Item-Pricing-Decision is NP-hard (and so is Item-Pricing-Opt), even for distributions Fi ’s that 

have support size 3 and share the same support {0, 1, 3} (Theorem 3) or distributions that are identical but have large 

support (Theorem 4). This answers an open problem first posed in Chawla et al. (2007), and later asked in Cai and Daskalakis

(2011), Daskalakis et al. (2014) as well, regarding the complexity of the item-pricing problem. Our result shows that the 

problem of many items and a single buyer is much more complex than the case of one item and many buyers, which has 

a simple elegant solution as shown by Myerson; the hardness result provides compelling evidence that a similar simple 

structure does not exist in the multi-item case, unless P = NP. In terms of proof techniques, the main difficulty of the 

hardness proof stems from the fact that, for a general instance of the item-pricing problem, the expected revenue is a 

highly complex nonlinear function of the prices. The challenge is then to construct a family of instances such that their 

revenues can be well-approximated by a function that has a relatively simple expression but is at the same time general 

enough to encode an NP-hard problem.

1.2. Previous work

A number of variants of the problem we study in this paper have been investigated in the literature. They differ in one 

or more of the dimensions listed in Table 1. We will focus our discussion below on the computational aspects of the basic 

problem with a single unit-demand buyer. We refer interested readers to the literature for the other variants, in particular we 

refer to Hart and Nisan (2012, 2013), Daskalakis and Weinberg (2012), Li and Yao (2013), Cai and Huang (2013), Daskalakis 

et al. (2014), Babaioff et al. (2014) for results and further references on the problem with a single additive (or subadditive, 

Rubinstein and Weinberg, 2015) buyer and to Chawla et al. (2015), Yao (2015), Cai et al. (2016), Chawla and Miller (2016)

for the problem with multiple additive or unit-demand buyers. We also refer readers to the following papers for works 

that give sufficient conditions on Fi ’s under which an optimal mechanism can be shown to take a specific form: Pavlov

(2010) gives a sufficient condition under which an optimal menu of lotteries for an additive buyer contains boundary points 

only, Tang and Wang (2017) obtain structural results under certain mild conditions for selling two items to an additive 

buyer, Giannakopoulos and Koutsoupias (2014) analyze an additive buyer with uniform i.i.d. valuations for (at most) six 

items, Alaei et al. (2013) characterize settings for which marginal revenue maximization is optimal, Haghpanah and Hartline

(2015) provide sufficient conditions for the optimality of certain simple mechanisms. In particular, Haghpanah and Hartline

(2015) give a sufficient condition for the optimality of offering a uniform pricing in the setting of a unit-demand buyer with 

i.i.d. continuous distributions; the condition does not hold in the hard instances constructed in our proof of Theorem 4. We 

summarize now previous computational results for a single unit-demand buyer.

Optimal item-pricing and lottery-pricing (randomized mechanism) when the distribution F is correlated

In this case the input consists of the support of F and the corresponding probabilities, both listed explicitly as rational 

numbers (e.g., n = 2 and the two items have values (1, 2) with probability 0.8 and (3, 2) with probability 0.2). Guruswami 

et al. (2005) and subsequently Briest (2008) showed that no polynomial-time approximation scheme (PTAS)11 exists for 

the item-pricing problem, under standard complexity-theoretic assumptions in the correlated case. If the number of items 

is constant, a PTAS was given by Hartline and Koltun (2005). Modifications of algorithms of Guruswami et al. (2005) and 

Hartline and Koltun (2005) can solve in polynomial time exactly the special case of the problem for a constant number of 

items when all probabilities in the input correlated distribution are multiples of 1/s for some positive integer s encoded 

in unary. (Our results yield an exact polynomial-time algorithm for constant number of items and arbitrary probabilities, 

encoded in binary as usual.) The problem of finding an optimal lottery-pricing for an arbitrary number of items when 

10 We use asymptotic notation such as O (·) and �(·) (Papadimitriou, 1994). A function f (n) is O (n2) if there exist two positive constants c and n0 such 

that f (n) ≤ cn2 for all n ≥ n0; f (n) is �(n2) if there exist constants c and n0 such that f (n) ≥ cn2 for all n ≥ n0 .
11 We say the problem has a polynomial-time approximation scheme (PTAS) if given any constant ε > 0, there is an algorithm that finds an item-pricing 
that achieves at least a (1 − ε)-fraction of the optimal revenue achievable by any item-pricing, with running time polynomial on the input size (though the 
dependency of the running time on ε can be arbitrary); we say an approximation scheme is quasi-polynomial-time if its running time is O (nlog

a n) for some 
positive constant a. Moreover, it is a fully polynomial-time approximation scheme (FPTAS) if the running time is polynomial in both the input size and 1/ε .
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F is correlated, on the other hand, can be solved exactly in polynomial time via linear programming (Briest et al., 2010).12

Briest et al. (2010) further showed that the ratio of optimal expected revenues obtained by a lottery-pricing and by an 

item-pricing can be unbounded in instances with four items. This was shown to hold for two items by Hart and Nisan

(2013).

Optimal item-pricing when F is a product distribution

This is the main problem we study in this paper. In Cai and Daskalakis (2011) authors obtained a polynomial-time 

approximation scheme for the problem when Fi ’s are Monotone Hazard Rate distributions. They also presented a quasi-

polynomial-time approximation scheme when Fi ’s lie in the broader class of regular distributions. For general product 

distributions, Chawla et al. (2007) obtained a 3-approximation algorithm for the problem, i.e., a polynomial-time algorithm 

which computes a pricing whose expected revenue is within a factor 3 or less of the optimal revenue; this was subsequently 

improved to a 2-approximation algorithm in Chawla et al. (2010). (These results are based on a theory of sequential posted 

price mechanisms developed in Chawla et al., 2007, 2007, 2010, where it is shown that such mechanisms can achieve a 

large fraction of the optimal revenue under single-parameter settings and generalize naturally to multi-parameter settings.) 

The complexity of finding an (exact) optimal item-pricing was posed as an open problem in Chawla et al. (2007, 2010), 

which we settle in this paper (Theorems 1 and 3). Before our work, Daskalakis et al. (2012) showed that the same problem 

we study in this paper is SQRT-SUM-hard13 when either the support values or the probabilities are irrational. We note that 

their reduction relies on the fact that, for certain carefully constructed instances with irrational data, it is SQRT-SUM-hard 

to compare the revenue of two price vectors. This has no bearing on the complexity of the problem under the standard 

discrete model we consider in which all numbers are rational, for which the revenue of a price vector can be computed 

efficiently (see Lemma 3.1).

Optimal lottery-pricing (randomized mechanism) when F is a product distribution

Thanassoulis (2004) first gave a simple distribution F (with two items whose values are drawn independently and 

uniformly from Briest et al., 2010; Cai and Daskalakis, 2011) for which a lottery-pricing (or randomized mechanism) can 

achieve a strictly higher revenue than any item-pricing (or deterministic mechanism). In contrast to Briest et al. (2010), Hart 

and Nisan (2013) for the correlated case where the ratio can be unbounded (for at least two items), Chawla et al. (2015)

showed that the ratio of the optimal revenues achievable by a lottery-pricing and by an item-pricing can be at most 4. Such 

an item-pricing can also be found efficiently (Chawla et al., 2007, 2010). On the other hand, it was shown recently (Chen 

et al., 2015) that the problem of finding an (exact) optimal lottery-pricing when F is a product distribution is intractable 

under standard complexity-theoretic assumptions.

1.3. Organization

The rest of the paper is organized as follows. In Section 2 we define formally the problem, state our main results, and 

prove some basic properties. In Section 3 we show that the decision problem is in NP, and give a simple (exponential-

time) algorithm. In Section 4 we give a polynomial-time algorithm for distributions with support size 2. Section 5 shows 

NP-hardness for the case of support size 3, and Section 6 for the case of identical distributions. Finally we conclude in 

Section 7.

2. Preliminaries

2.1. Problem definition and main results

In our setting there is one buyer and one seller with n items, indexed by [n] = {1, 2, . . . , n}. The buyer is interested 

in buying at most one item (unit demand) and her valuation of the items is drawn from a discrete product distribution 

F = ×n
i=1

Fi . Each distribution Fi is supported on a finite set V i = {v i,1, . . . , v i,|V i |} ⊂ R+ , where we use R+ to denote 

the set of nonnegative real numbers. We use qi, j > 0, j ∈ [|V i|], to denote the probability of item i having value v i, j , with ∑
j qi, j = 1. Let V = ×n

i=1
V i . We use Pr[v] to denote the probability of the valuation vector being v = (v1, . . . , vn) ∈ V , i.e., 

the product of qi, j ’s over i, j such that i ∈ [n] and v i = v i, j .

In the problem, all the n distributions, i.e., V i and qi, j , are given to the seller explicitly as the input. (So the input size 

is the number of bits needed to encode all v i, j ’s and qi, j ’s in binary.) The seller then assigns a price pi ≥ 0 to each item. 

Once the price vector p = (p1, . . . , pn) ∈ R
n
+ is fixed, the buyer draws her values v = (v1, . . . , vn) from the n distributions 

independently: v ∈ V with probability Pr[v]. The buyer’s utility for each item i ∈ [n] is given by v i − pi . Let

12 Note that the linear program has size polynomial in the support size of F . For the correlated case, the support of F is given explicitly in the input and 
thus, the linear program has size polynomial in the input size. For the product case, however, the support size of F would be 2n even if Fi ’s have support 
size 2 and thus, the linear program would be exponentially large. See Chen et al. (2015) discussed at the end of the introduction for a recent hardness 
result on the product case of the lottery-pricing problem.
13 That is, it can be reduced to the SQRT-SUM problem: given positive integers a1, . . . , an, b, decide whether 

∑
i

√
ai ≥ b. The complexity status of this 

problem is open, e.g. it is not known in particular whether it is in NP, nor whether it is NP-hard.
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U(v,p) = max
i∈[n]

(v i − pi) .

If U(v, p) ≥ 0, the buyer selects an item i ∈ [n] that maximizes her utility v i − pi , and the revenue of the seller is pi . If 

U(v, p) < 0, the buyer does not select any item, and the revenue of the seller is 0.

Knowing the value distributions as well as the behavior of the buyer described above, the seller’s objective is to compute 

a price vector p ∈R
n
+ that maximizes the expected revenue

R(p) =
∑

i∈[n]
pi · Pr

[
buyer selects item i

]
.

We use Item-Pricing-Decision to denote the following decision problem: the input consists of n discrete distributions, 

with v i, j and qi, j being rational and encoded in binary, as well as a rational number t ≥ 0 encoded in binary; the problem 

asks whether the supremum of R(p) over p ∈ R
n
+ is at least t . We use Item-Pricing-Opt to denote the optimization prob-

lem: the input consists of n discrete distributions only, and the goal is to find an optimal price vector p that maximizes14

the expected revenue R(p).

We note that these two problems are not well-defined without a tie-breaking rule, i.e. a rule that specifies which item 

the buyer selects when there are multiple items with maximum nonnegative utility. Throughout the paper, we will use the 

following maximum price15 tie-breaking rule (which is convenient for our arguments): when there are multiple items with 

the maximum nonnegative utility, the buyer selects the item with the smallest index among items with the highest price. 

(We note that the critical part is that an item with the highest price is selected. Selecting the item with the smallest index 

among them is arbitrary — and does not affect the revenue; however, we need to make such a choice unique so that it 

makes sense to talk about “the” item selected by the buyer in the proofs.) We show in Section 2.2 that our choice of the 

tie-breaking rule does not affect the supremum of the expected revenue (hence, the complexity of Item-Pricing-Decision). 

At the same time, there always exists a vector p that achieves the supremum under the maximum price tie-breaking rule 

and thus, Item-Pricing-Opt is well-defined, where the goal is to find a p that achieves the supremum.

We are now ready to state our main results. First, we show in Section 3 that Item-Pricing-Decision is in NP.

Theorem 1. Item-Pricing-Decision is in NP.

We also present a simple exponential-time algorithm and show that the problem can be solved in polynomial time for 

constant number of items.

Next, we present in Section 4 a polynomial-time algorithm for Item-Pricing-Opt when all distributions have support size 

at most 2.

Theorem 2. Item-Pricing-Opt can be solved in polynomial time when all distributions have support size at most 2.

As our main result, we resolve the complexity of Item-Pricing-Decision by showing that it is NP-hard even when all 

distributions have support size 3 and share the same support {0, 1, 3} (Section 5), or when they are identical (Section 6).

Theorem 3. Item-Pricing-Decision is NP-hard even when every distribution is supported on {0, 1, 3}.

Theorem 4. Item-Pricing-Decision is NP-hard even when the distributions are identical.

It follows that the optimization problem is also NP-hard in both cases. Thus, the problems cannot be solved in polynomial 

time unless P = NP.

2.2. Tie-breaking rules

Formally, a tie-breaking rule is a map from the set of pairs (v, p) with U(v, p) ≥ 0 to an item k such that vk − pk =
U(v, p). In this section, we show that the supremum of the expected revenue over p ∈R

n
+ is invariant to tie-breaking rules 

(Lemma 2.1), and the supremum can always be achieved by a price vector p under the maximum price tie-breaking rule 

(Lemma 2.3). Lemma 2.1 indeed holds for all distributions, not only discrete product distributions. Lemma 2.3 holds for all 

bounded distributions (F is bounded if there exist nonnegative real numbers ai and bi such that v ∼ F lies in ×n
i=1

[ai, bi]
with probability 1).

14 At this moment it is not even clear whether there exists a price vector that achieves the supremum. We will see in Section 2.2 that this is always the 
case under the maximum price tie-breaking rule, to be discussed below.
15 It may also be called the maximum value tie-breaking rule, since an item with the maximum price among a set of items with the same utility must 
also have the maximum value.
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We will need some notation. Let B be the maximum price tie-breaking rule described earlier. We will denote by R(p)

the expected revenue of p under B , and by R(v, p) the seller’s revenue under B when the valuation vector is v ∈ V . Given 

a price vector p and a valuation vector v ∈ V , we also denote by T (v, p) the set of items with maximum nonnegative utility 

(so T (v, p) = ∅ iff U(v, p) < 0).

We show the following:

Lemma 2.1. The supremum of the expected revenue over p ∈R
n
+ is invariant to tie-breaking rules.

Proof. Let B ′ be a tie-breaking rule. We will use R′(p) to denote the expected revenue of p under B ′ and use R′(v, p) to 

denote the seller’s revenue under B ′ when the valuation vector is v ∈ V .

It is clear that for any p ∈ R
n
+ and v ∈ V , we have R(v, p) ≥R′(v, p) since B picks an item with the highest price among 

those that maximize the utility. Hence, it follows that suppR(p) ≥ suppR
′(p).

On the other hand, given any price vector p ∈ R
n
+ and 0 < ε < 1, we consider pε = (1 − ε)p. This reduces the price of 

each item i by εpi , thus increases its utility for any valuation by the same amount; hence if two items had the same utility 

for p, now the higher priced one has higher utility for pε . For any valuation v, the buyer buys under B ′ and prices pε either 

the same item as the one bought under B and p or another one that had an equal or higher price. Thus, R′(v, pε) ≥ (1 −
ε)R(v, p) for every valuation v. Therefore, R′(pε) ≥ (1 −ε)R(p), hence limε→0+ R′(pε) ≥R(p). It follows that suppR

′(p) ≥
suppR(p), which proves the lemma. �

We will henceforth always adopt the maximum price tie-breaking rule, and use R(v, p) to denote the revenue of the 

seller with respect to this rule. One advantage of this rule is that the supremum of the expected revenue R(p) is always 

achievable for bounded distributions F , so it makes sense to talk about whether p is optimal or not. In the following 

example we point out that this does not hold for general tie-breaking rules.

Example. Suppose there are two items with the following distributions: item 1 has value 1 with probability 1, item 2 has 

value 0 with probability 1/2 and value 2 with probability 1/2. Suppose that the tie-breaking rule is that, in case of tie in 

utility, the buyer prefers item 1 (instead of the higher-priced item). The supremum in this example is 1.5: set p1 = 1 for 

item 1 and p2 = 2 −ε for item 2, for any ε > 0. The buyer will buy item 1 with probability 1/2 (if her value for item 2 is 0) 

and item 2 with probability 1/2 (if her value for item 2 is 2), yielding expected revenue 1.5 − 0.5ε . However, an expected 

revenue of 1.5 is not achievable: if we give price 2 to item 2, then the buyer will always buy item 1 and the revenue is 1. 

Note that the expected revenue for this tie-breaking rule is not a continuous function of the prices. �

Let F be a bounded distribution such that v ∼ F lies in P = ×n
i=1

[ai, bi] for some nonnegative real numbers ai and bi
with probability 1. Before proving that the supremum is achievable under the maximum price rule for F , we show that 

one may focus the search for an optimal price vector in P (instead of Rn
+).

Lemma 2.2. For any price vector p ∈R
n
+ , there exists a p′ ∈ P such that R(p′) ≥R(p).

Proof. Let p ∈R
n
+ . Suppose that there exists an i ∈ [n] such that pi < ai . Let i be such an index with the maximum ai . Then 

we define a new price vector p̃ by setting p̃ j = max{p j, ai} for all j ∈ [n]. Note that p̃ j ≥ a j for all j and we prove below 

that R(̃p) ≥ R(p). Consider any valuation v ∈ V . If the buyer selected under prices p an item j with price p j > ai , then 

she still selects the same item under p̃ because we have only increased the prices of the items that had price < ai . If she 

selected under p an item with price ≤ ai , then now she selects an item with price at least ai , because all items have price 

p̃ j ≥ ai (and she will buy some item because for example item i has price ai and thus, the utility is nonnegative). Thus, for 

every valuation the revenue does not decrease, hence R(̃p) ≥R(p).

Next we define p′ to be the price vector with p′
i
= min{̃pi, bi} for each i ∈ [n]. Then p′ ∈ P . It follows from a similar 

analysis that, for any valuation, the revenue does not decrease and thus R(p′) ≥ R(̃p). This finishes the proof of the 

lemma. �

Now we show that the supremum can always be achieved (for bounded distributions) under the maximum price rule B

using a standard continuity argument.16

Lemma 2.3. When F is bounded, there exists a price vector p∗ ∈ P such that R(p∗) = suppR(p).

Proof. By the compactness of P , it suffices to show that if a sequence of vectors {pi} approaches p, then

R(p) ≥ lim
i→∞

R(pi).

16 One might attempt to prove Lemma 2.3 by applying a limit argument on a theorem of Nisan (Theorem 21 in Balcan et al., 2008). However, it does not 
work, as the proof of the latter proceeds by first assuming the existence of an optimal price vector, which is exactly what Lemma 2.3 aims to establish.
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To this end, it suffices to show that, for any valuation vector v ∈ V , we have

R(v,p) ≥ lim
i→∞

R(v,pi). (1)

Given any valuation vector v ∈ V , it is easy to check that T (v, pi) ⊆ T (v, p) when i is sufficiently large (by considering two 

cases: U(v, p) < 0 and U(v, p) ≥ 0). (1) then follows, since R(v, p) is the highest price of all items in T (v, p) under the 

maximum price tie-breaking rule. �

3. Membership in NP and an algorithm

In this section we prove that Item-Pricing-Decision is in NP. We then analyze further the structure of the item-pricing 

problem and give a simple algorithm for computing an optimal price vector in polynomial space and exponential time; the 

algorithm runs in polynomial time when the number of items is a constant.

We start by showing that, for any given price vector p, we can compute its expected revenue in polynomial time.

Lemma 3.1. Given an instance of Item-Pricing-Decision (n discrete probability distributions) and a price vector p, we can compute 

its expected revenue R(p) in polynomial time.

Proof. For each item i and value si in its support V i , let V (p, si) be the set of valuations v ∈ V such that v i = si and 

the buyer buys item i for valuation v (under the maximum price tie-breaking rule). For this to be the case, first we must 

obviously have si ≥ pi (otherwise V (p, si) = ∅). Furthermore, for each j �= i, the buyer must prefer item i to j, thus we must 

have v j − p j ≤ si − pi , in case of equality we must have p j ≤ pi (and v j ≤ si), and in case of further equality p j = pi , we 

must have i < j. Let L j(p, si) be the set of v j ∈ V j that satisfy these conditions. Clearly, we can compute L j(p, si) easily (in 

linear time). Then

V (p, si) = L1(p, si) × · · · × Li−1(p, si) × {si} × Li+1(p, si) × · · · × Ln(p, si).

Its probability, Pr(V (p, si)), is the product of the probabilities of the subsets L j(p, si) for all j �= i and the probability of si . 

Let γi(p) be the probability that the buyer selects item i; this is the sum of Pr(V (p, si)) over all si ∈ V i with si ≥ pi . Having 

computed γi(p) for all i ∈ [n], the expected revenue for price vector p is R(p) =
∑

i γi(p) · pi . This finishes the proof of the 

lemma. �

We show now the NP membership.

Theorem 1. Item-Pricing-Decision is in NP.

Proof. We will show that there is an optimal price vector whose entries are all rational numbers with a polynomial number 

of bits. By Lemma 3.1 above the expected revenue of a price vector can be computed in polynomial time. As a consequence, 

the optimum price vector p∗ can serve as an appropriate yes certificate for the decision problem Item-Pricing-Decision, 

and the theorem follows. To prove the existence of an optimal price vector with polynomial bit complexity, we introduce 

polynomially many hyperplanes which divide the space of price vectors into cells such that the optimal price vector within 

each cell can be found by solving a linear program. This idea of dividing the search space into cells and reducing the search 

problem within each cell to a linear program is not new. For example, it was used by Devanur and Kannan (2008) to study 

the computation of market equilibria, and by Etessami and Yannakakis (2010) for fixed points of piecewise linear functions.

We start with some notation. Given a price vector p ∈ R
n
+ and a valuation v ∈ V , let I(v, p) ∈ [n] ∪ {nil} denote the 

item picked by the buyer under the maximum price tie-breaking rule, with I(v, p) = nil if U(v, p) < 0. Let ai = minv∈V i
v

and bi = maxv∈V i
v for each i. By Lemma 2.2, it suffices to consider P = ×n

i=1
[ai, bi]. We now partition P into equivalence 

classes so that two vectors p and p′ from the same class yield the same outcome for all valuations: I(v, p) = I(v, p′) for 

all v ∈ V .17

Consider the partition of P induced by the following set of hyperplanes. For each item i ∈ [n] and each value si ∈ V i , 

we have a hyperplane pi = si . For each pair of items i, j ∈ [n] and pair of values si ∈ V i and t j ∈ V j , we have a hyperplane 

si − pi = t j − p j , i.e., pi − p j = si − t j . These hyperplanes partition our search space P into polyhedral cells, where the points 

in each cell lie on the same side of each hyperplane (either on the hyperplane or in one of the two open-halfspaces). It is 

easy to show that, for every valuation v ∈ V , all price vectors p in the same cell yield the same outcome I(v, p).

17 Similar geometric partitions have been used previously in various areas. Hartline and Koltun (2005) study item pricing for items with unlimited supply 
and many unit-demand buyers with known valuations (the model can be viewed also as having one unit-demand buyer with an explicitly given correlated 
distribution), and give an approximation algorithm, which considers a certain set of price vectors (a suitable grid) and for each price vector partitions the 
space of valuations by hyperplanes so that valuations in the same cell buy the same item.
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Fix a cell C . Since all p ∈ C have the same I(v, p), we can define γi(C) as the probability of picking item i with respect 

to any price vector p ∈ C . Following the argument used in the proof of Lemma 3.1 we can compute γi(C) in polynomial 

time and γi(C) are rational numbers with polynomial number of bits.

Finally, the supremum of the expected revenue R(p) over all p ∈ C is the maximum of 
∑

i γi(C) · pi over all p in the 

closure of C . Let C ′ denote the closure of C ; this is the polyhedron obtained by changing all the strict inequalities of C

into weak inequalities. The supremum of 
∑

i γi(C) · pi over all points p ∈ C can be computed in polynomial time by solving 

the linear program that maximizes 
∑

γi(C) · pi subject to p ∈ C ′ . The optimal solution p∗
C of the LP for cell C is a rational 

vector whose entries have polynomial number of bits in the number of bits needed to represent the LP (i.e., its number of 

variables and constraints and the bit-size of the coefficients in the LP), which is polynomial in the size of the input instance.

It follows from an argument similar to the proof of Lemma 2.3 that the revenue R(p∗
C ) obtained by p∗

C is at least as large 

as the supremum of R(p) over p ∈ C . As a result, picking the best solution p∗
C over all cells C (i.e., the one with maximum 

R(p∗
C )) gives an optimal price vector p∗ for the given instance. Thus, there is an optimal price vector with polynomial bit 

complexity. This finishes the proof of the theorem. �

An immediate consequence of the NP membership is that an optimal price vector can be computed in exponential time 

and polynomial space. A naive brute-force algorithm is to try all rational price vectors in which the number of bits of the 

prices is bounded by the polynomial implied by the proof of the theorem, and pick the vector that yields the maximum 

expected revenue. A better algorithm is to generate all the hyperplanes in the proof of the theorem, consider every cell C

in the resulting partition of the space, solve the LP for C to compute the optimal solution vector p∗
C , and pick the vector 

that maximizes the expected revenue R(p∗
C ) over all cells C . In fact, as we will show below, the LP for a cell has a certain 

special form, which allows us to formulate it as a shortest path problem and solve it without using Linear Programming. This 

graph-theoretic approach gives further useful insights into the pricing problem and the structure of the optimal solution, 

and yields a simpler, more direct method for enumerating a sufficient set of candidate price vectors that is guaranteed 

to include an optimal solution, without having to solve any Linear Programs, or linear equations, or even shortest path 

problems.

Next we describe in more detail how to determine whether a set of equations and inequalities defines a nonempty cell, 

and how to compute the optimal solution over a nonempty cell. The description of a (candidate) cell C consists of equations 

and inequalities specifying (1) for each item i, the relation of pi to every value si ∈ V i , and (2) for each pair of items i, j

and each pair of values si ∈ V i and t j ∈ V j , the relation of pi − p j to si − t j . Construct a weighted directed graph G = (N, E)

over n + 1 nodes N = {0, 1, . . . , n} where nodes 1, . . . , n correspond to the n items. For each inequality of the form pi < si
or pi ≤ si , include an edge (0, i) with weight si , and call the edge strict or weak accordingly as the inequality is strict or 

weak. In fact, there is a tightest such inequality (i.e., with the smallest value si ) since the cell is in P , and it suffices to 

include the edge for this inequality only. Similarly, for each inequality of the form pi > si or pi ≥ si (or only for the tightest 

such inequality, i.e. the one with the largest value si ) include an edge (i, 0) with weight −si . For each inequality of the 

form pi − p j < si − t j or pi − p j ≤ si − t j (or only for the tightest such inequality) include a (strict or weak) edge ( j, i) with 

weight si − t j . Similarly, for every inequality of the form pi − p j > si − t j or pi − p j ≥ si − t j (or only for the tightest such 

inequality) include a (strict or weak) edge (i, j) with weight t j − si .

We prove the following connections between G = (N, E) and the cell C :

Lemma 3.2. 1. A set of equations and inequalities defines a nonempty cell if and only if the corresponding graph G does not contain a 

negative weight cycle or a zero weight cycle with a strict edge.

2. The supremum of the expected revenue for a nonempty cell is bounded from above by the expected revenue R(p) of the vector p

that consists of the distances from node 0 to the other nodes of the graph G.

Proof. 1. Considering node 0 as having an associated variable p0 with fixed value 0, the given set of equations (i.e. pairs of 

weak inequalities) and (strict) inequalities can be viewed as a set of difference constraints on the variables (p0, p1, . . . , pn), 

and it is well known that the feasibility of such a set of constraints can be formulated as a negative weight cycle problem. If 

there is a cycle with negative weight w , then adding all the inequalities corresponding to the edges of the cycle yields the 

constraint 0 ≤ w (which is false); if there is a cycle with zero weight but also a strict edge, then summing the inequalities 

yields 0 < 0.

Conversely, suppose that G does not contain a negative weight cycle or a zero weight cycle with a strict edge. For each 

strict edge e, replace its weight w(e) by w ′(e) = w(e) − ε for a sufficiently small ε > 0 (we can treat ε symbolically), and 

let G(ε) be the resulting weighted graph. Note that G(ε) does not contain any negative weight cycle, hence all shortest 

paths are well-defined in G(ε). Compute the shortest (minimum weight) paths from node 0 to all the other nodes in G(ε), 

and let p(ε) be the vector of distances from 0. For each edge (i, j) the distances pi(ε) and p j(ε) (where p0(ε) = 0) must 

satisfy p j(ε) ≤ pi(ε) + w ′(i, j), hence all the (weak and strict) inequalities are satisfied.

To determine if a set of equations and inequalities defines a nonempty cell, we can form the graph G(ε) and test for the 

existence of a negative weight cycle using for example the Bellman–Ford algorithm.

2. Suppose that cell C specified by the constraints is nonempty. Then we claim that the vector p = p(0) of distances 

from node 0 to the other nodes in the graph G is greater than or equal to any vector p′ ∈ C in all coordinates. We can 
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show this by induction on the depth of a node in the shortest path tree T of G rooted at node 0. Letting p′
0 = p0 = 0, the 

basis is trivial. For the induction step, consider a node j with parent i in T . By the inductive hypothesis p′
i
≤ pi . The edge 

(i, j) implies that p′
j
− p′

i
≤ w(i, j) or < w(i, j), and the presence of the edge (i, j) in the shortest path tree implies that 

p j = pi + w(i, j). Therefore, p′
j ≤ p j .

Recall that R(p′) of p′ ∈ C is given by 
∑

i γi(C) · p′
i . Since γi(C)’s are nonnegative and p lies in the closure of C , the 

supremum of R(p′) over p′ ∈ C is 
∑

i γi(C) · pi . It follows from the same argument used in the proof of Lemma 2.3 that 

R(p) ≥
∑

i γi(C) · pi . This finishes the proof of the lemma. �

The NP characterization of Item-Pricing-Decision together with the corresponding structural characterization of 

Lemma 3.2 for the optimal price vector p = p(0) of each cell have several easy and useful consequences.

First, we get an alternative proof of Lemma 2.3 regarding the maximum tie-breaking rule:

Second proof of Lemma 2.3. Suppose that the supremum of the expected revenue is achieved by the supremum within 

cell C . Let G be the corresponding graph, and let p be the vector of the distances from node 0 to the other nodes. If 

p ∈ C then the conclusion is immediate, so assume that p /∈ C . From the proof of the above lemma we have that p ≥ p′

coordinate-wise for all p′ ∈ C .

We claim that for any valuation v ∈ V , the revenue R(v, p) is at least as large as the revenue R(v, p′) under any p′ ∈ C . 

Suppose that the buyer selects item i under v for prices p′ . Then p′
i
≤ v i and thus also pi ≤ v i (since p is in the closure 

of C ) and thus i is also eligible for selection under p. If the buyer selects i under p then we know that pi ≥ p′
i
and the 

conclusion follows. Suppose that the buyer selects another item j under p and that p′
i
> p j and hence pi > p j . Then we 

must have v j − p j > v i − pi due to the tie-breaking rule. The facts that p is in the closure of C and v j − p j > v i − pi

imply that v j − p′
j
> v i − p′

i
for all p′ ∈ C and therefore the buyer should have picked j instead of i under prices p′ , a 

contradiction.

We conclude that for any v ∈ V , R(v, p) ≥R(v, p′) for any p′ ∈ C , and the lemma follows. �

Another consequence suggested by the structural characterization of Lemma 3.2 is that the maximum of expected rev-

enue can always be achieved by a price vector p in which all prices pi are sums of a value and differences between pairs 

of values of items. This implies for example the following useful corollary.

Corollary 3.1. If all the values in V i , i ∈ [n], are integers, then there exists an optimal price vector p ∈ P with integer coordinates, 

where P = ×n
i=1

[ai, bi], ai = minv∈V i
v and bi = maxv∈V i

v for each i.

Furthermore, the following simple algorithm computes an optimal solution by generating a sufficient set of candidate 

price vectors and picking the best among them. Let T be the set of all spanning trees of the complete graph on n +1 nodes 

{0, 1, . . . , n}, where we root every tree at node 0. In the following, V j − V i denotes the set {v j − v i : v i ∈ V i, v j ∈ V j}. We 

let V0 = {0}, thus V j − V0 = V j .

Algorithm 1

1. Set r = 0 and p∗ to be the all-0 vector
2. For every T ∈ T , for every assignment to each edge (i, j) in T of a weight w i j ∈ V j − V i

3. Compute for each i ∈ [n] the weight pi of the path from 0 to i in the weighted tree (T , w)

4. If ai ≤ pi ≤ bi for all i ∈ [n] then

5. Compute the expected revenue R(p) of p = (p1, . . . , pn)
6. If R(p) > r then set r = R(p) and p∗ = p

7. Return p∗ and r

The fact that the set of price vectors generated by the algorithm includes an optimal vector follows from Lemma 3.2. 

Suppose that C is a cell whose LP yields an optimal vector p∗ . Let G be the weighted graph corresponding to C , and let T

be the shortest path tree from the node 0 for G . By Lemma 3.2, the optimal price vector for the LP for C consists of the 

distances from node 0 to the other nodes, which are precisely the weights of the paths in the shortest path tree T from 

0 to the other nodes. Algorithm 1 will generate in some iteration this tree T with edge weights as in G , and hence it will 

generate the optimal price vector p∗ .
The algorithm runs in general in exponential time and polynomial space (since the same space is reused for every 

weighted tree (T , w)). Suppose that the size of the support of every item is at most m. There are (n + 1)n−1 spanning 

trees on n + 1 nodes by Cayley’s formula. Each tree has n edges. For the edges of the tree incident to node 0 there are m

choices for the weight, and for the other edges there are m2 choices. Thus, there are less than (n + 1)n−1 ·m2n−1 choices of 

a weighted tree (T , w). For each (T , w), computing the vector p of the path weights from node 0 to the other nodes takes 

O (n) time, and it is easy to compute the revenue R(p) in O (n2m) time. Thus, the total running time of the algorithm is 

O (nn+1m2n). Note that if the number of items is constant c, then the time is polynomial, O (m2c).
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Theorem 3.1. Algorithm 1 computes an optimal price vector in polynomial space and exponential time. If the number of items is 

constant, the time is polynomial.

Remark 1. All the results of this section hold also for correlated (discrete) distributions F , which are given explicitly by 

listing valuation vectors in the support of F and their probabilities. In this case, the expected revenue of a given price 

vector p can be computed easily by examining every valuation in the support of F , thus Lemma 3.1 holds trivially. It is 

straightforward to check that all the proofs of other results hold for correlated distributions. In the proof of Theorem 1 the 

only difference is in the computation of probabilities γi(C) that item i is selected if the prices are in cell C , which in the 

case of an explicitly given (discrete) distribution F is trivial. Thus, Item-Pricing-Decision for correlated distributions F is 

in NP. Since the correlated case is known to be NP-hard (Guruswami et al., 2005), the problem is NP-complete. Lemma 3.2, 

Corollary 3.1, Algorithm 1, and Theorem 3.1 do not depend on F being a product distribution and apply to arbitrary F .

4. A polynomial-time algorithm for support size 2

In this section, we present a polynomial-time algorithm for the case that each distribution has support size at most 2, 

thus showing:

Theorem 2. Item-Pricing-Opt can be solved in polynomial time when all distributions have support size at most 2.

In Section 4.1, we give a polynomial-time algorithm under a certain “non-degeneracy” assumption on the values. In 

Section 4.2 we use this algorithm to handle the general case, by first perturbing the input instance so that the resulted 

instance satisfies the “non-degeneracy” assumption, and then solving the latter to obtain an (exactly) optimal price vector 

of the original instance. Note that we will be able to obtain an exactly optimal solution, instead of an approximate one; this 

is due to the fact that Section 4.1 not only gives a polynomial-time algorithm for the special case but describes a small, 

explicit set of O (n2) price vectors that guarantees to contain all optimal price vectors.

4.1. An interesting special case

In this subsection, we assume that every item has support size 2, where V i = {ai, bi} satisfies bi > ai > 0, for all i ∈ [n]. 
Let qi : 0 < qi < 1 denote the probability of the value of item i being bi . For convenience, we also let ti = bi − ai > 0. In 

addition, we assume in this subsection that the value-vectors a = (a1, . . . , an) and b = (b1, . . . , bn) satisfy the following 

“non-degeneracy” assumption:

Non-degeneracy assumption. b1 < b2 < · · · < bn , ai �= a j and ti �= t j for all i, j ∈ [n].

As we show next in Section 4.2, this special case encapsulates the essential difficulty of the problem.

Let OPT denote the set of optimal price vectors in P = ×n
i=1

[ai, bi] that maximize the expected revenue R(p). (By 

Lemma 2.2 the set OPT is nonempty.) Next we prove a sequence of lemmas to impose more and more stringent conditions 

on the set of optimal price vectors. The proof of each lemma in the sequence shares a similar flavor, where we show that 

if a price vector violates the condition then one can modify it to achieve a strictly higher revenue. At the end we establish 

that, given a and b that satisfy all the conditions above, one can compute efficiently a set A ⊆ P of price vectors such 

that |A| = O (n2) and OPT ⊆ A (see below for an explicit description of A). By computing R(p) for every p ∈ A (using 

Lemma 3.1), we get both the maximum of expected revenue and an optimal price vector.

We outline the main steps of the proof. First we show that an optimal price vector p ∈ P is either equal to b or has 

at least one coordinate pk equal to the low value ak . Second we show that in the latter case there must be exactly one k

such that pk = ak . Third, we show that all other coordinates pi must be either equal to bi or to bi − tk where tk = bk − ak . 

Furthermore, (1) for all i < k, we must have pi = bi ; (2) if i > k and ti < tk then bi − tk < ai , and hence pi must be equal to 

bi . Thus, the question of whether pi should be bi or bi − tk concerns only the subset Tk of items i > k such that ti > tk (note 

that ti �= tk by the non-degeneracy assumption). The final lemma, which is also the most difficult one in the sequence, shows 

that the choice of an optimal vector p must be monotonic: if it sets pi = bi − tk for some i, then it must set p j = b j − tk
for all j > i, j ∈ Tk . As a consequence, there are only O (n2) price vectors that can possibly be optimal: (1) b, (2) for each 

k ∈ [n], the vector that has pk = ak and pi = bi for all i �= k, and (3) for each k ∈ [n] and each i > k, i ∈ Tk , the vector that 

has pk = ak , p j = b j − t j for all j > i, j ∈ Tk , and p j = b j for all other j.

We proceed now with the detailed proof. We start with the following lemma:

Lemma 4.1. If p ∈ P satisfies pi > ai for all i ∈ [n], then either p = b or we have p /∈ OPT.

Proof. Assume for contradiction that p ∈ P satisfies pi > ai , for all i ∈ [n] but p �= b. It then follows from the maximum price 

tie-breaking rule that R(v, b) ≥ R(v, p) for all v ∈ V . Moreover, there is at least one v∗ ∈ V such that R(v∗, b) > R(v∗, p): 
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If pi < bi , then consider v∗ with v∗
i

= bi and v∗
j
= a j for all other j. It follows that R(b) > R(p) as we assumed that 

0 < qi < 1 for all i ∈ [n] and thus, p /∈ OPT. �

Next we show that there can be at most one i such that pi = ai ; otherwise p /∈ OPT. We emphasize that all the conditions 

on V i are assumed in the lemmas below, the non-degeneracy assumption in particular.

Lemma 4.2. If p ∈ P has more than one i ∈ [n] such that pi = ai , then we have p /∈ OPT.

Proof. Assume for contradiction that p ∈ P has more than one i such that pi = ai . We prove the lemma by explicitly 

constructing a new price vector p′ ∈ P from p such that R(v, p′) ≥ R(v, p) for all v ∈ V and R(v∗, p′) > R(v∗, p) for at 

least one v∗ ∈ V . This implies that R(p′) > R(p) and thus, p is not optimal. We will be using this simple strategy in most 

of the proofs of this section.

Let k ∈ [n] denote the item with the smallest ak among all i ∈ [n] with pi = ai . By the non-degeneracy assumption, k

is unique. Recall that tk = bk − ak = bk − pk . We let S denote the set of i ∈ [n] such that bi − pi = tk , so k ∈ S . By the 

non-degeneracy assumption again, we have pi > ai for all i ∈ S − {k}. We now construct p′ ∈ P as follows: For each i ∈ [n], 
set p′

i
= pi if i /∈ S; otherwise set p′

i
= pi + ε for some sufficiently small ε > 0. Next we show that R(v, p′) ≥R(v, p) for all 

v ∈ V . Fix a v ∈ V . We consider the following three cases:

1. If U(v, p) = tk , then T (v, p) ⊆ S by the definition of S . When ε is sufficiently small, we have

T (v,p′) = T (v,p) and R(v,p′) = R(v,p) + ε > R(v,p).

2. If U(v, p) = 0 and k ∈ T (v, p), then we have T (v, p) ∩ S = {k} since bi > pi > ai for all other i ∈ S . We claim that 

R(v, p) > pk in this case. To see this, note that there exists an item � ∈ [n] such that p� = a� and p� > pk by our choice 

of k. As U(v, p) = 0, we must have v� = a� and thus, � ∈ T (v, p) and R(v, p) ≥ p� is not obtained from selling item k. 

Therefore, we have

U(v,p′) = 0, T (v,p′) = T (v,p) − {k} and R(v,p′) = R(v,p).

3. Finally, if neither of the cases above happens, then we have T (v, p) ∩ S = ∅ (note that this includes the case when 

T (v, p) = ∅). For this case we have T (v, p′) = T (v, p) and R(v, p′) =R(v, p).

The lemma then follows because in the second case above, we indeed showed that the following valuation vector v∗ in 

V satisfies R(v∗, p′) >R(v∗, p): vk = bk and v i = ai for all i �= k. �

Lemma 4.2 reduces our search space to p such that either p = b or p ∈ Pk for some k ∈ [n], where we use Pk to denote 

the set of price vectors p ∈ P such that pk = ak and pi > ai for all other i ∈ [n].
The next lemma further restricts our attention to p ∈ Pk such that pi ∈ {bi, bi − tk} for all i �= k.

Lemma 4.3. If p ∈ Pk but pi /∈ {bi, bi − tk} for some i �= k, then we have p /∈ OPT.

Proof. Assume for contradiction that p� /∈ {b�, b� − tk}. As p ∈ Pk , we also have p� > a� . Now we use S to denote the set 

of all i ∈ [n] such that bi − pi = b� − p� . It is clear that k /∈ S . We use p′ to denote the following new price vector: p′
i
= pi

for all i /∈ S , and p′
i
= pi + ε for all i ∈ S , where ε > 0 is sufficiently small. We use the same proof strategy to show that 

R(p′) >R(p). For each valuation v ∈ V , we have

1. If U(v, p) < 0, then clearly U(v, p′) < 0 as well and thus, R(v, p′) =R(v, p) = 0.

2. If U(v, p) = b� − p� , then T (v, p) ⊆ S by the definition of S . When ε is sufficiently small,

T (v,p′) = T (v,p) and R(v,p′) = R(v,p) + ε > R(v,p).

3. If U(v, p) ≥ 0 but U(v, p) �= b� − p� , then it is easy to see that T (v, p) ∩ S = ∅, because pi > ai and bi − pi = b� − p� for 

all i ∈ S . It follows that T (v, p′) = T (v, p) and R(v, p′) =R(v, p).

The lemma follows by combining all three cases. �

As suggested by Lemma 4.3, for each k ∈ [n], we use P ′
k
to denote the set of p ∈ Pk such that pk = ak and pi ∈ {bi, bi − tk}

for all other i. In particular, pi must be bi if ti < tk (ti �= tk , by the non-degeneracy assumption). The next lemma shows that 

we only need to consider p ∈ P ′
k
such that pi = bi for all i < k.

Lemma 4.4. If p ∈ P ′
k
satisfies p� = b� − tk > a� for some � < k, then we have p /∈ OPT.
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Proof. We construct p′ from p as follows. Let S denote the set of all i < k such that pi = bi − tk > ai . By our assumption, S

is nonempty. Then set p′
i
= pi for all i /∈ S and p′

i
= pi + ε for all i ∈ S , where ε > 0 is sufficiently small. Similarly we show 

that R(p′) >R(p) by considering the following subcases:

1. If U(v, p) = tk and T (v, p) ∩ S �= ∅, we consider the following cases. If T (v, p) ⊆ S , then

T (v,p′) = T (v,p) and R(v,p′) = R(v,p) + ε > R(v,p).

(Note that there exists a valuation v that falls in this subcase, for example, the valuation v that has v i = bi for i ∈ S and 

v i = ai for i /∈ S .) Otherwise, there exists a j ≥ k such that j ∈ T (v, p). This implies that R(v, p) ≥ p j = b j − tk is not 

obtained from any item in S . As a result, we have

T (v,p′) = T (v,p) − S and R(v,p′) = R(v,p).

2. If the case above does not happen, then T (v, p) ∩ S = ∅. As a result, we have

T (v,p′) = T (v,p) and R(v,p′) = R(v,p).

The lemma follows by combining the two cases. �

Finally, we use P∗
k

for each k ∈ [n] to denote the set of p ∈ P such that pk = ak; pi = bi for all i < k; pi = bi , for all 

i > k such that ti < tk; and pi ∈ {bi, bi − tk}, for all other i > k. However, P∗
k
may still be exponentially large in general. Let 

Tk denote the set of i > k such that ti > tk . Given p ∈ P∗
k
, our last lemma below implies that, if i is the smallest index in 

Tk such that pi = bi − tk , then p j = b j − tk for all j ∈ Tk larger than i; otherwise p is not optimal. In other words, p has 

to be monotone in setting p j , j ∈ Tk , to be b j − tk; otherwise p is not optimal. As a result, there are only O (n2) many 

price vectors that we need to check, and the best one among them is optimal. We use A ⊆ ∪k P
∗
k
to denote this set of price 

vectors.

Lemma 4.5. Given k ∈ [n] and p ∈ P∗
k
, if there exist two indices c, d ∈ Tk such that c < d, pc = bc − tk but pd = bd , then we must 

have p /∈ OPT.

Proof. We use t to denote tk for convenience. Also we may assume, without loss of generality, that there is no index 

between c and d in Tk; otherwise we can use it to replace either c or d, depending on its price.

We define two vectors from p. First, let p′ denote the vector obtained from p by replacing pd = bd by p′
d
= bd − t . Let p∗

denote the vector obtained from p by replacing pc = bc − t by p∗
c = bc . In other words, the cth and dth entries of p, p′, p∗

are (bc − t, bd), (bc − t, bd − t), (bc, bd), respectively, while all other n − 2 entries are the same. Our plan is to show that if 

R(p) ≥R(p′), then R(p∗) >R(p). This implies that p cannot be optimal and the lemma follows.

We need some notation. Let V ′ denote the projection of V onto all but the cth and dth coordinates:

V ′ = ×i∈[n]−{c,d}V i .

We use [n] − {c, d} to index entries of vectors u in V ′ . Let U ⊆ V ′ denote the set of vectors u ∈ V ′ such that ui − pi < t

for all i > d. (This just means that for each i ∈ Tk , if i > d and pi = bi − t , then ui = ai .) Given u ∈ V ′ , vc ∈ {ac, bc} and 

vd ∈ {ad, bd}, we use (u, vc, vd) to denote a n-dimensional price vector in V . Now we compare the expected revenue R(p), 

R(p′) and R(p∗).
First, we claim that, if v = (u, vc, vd) ∈ V but u /∈ U , then we have R(v, p) = R(v, p′) = R(v, p∗). This is simply because 

there exists an item i > d such that v i − pi = t , so it always dominates both items c and d. As a result, the difference among 

p, p′ and p∗ no longer matters. Second, it is easy to show that for any v = (u, ac, ad) ∈ V , then R(v, p) =R(v, p′) =R(v, p∗)
as the utility from c and d are negative.

Now we consider a vector v = (u, vc, vd) ∈ V such that u ∈ U and (vc, vd) is either (ac, bd), (bc, ad), or (bc, bd). For 

convenience, for each u ∈ U we use u+
1 to denote (u, ac, bd); u

+
2 to denote (u, bc, ad); and u+

3 to denote (u, bc, bd). By the 

definition of U , we have the following simple cases:

1. For p, we have R(u+
2 , p) = bc − t and R(u+

3 , p) = bc − t;

2. For p′ , we have R(u+
1 , p′) = bd − t , R(u+

2 , p′) = bc − t and R(u+
3 , p′) = bd − t .

We need the following equation:

R(u+
1 ,p) = R(u+

1 ,p∗) = R(u+
3 ,p∗). (2)

It holds because in all three cases, the buyer prefers item d, among items c and d, with utility 0 and price bd . Similarly we 

also have the following two inequalities:
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R(u+
1 ,p∗) − (bd − bc) ≤ R(u+

2 ,p∗) ≤ R(u+
1 ,p∗). (3)

The second inequality holds because in (u+
2 , p∗), the buyer prefers item c, among c and d, with utility 0 and price bc , while 

in (u+
1 , p∗), the buyer prefers item d with utility 0 and price bd . On the other hand, the first inequality holds because, either 

(1) there is an item with a positive utility or utility 0 and price > pd , in which case the buyer will not pick items c or d

in both situations and we have R(u+
2 , p∗) = R(u+

1 , p∗), or (2) there is no such item and thus, the buyer selects item d in 

(u+
1 , p∗) with R(u+

1 , p∗) = bd and at the same time, we have R(u+
2 , p∗) ≥ bc .

Given a v ∈ V , recall that Pr[v] denotes the probability of the valuation vector being v. Given a u ∈ U , we also use Pr[u]
to denote the probability of the n − 2 items, except items c and d, taking values u. Let

h1 = (1 − qc)qd, h2 = qc(1− qd) and h3 = qcqd.

Clearly we have h1, h2, h3 > 0 and Pr[u+
i
] = Pr[u] · hi , for all u ∈ U and i ∈ [3].

In order to compare R(p), R(p′) and R(p∗), we only need to compare the following three sums:

∑

i∈[3]

∑

u∈U

Pr[u+
i
] ·R(u+

i
,p),

∑

i∈[3]

∑

u∈U

Pr[u+
i
] ·R(u+

i
,p′) and

∑

i∈[3]

∑

u∈U

Pr[u+
i
] ·R(u+

i
,p∗).

For the first sum, we can rewrite it as (here all sums are over u ∈ U ):

h1 ·
∑

u

Pr[u] ·R(u+
1 ,p) + h2 ·

∑

u

Pr[u] · (bc − t) + h3 ·
∑

u

Pr[u] · (bc − t), (4)

while the sum for R(p′) is the following:

h1 ·
∑

u

Pr[u] · (bd − t) + h2 ·
∑

u

Pr[u] · (bc − t) + h3 ·
∑

u

Pr[u] · (bd − t). (5)

Since c < d and bc < bd , R(p) ≥R(p′) would imply that

∑

u

Pr[u] ·R(u+
1 ,p) >

∑

u

Pr[u] · (bd − t). (6)

On the other hand, we can also rewrite the sum for R(p∗) as

h1 ·
∑

u

Pr[u] ·R(u+
1 ,p∗) + h2 ·

∑

u

Pr[u] ·R(u+
2 ,p∗) + h3 ·

∑

u

Pr[u] ·R(u+
3 ,p∗). (7)

The first sum in (7) is the same as that of (4). For the second sum, from (3), (2) and (6) we have

∑

u

Pr[u] ·R(u+
2 ,p∗) ≥

∑

u

Pr[u] ·
(
R(u+

1 ,p) − (bd − bc)
)

>
∑

u

Pr[u] ·
(
bd − t − (bd − bc)

)
=

∑

u

Pr[u] · (bc − t).

The third sum in (7) is also strictly larger than that of (4) as R(u+
3 , p∗) = R(u+

1 , p∗) ≥ R(u+
2 , p∗) while the second and 

third sums in (4) are the same, ignoring h2 and h3 . Thus, R(p∗) >R(p). �

Remark 2. The first four lemmas apply to any distribution F that is not necessarily a product distribution, as long as it has 

support ×n
i=1{ai, bi}. Lemma 4.5, however, requires F to be a product distribution.

4.2. General case

Now we deal with the general case. Let I denote an input instance with n items, in which |V i | ≤ 2 for all i. For each 

i ∈ [n], either V i = {ai, bi} where bi > ai ≥ 0, or V i = {bi}, where bi ≥ 0. We let D ⊆ [n] denote the set of i ∈ [n] such that 

|V i| = 2. For each item i ∈ D , we use qi : 0 < qi < 1 to denote the probability of its value being bi . Each item i /∈ D has value 

bi with probability 1. As permuting the items does not affect the maximum expected revenue, we may assume without loss 

of generality that b1 ≤ b2 ≤ · · · ≤ bn .

The idea is to perturb I (symbolically), so that the new instances satisfy all conditions described at the beginning of 

the section, which we know how to solve efficiently. For this purpose, we define a new n-item instance Iε from I for 

any ε > 0: For each i ∈ D , the support of item i is V i,ε = {ai + iε, bi + 2iε}, and for each i /∈ D , the support of item i is 

V i,ε = {bi + iε, bi + 2iε}. For each i ∈ D , the probability of the value being bi + 2iε is still set to be qi , while for each i /∈ D , 

the probability of the value being bi + 2iε is set to be 1/2. In the rest of the section, we use R(p) and R(v, p) to denote 

the revenue with respect to I , and use Rε(p) and Rε(v, p) to denote the revenue with respect to Iε . Let Vε = ×n
i=1

V i,ε . Let 
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ρ denote the following map from Vε to V : ρ maps u ∈ Vε to v ∈ V , where 1) v i = bi when i /∈ D; 2) v i = ai if ui = ai + iε
and v i = bi if ui = bi + 2iε when i ∈ D .

It is easy to verify that, when ε > 0 is sufficiently small, the new instance Iε satisfies all conditions given at the beginning 

of the section, including the non-degeneracy assumption. From the previous subsection we know then that, there is a set of 

O (n2) price vectors for Iε , denote this set by Aε , such that the best vector in Aε is optimal for Iε and achieves maxpRε(p). 

Furthermore, from the construction of Aε , we know that every vector pε in Aε has an explicit expression in ε: each entry 

of pε is indeed an affine linear function of ε . Moreover, we show that

Lemma 4.6. The limit of maxpRε(p) exists as ε → 0, it is equal to

max
pε∈Aε

{
lim
ε→0

Rε(pε)

}
,

and it can be computed in polynomial time.

Proof. Since Iε satisfies all the conditions for small enough ε , maxpRε(p) is achieved by one of the O (n2) price vectors in 

Aε . The entries of every vector pε ∈ Aε are affine linear functions of ε . As a result, the limit of Rε (pε) as ε approaches 0 ex-

ists and can be computed efficiently. Since limε→0

(
maxpRε(p)

)
is just the maximum of these O (n2) limits limε→0Rε(pε), 

pε ∈ Aε , it also exists and can be computed in polynomial time in the input size of I . �

Finally, the next two lemmas show that this limit is exactly the maximum expected revenue of I . This finishes the proof 

of Theorem 2.

Lemma 4.7. maxpR(p) ≤ limε→0

(
maxpRε(p)

)
.

Proof. Let p∗ denote an optimal price vector of I . It suffices to show that, when ε is sufficiently small,

max
p

Rε(p) ≥ R(p∗) − 4n2ε. (8)

The proof is similar to that of Lemma 2.1. Let p′ denote the vector in which p′
i
= max

(
0, p∗

i
− 4rinε

)
, where ri is the rank 

of p∗
i
among {p∗

1, . . . , p
∗
n} sorted in the increasing order (when there are ties, items with lower index are ranked higher). 

We claim that, when ε > 0 is sufficiently small,

Rε(u,p′) ≥ R(ρ(u),p∗) − 4n2ε, for any u ∈ Vε , (9)

from which we get Rε(p
′) ≥R(p∗) − 4n2ε and (8) follows.

To prove (9), we fix a u ∈ Vε and let v = ρ(u) ∈ V . (9) holds trivially if R(v, p∗) = 0. Assume that R(v, p∗) > 0, and let 

k denote the item selected in I on (v, p∗). (9) also holds trivially if p∗
k

< 4n2ε , so without loss of generality, we assume that 

pk ≥ 4n2ε . For any other item j ∈ [n], we compare the utilities of items k and j in Iε on (u, p′). We claim that

uk − p′
k > u j − p′

j (10)

because 1) if vk − p∗
k

> v j − p∗
j , then (10) holds when ε is sufficiently small; 2) if vk − p∗

k
= v j − p∗

j and p∗
k

> p∗
j , then 

(10) holds because p∗
k

− p′
k
− (p∗

j
− p′

j
) ≥ 4nε > (vk − uk) + (u j − v j); 3) finally, the case when vk − p∗

k
= v j − p∗

j
, pk = p j

and k < j follows similarly from rk > r j . Therefore, k remains to be the item being selected in Iε on (u, p′). (9) then follows 

from the fact that p′
k
≥ p∗

k
− 4n2ε by definition. �

Lemma 4.8. maxpR(p) ≥ limε→0

(
maxpRε(p)

)
.

Proof. From Lemma 4.6, there is a price vector pε ∈ Aε in which every entry is an affine linear function of ε , such that (as 

the cardinality of |Aε | is bounded from above by O (n2))

lim
ε→0

(
max

p
Rε(p)

)
= lim

ε→0
Rε(pε).

Let p̃ ∈ R
n
+ denote the limit of pε , by simply removing all the ε ’s in the affine linear functions. Moreover, we note that 

|̃pi − pε,i| = O (nε) by the construction of Aε , where we use pε,i to denote the ith entry of pε .

Next, let qε denote the vector in which the ith entry qε,i = max(0, ̃pi − rin
2ε) for all i ∈ [n], where ri is the rank of p̃i

among entries of p̃ sorted in increasing order (again, when there are ties, items with lower index are ranked higher). To 

prove the lemma, it suffices to show that, when ε is sufficiently small,
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R(qε) ≥ Rε(pε) − O (n3ε).

To this end, we show that for any vector u ∈ Vε with v = ρ(u),

R(v,qε) ≥ Rε(u,pε) − O (n3ε). (11)

Finally we prove (11). First, we note that if U(v, ̃p) < 0, then R(v, qε) = Rε(u, pε) = 0 when ε > 0 is sufficiently small 

(as u approaches v and pε , qε approach p̃). Otherwise, we have U(v, qε) > U(v, ̃p) ≥ 0 and we use k to denote the item 

selected in I on (v, qε). To violate (11), the item selected in Iε on (u, pε) must be an item � different from k satisfying 

p̃� > p̃k . Below we show that this cannot happen. Consider all the cases: 1) if vk − p̃k < v� − p̃� , we get a contradiction 

since item k is dominated by � in I on (v, qε) when ε is sufficiently small; 2) if vk − p̃k > v� − p̃� , we get a contradiction 

with � being selected in Iε on (u, pε) when ε is sufficiently small; 3) if vk − p̃k = v� − p̃� and p̃� > p̃k , we conclude that 

vk −qε,k < v� −qε,� , contradicting again with k being selected in I on (v, qε). (11) follows by combining all these cases. �

5. NP-hardness for support size 3

In this section we show:

Theorem 3. Item-Pricing-Decision is NP-hard even when every distribution is supported on {0, 1, 3}.

For this, we give a polynomial-time reduction from Partition to Item-Pricing-Decision for the case when distributions 

Fi ’s have support (at most) 3. Recall the Partition problem (Garey and Johnson, 1990):

Definition 5.1 (Partition).

Input: A set C = {c1, . . . , cn} of n positive integers (encoded in binary).

Problem: Does there exist a partition of C into two subsets with equal sum?

As Partition is NP-hard (Garey and Johnson, 1990), such a reduction implies that Item-Pricing-Decision is NP-hard.

Given an input instance of Partition, we construct an instance of Item-Pricing-Decision as follows. We have n items. 

Each item i ∈ [n] can take 3 possible integer values 0, a, b, where b > a > 0, i.e., V i = {0, a, b} for all i. Let qi = Pr[v i = b]
and ri = Pr[v i = a]. We set qi = ci/M where M = 2nc31 and

ri =
b − a

a(1 − ti)
· qi, where ti =

b

2a
·

∑

j �=i, j∈[n]
q j .

The two parameters a and b should be thought of as universal constants (independent of the given instance of Partition) 

throughout the proof. We will eventually set these constants to be a = 1, b = 3 (this choice is not necessary, there is 

flexibility in our proof and indeed any values with b > 2a will work). However, for the sake of the presentation, we will 

keep a, b as generic parameters for most of the calculations till the end.

Note that the definition of ri implies that

bqi = a(qi + ri) − ariti . (12)

Let N = 2nc21 . Then we have qi, ri = O (1/N) and ti = O (n/N) for all i. Thus, each distribution assigns most of its probability 

mass to the point 0. This is a crucial property which allows us to get a handle on the optimal revenue. For an arbitrary 

general instance of the pricing problem, the expected revenue is a highly complex nonlinear function. The fact that most 

of the probability mass in our construction is concentrated at 0 implies that valuation vectors with many nonzero entries 

contribute very little to the expected revenue. As we will argue, the revenue is approximated well by its 1st and 2nd order 

terms with respect to poly(n)/N , which essentially corresponds to the contribution of all valuations in which at most two 

items have nonzero value. The probabilities qi, ri are chosen carefully so that the optimization of the expected revenue 

amounts to a quadratic optimization problem, which achieves its maximum possible value when the given set C of integers 

has a partition into two parts with equal sums.

Our main claim is that, for an appropriate value t∗, there exists a price vector with expected revenue at least t∗ if and 

only if there exists a solution to the original instance of the Partition problem.

We start with some notation and simple observations. For T1, T2, ε ∈ R, we use T1 = T2 ± ε to denote the inequality 

that |T1 − T2| ≤ ε . Note that, as both the qi ’s and the ti ’s are very small positive quantities, we have that ri ≈ (b − a)qi/a. 

Formally, with the above notation we can write

ri =
b − a

a(1 − ti)
· qi =

b − a

a
· qi ± 2

b − a

a
· qiti =

b − a

a
· qi ± O (n/N2). (13)

Lemma 2.2 and Corollary 3.1 imply that a revenue maximizing price vector can be assumed to have non-negative integer 

coefficients of magnitude at most b. The following lemma establishes the stronger statement that, for our particular instance, 

an optimal price vector p can be assumed to have each pi in the set {a, b}.
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Lemma 5.1. There is an optimal price vector p ∈ {a, b}n .

Proof. By Lemma 2.2 and Corollary 3.1, there is an optimal price vector with integer coordinates in [0 : b]. Let p be any 

(integer) vector in [0 : b]n that has at least one coordinate p j /∈ {a, b}. We will show below that R(p) < R(b), where b

denotes the all-b vector, and hence p is not optimal.

Consider an index i ∈ [n] with pi > 0. The probability the buyer selects item i is bounded from above by Pr[v i ≥ pi], the 
probability that item i has value at least pi , and is bounded from below by

Pr
[
v i ≥ pi

]
·

∏

j �=i, j∈[n]
(1− qi − ri) ≥ Pr

[
v i ≥ pi

]
· (1− O (n/N)) .

Note that the second term in the LHS above is the probability that all items other than i have value 0 and the inequality 

uses the fact that qi, ri = O (1/N). Applying these two bounds on p and b we obtain

R(b) ≥
∑

i∈[n]
qi (1− O (n/N)) · b and R(p) ≤

∑

i:pi>0

Pr
[
v i ≥ pi

]
· pi .

So R(b) ≥ (
∑

i∈[n] qib) − O (n2/N2). Regarding R(p), we consider the following three cases. For i ∈ [n] with pi = b, the 

probability that v i ≥ pi is qi and the contribution of such an item to the second sum is qib. Similarly, for i ∈ [n] with pi = a, 

the probability that v i ≥ pi is qi + ri and the contribution to the sum is

(qi + ri)a ≤ qib + O (n/N2),

where the inequality follows from (13). Finally, we consider an item i ∈ [n] with pi /∈ {a, b}. If a < pi < b then the contribu-

tion is qi pi , which is at most qi(b − 1) = qib − qi , since pi is integer. If pi < a, then the contribution is (qi + ri)pi , which is 

at most (qi + ri)(a − 1) = qib + ariti − qi − ri = qib − qi − ri(1 − ati). In both cases, the contribution to the sum is at most

qib − qi ≤ qib − (1/M).

Note that the definition of M and N implies that 1/M � n2/N2 . Because there exists at least one j with p j /∈ {a, b}, it 
follows that R(p) < R(b) which completes the proof of the lemma. �

As a result, to maximize the expected revenue it suffices to consider price vectors in {a, b}n . Given any price-vector 

p ∈ {a, b}n , we let S = S(p) = {i ∈ [n] : pi = a} and T = T (p) = {i ∈ [n] : pi = b}. The main idea of the proof is to establish an 

appropriate quadratic form approximation to the expected revenue R(p) that is sufficiently accurate for the purposes of our 

reduction.

Approximating the revenue. We appropriately partition the valuation space V into three events that yield positive revenue. 

We then approximate the probability of each and its contribution to the expected revenue up to, and including, 2nd order 

terms, i.e., terms of order O (poly(n)/N2), and we ignore 3rd order terms, i.e., terms of order O (ε) where ε = n3/N3 .

In particular, we consider the following disjoint events:

• First event: E1 = {v ∈ V | ∃i ∈ S : v i = b}.
Note that for any v ∈ E1 we have R(v, p) = a. The probability of this event is

Pr[E1] = 1 −
∏

i∈S

(1 − qi) =
∑

i∈S

qi −
∑

i �= j∈S

qiq j ± O (ε).

• Second event: E2 = E1 ∩ {v ∈ V | ∃i ∈ S : v i = a and ∀i ∈ T : v i ∈ {0,a}}.
Note that for any v ∈ E2 we have R(v, p) = a. The probability of this event is

Pr[E2] =
∏

j∈T

(1− q j)

[
∏

i∈S

(1− qi) −
∏

i∈S

(1 − qi − ri)

]

Using the elementary identities
∏

j∈T

(1− q j) = 1−
∑

j∈T

q j +
∑

i �= j∈T

qiq j ± O (ε)

∏

i∈S

(1 − qi) = 1−
∑

i∈S

qi +
∑

i �= j∈S

qiq j ± O (ε)

∏

i∈S

(1− qi − ri) = 1−
∑

i∈S

(qi + ri) +
∑

i �= j∈S

(qi + ri)(q j + r j) ± O (ε),
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we can write

Pr[E2] =

⎡
⎣1−

∑

j∈T

q j +
∑

i �= j∈T

qiq j ± O (ε)

⎤
⎦ ·

⎡
⎣∑

i∈S

ri +
∑

i �= j∈S

qiq j −
∑

i �= j∈S

(qi + ri)(q j + r j) ± O (ε)

⎤
⎦

=
∑

i∈S

ri −
∑

i∈S

ri
∑

j∈T

q j +
∑

i �= j∈S

qiq j −
∑

i �= j∈S

(qi + ri)(q j + r j) ± O (ε).

• Third event: E3 = E1 ∩ {v ∈ V | ∃i ∈ T : v i = b}.
Note that for any v ∈ E3 we have R(v, p) = b. The probability of this event is

Pr[E3] =
∏

i∈S

(1− qi)

⎡
⎣1−

∏

j∈T

(1− q j)

⎤
⎦

=

⎛
⎝1−

∑

i∈S

qi +
∑

i �= j∈S

qiq j ± O (ε)

⎞
⎠

⎛
⎝∑

j∈T

q j −
∑

i �= j∈T

qiq j ± O (ε)

⎞
⎠

=
∑

j∈T

q j −
∑

i �= j∈T

qiq j −
∑

i∈S

qi
∑

j∈T

q j ± O (ε).

Therefore, for the expected revenue R(p) we have:

R(p) =
(
Pr[E1] + Pr[E2]

)
· a + Pr[E3] · b

= a ·

⎛
⎝∑

i∈S

(qi + ri) −
∑

i �= j∈S

(qi + ri)(q j + r j) −
∑

i∈S

ri
∑

j∈T

q j

⎞
⎠

+ b ·

⎛
⎝∑

j∈T

q j −
∑

i �= j∈T

qiq j −
∑

i∈S

qi
∑

j∈T

q j

⎞
⎠ ± O (ε).

Using (12) it follows that the first order term of the revenue is

b
∑

j∈T

q j + a
∑

i∈S

(qi + ri) = b
∑

j∈[n]
q j +

∑

i∈S

(
a(qi + ri) − bqi

)
= b

∑

j∈[n]
q j +

∑

i∈S

(ariti).

Observe that the first term b 
∑

j∈[n] q j in the above expression is a constant L1 , independent of the pricing (i.e., the partition 

of the items into S and T ).

In the second order term, we can rewrite the expression a 
∑

i �= j∈S (qi + ri)(q j + r j) as

1

2
·
∑

i∈S

(qi + ri)
∑

j∈S, j �=i

a(q j + r j)

=
1

2
·
∑

i∈S

(qi + ri)
∑

j∈S, j �=i

(bq j + ar jt j)

=
b

2
·
∑

i∈S

qi
∑

j∈S, j �=i

q j +
b

2
·
∑

i∈S

ri
∑

j∈S, j �=i

q j +
1

2
·
∑

i∈S

(qi + ri)
∑

j∈S, j �=i

ar jt j

= b
∑

i �= j∈S

qiq j +
b

2

∑

i∈S

ri
∑

j∈S, j �=i

q j ± O (ε)

where in the first expression above, the double summation is multiplied by 1/2 because each unordered pair i �= j ∈ S is 

included twice. Thus, the second order term of the expected revenue R(p) is

− a
∑

i �= j∈S

(qi + ri)(q j + r j) − a
∑

i∈S

ri
∑

j∈T

q j − b
∑

i �= j∈T

qiq j − b
∑

i∈S

qi
∑

j∈T

q j

= −b
∑

i �= j∈S

qiq j −
b

2

∑

i∈S

ri
∑

j∈S, j �=i

q j − a
∑

i∈S

ri
∑

j∈T

q j − b
∑

i �= j∈T

qiq j − b
∑

i∈S

qi
∑

j∈T

q j ± O (ε)
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= −b
∑

i �= j∈[n]
qiq j −

b

2

∑

i∈S

ri
∑

j∈S, �=i

q j − a
∑

i∈S

ri
∑

j∈T

q j ± O (ε).

The first term in the last expression is a constant L2 independent of the pricing. As a result, we can rewrite the second 

order term as follows:

L2 −
b

2

∑

i∈S

ri
∑

j∈S, j �=i

q j − a
∑

i∈S

ri
∑

j∈T

q j ± O (ε) = L2 −
∑

i∈S

ri

⎛
⎝b

2

∑

j∈S, j �=i

q j + a
∑

j∈T

q j

⎞
⎠ ± O (ε).

Summing with the first order term and letting L = L1 + L2 , we have:

R(p) = L +
∑

i∈S

ri

⎛
⎝ati −

b

2

∑

j∈S, j �=i

q j − a
∑

j∈T

q j

⎞
⎠ ± O (ε)

= L +
∑

i∈S

ri

⎛
⎝b

2

∑

j �=i

q j −
b

2

∑

j∈S, j �=i

q j − a
∑

j∈T

q j

⎞
⎠ ± O (ε)

= L +
∑

i∈S

ri ·
(
b

2
− a

)∑

j∈T

q j ± O (ε)

= L +
b − a

a
·
(
b

2
− a

)
·

1

M2
·
∑

i∈S

ci ·
∑

j∈T

c j ± O (ε).

Now setting a = 1, b = 3 in the previous expression, we have that for any p ∈ {a, b}n ,

R(p) = L +
1

M2

(
∑

i∈S

ci

)
·

⎛
⎝∑

j∈T

c j

⎞
⎠ ± O (ε). (14)

At this point, we observe that the sum of the two factors 
∑

i∈S ci, 
∑

j∈T c j in (14) is a constant (independent of the 

partition). Thus, their product is maximized when they are equal. Because ε = o(1/M2), it follows that the revenue is 

maximized when the product of the two factors is maximized. In particular, if there exists a partition of the set C =
{c1, . . . , cn} into two sets with equal sums H = (

∑
i∈[n] ci)/2, then the corresponding partition of the indices into the sets S

and T yields revenue

L +
1

M2
· H2 ± O (ε).

On the other hand, if there is no such equipartition of C , then for any partition, the revenue will be at most

L +
1

M2
(H + 1)(H − 1) ± O (ε) = L +

1

M2
(H2 − 1) ± O (ε).

Since ε = o(1/M2) it follows that there exists a partition of the set C = {c1, . . . , cn} into two sets with equal sums if and 

only if there exists a price vector p ∈ {a, b}n with

R(p) ≥ t∗ = L +
1

M2

(
H2 −

1

2

)
.

This completes the proof. �

Remark. In the above construction, the support {0, a, b} of the distributions includes the value 0 (which in fact has most of 

the probability mass). It is easy to modify the construction, if desired, so that the support contains only positive values: shift 

all the values of the distributions up by 1 (thus, the supports now become V i = {1, 2, 4}) and add an additional (n + 1)-th 

item which has value 1 with probability 1. This transformation increases the expected revenue by 1. It is easy to see that an 

optimal price vector p′ for the new instance will give price p′
n+1 = 1 to the (n + 1)-th item and price p′

i = pi + 1 to each 

other item i ∈ [n], where p is an optimal vector for the original instance.
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6. NP-hardness for identical distributions

In this section we show:

Theorem 4. Item-Pricing-Decision is NP-hard even when the distributions are identical.

For this purpose we reduce from the following (still NP-complete) version of Integer Knapsack.

Definition 6.1 (Integer Knapsack with Repetitions).

Input: n + 1 positive integers a1 < · · · < an and L.

Problem: Do there exist nonnegative integers x1, . . . , xn such that 
∑

i∈[n] xi = n and 
∑

i∈[n] xiai = L?

The NP-hardness of this version of Integer Knapsack is likely known in the literature. For completeness we include a 

quick proof via a reduction from Subset-Sum, a classical NP-complete problem (Garey and Johnson, 1990):

Definition 6.2 (Subset-Sum).

Input: n + 1 positive integers b1 < · · · < bn and T .

Problem: Does there exist a subset S of {b1, . . . , bn} such that 
∑

bi∈S bi = T ?

Lemma 6.1. Integer Knapsack with Repetitions is NP-hard.

Proof. Let b1 < · · · < bn and T denote an instance of Subset-Sum, where bi and T are all positive integers. Without loss 

of generality, we assume that T > bn . Let K = n2T . For each i ∈ [n], set ai = K i + bi and ci = K i . Then one can see that 

{Kn+1, ai, ci : i ∈ [n]}, a set of 2n + 1 positive integers, together with

L = T + K + K 2 + · · · + Kn + (n + 1)Kn+1

form a yes-instance of the special Integer Knapsack problem iff a subset of {b1, . . . , bn} sums to T . �

Using Lemma 6.1, a polynomial-time reduction from the Integer Knapsack with Repetitions problem to our Item-

Pricing-Decision would imply that the latter is NP-hard as well.

6.1. Intuition

The reason why we choose to reduce from Integer Knapsack with Repetitions instead of Partition or Subset-Sum is as 

follows. While a solution to {a1, . . . , an} and L is formulated as n integers x1, . . . , xn that sum to n and satisfy 
∑

i xiai = L, 

one can equivalently view it as picking n integers from {a1, . . . , an} with repetitions round by round, for n rounds. Notably 

the set of possible actions one can choose in each round is exactly the same, i.e., picking an integer from {a1, . . . , an}. This 
helps build a connection to the i.i.d. item pricing problem since one can imagine to use each item, with the same probability 

distribution, to mimic the action of choosing an integer from {a1, . . . , an}. This feature of Integer Knapsack with Repetitions

is not shared by Subset-Sum (or Partition), where one can similarly view a solution as a sequence of n actions but in the 

ith round one decides whether the ith integer is included in the subset or not.

Let a1 < · · · < an and L denote an instance of Integer Knapsack with Repetitions. Without loss of generality, we can 

assume that L ≤ nan; otherwise the problem is trivial. Our goal is to construct a distribution Q over nonnegative integers, 

and reduce the problem Integer Knapsack with Repetitions to Item-Pricing-Decision with n items, each of which has its 

value drawn from Q independently. The key idea is similar to the reduction for support size 3 in Section 5, which we 

sketch below, but its implementation is more challenging.

At a high level, Q is supported on {0, v1, . . . , vn}, where 0 < v1 < · · · < vn are integers and grow exponentially. Q

assigns most of its probability mass to the point 0, so that valuations with at least three positive entries contribute very 

little to the expected revenue. The hope is that we can set probabilities of v1, . . . , vn so that

1. There is an optimal price vector p ∈ {v1, . . . , vn}n;
2. Let xi denote the number of items priced at v i in a price vector p ∈ {v1, . . . , vn}n . Then the expected revenue obtained 

by p can be well approximated by the following quadratic form:

C1 − C2 ·

⎛
⎝∑

i∈[n]
xiai − L

⎞
⎠

2

, (15)

for some positive constants C1 and C2 that do not depend on p. It would then follow from similar arguments used in 

Section 5 that, given the optimal expected revenue of the i.i.d. instance, one can easily tell whether {a1, . . . , an} and L

is a yes-instance of Integer Knapsack with Repetitions or not.
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Note that the plan is essentially the same as that of Section 5, except that (1) each item has n candidate prices instead of 2; 

(2) the distributions are i.i.d. and each mimics the action of picking one integer from {a1, . . . , an}, while each item i has a 

separate distribution in Section 5 and mimics the allocation of the ith integer in the partition.

The most challenging part of the construction is to make sure that the expected revenue indeed takes a form as in (15). For this 

purpose Q will actually have a significantly larger support than {0, v1, . . . , vn}; it will be supported on

{
0, v i, v i + j : i ∈ [n] and j ∈ [2n3]

}
. (16)

The gaps between v i ’s are significantly larger than n3 so the j-part should be viewed as a small perturbation on v i .

The proof is organized as follows. In Section 6.2 we formally construct the distribution Q from {a1, . . . , an} and L. Scales 

of probabilities in Q will be fixed but their exact values will be specified later in the proof. We then show in Lemma 6.2

that there exists an optimal price vector p ∈ {v1, . . . , vn}n . Next in Section 6.3 we analyze and derive an approximation of 

the expected revenue obtained by a price vector p ∈ {v1, . . . , vn}n . The rest of the section is devoted to a long process of 

reverse engineering on exact values of probabilities in Q so that the expected revenue obtained by p can be written as (15)

for appropriate constants C1 and C2 .

6.2. Reduction

We start the construction of Q with some parameters. Let m = max(n5, an), and let N =mn2 denote a large integer. For 

each i ∈ [n], let v i =mn+i . For each i ∈ [n − 1], let

γi =
1

N

(
1

mn+i
−

1

mn+i+1

)
=

m − 1

Nmn+i+1
.

Let γn = 1/(Nm2n). For convenience, we also let �i =
∑n

j=i γ j = 1/(Nmn+i) for each i ∈ [n].
We record a property that follows directly from our choices of v i and γi .

Property 6.1. For each i ∈ [n], we have v i�i = 1/N.

Let q1, . . . , qn denote n probability distributions. They are closely related to the instance of the Integer Knapsack problem 

and will be specified later in this section. The support of each qi is a subset of [2n3] and for each j ∈ [2n3], we use qi( j)

to denote the probability of j in qi . Finally, let t1, . . . , tn denote a sequence of (not necessarily positive) numbers, also to be 

specified later, with |ti | = O (1/N2) for all i ∈ [n].
We are ready to define Q using v i, γi, ti and qi . First the support of Q is given in (16). Note that all values in the 

support are bounded by O (m2n), and the size of the support is O (n4).

Next Q has probability (γi/m) + ti at v i for each i ∈ [n]; probability qi( j) · γi(m − 1)/m at v i + j for each i ∈ [n] and 

j ∈ [2n3]; and probability 1 −(
∑n

i=1 γi +ti) at 0. It is easy to verify that Q is a probability distribution since the probabilities 

sum to 1. For convenience, we also let

T i =
n∑

j=i

t j and ri =
n∑

j=i

(γ j + t j) = �i + T i,

for each i ∈ [n]. The latter quantity, ri , is the probability that the value is at least v i .

Even though ti and qi have not been specified yet, we still can prove the following useful lemma about optimal price 

vectors, as long as |ti | = O (1/N2) for each i ∈ [n]:

Lemma 6.2. There is an optimal price vector p ∈ {v1, . . . , vn}n .

Proof. By Lemma 2.2 and Corollary 3.1 there must be an (integral) optimal price vector in [0 : vn + 2n3]n .
Let p = (p1, . . . , pn) ∈ [0 : vn + 2n3]n be a price vector with p /∈ {v1, . . . , vn}n . We will prove below that R(p) < R(b), 

where b is the vector in which all entries are vn . The lemma then follows.

For convenience, we use F (s) to denote the probability of a random variable drawn from the distribution Q being at 

least s. For each index i ∈ [n] such that pi > 0, the probability that the buyer picks item i can be bounded from above by 

F (pi), and can be bounded from below by

F (pi) · (1 − r1)
n−1 ≥ F (pi) ·

(
1−

1

mn+1N
− O

( n

N2

))n−1

≥ F (pi) − O
( n

m2n+2N2

)
,

where we used r1 = �1 + T1 , �1 = 1/(mn+1N), T1 = O (n/N2) and F (pi) ≤ r1 = O (1/(mn+1N)) if pi > 0. Applying the upper 

bound on R(p) and the lower bound on R(b), we have
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R(p) ≤
∑

i:pi>0

F (pi) · pi and R(b) ≥ nvn

(
F (vn) − O

( n

m2n+2N2

))
≥ nvn F (vn) − O

(
n2

m2N2

)
.

We now examine pi F (pi) and vn F (vn). We have three cases on sF (s):

Case 1: s = v i for some i ∈ [n]. Then we have

sF (s) = v i(�i + T i) =
1

N
± O

(
nm2n

N2

)
.

Case 2: s = v i + j for some i ∈ [n] and j ∈ [2n3]. We then have F (s) ≤ ri − (γi/m) − ti and

sF (s) ≤ (v i + 2n3)
(
ri −

γi

m
− ti

)
=

1

N
·
m2 −m + 1

m2
+ O

(
n3

mn+1N

)
=

1

N
− �

(
1

mN

)

when i < n, and similarly when i = n,

sF (s) ≤ (vn + 2n3) ·
γn(m − 1)

m
=

m − 1

m
·
1

N
+ O

(
n3

m2nN

)
=

1

N
− �

(
1

mN

)
.

Case 3: Otherwise, let i ∈ [n] denote the smallest index such that s < v i . Then we have

sF (s) ≤ (v i − 1)ri = v i(�i + T i) − ri =
1

N
− �

(
1

m2nN

)
.

From Case 1, we have

R(b) ≥
n

N
− O

(
n2m2n

N2

)
.

Regarding R(p), combining all three cases, we have that

R(p) ≤
n

N
− �

(
1

m2nN

)

because there is at least one index i ∈ [n] such that pi /∈ {v1, . . . , vn} by the assumption. As N � n2m4n , we conclude that 

R(p) <R(b). The lemma then follows. �

6.3. Analysis of the expected revenue

Given a price vector p ∈ {v1, . . . , vn}n , we let xi denote the number of items priced at v i . Then 
∑

i xi = n. We will only 

consider the contribution of two types of valuation vectors to the expected revenue R(p): those with exactly one positive 

entry and those with exactly two positive entries. The following lemma shows that the total contribution from all other 

valuation vectors is of third order with respect to (roughly) 1/N .

Lemma 6.3. The revenue from valuation vectors with at least three positive entries is O (n3/(mn+3N3)).

Proof. The probability that a valuation vector has at least three positive entries can be bounded by

O (n3r31) = O

(
n3

m3n+3N3

)
.

Thus, the total contribution is at most O (m2n) · O (n3r31), and the lemma follows. �

Let ε = n3/(mn+3N3) and ε′ = n3mn−1/N3 . In the rest of Section 6.3, we show that the following explicit expression is 

an approximation of the expected revenue R(p) with error O (ε ′):

n

N
+

∑

i∈[n]
xiv iT i −

n − 1

2N

∑

i∈[n]
xiri +

∑

i< j∈[n]

xix j

N
·
(
(1/2) − p(i, j)

)
(�i − � j), (17)

where, for each pair i < j ∈ [n], we use p(i, j) ∈ [0, 1] to denote the probability of α − v i > β − v j , where α and β are 

drawn independently from Q conditioning on α ≥ v i and β ≥ v j . This is done by examining closely valuations vectors with 

either one or two positive entries and performing some detailed calculations to simplify their contribution to the expected 
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revenue. Once the approximation (17) is obtained, we show in the rest of the section that the ti ’s and qi ’s can be chosen 

carefully so that (17) can be further simplified to an expression of the form c1 − c2
∑

i∈[n](xiai − L)2 , where

c1 =
n

N
+

L2

N2m3n
and c2 =

1

N2m3n

are positive constants that depend only on n, m, N and L. Note that this expression attains its maximum value c1 when ∑
i∈[n] xiai = L, i.e. when the given input instance of Integer Knapsack with Repetitions has a solution, and this fact is used 

to finish the reduction.

We start with valuation vectors with exactly one positive entry. Their total contribution is

∑

i∈[n]
xiv iri(1− r1)

n−1.

Since r1 = O (1/(mn+1N)) is of first order, approximating the sum up to second order yields

∑

i∈[n]
xiv iri(1− r1)

n−1 =
∑

i∈[n]
xiv iri

(
1− (n − 1)r1 ± O (n2r21)

)

=
∑

i∈[n]
xiv iri − (n − 1)

∑

i∈[n]
xiv irir1 ± O (ε). (18)

The contribution of valuation vectors with two positive entries is more involved. First from those whose two positive 

entries are over items of the same price, the total contribution to R(p) is

∑

i∈[n]

xi(xi − 1)

2
· v i

(
r21 − (r1 − ri)

2
)
(1 − r1)

n−2. (19)

Using p(i, j)’s, the contribution from vectors whose two positive entries are on items of different prices is

∑

i< j∈[n]
xix j

(
v iri(r1 − r j) + v jr j(r1 − ri) + rir j

(
v i p(i, j) + v j

(
1− p(i, j)

)))
(1− r1)

n−2. (20)

Approximating to the second order, (19) can be simplified to

∑

i∈[n]

xi(xi − 1)

2
· v i(2rir1 − r2i )(1± O (nr1)) =

∑

i∈[n]
xi(xi − 1)v irir1 −

∑

i∈[n]

xi(xi − 1)

2
· v ir

2
i ± O (ε) (21)

and (20) can be simplified similarly to

∑

i< j∈[n]
xix j

(
v iri(r1 − r j) + v jr j(r1 − ri) + rir j

(
v i p(i, j) + v j

(
1− p(i, j)

)))
± O (ε). (22)

Next we show that, for each i ∈ [n], all terms of v irir1 in (18), (21) and (22) cancel each other. This is because the overall 

coefficient of v irir1 is

−(n − 1)xi + xi(xi − 1) +
∑

j: j �=i

xix j = −(n − 1)xi + nxi − xi = 0,

where the first equality uses the fact that 
∑

j∈[n] x j = n. This allows us to further simplify the sum of (18), (21) and (22), 

with an error of O (ε), to

∑

i∈[n]
xiv iri −

∑

i∈[n]

xi(xi − 1)

2
· v ir

2
i −

∑

i< j∈[n]
xix jrir j(v i + v j) +

∑

i< j∈[n]
xix jrir j

(
v ip(i, j) + v j(1− p(i, j))

)
. (23)

Note that, by Lemma 6.3, this is also an approximation of R(p), with an error of O (ε).

Recall that ε′ = n3mn−1/N3 . Plugging in v iri = v i(�i + T i) = (1/N) + v iT i (note that T i = O (n/N2) is of second order), 

(23) can be further simplified to the following:

n

N
+

∑

i∈[n]
xiv iT i −

∑

i∈[n]

xiri(xi − 1)

2N
−

∑

i< j∈[n]

xix j(ri + r j)

N
+

∑

i< j∈[n]

xix j

N
·
(
r jp(i, j) + ri(1− p(i, j))

)
± O (ε′).

Extracting xix j(ri + r j)/(2N) from the last sum above, we get
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n

N
+

∑

i∈[n]
xiv iT i −

∑

i∈[n]

xiri(xi − 1)

2N
−

∑

i< j∈[n]

xix j(ri + r j)

2N
+

∑

i< j∈[n]

xix j

N
·
(
(1/2) − p(i, j)

)
(ri − r j) ± O (ε′).

Also note that the second and third sums above can be combined into a linear form of the xi ’s:

∑

i∈[n]
xiri(xi − 1) +

∑

i< j∈[n]
xix j(ri + r j) = −

∑

i∈[n]
xiri +

⎛
⎝∑

i∈[n]
xi

⎞
⎠

⎛
⎝∑

i∈[n]
xiri

⎞
⎠ = (n − 1)

∑

i∈[n]
xiri .

As a result, we finally get (17) as an approximation of the expected revenue R(p), with an error of O (ε ′). (Note that in (17)

we also replaced ri − r j at the end with �i − � j since the error introduced is O (n3/N3).)

6.4. Reverse engineering of ti and p(i, j)

Our ultimate goal is to set ti ’s and qi ’s carefully so that (17) by the end has the following form:

n

N
+

L2

N2m3n
−

1

N2m3n
·

⎛
⎝∑

i∈[n]
xiai − L

⎞
⎠

2

. (24)

Recall that L is the target in the Integer Knapsack instance. If this is the case, we obtain a polynomial-time reduction from 

the Integer Knapsack with Repetitions to Item-Pricing-Decision, because the difference between (24) and R(p) is at most 

O (ε′) and thus (24) is at least

n

N
+

L2

N2m3n
−

1

2N2m3n

if and only if a1, . . . , an and L is a yes-instance of Integer Knapsack with Repetitions.

To compare (24) and (17), we use 
∑

i∈[n] xi = n in (24) and it becomes

n

N
−

1

N2m3n
·

⎛
⎝∑

i∈[n]
x2i a

2
i + 2

∑

i< j∈[n]
xix jaia j − 2

∑

i∈[n]
aiLxi

⎞
⎠

=
n

N
−

1

N2m3n
·

⎛
⎝∑

i∈[n]
a2i xi

⎛
⎝n −

∑

j: j �=i

x j

⎞
⎠ + 2

∑

i< j∈[n]
xix jaia j − 2

∑

i∈[n]
aiLxi

⎞
⎠

=
n

N
−

1

N2m3n
·

⎛
⎝∑

i∈[n]
(na2i − 2aiL)xi −

∑

i< j∈[n]
xix j(ai − a j)

2

⎞
⎠ . (25)

By comparing (25) with (17), our goal is achieved if the following two conditions hold: First,

T i =
1

v i

·
(

(n − 1)ri

2N
−

1

N2m3n
·
(
na2i − 2aiL

))
, (26)

for all i ∈ [n] (note that the absolute value of the right side of (26) is O (n/(m2n+2N2)); Second,

((1/2) − p(i, j))(�i − � j)

N
=

(ai − a j)
2

N2m3n
, for all pairs i < j ∈ [n]. (27)

For the first condition, we note that the equations (26) for all i ∈ [n] actually form a triangular system of n equations in 

the n variables t1, . . . , tn , and thus there exists a unique sequence t1, . . . , tn such that (26) holds for all i ∈ [n]. Moreover, as 

the absolute value of the right side of (26) is O (n/(m2n+2N2)), the ti ’s are O (1/N2) as we promised earlier. To see this, we 

let s denote the maximum of the absolute value of the right side of (26), over all i ∈ [n]. Then one can show by induction 

on i that |ti | ≤ 2n−is for all i from n to 1. The claim now follows using 2n �mn .

The second condition is more difficult to satisfy. From (27), we know that the condition is met if

1

2
− p(i, j) =

(ai − a j)
2

Nm3n(�i − � j)
, for all i < j ∈ [n]. (28)

We will define below the n distributions qi , i ∈ [n], so that their induced values for the probabilities p(i, j) satisfy (28). An 

important property that we will need for the construction of the qi ’s is that all the desired probabilities p(i, j) are very 

close to 1/2. Specifically, using �i − � j ≥ γi ≥ γn = 1/(m2nN), we have
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0 <
1

2
− p(i, j) ≤

(ai − a j)
2 · Nm2n

Nm3n
= o

(
1

m

)
, (29)

since m = max(n5, an) and an = maxi∈[n] ai .

6.5. Connecting p(i, j) with qi and q j

Fixing a pair i < j ∈ [n], we examine p(i, j) closer. Recall that p(i, j) is the probability of α − v i > β − v j when α and β

are drawn independently from Q , conditioning on α ≥ v i and β ≥ v j .

For convenience, we use block k to denote the subset {vk, vk + 1, . . . , vk + 2n3} of the support of Q . Note that due to the 

exponential structure of the support of Q (and the assumption of i < j), if α is in block k ≥ i and β is in block � > j with 

� > k then β − v j > α − v i . Therefore, for α − v i > β − v j to happen, we only need to consider the following three cases:

Case 1: α is from block k and β is from block �, where k, � ∈ [n] satisfy k ≥ � > j. Then the total contribution of this case 

to probability p(i, j) is:

1

rir j
·

∑

k≥�> j

(γk + tk)(γ� + t�).

Case 2: α is from block k and β is from block j, where k > i. Then the total contribution is

1

rir j
·
∑

k>i

(γk + tk)(γ j + t j).

Case 3: Finally, α is from block i and β is from block j, with α − v i > β − v j . Let q(i, j) denote the probability of α > β , 

when α is drawn from qi and β is drawn from q j independently. Using q(i, j), the total contribution of this case 

to p(i, j) is

1

rir j
·
((γ j

m
+ t j

)
·
(m − 1)γi

m
+ q(i, j) ·

(m − 1)γi

m
·
(m − 1)γ j

m

)
.

The probability p(i, j) is equal to the sum of the above three quantities for the three cases. Hence, q(i, j) is uniquely 

determined by the p(i, j) we aim for, i.e., the unique p(i, j) that satisfies (28), because all other parameters have been well 

defined by now, including t1, . . . , tn .

We show below that, if |p(i, j) − 1/2| = o(1/m), then q(i, j) must satisfy |q(i, j) − 1/2| = O (1/m).

To see this, note first that since i < j ≤ n and ri = �i + T i = 1/(Nmn+i) ± O (n/N2), we have that

γi =
m − 1

mn+i+1N
=

m − 1

m
· ri ± O

( n

N2

)
.

Thus, 
∑

k>i(γk + tk) = ri − γi − ti = ri/m ± O (n/N2).

Using this fact in the above expressions for the three cases, it is easy to show that, other than

1

rir j
· q(i, j) ·

(m − 1)γi

m
·
(m − 1)γ j

m
, (30)

the contribution of other terms is bounded from above by O (1/m) (note that k ≥ � > j implies k > i). Since |p(i, j) − 1/2| =
o(1/m), it follows that the term in (30) is between 1/2 − O (1/m) and 1/2 + O (1/m). Note that γi = (m − 1)ri/m ± O (n/N2)

(since i < n), and γ j is either (m − 1)r j/m ± O (n/N2) if j < n or r j ± O (n/N2) if j = n. Therefore, the coefficient of q(i, j)

in (30) is 1 − O (1/m). Since the expression in (30) is 1/2 ± O (1/m), it follows that |q(i, j) − 1/2| = O (1/m).

6.6. Reverse engineering of qi

Given q(i, j) for each pair i < j ∈ [n], our final technical step of the reduction is to construct a sequence of probability 

distributions q1, . . . , qn over [2n3] such that, for each pair i < j ∈ [n], the probability of α > β , where α is drawn from qi

and β is drawn from q j independently, is exactly q(i, j).

In general, such a sequence of distributions may not exist, e.g., consider n = 3, q(1, 2) = 1, q(2, 3) = 1 and q(1, 3) = 0. 

But here we are guaranteed that the q(i, j)’s are close to 1/2: |q(i, j) − 1/2| = O (1/m). We shall show that in this case the 

desired distributions exist, and we can construct them.

To construct q1, . . . , qn , we define 
(
n
2

)
subsets of [2n3], called sections. Each section consists of 2n +3 consecutive integers. 

The first section is {1, . . . , 2n +3}, the second section is {2n +4, . . . , 4n +6}, and so on and so forth. (Note that 2n3 is clearly 

large enough for 
(
n
2

)
sections.) Each section is labeled, arbitrarily, by a distinct pair (i, j) with i < j ∈ [n]. We let ti, j,k denote 

the kth smallest integer in section (labeled) (i, j), where k ∈ [2n + 3]. Now we define q� , � ∈ [n]. For each section (i, j), 

i < j ∈ [n], we have:
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Case 1: If � �= i and � �= j, then we set

q�

(
ti, j,�

)
= q�

(
ti, j,2n+4−�

)
=

1

2
(
n
2

)

and q�

(
ti, j,k

)
= 0 for all other k ∈ [2n + 3].

Case 2: If � = j, then we set q�

(
ti, j,n+2

)
= 1/

(
n
2

)
and q�

(
ti, j,k

)
= 0 for all other k ∈ [2n + 3].

Case 3: If � = i, then we set

q�

(
ti, j,n+1

)
=

1

2
(
n
2

) −
(
n

2

)(
q(i, j) − 1/2

)
and q�

(
ti, j,n+3

)
=

1

2
(
n
2

) +
(
n

2

)(
q(i, j) − 1/2

)
,

and q�

(
ti, j,k

)
= 0 for all other k ∈ [2n + 3].

This finishes the construction of q1, . . . , qn . Using |q(i, j) − 1/2| = O (1/m) and m ≥ n5 , we know that q1, . . . , qn are proba-

bility distributions: all entries are nonnegative and sum to 1.

It is also not hard to verify that the distributions satisfy the desired property, i.e., for each pair i < j ∈ [n] the probability 

of α > β , where α is drawn from qi and β is drawn from q j independently, is exactly q(i, j). First observe that every section 

of each distribution qi has the same probability 1/
(
n
2

)
. If α and β belong to different sections then the order between α

and β is determined by the order of the sections, and both orders have obviously the same probability.

So suppose that α, β belong to the same section labeled (g, h), where g, h ∈ [2n + 3]. If g �= i or h �= j, then it is easy to 

check that both orders between α and β have the same probability. To see this, suppose first that i /∈ {g, h}. Then α = tg,h,i

or tg,h,2n+4−i with equal probability. If α = tg,h,i , then α < β because β is either tg,h, j or tg,h,2n+4− j (if j /∈ {g, h}), or 
β = tg,h,n+2 (if h = j) or β = tg,h,n+1 or tg,h,n+3 (if g = j); similarly, if α = tg,h,2n+4−i then α > β . Therefore, if i /∈ {g, h}, 
then there is equal probability that α < β and α > β . Similarly, the same is true if j /∈ {g, h}.

Suppose that i ∈ {g, h} and j ∈ {g, h}. Since i < j and g < h, we must have i = g and j = h. In this case, β = ti, j,n+2 , and 

α = ti, j,n+1 or α = ti, j,n+3 , hence α > β iff α = ti, j,n+3 .

The probability that α > β and α, β are not both in section (i, j) is

1

2
·
(
1−

1
(
n
2

)2

)
.

The probability that α > β and α, β are both in section (i, j) is

1(
n
2

) ·
(

1

2
(
n
2

) + n2

(
q(i, j) −

1

2

))
=

1

2
(
n
2

)2 +
(
q(i, j) −

1

2

)
.

Thus, the total probability that α > β is exactly q(i, j) as desired.

This concludes the construction and the proof of the theorem.

7. Conclusions

In this paper we studied the complexity of the Bayesian Unit-Demand Item-Pricing problem with a product distribution. 

We showed that the decision problem is NP-complete even when the distributions have support size 3 and share the same 

support {0, 1, 3} or when they are identical. We also presented a polynomial-time algorithm for distributions of support 

size 2.

Several interesting open questions remain. Is there a PTAS for general product distributions? Note that our NP-hardness 

results do not preclude the existence of an FPTAS. Actually, by adapting techniques from Cai and Daskalakis (2011) we 

can give an FPTAS for the case when the supports of the distributions are integers in a bounded interval. Moreover, we 

conjecture that the IID case can be solved in polynomial time when the size of the support is constant. For the related 

problem of finding an optimal lottery-pricing (or an optimal randomized mechanism), such a polynomial-time algorithm 

was obtained by Daskalakis and Weinberg (2012) for the IID case with a constant support size. The case of general product 

distributions, however, was shown recently to be intractable in Chen et al. (2015) under standard complexity-theoretic 

assumptions.
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